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In a consistent heterotic string theory, the Kalb-Ramond field, which is the source of space-time torsion,

is augmented by Yang-Mills and gravitational Chern-Simons terms. When compactified to 4 dimensions

and in the field theory limit, such additional terms give rise to interactions with interesting astrophysical

predictions like rotation of plane of polarization for electromagnetic and gravitational waves. On the other

hand, if one is also interested in coupling 2- or 3-form (Abelian or non-Abelian) gauge fields to torsion,

one needs another class of interaction. In this paper, we shall study this interaction and offer some

astrophysical and cosmological predictions. We explicitly calculate the Coleman-Weinberg potential for

this theory. We also comment on the possibility of such terms in loop quantum gravity where, if the

Barbero-Immirzi parameter is promoted to a field, acts as a source for torsion.
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I. INTRODUCTION

The low energy physics of particle interactions is sat-
isfactorily described by the standard model and general
relativity. At higher energies available at the early universe
or at astrophysical processes, it is expected that new
degrees of freedom will emerge to play important role.
Otherwise inaccessible at the present energy scale, these
fields might interact with degrees of freedom of the stan-
dard model leading to some interesting theoretical predic-
tions and observational signatures. Since string theory is a
candidate for a unified description of field interactions even
up to the Planck scale, we envisage that nature and the
specific form of interaction of new fields with known
degrees of freedom can be extracted from this theory in
an unambiguous way. In this paper, we shall look for gauge
invariant interactions of gauge fields (electromagnetic,
gravitational and 2- and 3-form gauge fields) to torsion.
In string theory, since the Kalb-Ramond (KR) field acts as
a source of torsion, we shall have a look at possible gauge
and gravitational interactions of a this KR field. The KR
field is generic to any closed string spectrum but is not a
degree of freedom of the standard model. One can antici-
pate that any observational effect involving the KR field,
obtained using standard fields as probes, is then a window
into the otherwise inaccessible world of very high energy
physics supposedly predicted by string theories. On the
other hand, loop quantum gravity (LQG) is also a candidate
for quantum theory of gravity. In LQG, the Barbero-
Immirzi parameter is a one-parameter ambiguity which
describes various topological sectors. This parameter also
comes up in the area spectrum and consequently in entropy

of black holes, wherefrom its value is ascertained by
comparing with the Bekenstein-Hawking entropy formula.
If the Barbero-Immirzi parameter is promoted to a field, it
acts as a source for torsion. It is then interesting to compare
and contrast various interactions of fields with these two
sources of torsion that arise in these two theories of quan-
tum gravity. Since there are observational implications, the
issue is even more satisfying.
In the context of the heterotic string theory, electromag-

netic and gravitational interactions of KR fields arise quite
naturally from the requirements of consistency. As is well
known [1], the (E8 � E8) or SOð32Þ heterotic strings are
two anomaly-free gauge groups which can be coupled to
N ¼ 1 supergravity in 10 dimensions. Anomaly cancella-
tion (the Green-Schwarz mechanism) requires that the
KR 3-form field-strength is augmented by addition of
(E8 � E8) Yang-Mills Chern-Simons 3-form and local
Lorentz Chern-Simons 3-form [1]. This augmentation in-
duces electromagnetic and gravitational interactions of the
KR field which lead to potentially interesting physical
effects showing up in the Maxwell and Einstein equations,
when the theory is compactified to four dimensions. The
electromagnetic effect mainly comprises a rotation of the
polarization plane of electromagnetic waves from large
red-shift sources, upon scattering from a homogeneous
KR background [2–6]. This rotation is independent of the
wavelength of the electromagnetic wave and cannot be
explained by the Faraday effect, where the plane of polar-
ization of the electromagnetic wave rotates depending
quadratically on the wavelength while passing through
some magnetized plasma. Similarly, the gravitational in-
teraction leads to the result that the plane of polarization of
gravitational waves rotates through an angle that is pro-
portional to (a power of) the KR field-strength component
[7]. Predictions of this kind can then be useful if some
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deviations from the traditional expectations are observed.
For example, such interactions have been studied within
the framework of the five-dimensional Randall-Sundrum
braneworld model. When compactified to four dimensions,
they lead to huge deviations from the expected results
[7–11], which can be used to put bounds on the various
parameters in the theory [12–14]. On the other hand, if the
predictions are nonobservable, they lead to upper bounds
on the presence of new fields which is important in our
search for new theories and their couplings. To exemplify,
in the present case of rotation of plane of polarization of
electromagnetic waves, the magnitude of the effect is
sensitive to the dimensional compactification of the under-
lying theory. For toroidal compactification (as well as for
the Calabi-Yau compactification) of the theory (in the
zero slope limit), the predicted rotation is proportional to
the appropriate KR field-strength component (scaled by the
inverse scale factor in a Friedmann universe), so that
bounds on the observed rotation translate into a stringent
upper bound on the size of the KR field-strength compo-
nent. Moreover, if one uses the bounds on the KR field-
strength obtained from the cosmic optical activity, the
order of magnitude of the similar effect for gravitational
waves can be calculated.

The interactions which give rise to the above-mentioned
predictions arise very naturally in string theory and they
have been well studied. Interestingly, one can also conceive
of another class of interactions which has not been dis-
cussed in this context except for in [15,16], where only
the electromagnetic interaction was considered. In this
paper, we shall extend the study to non-Abelian gauge fields
and discuss the effects of these possible new interactions in
detail. Let us discuss the motivation for introducing such
structures in brief (details will be in Sec. II). The issue
originally arose during the study of Einstein-Cartan
space-time. The idea was to construct a gauge invariant
coupling of electromagnetic field ðA�Þ to torsion—which

is another geometrical property of the Einstein-Cartan
space-time along with the metric. The field-strength ðF��Þ
for such a space-time also depends on torsion [17].
However, because the torsion does not have a transforma-
tion under Uð1Þ gauge transformation, the electromagnetic
field-strength is not gauge invariant. This is dissatisfactory
since we expect that field-strengths must be measurable
even in space-times with torsion. This requirement on the
field-strength demands that the torsion must also stay in-
variant under Uð1Þ gauge transformation. This situation
implies that there is a nongravitational field, possibly mass-
less, to function as the source of the torsion [2]. Since that
fieldmust be bosonic, one can opt for the KR antisymmetric
second-rank tensor field B�� as a possible candidate. B��,

