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Conformal low-spin anomalous currents and shadow fields in flat space-time of dimensions greater than

or equal to four are studied. The gauge invariant formulation for such currents and shadow fields is

developed. Gauge symmetries are realized by involving Stueckelberg and auxiliary fields. The gauge

invariant differential constraints for anomalous currents and shadow fields and the realization of global

conformal symmetries are obtained. Gauge invariant two-point vertices for anomalous shadow fields are

also obtained. In the Stueckelberg gauge frame, these gauge invariant vertices become the standard two-

point vertices of conformal field theory. Light-cone gauge two-point vertices of the anomalous shadow

fields are derived. The AdS/CFT correspondence for anomalous currents and shadow fields and the

respective normalizable and non-normalizable solutions of massive low-spin anti–de Sitter fields is

studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations

of motion. We demonstrate that leftover on-shell gauge symmetries of bulk massive fields correspond to

gauge symmetries of boundary anomalous currents and shadow fields, while the modified (Lorentz) de

Donder gauge conditions for bulk massive fields correspond to differential constraints for boundary

anomalous currents and shadow fields.
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I. INTRODUCTION

In space-time of dimension d � 4, fields of conformal
field theory (CFT) can be separated into two groups:
conformal currents and shadow fields. The field having
Lorentz algebra spin s and conformal dimension � ¼ sþ
d� 2, is referred to as conformal current with canonical
dimension, while field having the Lorentz algebra spin
s and conformal dimension �> sþ d� 2 is referred to
as anomalous conformal current. Accordingly, the field
having Lorentz algebra spin s and conformal dimension
� ¼ 2� s, is referred to as shadow field with canonical
dimension,1 while field having Lorentz algebra spin s and
conformal dimension �< 2� s is referred to as anoma-
lous shadow field.

In Refs. [8,9], we developed the gauge invariant
(Stueckelberg) approach to the conformal currents and
shadow fields having canonical conformal dimensions. In
the framework of AdS/CFT correspondence such currents
and shadow fields are related to massless anti–de Sitter
(AdS) fields. The purpose of this paper is to develop gauge
invariant approach to the anomalous conformal currents
and shadow fields which, in the framework of AdS/CFT
correspondence, are related to massive AdS fields. The
examples of spin-1 and spin-2 conformal fields demon-
strate all characteristic features of our approach. In this
paper, because these examples are very important in their

own right, we discuss spin-1 and spin-2 anomalous
conformal currents and shadow fields. Arbitrary spin
anomalous conformal currents and shadow fields will be
considered in a forthcoming publication. Our approach can
be summarized as follows.
(i) Starting with the field content of the standard

formulation of anomalous conformal currents (and
anomalous shadow fields), we introduce
Stueckelberg fields and auxiliary fields, i.e., we ex-
tend space of fields entering the standard CFT.

(ii) On the extended space of currents (and shadow
fields), we introduce differential constraints, gauge
transformations, and conformal algebra transforma-
tions. These differential constraints are invariant
under the gauge transformations and the conformal
algebra transformations.

(iii) The gauge symmetries and the differential con-
straints make it possible to match our approach
and the standard one, i.e., by appropriate gauge
fixing to exclude the Stueckelberg fields and by
solving differential constraints to exclude the aux-
iliary fields we obtain the standard formulation of
anomalous conformal currents and shadow fields.

We apply our approach to the study of AdS/CFT corre-
spondence between massive AdS fields and corresponding
boundary anomalous conformal currents and shadow
fields. We demonstrate that normalizable modes of massive
AdS fields are related to anomalous conformal currents,
while non-normalizable modes of massive AdS fields are
related to anomalous shadow fields. In the earlier literature,
the correspondence between non-normalizable bulk modes
and shadow fields was studied in Ref. [10] (for spin-1
fields) and in Ref. [11] (for spin-2 fields). To our
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1It is the shadow fields having canonical dimension that are

used to discuss conformal invariant equations of motion and
Lagrangian formulations (see, e.g., Refs. [1–6]). In earlier lit-
erature, discussion of shadow field dualities may be found in
Ref. [7].
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knowledge, the AdS/CFT correspondence between nor-
malizable massive modes and anomalous conformal cur-
rents has not been considered in the earlier literature. As
compared to the studies in Refs. [10,11], our approach
involves large amount of gauge symmetries. Therefore
the results of these references are obtained from the ones
in this paper by using some particular gauge condition,
which we refer to as Stueckelberg gauge fixing. We note
also that our approach provides quick access to the light-
cone gauge formulation of CFT. Perhaps, one of the main
advantages of our approach is that this approach gives easy
access to the study of AdS/CFT correspondence in light-
cone gauge frame. This is very important for the future
application of our approach to studying string/gauge theory
dualities because one expects that string theory in AdS/
Ramond-Ramond background can be quantized only in
light-cone gauge.

Our approach to the study of AdS/CFT correspondence
can be summarized as follows.

(i) We use a CFT adapted gauge invariant approach to
the AdS field dynamics developed in Ref. [12]. For
spin-1 and spin-2 massive AdS fields, we use the
respective modified Lorentz gauge and modified de
Donder gauge. A remarkable property of these
gauges is that they lead to the simple decoupled
bulk equations of motion which can be solved in
terms of the Bessel function and this simplifies con-
siderably the study of AdS/CFT correspondence.
Also, using these gauges, we demonstrate that the
two-point gauge invariant vertex of the anomalous
shadow field does indeed emerge from massive AdS
field action when it is evaluated on solution of the
Dirichlet problem. AdS field action evaluated on the
solution of the Dirichlet problem will be referred to
as effective action in this paper.

(ii) The number of boundary gauge fields involved in
our gauge invariant approach to the anomalous con-
formal current (or anomalous shadow field) coin-
cides with the number of bulk massive gauge AdS
fields involved in the standard gauge invariant
Stueckelberg approach to massive field. Note how-
ever that, instead of the standard gauge invariant
approach to massive field, we use the CFT adapted
formulation of massive AdS field developed in
Ref. [12].2

(iii) Our modified Lorentz gauge (for spin-1 massive
AdS field) and modified de Donder gauge (for spin-
2 massive AdS field) turn out to be related to the
differential constraints we obtained in the frame-

work of gauge invariant approach to the anomalous
conformal currents and shadow fields.

(iv) Leftover on-shell gauge symmetries of massive
bulk AdS fields are related to the gauge symmetries
of boundary anomalous conformal currents (or
anomalous shadow fields).

The rest of the paper is organized as follows.
In Sec. II, we summarize the notation used in this paper.
In Secs. III and IV, we start with the respective examples

of the spin-1 anomalous conformal current and spin-1
anomalous shadow field. We illustrate our gauge invariant
approach to describing the anomalous conformal current
and shadow field. For the spin-1 anomalous shadow field,
we obtain the gauge invariant two-point vertex and discuss
how our gauge invariant approach is related to the standard
approach to CFT. Also, using our gauge invariant approach
we obtain a light-cone gauge description of the spin-1
anomalous conformal current and shadow field.
Sections V and VI are devoted to spin-2 anomalous

conformal current and spin-2 anomalous shadow field,
respectively. In these sections we generalize results of
Secs. III and IV to the case of the spin-2 anomalous
conformal current and shadow field.
In Sec. VII, we discuss the two-point current-shadow

field interaction vertex.
In Sec. VIII, because the use of a modified Lorentz (de

Donder) gauge makes the study of AdS/CFT correspon-
dence for the spin-1 (spin-2) field similar to the one for the
scalar field, we briefly review the AdS/CFT correspon-
dence for the scalar field.
Section IX is devoted to the study of AdS/CFT corre-

spondence for the bulk spin-1 massive AdS field and
boundary spin-1 anomalous conformal current and shadow
field, while in Sec. X we extend results of Sec. IX to the
case of spin-2 fields.
We collect various technical details in two appendices.

In Appendices A and B we present details of the derivation
of the CFT adapted gauge invariant Lagrangian for the
respective spin-1 and spin-2 massive AdS fields.