being a massless antisymmetric field, is expected to be a
gauge connection, as indeed it is, with the following gauge
transformation ��B�� ¼ @½����, and this leaves its field-

strengthH��� gauge invariant. Moreover, for anomaly-free

quantum theory,H���must bemodifiedwith the addition of

an electromagnetic Chern-Simons three-tensor and ifB�� is

endowed with a nontrivial electromagnetic gauge transfor-
mation along with Kalb-Ramond gauge transformations,
the KR field-strength remains invariant under Uð1Þ gauge
transformation. This is precisely what was needed: the
torsion field is gauge invariant. Interactions of this type
give rise to interactions in the form of rotation of plane of
polarization of electromagnetic (and gravitational) waves
as discussed in the previous paragraph.
What if one wants to couple a 2-form or a 3-form gauge

field to torsion? Such fields arise in the perturbative and
nonperturbative sector (D-branes) of string theory compac-
tified to four dimensions and in supergravity. Again, field-
strengths for such higher-rank tensor fields are also not
invariant under their respective gauge transformations in
presence of space-time torsion. Once we take the KR field
as a source for torsion, there is a possible way out. We
again demand the field-strengths of 2-form or 3-form
gauge fields to be observable so that one again has to
modify H���, but in a peculiar way. This extra term,

instead being of the form A ^ F for the ðUð1ÞÞ case above,
is A ^ �F, where * denotes the Hodge-dual and A is a 1-, 2-
or 3-form field. Again, if the field B�� has a nontrivial

transformation under the gauge transformation of the form
fields, its field-strength ðH���Þ and hence torsion remain

invariant under gauge transformations, as required (for this

case, we shall work in order Oð ffiffiffiffi
G

p Þ). It is also interesting
to note that addition of such terms (A ^ �F) not only works
for 2- and 3-form fields, but also for a 1-form field.
Moreover, one gets an additional set of interaction for the
electromagnetic fields and H��� field with observable

consequences. These issues were first discussed in [15]
and a possible embedding of such terms in N ¼ 1 super-
sysymmetric theory was discussed in [16]. We should
however point out that we do not attempt to derive these
new interactions from any string theory but merely point to
the possibility of such terms from the requirements of
gauge invariance. One finds more evidence for existence
of such terms: the gravitational counterpart of this new
interaction contributes the Euler invariant to the effective
action in four dimensions, which is well known in gravity
and supergravity theories to come from stress-tensor anom-
aly in curved space-time [18–20]. In the sense of effective
field theory [21], which does not assume any precise details
of the fundamental interactions or short distance degrees of
freedom, such kinds of terms are ubiquitous and lead to
quantum corrections for general relativity. In the appendix
of this paper we show one possible origin of such terms and
in the discussion we shall detail our justification for such
extra interactions from the effective field theory point of
view. In this paper, we shall extend the formalism of [15]
for non-Abelian gauge fields and also for gravity waves
and look for observational predictions. Interestingly,
because of the presence of the Hodge-dual, interactions
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of the latter kind violate spatial parity. With the cosmic
microwave background (CMB) data and the Planck data
available, it might be interesting to look for such ideas now.
Indeed, observational implications of such terms have al-
ready been discussed [22–26], though the possible origin
of terms have not been discussed in these papers and the
coupling constant for such interactions are usually not
pinned down. Moreover, it has been argued that in the
presence of such new anomalous terms, the cosmological
constant becomes dynamical and leads to changes in the
CMB bi/trispectrum compared to simple inflationary mod-
els [27]. It is for this reason that we shall also study the
effective potential, which is the first step in a detailed study
of inflatory models. The Coleman-Weinberg potential cal-
culated in Sec. V leads to the precise form of the potential
from which many parameters can be compared and con-
strained from the known data.

The interest in LQG for such interactions and conse-
quently its relation or differences with string theory/super-
gravity is due to some recent studies [28–34]. These papers
deal with the consequences of promoting the Barbero-
Immirzi (BI) parameter to a field. It turns out that the
derivative of the BI field is the source for torsion.
Moreover, since the BI field is pseudoscalar,1 it is natural
to compare and contrast this BI field with the axion [29]. If
the BI field is an axion, its derivative is dual to the H���

field alluded to above and such fields might have interac-
tions with electromagnetic and gravitational fields in the
way very similar to the one discussed above in the context
of string theory. We shall discuss these issues in detail
below and point out to some observational implications.

The plan of the paper is as follows: In Sec. II, we discuss
the gauge invariant coupling of various form fields to
torsion and show how this can be achieved with special
reference to electromagnetism and gravity. In Sec. III, we
shall review the consequences of such interaction for the
Maxwell fields and extend them to gravity in the next
section. In Sec. V, we compute the quantum effective
potential (Coleman-Weinberg potential) [35] for a theory
of gravity by including the modified interactions. We will
see that inclusion of a parity-violating scalar field (the BI
field/axion) does not have any effect in the one-loop effec-
tive potential of a theory where higher curvature terms are
present. We conclude in Sec. VI.

II. GAUGE INVARIANT INTERACTIONS OF
FIELDS WITH TORSION

In the standard Einstein-Maxwell theory, the electro-
magnetic field-strength reduces to the flat space expression
on account of the symmetric nature of the Christoffel
connection. However, in the theory of gravity described

by Einstein-Cartan theory, i.e. in the case where one has
space-time torsion, the situation changes quite drastically,
because the electromagnetic field-strength is no longer
gauge invariant [17]. Indeed, it is easy to see that

F�� ¼ @½�A�� � T��
�A�; (1)

where T��
�A� is the torsion (antisymmetric combination

of the Christoffel connection), is obviously not invariant
under Uð1Þ gauge transformation ��A ¼ d�, � being the
gauge function. Since F�� and any field-strengths must be

measurable quantities even in a curved space-time with
torsion, the torsion tensor, a purely geometric quantity like
curvature must also be gauge invariant. However, this
implies that one must also have another geometrical quan-
tity which might compensate for the loss of gauge invari-
ance due to torsion. In absence of such compensating
fields, it is natural to look for nongravitational fields to
act as a source for torsion [2]. In the context of string
theory, the Kalb-Ramond (KR) field seems to be an ideal
candidate source [2]. Indeed, it also has all the desired
gauge transformation properties required of torsion.
In this section, we shall first review the basic facts about

the KR field as is known from string theory with special
emphasis on its gauge transformation properties. The KR
field is characterized by a 2-form potential B which has a
3-form field-strength H � dB; the field-strength is invari-
ant under the KR gauge transformation � ��B ¼ d ��, where
�� is a 1-form gauge parameter. Immediately, one obtains
the Bianchi identity for the KR field:

dH ¼ 0 (2)