II. PRELIMINARIES

A. Notation

Our conventions are as follows. xa denotes coordinates
in d-dimensional flat space-time, while @a denotes deriva-
tives with respect to xa, @a � @=@xa. Vector indices of the
Lorentz algebra soðd� 1; 1Þ take the values a; b; c; e ¼
0; 1; . . . ; d� 1. We use the mostly positive flat metric
tensor �ab. To simplify our expressions we drop �ab in
scalar products, i.e., we useXaYa � �abX

aYb. Throughout
this paper we use operators constructed out of the deriva-
tives and coordinates,

h ¼ @a@a; x@ � xa@a; x2 ¼ xaxa: (2.1)

Sometimes we use a light-cone frame. In the light-cone
frame, space-time coordinates are decomposed as

2We note also that the number of gauge transformation pa-
rameters involved in our gauge invariant approach to the anoma-
lous current (or anomalous shadow field) coincides with the
number of gauge transformation parameters of bulk massive
gauge AdS field involved in the standard gauge invariant ap-
proach to massive field.
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xa ¼ xþ, x�, xi, where light-cone coordinates in � direc-

tions are defined as x� ¼ ðxd�1 � x0Þ= ffiffiffi
2

p
and xþ is taken

to be a light-cone time. soðd� 2Þ algebra vector indices
take values i; j ¼ 1; . . . ; d� 2. We adopt the conventions:

@i ¼ @i � @=@xi; @� ¼ @� � @=@x�: (2.2)

B. Global conformal symmetries

In d-dimensional flat space-time, the conformal algebra
soðd; 2Þ consists of translation generators Pa, a dilatation
generator D, conformal boost generators Ka, and genera-
tors of the soðd� 1; 1Þ Lorentz algebra Jab. We assume the
following normalization for commutators of the conformal
algebra:

½D;Pa� ¼ �Pa; ½Pa; Jbc� ¼ �abPc � �acPb;

½D;Ka� ¼ Ka; ½Ka; Jbc� ¼ �abKc � �acKb;

½Pa; Kb� ¼ �abD� Jab;

½Jab; Jce� ¼ �bcJae þ 3 terms: (2.3)

Let� denotes conformal current (or shadow field) in the
flat space-time of dimension d � 4. Under conformal
algebra transformations the � transforms as

�Ĝ� ¼ Ĝ�; (2.4)

where the realization of the conformal algebra generators

Ĝ in terms of differential operators acting on the � takes
the form

Pa ¼ @a; (2.5)

Jab ¼ xa@b � xb@a þMab; (2.6)

D ¼ x@þ�; (2.7)

Ka ¼ Ka
�;M þ Ra; (2.8)

Ka
�;M � �1

2x
2@a þ xaDþMabxb: (2.9)

In (2.6), (2.7), and (2.8), � is an operator of conformal
dimension, Mab is a spin operator of the Lorentz algebra.
The action of Mab on the fields of the Lorentz algebra is
well known and for the rank-2 tensor, vector, and scalar
fields considered in this paper is given by

Mab�ce ¼ �ae�cb þ �ac�be � ða $ bÞ;
Mab�c ¼ �ac�b � ða $ bÞ;
Mab� ¼ 0:

(2.10)

These relations imply that action of operator Ka
M;� (2.9) on

the fields can be presented as

Ka
�;M�

bc ¼ Ka
��

bc þMabf�fc þMacf�bf;

Ka
�;M�

b ¼ Ka
��

b þMabf�f;

Ka
�;M� ¼ Ka

��;

(2.11)

Ka
� � �1

2x
2@a þ xaðx@þ�Þ; (2.12)

Mabc � �abxc � �acxb: (2.13)

In (2.8), Ra is an operator depending, in general, on the
derivatives with respect to the space-time coordinates3 and
not depending on the space-time coordinates xa. In the
standard formulation of conformal currents and shadow
fields, the operator Ra is equal to zero, while in the gauge
invariant approach that we develop in this paper, the op-
erator Ra is nontrivial. This implies that, in the framework
of the gauge invariant approach, the complete description
of the conformal currents and shadow fields requires,
among other things, finding the operator Ra.

III. SPIN-1 ANOMALOUS CONFORMAL
CURRENT

In this section, we develop a gauge invariant approach to
the spin-1 anomalous conformal current. Besides the gauge
invariant formulation, we discuss two gauge conditions
which can be used for studying the anomalous conformal
currents—the Stueckelberg gauge and light-cone gauge.
We would like to discuss these gauges because of the
following reasons.
(i) It turns out that the Stueckelberg gauge reduces our

approach to the standard formulation of CFT.
Therefore, the use of the Stueckelberg gauge allows
us to demonstrate how the standard approach to
anomalous conformal currents is obtained from our
gauge invariant approach.

(ii) Motivation for considering the light-cone gauge
frame comes from the conjectured duality of the
supersymmetric Yang-Mills theory theory and the
theory of the superstring in AdS background [14].
By analogy with flat space, we expect that a quan-
tization of the Green-Schwarz AdS superstring [15]
will be straightforward only in the light-cone gauge
[16,17]. Therefore, it seems that from the stringy
perspective of AdS/CFT correspondence, the light-
cone approach to CFT is the fruitful direction to go.

A. Gauge invariant formulation

To discuss the gauge invariant formulation of the spin-1
anomalous conformal current in the flat space of dimension
d � 4 we use one vector field �a

cur;0 and two scalar fields

�cur;1, �cur;�1:

�a
cur;0; �cur;�1; �cur;1: (3.1)

3For the conformal currents and shadow fields studied in this
paper, the operator Ra does not depend on the derivatives. The
dependence of Ra on derivatives appears, e.g., in an ordinary-
derivative approach to conformal fields [13].
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The fields �a
cur;0 and �cur;�1 transform in the respective

vector and scalar irreps of the Lorentz algebra soðd� 1; 1Þ.
We note that fields (3.1) have the conformal dimensions

��a
cur;0

¼ d

2
þ �; ��cur;�1

¼ d

2
þ �� 1; (3.2)

where � is a dimensionless parameter. In the framework of
AdS/CFT correspondence, � is related to the mass parame-
ter m of a spin-1 massive AdS field as

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðd� 2Þ2

4

s
: (3.3)

We now introduce the following differential constraint:

@a�a
cur;0 þ r00z h�cur;�1 þ r00� �cur;1 ¼ 0; (3.4)

r00z �
�
2�þd�2

4�

�
1=2

; r00� �
�
2��dþ2

4�

�
1=2

: (3.5)

One can make sure that this constraint is invariant under
the gauge transformations

��a
cur;0 ¼ @a�cur;0; (3.6)

��cur;�1 ¼ �r00z �cur;0; (3.7)

��cur;1 ¼ �r00� h�cur;0; (3.8)

where �cur;0 is a gauge transformation parameter.

To complete our gauge invariant formulation we provide
the realization of the operator Ra on the space of gauge
fields (3.1),

Ra�b
cur;0 ¼ �2�r00z �ab�cur;�1;

Ra�cur;�1 ¼ 0;

Ra�cur;1 ¼ �2�r00� �a
cur;0:

(3.9)

Using (3.9), we make sure that constraint (3.4) is invariant
under transformations of the conformal algebra (2.4).

We obtained the differential constraint, gauge transfor-
mations, and realization of the operator Ra by generalizing
our results for the spin-1 conformal current with the ca-
nonical dimension which we obtained in Ref. [8]. We note
that results in this section can also be obtained by using the
framework of the tractor approach in Ref. [18] (see also
Refs. [19–21]).4 Our fields �cur;�1 and �cur;1 are identified

with the respective fields Vþ and V� in Ref. [18]. Doing
so, one can make sure that constraint and gauge trans-
formations given in Eqs. (34) and (36) in Ref. [18] can
be represented as our differential constraint (3.4) and gauge
transformations (3.6), (3.7), and (3.8). To summarize, our
fields (3.1) can be written as a tractor vector subject to a

Thomas-D divergence type constraint in Ref. [18]. A simi-
lar construction was used to describe the bulk massive
spin-1 field in Ref. [18].5 Note that, in our approach, we
use our fields (3.1) for the discussion of the spin-1 anoma-
lous conformal current.