In four-dimensional space-time, the free KR action is given
by

SH ¼
Z
M4

H ^ �H; (3)

where �H is the Hodge-dual of the field-strength H.
Varying this action with regard to B yields the KR field
equation

d�H ¼ 0; (4)

which has the local solution

�H ¼ d�H; (5)

where �H is a scalar. Substituting this in Eq. (4)the one
obtains for the field �H

d�d�H ¼ 0: (6)

Thus, on shell the Bianchi identity for the field B is the
equation of motion for its Hodge-dual field. This is not
surprising and is a feature of all Hodge-dual related fields.
Let us now point to the string theory connection. B

occurs in the massless spectrum of the free string in
10-dimensional heterotic string theory. In the zero
slope limit, this theory reduces to 10-dimensional N ¼ 1
supergravity coupled to N ¼ 1E8 � E8 super-Yang-Mills

1The expression for area spectrum in LQG depends on the BI
parameter and as such must be a pseudoscalar for a well-defined
transformation property of the area element.
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theory. The requirement of 10-dimensional supersymmetry
and that the quantum theory be free of all anomalies
implies that the KR field-strength H be augmented as [1]

H ¼ dB� 1

MP

ð�YM ��LÞ; (7)

where

�YM � tr

�
A ^ dAþ 2

3
gA ^ A ^ A

�
(8)

is the Yang-Mills Chern-Simons 3-form with A the gauge
connection 1-form and MP is the Planck mass in four-
dimensional space-time. �L is the gravitational Chern-
Simons 3-form obtained by replacing the Yang-Mills
gauge connection A by the spin-connection 1-form !,
and the trace is taken over the local Lorentz indices. The
augmentation in Eq. (7) has important consequences. The
fieldH, being a field-strength, must remain gauge invariant
under both Yang-Mills gauge transformations and under
local Lorentz transformations. This implies that B must
now transform nontrivially under both gauge transforma-
tions in spite of B being neutral. To simplify and to set the
notations for the remaining part of the paper, let us say that
the gauge field A is Uð1Þ valued. Then, the transformation
of A is given by

��A ¼ d�; (9)

where, � is the gauge parameter. The Chern-Simons term
now only contains A ^ dA. We shall now denote �YM by
�EM and this term varies as

���EM ¼ d� ^ dA: (10)

Thus, to achieve gauge invariance for the H field, the
transformation law for B should include the 2-form in
(10) so that under Yang-Mills gauge transformation

��B ¼ � 1

MP

ð�dAÞ: (11)

Also, the gravitational field in the vielbein formalism
can be treated very similarly to the Yang-Mills field.
Specifically, the Yang-Mills potential A is analogous to
the spin-connection 1-form !AB, where A, B are Lorentz
indices. Under an infinitesimal Lorentz transformation
with parameters given by an SOðD� 1; 1Þ matrix �, the
transformation of ! is

�L! ¼ d�þ ½!;��; (12)

The Lorentz Chern-Simons term varies as

�L�L ¼ trðd� ^ d!Þ: (13)

Similar to the argument above, transformation law for B
should include the 2-form in (13) so that under Lorentz
transformation

�LB ¼ � 1

MP

trð�d!Þ: (14)

Retaining the form of the KR action (3), it follows that
the KR field equation does not change. Therefore, �H still
has the local solution (5). However, the KR Bianchi iden-
tity certainly changes, leading to

d�d�H ¼ 1

MP

trðF ^ F� R ^ RÞ; (15)

where FðRÞ is the Yang-Mills (space-time) curvature
2-form. The Yang-Mills and Einstein equations change
nontrivially. We shall consider these below in special
situations, viz., the Maxwell part of the gauge interaction
and linearized gravity.
This scenario works well for 1-form gauge fields. How

about if we want a gauge invariant coupling of higher form
fields to torsion? In [15], it was proposed that one needs
additional terms to be augmented to the KR field-strength.
For Uð1Þ gauge fields, it was proposed that an additional
augmentation to H in the form of M�1

P ðA ^ �FÞ is needed.
But again, such an addition is not Uð1Þ gauge invariant.
One needs to go further and we propose that the additional
augmentation to be

H ! H þ 1

MP

ðA ^ �Fþ �d�FÞ (16)

The argument is obviously not based on any requirements
arising from string theory and it is not known if one can
embed such an interaction in any string theory. However,
we shall discuss in Sec. VI how, in effective field theories,
such terms are generic and lead to macroscopically
observable results. Since effective field theories do not
assume any precise details of microscopic inetraction, we
expect such terms to exist in string theory or in its low
energy effective action. In the appendix, we indicate the
origin of such terms from a different perspective. It is also
clear that in presence of such terms, the gauge transforma-
tion of B field changes from that obtained in Eq. (11) 2:

��B ¼ � 1

MP

ð�Fþ ��FÞ: (17)

We can also proceed further and add to Eq. (16) the spin-
connection terms so that the augmentation takes the fol-
lowing form:

H ! H þ �

MP

ðA ^ �Fþ! ^ �RÞ; (18)

where � is a parameter which takes values þ1 or �1. We
have introduced this parameter since we do not quite fix the
coefficient. Now, instead of Eq. (15), the result of such

2An immediate consequence of this gauge transformation is
that the H��� now can no longer be thought of as a parity
eigenstate, and thus neither is its dual �H. In other words, one
can decompose �H ¼ �ðþÞ

H þ�ð�Þ
H where þ indicates even

parity and � is for odd parity. However, we shall continue to
use the generic term �H for this field.
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additional terms in Eq. (18) is (we consider terms only up
to order M�1