B. Stueckelberg gauge frame

We now discuss the spin-1 anomalous conformal current
in the Stueckelberg gauge frame. From (3.7), we see that
the scalar field�cur;�1 transforms as the Stueckelberg field,

i.e., this field can be gauged away via Stueckelberg gauge
fixing,

�cur;�1 ¼ 0: (3.10)

Using this gauge in constraint (3.4), we see that the remain-
ing scalar field �cur;1 can be expressed in terms of the

vector field �a
cur;0,

�cur;1 ¼ � 1

r00�
@a�a

cur;0; (3.11)

i.e., making use of the gauge symmetry and differential
constraint (3.4) we reduce the field content of our approach
(3.1) to the one in the standard approach. In other words,
the gauge symmetry and differential constraint make it
possible to match our approach and the standard formula-
tion of the spin-1 anomalous conformal current.6

C. Light-cone gauge frame

For the spin-1 anomalous conformal current, the
light-cone gauge frame is achieved through the use of
differential constraint (3.4) and the light-cone gauge con-
dition. Using the gauge symmetry of the spin-1 anomalous
conformal current (3.6), we impose the light-cone gauge on
the field �a

cur;0,

�þ
cur;0 ¼ 0: (3.12)

Using this gauge in differential constraint (3.4), we find

��
cur;0 ¼ � @j

@þ
�j

cur;0 �
r00z
@þ

h�cur;�1 �
r00�
@þ

�cur;1: (3.13)

4In mathematical literature, discussion of the tractor approach
may be found in Ref. [22].

5In earlier literature, use of the conformal symmetries for a
discussion of massive field can be found in Ref. [23]. Discussion
of interrelations between the gauge invariant formulation of the
currents and shadow fields and the gauge invariant formulation
of massive fields via breaking conformal symmetries may be
found in Ref. [8]. We thank M.A. Vasiliev for pointing us to
Ref. [23].

6As in the standard approach to CFT, our currents can be
considered either as fundamental field degrees of freedom or as
composite operators. At the group theoretical level that we study
in this paper, this distinction is immaterial. A discussion of
interesting methods for building conformal currents as compos-
ite operators may be found in Refs. [24,25].
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We see that we are left with the vector field �i
cur;0 and two

scalar fields �cur;�1. These fields constitute the field con-

tent of the light-cone gauge frame.

IV. SPIN-1 ANOMALOUS SHADOW FIELD

A. Gauge invariant formulation

To discuss the gauge invariant formulation of the spin-1
anomalous shadow field in space of dimension d � 4 we
use one vector field �a

sh;0 and two scalar fields �sh;�1,

�sh;1:

�a
sh;0; �sh;�1; �sh;1: (4.1)

The fields �a
sh;0 and �sh;�1 transform in the respective

vector and scalar representations of the Lorentz algebra
soðd� 1; 1Þ. We note that these fields have the conformal
dimensions

��a
sh;0

¼ d

2
� �; ��sh;�1

¼ d

2
� �� 1: (4.2)

In the framework of the AdS/CFT correspondence, � is
related to the mass parameter m of spin-1 massive AdS
field as in (3.3).

We now introduce the following differential constraint:

@a�a
sh;0 þ r00� h�sh;�1 þ r00z �sh;1 ¼ 0; (4.3)

where r00z , r00� are given in (3.5). We make sure that con-

straint (4.3) is invariant under the gauge transformations

��a
sh;0 ¼ @a�sh;0; (4.4)

��sh;�1 ¼ �r00� �sh;0: (4.5)

��sh;1 ¼ �r00z h�sh;0; (4.6)

where �sh;0 is a gauge transformation parameter.

To complete our gauge invariant formulation of the spin-
1 anomalous shadow field we provide the realization of the
operator Ra on the space of gauge fields (4.1),

Ra�b
sh;0 ¼ 2�r00� �ab�sh;�1;

Ra�sh;�1 ¼ 0;

Ra�sh;1 ¼ 2�r00z �a
sh;0:

(4.7)

We proceed with the discussion of two-point vertex for
the spin-1 anomalous shadow field. The gauge invariant
two-point vertex we find takes the form

� ¼
Z

ddx1d
dx2�12; (4.8)

�12 ¼
�a

sh;0ðx1Þ�a
sh;0ðx2Þ

2jx12j2�þd

þ X
�¼�1

!�

2jx12j2�þd�2�
�sh;�ðx1Þ�sh;�ðx2Þ; (4.9)

!1 ¼ 1

2�ð2�þ d� 2Þ ; !�1 ¼ 2ð�þ 1Þð2�þ dÞ;
(4.10)

jx12j2 � xa12x
a
12; xa12 ¼ xa1 � xa2 : (4.11)

One can check that this vertex is invariant under the gauge
transformations of the spin-1 anomalous shadow field
given in (4.4), (4.5), and (4.6). Also, we check that the
vertex is invariant under the conformal algebra
transformations.
The kernel of the vertex � is related to a two-point

correlation function of the spin-1 anomalous conformal
current. In our approach, the spin-1 anomalous conformal
current is described by gauge fields given in (3.1).
Therefore, in order to discuss the correlation function of
the anomalous conformal current in a proper way, we
should impose a gauge condition on the gauge fields in
(3.1).7 We have considered the spin-1 anomalous confor-
mal current in the Stueckelberg and light-cone gauge
frames. This is to say that the correlation function of the
spin-1 anomalous conformal current in the Stueckelberg
and light-cone gauge frames can be obtained from the two-
point vertex � taken in the respective Stueckelberg and
light-cone gauge frames. To this end we now discuss the
spin-1 anomalous shadow field in the Stueckelberg and
light-cone gauge frames.

B. Stueckelberg gauge frame

For the spin-1 anomalous shadow field, the Stueckelberg
gauge frame is achieved through the use of differential
constraint (4.3) and the Stueckelberg gauge condition.
From (4.5), we see that the scalar field �sh;�1 transforms

as the Stueckelberg field, i.e., this field can be gauged away
via Stueckelberg gauge fixing,

�sh;�1 ¼ 0: (4.12)

Using this gauge in (4.3), we see that the remaining scalar
field �sh;1 can be expressed in terms of the vector field

�a
sh;0,

�sh;1 ¼ � 1

r00z
@a�a

sh;0: (4.13)

Thus we see that the use of gauge symmetry and differen-
tial constraint reduces field content of our approach (4.1) to
the one in the standard approach. In other words, the gauge
symmetry and differential constraint make it possible to

7We note that, in the gauge invariant approach, correlation
functions of the conformal current can be studied without gauge
fixing. To do that one needs to construct gauge invariant field
strengths for the gauge potentials �a

cur;0, �cur;�1. The study of
field strengths for the conformal current is beyond the scope of
this paper. A recent interesting discussion of the method for
building field strengths may be found in Refs. [26,27].
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match our approach and the standard formulation of the
spin-1 anomalous shadow field.

We proceed with the discussion of Stueckelberg gauge-
fixed two-point vertex of the spin-1 anomalous shadow
field, i.e., we relate our vertex (4.8) with the one in the
standard approach to CFT. To this end we note that vertex
of the standard approach to CFT is obtained from our
gauge invariant vertex (4.8) by plugging the Stueckelberg
gauge condition (4.12) and the solution to differential
constraint (4.13) into (4.9). Doing so, we find that the
two-point density �12 (4.9) takes the form (up to total
derivative)

�Stuck:g:fram
12 ¼ k1�

stand
12 ; (4.14)

�stand
12 ¼ �a

shðx1ÞOab
12�

b
shðx2Þ

jx12j2�þd
; (4.15)

Oab
12 � �ab � 2xa12x

b
12

jx12j2
; (4.16)

k1 � 2�þ d

2ð2�þ d� 2Þ ; (4.17)

where �stand
12 (4.15) stands for the two-point vertex of the

spin-1 anomalous shadow field in the standard approach to
CFT. From (4.14), we see that our gauge invariant vertex
taken to be in the Stueckelberg gauge frame coincides, up
to the normalization factor k1, with the two-point vertex in
the standard approach to CFT. As we have demonstrated in
Sec. III B, in the Stueckelberg gauge frame, we are left
with the vector field �a

cur;0. The two-point correlation

function of this vector field is defined by the kernel of
vertex �stand (4.15).

C. Light-cone gauge frame

For the spin-1 anomalous shadow field, the light-cone
gauge frame is achieved through the use of the light-cone
gauge and differential constraint (4.3). Taking into account
the gauge transformation of the field�a

sh;0 (4.4), we impose

the light-cone gauge,

�þ
sh;0 ¼ 0: (4.18)

Using this gauge in differential constraint (4.3), we obtain a
solution for ��

sh,

��
sh;0 ¼ � @j

@þ
�j

sh;0 �
r00z
@þ

�sh;1 �
r00�
@þ

h�sh;�1: (4.19)

We see that we are left with the vector field �i
sh;0 and the

scalar fields�sh;�1. These fields constitute the field content

of the light-cone gauge frame. Note that, in contrast to the
Stueckelberg gauge frame, the scalar fields �sh;�1 become

independent field degrees of freedom (D.o.F.) in the light-
cone gauge frame.