P )

d�d�H ¼ 1

MP

trðF ^ Fþ �F ^ �F� R ^ R� �R ^ �RÞ:
(19)

In short, the upshot of the above analysis is that one can
consider a gauge invariant action of the following form
[2,3]:

S½g; T� ¼
Z
M4

d4x

�
Rðg; TÞ � 1

4
F��F

�� � 1

2
H���H

���

þ T���H
���

�
; (20)

where H��� is defined through Eq. (7) and the torsion

tensor T��� is an auxiliary field satisfying the constraint

T��� ¼ H���. Putting the local solution H ¼ ��d�H

from Eq. (5) in the action (20), we get the effective equa-
tion for the field �H:

S½g; A;�H�
¼

Z
M4

d4x

�
Rðg; TÞ � 1

4
F��F

�� � 1

2
@��H@

��H

�

þ�H

MP

ðF ^ Fþ �F ^ �F� R ^ R� �R ^ �RÞ; (21)

which is precisely the action for a pseudoscalar (�H)
coupled to gravity.3 Note that contrary to the Maxwell
fields, the gravitational interactions contribute higher de-
rivative terms in the action. They are related to the gravi-
tational axial current anomaly and stress-tensor anomaly
respectively [18–20]. The equation of motion for this
pseudoscalar is, however, given by Eq. (19). If the
Barbero-Immirzi parameter is promoted to a field, the
torsion is dual to the derivative of that pseudoscalar field
(just like the Eq. (5)). In that case, one gets an effective
action same as the first part of the action above [28,33]. In
the following sections, we study the consequences of such
interactions.

III. ELECTROMAGNETIC INTERACTIONS
OF KR FIELD

In this section, we shall confine our study to the electro-
magnetic interactions of the KR field in four-dimensional
Minkowski space-time. Let us first restrict ourselves to
the interaction of the type �HF��

�F��. Observe that since

the field �H is a pseudoscalar, the interaction is parity

conserving. The relevant four-dimensional field equations
are

@�H
��� ¼ 0 @�F

�� ¼ M�1
P H���F��: (22)

The corresponding Bianchi identities are

h�H ¼ M�1
P F���F�� @�

�F�� ¼ 0: (23)

To simplify, let us assume that the ‘‘axion’’ field �H is
homogeneous and provides a background with which the
Maxwell field interacts. We restrict our attention to lowest
order in the inverse Planck mass MP, so that terms on the
right-hand side of the axion field Eq. (23) are ignored to a

first approximation. Consequently, _�H � d�H=dt ¼ f0,
where f0 is a constant of dimensionality of ðmassÞ2.
Under these conditions, the Maxwell equations can be
combined to yield the inhomogeneous wave equation for
the magnetic field B

hB ¼ � 2f0
MP

r� B: (24)

With the ansatz for a plane wave travelling in the
z-direction, Bðx; tÞ ¼ B0ðtÞ expikz, we obtain, for the left
and the right circular polarization states B0� � B0x � iB0y,

d2B0�
dt2

þ
�
k2 � 2f0k

MP

�
B0� ¼ 0: (25)

We concentrate on the equation for magnetic field, as the
conclusions will be same for that of electric field. The right
and left circular polarization states have different angular
frequencies (dispersion)

!2� ¼ k2 � 2kf0
MP

(26)

so that over a time interval �t, the plane of polarization
undergoes a rotation (for large k)

��op � j!þ �!�j�t ’ 2
f0
MP

�t: (27)

In Friedmann-Robertson-Walker space-time, the value of
observed angle of rotation also incorporates the scale factor
[3]. This means that�� ¼ ��ðzÞ, where z is the red-shift,
and increases with red-shift. This rotation also differs from
the better-understood Faraday rotation in that it is achro-
matic in the limit of high frequencies. Observationally, even
for large red-shift sources, the angle of rotation is less than
a degree, which imposes the restriction on the dimension-
less quantity f0=M

2
P < 10�20. In regard to astrophysical

observations of optical activity, it appears that there is no
definite evidence that the rotation of the plane of polariza-
tion travelling over cosmologically large distance is not
entirely attributable to Faraday rotation due to magnetic
fields present in the galactic plasma [36]. However, it is
therefore not unlikely that the axion field will endow ob-
servable effect in CMB.

3Now, because �H can be both parity violating as well as
parity conserving, each interaction is both parity conserving and
parity violating. In what follows, we shall only consider the case
where �H is parity violating.
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In contrast, if we consider only the extra augmentation,
i.e the interaction�HF��F

��, the resulting wave equation

for the B field leads to entirely different results. Observe
that this interaction violates spatial parity. The wave equa-
tion is simple to determine:

d2B

dt2
� 2rBþ �

MP

f0
dB

dt
¼ 0; (28)

which eventually leads to the following equation for the
left/right circularly polarized light [15]:

d2Bþð�Þ
dt2

þ
�f0
MP

dBþð�Þ
dt

þ k2dBþð�Þ ¼ 0; (29)

where �f0 ¼ �f0. The effect of parity violation is confined
to the second term, which signifies either an enhancement
or an attenuation of the intensity of the observed electro-
magnetic wave, depending on the sign of �f0 [15]. We shall
not go into the details of this calculation. Instead, we shall
show that a similar effect also exists for gravity waves
which might lead to some observational effects.

IV. BEHAVIOR OF GRAVITATIONALWAVES

First, let us discuss the gravitational analogue of the
rotation of plane of polarization (optical activity, Eq. (26))
discussed above [7]. This arises due to the parity-conserving
term of the form�H trðR ^ RÞ in Eq. (15). First note that the
augmentation of H in (7) implies that the trðR ^ RÞ term
contributes an additional term to the Einstein equation over
and above the energy-momentum tensor of the KR field.
Formally,

G�� ¼ 8	

M2
P

T�� þ 16	

M3
P

1ffiffiffiffiffiffiffi�g
p �

�g��

Z
d4x0

ffiffiffiffiffiffiffi�g
p ðx0Þ

��Hðx0ÞR��
�ðx0Þ�R��
�ðx0Þ; (30)

where,

T�� ¼ Hð�j��H�Þ
�� � 1

6
g��H

2: (31)

It has been established in [7] that in the linearized approxi-
mation, the propagation of gravity waves in a homogeneous
axion background is governed by (in large k limit, but in the
Planckian regime k <MP with 16	kf0=M

3
P 	 1 as an

expansion parameter)�
d2

dt2
þ k2 þ 8	f20=M

2
P � 1024	2kf30=M

5
P

�
"�

’ �8	f20ð1� 16	kf0=M
3
PÞ=M2

P: (32)

We can now read off the dispersion relation

!2� ¼ k2 þ 4	f20=M
2
P � 1024	2kf30=M

5
P; (33)

whence the group velocity is vg� ¼ 1þOðk�2Þ and the

phase velocity is given by vp� ¼ 1� 512	2ðf30=M5
PkÞ.