Using (4.18) in (4.9) leads to a light-cone gauge-fixed
vertex

�ðl:c:Þ
12 ¼ �i

sh;0ðx1Þ�i
sh;0ðx2Þ

2jx12j2�þd

þ X
�¼�1

!�

2jx12j2�þd�2�
�sh;�ðx1Þ�sh;�ðx2Þ; (4.20)

where !� are given in (4.10). As in the case of the gauge
invariant vertex (4.9), the light-cone vertex (4.20) is diago-
nal with respect to the fields �i

sh;0 and �sh;�1. Note,

however, that in contrast to the gauge invariant vertex,
the light-cone vertex is constructed out of the fields which
are not subject to any constraints.
Thus, as we have promised, our gauge invariant vertex

gives easy and quick access to the light-cone gauge vertex.
All that is required to get the light-cone gauge vertex (4.20)
is to replace the soðd� 1; 1Þ Lorentz algebra vector in-
dices appearing in the gauge invariant vertex (4.9) by the
vector indices of the soðd� 2Þ algebra.
The kernel of the light-cone vertex gives the two-point

correlation function of the spin-1 anomalous conformal
current taken to be in the light-cone gauge. Defining the
two-point correlation functions of the fields �i

cur;0, �cur;�1

in a usual way,

h�i
cur;0ðx1Þ;�j

cur;0ðx2Þi ¼
�2�ðl:c:Þ

��i
sh;0ðx1Þ��j

sh;0ðx2Þ
;

h�cur;�ðx1Þ;�cur;�ðx2Þi ¼ �2�ðl:c:Þ

��sh;��ðx1Þ��sh;��ðx2Þ ;
(4.21)

� ¼ �1, and using (4.20), we obtain the two-point light-
cone gauge correlation functions of the spin-1 anomalous
conformal current,

h�i
cur;0ðx1Þ; �j

cur;0ðx2Þi ¼
�ij

jx12j2�þd
;

h�cur;�ðx1Þ; �cur;�ðx2Þi ¼ !��

jx12j2�þdþ2�
;

(4.22)

� ¼ �1, where !� are given in (4.10).

V. SPIN-2 ANOMALOUS CONFORMAL CURRENT

A. Gauge invariant formulation

To discuss gauge invariant formulation of spin-2 anoma-
lous conformal current in flat space of dimension d � 4we
use one rank-2 tensor field, two vector fields, and three
scalar fields,

�ab
cur;

�a
cur;�1; �a

cur;1;

�cur;�2; �cur;0; �cur;2:

(5.1)

The fields �ab
cur, �

a
cur;�1 and �cur;0, �cur;�2 transform in the

respective rank-2 tensor, vector and scalar representations
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of the Lorentz algebra soðd� 1; 1Þ. Note that the tensor
field �ab

cur;0 is symmetric �ab
cur;0 ¼ �ba

cur;0 and traceful

�aa
cur;0 � 0. We note that fields (5.1) have the conformal

dimensions

��ab
cur;0

¼ d

2
þ �; ��a

cur;�
¼ d

2
þ �þ �; � ¼ �1;

��cur;�
¼ d

2
þ �þ �; � ¼ 0;�2; (5.2)

where � is a dimensionless parameter. In the framework of
AdS/CFT correspondence � is related to the mass parame-
ter m of the spin-2 massive AdS field as8

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2

4

s
: (5.3)

We now introduce the following differential constraints:

@b�ab
cur;0� 1

2@
a�bb

cur;0þr00z h�a
cur;�1þr00� �a

cur;1¼0; (5.4)

@a�a
cur;�1 þ 1

2r
00
z �aa

cur;0 þ
ffiffiffi
2

p
r01z h�cur;�2 þ r01� �cur;0 ¼ 0;

(5.5)

@a�a
cur;1 þ 1

2r
00
� h�aa

cur;0 þ r10z h�cur;0 þ
ffiffiffi
2

p
r10� �cur;2 ¼ 0;