As in the electromagnetic case, the rotation of the polariza-
tion plane for gravitational waves is given by

��grav ’ 1024	2 f30
M5

P

�t: (34)

With the limits on f0 given in the previous subsection, it is
very small Oð10�30Þ. However, since the tensor perturba-
tions characterizing the gravitational wave do not get
randomized, the effect is in principle observable.
Let us now restrict ourselves to the parity-violating term

of the form �H trðR ^ �RÞ. Quite striking differences are
seen with the new term. The electromagnetic analogue of
this term has been discussed in [15,16] and reviewed in
Eq. (29). In contrast to the rotation of plane of polarization
for gravity waves as observed above, Eq. (33), we expect
some new consequences. In fact, we expect to observe
modulation for gravity waves. First, the effective action
can be written as:

G�� ¼ 8	

M2
P

T�� þ 16	

M3
P

1ffiffiffiffiffiffiffi�g
p �

�g��

Z
d4x0

ffiffiffiffiffiffiffi�g
p ðx0Þ

��Hðx0ÞR��
�ðx0ÞR��
�ðx0Þ; (35)

where

T�� ¼ Hð�j��H�Þ
�� � 1

6
g��H

2: (36)

We consider the Einstein equation in a linearized approxi-
mation. We decompose the metric g�� ¼ ��� þ h�� with

the fluctuation h�� being considered small so that one need

only retain terms of OðhÞ in the Einstein equation. We
further impose on the fluctuations h�� the Lorenz gauge

h��
�;¼ 1

2h;� . we regard the axion field �H as a homoge-

neous background satisfying Eq. (23) and consider its
effect on a plane gravitational wave and we restrict to the
lowest inverse power of the Planck mass for which a non-
trivial effect is obtained. We ignore terms on the right-hand
side of the axion field equation and set

h�H ¼ 0 (37)

We have chosen the Lorenz gauge and not all components
of h�� are independent. In fact, the only physical degrees

of freedom of the spin 2 field are contained in hij, for which

we choose a plane wave ansatz travelling in the z direction,

hij ¼ "ijðtÞ exp�ikz: (38)

The Latin indices above correspond to spatial directions.
The other components of h�� can be gauged away, so that

their field equation need not be considered. The only non-
vanishing polarization components can be chosen to be
"11 ¼ �"22, "12 ¼ "21; from these the circular polariza-
tion components can be constructed as in the Maxwell
case: "� � "11 � i"12. Again, we shall assume that the
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scalar field is homogeneous and it has only time depen-
dence so that d�=dt ¼: f0 is a constant. The equation of
motion for the hij can be determined in a straightforward

manner:

hhij ¼ � 16	

M2
P

½�ð�ij þ hijÞf20�

� 16	

M3
P

�½f0hhij;t þ�Hhhhij� (39)

Now, to facilitate the calculation, let us make some sim-
plified assumptions and notations. First, as seen from the
previous section, let us define the dimensionless quantity
� :¼ ðf0=M2

PÞ 	 1. Secondly, we shall remain in the
Planckian regime but the wave number k is such that the
dimensionless quantity 
 :¼ k=MP is small (let us say
Oð10�5Þ). The modulus of the field �H is taken to be
order 1. The previous equation now reduces to:

d2�ij

dt2
þ 16	��
k

d�ij
dt

þ k2
�
1� 16	�2




�
�ij ¼ 16	f20

M2
P

�ij

(40)

This is an equation for a damped oscillator with a forcing
term. The system can get damped or can sustain gravity
waves. This depends on the value of the ‘‘(b2 � 4ac)’’
term, which here is given by:

2ik

�
1� 16	�2



þ ð16	��
Þ2

4

�
1=2

(41)

Let us list the various possible cases. First, when
�2=
 
 1, i.e., small values of k (note that the third term in
(41) is very small, with the value of 
, it is of the order of
10�15 smaller compared to the second term and will not
contribute appreciably), we get the scenario where the
gravity waves dampen and are not observed:

hijðt; zÞ ¼ exp

�
� 16	��k

MP

�
½Aije

�kt�ikz þ Bije
� �kt�ikz�: (42)

Second, consider the case where �2=
 < 1 (i.e. large
values of k). Then, the solutions of the Eq. (40) are

hijðt; zÞ ¼ exp

�
� 16	��k

MP

�
½Aije

ikt�ikz þ Bije
�ikt�ikz�:

(43)

This is the standard solution where the wave proceeds
sinusoidally. It is clear that the solution to this equation
can give attenuation/amplification of amplitude of gravity
waves. To see this, choose � ¼ þ1; then the Eq. (43) leads
to attenuation of gravity waves, whereas for � ¼ �1 we
get amplification of gravity waves. In short, in this case we
do not see any rotation of plane of polarization of gravity

wave, rather the attenuation/amplification of the wave
during propagation is the result of such an interaction.
Such phenomena for gravity waves was suggested in [22]
which however was largely phenomenological. If such
effects are present, they have implications for CMB spec-
trum. They lead to nonzero cross-correlation in multipole
moments CTB

l and CEB
l . Such effects cannot be induced by

Faraday rotation (if there is any intervening magnetic
field). This is because it is an anisotropic effect which
will also change l. With the Planck data coming up, we
expect to see some of these effects or, if these are not seen,
the experiments can be used to put bounds on the coupling
constants for these interactions.

V. QUANTUM GRAVITY EFFECTS FOR THE
HIGHER DERIVATIVE LAGRANGIAN

In this section we will study the effects of quantum
fluctuations of different fields for a theory governed by
the action (21) by calculating the one-loop effective po-
tential using loop-expansion scheme [37]. We will concen-
trate on the gravitational part of the action only. Effective
potential serves as a useful tool to investigate the vacuum
structure of such a theory where one can define the theory
to be valid up to an energy scale (Planck energy) through
cutoff and make predictions treating it as an effective
theory. As has been argued in [27], in a theory with
anomolous terms like that considered in this paper, the
cosmological constant may become a space-time depen-
dent quantity. The quantum fluctuations also affect the
CMB spectrum, which differs significantly from simple
inflationary models leading to constraints from observatio-
nal data. Indeed, the bispectrum, trispectrum and the non-
Gaussianities of the calculated CMB spectrum can lead to
newer understanding. For this reason, we devote this sec-
tion to the calculation of the effective potential, which is
the first step to the calculation of parameters in the inflatory
models.
To keep the matters very general, we shall consider a

theory of gravitation coupled with three different kinds of
matter fields. The Einstein term is minimally coupled
with a massive/massless scalar field �S which has a self-
interacting potential. The action also contains an (axion)
field �A coupled with a CP-odd term R���


�R���
 and

another field � which is coupled to the CP-even term
R���
R

���
. In Euclidean signature, the Lagrangian of

the theory is

L ¼ Lg1 þLg2 þLg3 þLm

¼ � 1

�2
Rþ a�R���
R

���
 þ b�AR���

�R���


þ 1

2
g��@��@��þ 1

2
g��@��A@��A

þ 1

2
g��@��S@��S þ Vð�SÞ; (44)
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where �2 ¼ 16	G and a, b are coupling constants which
can be specified later (they are M�3

P ). Let us now turn to
calculate the effective potential. For that purpose, we first
expand the metric g�� around a flat background:

g�� ¼ ��� þ �h��; (45)

where ��� is a flat background and the fluctuations h�� are

small, jh��j< 1. For the decomposition (45), the inverse

of the metric is

g�� ¼ ��� � �h�� þ �2h��h
�� þ . . . (46)

Furthermore, the determinant of the metric, which will be
needed in the following, will be given by

ðgÞ1=2 ¼ 1þ 1

2
h�� � 1

4
h�
h



� þ 1

8
ðh��Þ2 þ . . . (47)

To calculate one-loop effective potential, we need to ex-
pand the Lagrangians only up to quadratic order in the h��.

The expansions are listed below:

ffiffiffi
g

p
Lg1 ¼ ffiffiffi

g
p

R

¼ � 1

4
@�h��@

�h�� þ 1

4
@�h@

�h� 1

2
@�h@
h

�


þ 1

2
@�h�
@


h�� þ total derivatives: (48)

The expressions for the other two terms are long. However,
we give them below. First,

ffiffiffi
g

p
Lg2 ¼ ffiffiffi

g
p

a�R���
R
���


¼ a�2ð@�@��h�
@
�@�h�
 þ @��h�
h@�h�


þ�h�
hhh�
 þ @�@��h�
@
�@
h��

þ @��h�
@
�@
@�h

�� þ�h�
@
�@
@�@�h

��

� 2@�@��h�
@
�@
h�� � 2@��h�
h@
h��

� 2�h�
h@
@�h
��Þ (49)

and

ffiffiffi
g

p
Lg3 ¼ ffiffiffi

g
p

b�AR���

�R���


¼ 2b�2f@�@
�A@�@
�h

�

h�� þ @
�Ah��h@�h

�



� @�@
h��@�@
�h�
g��

�: (50)

Note that due to the presence of a Levi-Cività tensor, which
is completely antisymmetric in its indices, only three terms
will survive in the expansion of Lg3, Since we are calcu-

lating one-loop effective potential, terms of order 2 in
fluctuations will only contribute. To obtain one-loop effect,
it is sufficient to choose space-time independent saddle
points for the scalar (and pseudoscalar) fields;

�ðxÞ ¼ �0 þ�ðxÞ;
�AðxÞ ¼ �A0 þ�AðxÞ;
�SðxÞ ¼ �S0 þ�SðxÞ

With these choices, the derivative terms of the scalar
fields will not contribute to the resulting Lagrangian (ex-
panded about the saddle points). The Lagrangian relevant
for calculating one-loop effective potential is by invoking
the transverse-traceless gauge [38,39]. With @�h

�� ¼ 0

and h ¼ 0, the relevant part of the Lagrangian becomes:

L rel ¼ 1

4
h��ð�hEÞh�� þ a�2�0h��hEhEh

��

� 1

2
�Sð�hE þ V00ð�S0ÞÞ�S � Vð�S0Þ

� 1

4
�2h��Vh

�� þ 1

2
�ð�hEÞ�

þ 1

2
�Að�hEÞ�A; (51)

where hE is the operator in Euclidean space. Since we are
perturbing around a flat background and made a choice of
linear gauge, ghosts do not appear in this case [40–42].
However, although the higher derivative quantum gravity
bare action contains massive negative norm states at tree
level, whether they will spoil the unitarity of S matrix or
not is inconclusive because quantum corrections may de-
stabilize the ghosts [43,44]. Moreover, from the effective
field theory description of gravity these issues can be
sidelined [21,45]. The mass of the ghost fields are of the
order of Planck mass, they will not be excited below the
Planck scale [46,47] and here, we are dealing with a theory
below that energy scale.
Note here that the (axion) field�A has no contribution to

the one-loop effective potential. Now, eqn (51) may be
conveniently written as

Lrel ¼ 1

2
h��O���
h�
 þ 1

2
�Sð�hE þ V 00ð�S0ÞÞ�S

þ 1

2
�ð�hEÞ�þ 1

2
�Að�hEÞ�A; (52)

where the operator

O ���
 ¼ 1

2
�����
½�hEþ2a�2�0hEhE��2Vð�S0Þ�:

Now, we rewrite the Lagrangian in terms �i where i ¼
1; 2; . . . 10 denotes 10 independent components of h�� [48]

L rel ¼ 1

2
�ð�hE þ V 00ð�S0ÞÞ�þ 1

2
�iMij�j; (53)

where we have we have employed the following index
correspondence: �� ! i and �
 ! j. To get the one-
loop effective potential we need to calculate the determi-
nants of differential operators, which in this case reduces to
calculate the eigenvalues of the 10� 10 matrix Mij [48].
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The operator for scalar field is trivial. We write down the
eigenvalues

�i ¼ � 1

2
ðk2 þ 4a�2�0k

4 � �2VÞ; ð1 � i � 4Þ
�i ¼ ðk2 þ 4a�2�0k

4 � �2VÞ; ð5 � i � 10Þ:
(54)

The one-loop effective potential is given by

Vð1Þ
eff ¼ Vð�S0Þ þ 1

2
Tr lnðk2 þ V 00Þ þX10

i¼1

1

2
Tr ln�i; (55)

where Tr is the functional trace. Performing the momen-
tum space integrals and introducing a cutoff we obtain the
unrenormalized one-loop effective potential

Veffð�S0; �0Þ

¼ 5

16	2

��
�4

2
� 1� 2eg

4e2

�
ln
e�4

g
þ�2

2e
þ g

2e

� 1

4e2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4eg

p
4e2

ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4eg
p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4eg

p
��

þ�2V 00

32	2
þ V 002

64	2

�
ln
V 00

�2
� 1

2

�
þ Vð�S0Þ; (56)

where e ¼ 4�0a�
2 and g ¼ ��2V, �2 is the momentum

cut-off. If we put the expressions of e and g back into the
above expression the effective potential is seen to have an
imaginary part:

Veffð�S0;�0Þ ¼ 5

16	2

2
4�

1þ 8�4�0aV

64�4�2
0a

2
��4

2

�
ln

V

�4
þ �2

8�4�0a
2
�V

2
� 1

64�4�2
0a

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�4�0aV

p
64�4�2

0a
2

� ln

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�4�0aV

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�4�0aV
p

1
A
3
5þ 5i

16	

�
1þ 8�4�0aV

64�4�2
0a

2
��4

2

�
þ�2V 00

32	2
þ V 002

64	2

�
ln
V 00

�2
� 1

2

�
þVð�S0Þ: (57)

It is interesting to see here that an imaginary part is
generated in the effective potential. A similar kind of result
was found in [38] for a theory where a single scalar field is
coupled to gravity. The imaginary part of the effective
potential signifies that we have chosen an unstable vac-
uum; in fact flat space is not a stable vacuum of this theory.
The value of Veff at t he asymmetric minimum serves as a
cosmological constant at the tree level [38,41]. This inter-
pretation can be explained as follows: Let Veff develops an
symmetry-breaking minima at the value of �S0 ¼ �Smin

and Veffð�Smin
Þ � 0 then Veffð�Smin

Þ will act as a cosmo-
logical constant at the tree level. Now we include a cos-
mological constant to this theory, so now we have a
different vacuum state not a flat space but a de Sitter space.
The Lagrangian reads as

L ¼ � 1

�2
ðR� 2CÞ þ a�R���
R

���


þ b�AR���

�R���
 þ 1

2
g��@��@��

þ 1

2
g��@��A@��A þ 1

2
g��@��S@��S þ Vð�SÞ;

(58)

where C is the cosmological constant. If we repeat the
calculation for the effective potential from (58), the imagi-
nary part of the potential will be

Im½Veffð�S0; �0Þ�

¼ 5

16	

�
1þ 2ð�2V þ 2CÞ�0a�

2

64�4�2
0a

2
��4

2

�
: (59)

It is now obvious that we can fine tune the cosmological
constant C such that the imaginary part of Veff and the
cosmological constant both vanish

1

2
�2Veffð�Smin

Þ þ 1

4�0a�
2
þ C ¼ 0: (60)

This makes the flat background a solution of the Einstein
equation at the vacuum state. The calculation of effective
potential here is done in a conventional approach which is
not devoid of gauge ambiguities. However, it is well known
that the Vilkovisky-DeWitt (VD) [49,50] approach of de-
riving effective potential is free from any ambiguities
related to gauge-fixing condition or parametrization of
the theory. We do not employ the method of VD here,
although quite a number of papers have already been in the
literature which calculate the effective potential in VD
approach for ordinary and higher derivative gravity
[42,51,52]. VD effective potential for the theory under
consideration may be taken as a future project.

VI. DISCUSSIONS

Let us first recall the results of the paper. In string theory,
the Kalb-Ramond field acts as a source term for torsion
which has various interactions with gauge fields. In order
that the interactions are gauge invariant, the Kalb-Ramond
field B�� must be endowed with nontrivial transformations

under gauge fields. This leads to some interesting interac-
tions with observable consequences. One of them is the
rotation of plane of polarization for electromagnetic and
gravity waves. These had been studied earlier and have
been matched with experimental results. However, these
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interactions are not the only possible ones. One can have
additional ones which arise from the gauge invariant cou-
pling of higher form fields to torsion. Such interaction was
proposed in [15] and we correct and extend the formalism
for non-Abelian fields and gravity. Observational conse-
quences of such interactions are altogether different. They
lead to amplification/attenuation of electromagnetic or
gravity waves and have important implications for anisot-
ropy of the cosmic microwave background by spatial parity
violation [22]. For a such parity-breaking term, one can get
certain nonvanishing multipole moment correlations be-
tween the temperature anisotropy and polarization of the
CMB. In the CMB data, one usually observes correlations
like CTT

l , CEE
l , CBB

l and CTE
l which arise from parity-

conserving interactions. On the other hand, cross-
correlations like CEB

l and CTB
l arise from parity-violating

interactions from which bounds on the strength of such
parity-violating terms can be ascertained. We also study
the Coleman-Weinberg mechanism for such extended the-
ory. This leads to a potential which might have some
significance in the early universe and inflation. Initial
studies with this potential show that one can generate the
requisite number of e-foldings from such a theory near the
Planck scale. Other consequences from such a potential
require further study. We can list the new results of this
paper: First, the construction of gauge invariant interaction
for higher form gauge fields in [15] was incomplete which
we have completed in (16). Second, we have extended the
formalism to non-Abelian gauge fields and gravity. Third,
we have studied the behavior of gravity waves which has
important implications as discussed above and fourth, we
have explicitly calculated the one-loop effectivepotential.

Let us now discuss the possible origin of the new aug-
mented terms introduced in (16). Throughout the paper, we
have presented various reasons which we list below. The
first and probably the most compelling one is that such
terms are necessary to form gauge invariant coupling of
higher form gauge fields to torsion or Kalb-Ramond fields.
We have not found in the literature any explicit reference to
such terms in any low energy string effective action,
though it has been shown that it is possible to embed
such terms in a supersymmetric theory [16]. In the appen-
dix, we derive the requisite new term from the boundary
symplectic potential (associated with the standard first-
order non-Abelian action) which shows that such terms
can arise quite generically. The second argument is from
the point of view of effective field theory which goes as
follows: In our entire treatment, we have been dealing with
cosmological or large distance scales. This is precisely the
realm of effective field theory since we are interested in
quantum effects at length scales much larger than the
ultraviolet cutoff scale of gravity [21,27,53]. And thus,
such effective theories, do not require the knowledge of
precise details of the interaction of the newer degrees of
freedom at the Planck scales. In spite of that, semiclassical

effective theories capture the universality of interactions.
The object of the semiclassical theory is to consider the
space-time to be classical but the matter fields to be quan-
tum mechanical. If the Planck’s constant is not vanishing,
the stress-energy tensor, which is now a quantum operator,
has a quartic divergence. Upon renormalisation, it arises
that general relativityis a effective quantum field theory if
one augments the standard action by the the trace anomaly
terms. Terms such as R ^ �R are precisely the stress-tensor
anomalies arising during quantization of massless scalar
fields in curved space-time [54]. As it turns out, the quan-
tum effective action is actually nonlocal but can be made
local through introduction of scalar fields. Interestingly, the
scalar fields in Eq. (44) play this role. In the bottom-up
scenario of effective field theory, these scalar fields, which
were absent in the original action, arise when we go up the
energy scale. Conversely, when we come down in the
energy scale from a Planck scale, which is what is done
in string theory, we also expect to recover this action at
some energy scale in four dimensions. For this very reason,
we hope to find some way to generate the full action (21)
from string theory.
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APPENDIX

In this appendix, we shall show the existence of the extra
term of the form (A ^ �F) added to the KR field in equa-
tion. The question is: where to look for such terms? To
motivate, let us recall that the usual Chern-Simons term
(�YM) augmented to the KR field-strength H in Eq. (7) is
actually a boundary term. In theUð1Þ version, for example,
the Chern-Simons term (�YM) reduces to (A ^ F), which is
precisely the conribution to boundary term corresponding
to (F ^ F) in Uð1Þ gauge theory. By the same token, we
shall look for the boundary terms for the action itself.
Moreover, the usual Chern-Simons is an anomaly-
canceling contribution just like the new terms which arise
due to stress-tensor anomaly. More precisely, the gravita-
tional Chern-Simons arise from the axial gravitational
anomaly whereas the gravitational analogue of the new
term is related to stress-tensor anomaly. Thus, we expect to
find a derivation of the new contribution in a similar way to
that of the Chern-Simons term.
Consider the Lagrangian 4-form for the free Yang-Mills

theory

L ¼ trðF ^ �FÞ: (A1)

The on-shell variation of the Lagrangian gives

�L ¼ 2 trdð�A ^ �FÞ :¼ d�ð�Þ: (A2)
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The term �ð�Þ is a 3-form and is often called the sym-
plectic potential. Now, consider the variation of the 1-form
A through a parameter �, 0 � � � 1 and define:

��A ¼: A�� and Að�Þ ¼: �A so that (A3)

�Fð�Þ ¼ ��Fþ ð�2 ��Þ�ðA ^ AÞ: (A4)

This implies that

�ð��Þ ¼ 2 trðA ^ �Fð�ÞÞ��: (A5)

Thus, on shell, the above Eq. (A5) is equivalent to:

�

��
trðF ^ �FÞ
¼ 2d tr½�A ^ �Fþ ð�2 ��ÞA ^ �ðA ^ AÞ�: (A6)

Integrating with respect to �, we get

tr ðF ^ �FÞ ¼ d tr

�
A ^ �F� 1

3
A ^ �ðA ^ AÞ

�

¼ d tr

�
A ^ �dAþ 2

3
A ^ �ðA ^ AÞ

�
: (A7)

Note that this term arises from a boundary contribution and
is valid only on shell. In contrast, the usual Chern-Simons
term, which can be derived in a similar fashion from the
other boundary term trðF ^ FÞ, only requires the Bianchi
identity. In standard treatments, the boundary term van-
ishes by the boundary conditions on the fields. The above
derivation is merely to show the existence of such terms in
general when the field has all possible configurations.

Two comments are in order. First, in the equation above,
we have considered only the free Yang-Mills theory. Now
suppose that the Yang-Mills field is also coupled to other
fields such as the KR fieldH��� in the present paper. In that

case, the equation of motion for the Yang-Mills field is not
merelyD�Fi ¼ 0, but has contributions from the KR fields
too. One then needs to look for the modification due to
presence of such terms also. Second, as mentioned in the
paper, we want not only to couple 1-form fields to H field
but also 2- and 3-form fields. In those cases, the term
½A ^ �ðA ^ AÞ� does not arise (and is not a 3-form). For
this reason, in what follows, we discard that term alto-
gether. From above construction, we are led to the follow-
ing term:

tr ðF ^ �FÞ ¼ d tr½�A ^ �F� þ trð�A ^D�FÞ (A8)

For �Ai ¼ d�i þ ½A; ��i, another term needs to be added to
the first term. Thus, in total, we get the contribution to the
total derivative to be

tr ðF ^ �FÞ ¼ d tr½A ^ �Fþ �D�F�: (A9)

To understand the effect of this term, let us restrict to Uð1Þ
gauge theory for simplicity. For Uð1Þ gauge fields, the
effect of this augmentation leads to:

H ! H ¼ dBþ 1

MP

ðA ^ �Fþ �d�FÞ: (A10)

We want H to remain gauge invariant under Uð1Þ gauge
transformation. Then, B must transform under Uð1Þ gauge
transformation. This can be easily found from the above
equation:

��B ¼ ��F (A11)

In the whole setup, we have never explicitly used the
equation of motion. Note that we have not added the
term �d�F in Eq. (19). That is because we want to look
only for effects of orderM�1

P while the contribution of that
term is of order M�2

P .
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