(5.6)

r00z �
�
2�þ d

4�

�
1=2

;

r10z �
�ð2�þ dÞð�� 1Þd
4�ð�þ 1Þðd� 2Þ

�
1=2

;

r01z �
�
2�þ d� 2

4ð�� 1Þ
�
1=2

;

r00� �
�
2�� d

4�

�
1=2

;

r10� �
�
2�� dþ 2

4ð�þ 1Þ
�
1=2

;

r01� �
�ð2�� dÞð�þ 1Þd
4�ð�� 1Þðd� 2Þ

�
1=2

:

(5.7)

One can make sure that these differential constraints are
invariant under the gauge transformations

��ab
cur;0 ¼ @a�b

cur;0 þ @b�a
cur;0 þ

2r00z
d� 2

�abh�cur;�1

þ 2r00�
d� 2

�ab�cur;1;

��a
cur;�1 ¼ @a�cur;�1 � r00z �a

cur;0;

��a
cur;1 ¼ @a�cur;1 � r00� h�a

cur;0;

��cur;�2 ¼ � ffiffiffi
2

p
r01z �cur;�1;

��cur;0 ¼ �r01� h�cur;�1 � r10z �cur;1;

��cur;2 ¼ � ffiffiffi
2

p
r10� h�cur;1; (5.8)

where �a
cur;0, �cur;�1 are gauge transformation parameters.

To complete our gauge invariant formulation we find the
realization of the operator Ra on the space of gauge fields
(5.1),

Ra�bc
cur;0 ¼ �2�r00z ð�ab�c

cur;�1 þ �ac�b
cur;�1Þ

þ 4ð�� 1Þr00z
d� 2

�bc�a
cur;�1;

Ra�b
cur;�1 ¼ �2

ffiffiffi
2

p ð�� 1Þr01z �ab�cur;�2;

Ra�b
cur;1 ¼ �r00� ð2��ab

cur;0 þ �ab�cc
cur;0Þ

� 2ð�þ 1Þr10z �ab�cur;0;

Ra�cur;�2 ¼ 0;

Ra�cur;0 ¼ �2ð�� 1Þr01� �a
cur;�1;

Ra�cur;2 ¼ �2
ffiffiffi
2

p ð�þ 1Þr10� �a
cur;1: (5.9)

Using (5.9), we check that the constraints (5.4), (5.5), and
(5.6) are invariant under conformal algebra transformations
(2.4).
As in the case of the spin-1 anomalous conformal cur-

rent, we obtained the differential constraints, gauge trans-
formations, and the realization of the operator Ra by
generalizing our results for the spin-2 conformal current
with the canonical dimension which we obtained in
Ref. [8]. Differential constraints and gauge transformations
for spin-2 anomalous conformal current can also be ob-
tained by using the framework of tractor approach [see
formulas (103) and (110) in Ref. [18] ]. Obviously, our
constraints (5.4), (5.5), and (5.6) and gauge transformations
(5.8) can be matched with the ones in Ref. [18] by using
appropriate field redefinitions. The basis of the fields we
use in this paper turns out to be more convenient for the
study of AdS/CFT correspondence. To summarize, our
fields (5.1) can be written as a tractor rank-2 tensor field
subject to a Thomas-D divergence type constraint in
Ref. [18]. A similar construction was used to describe the
bulk massive spin-2 field in Ref. [18]. Note that, in our
approach, we use our fields (5.1) for the discussion of
spin-2 anomalous conformal current.

8The parameter � for the spin-2 field (5.3) should not be
confused with the one for the spin-1 field (3.3).
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B. Stueckelberg gauge frame

For the spin-2 anomalous conformal current, the
Stueckelberg gauge frame is achieved through the use of
differential constraints (5.4), (5.5), and (5.6) and the
Stueckelberg gauge condition. From (5.8), we see that
the vector field �a

cur;�1 and the scalar fields �cur;�2, �cur;0

transform as Stueckelberg fields, i.e., these fields can be
gauged away via Stueckelberg gauge fixing,

�a
cur;�1 ¼ 0; �cur;�2 ¼ 0; �cur;0 ¼ 0: (5.10)

Using gauge conditions (5.10) in the constraint (5.5), we
find that the field �ab

cur;0 becomes traceless, while using

gauge conditions (5.10) in the constraints (5.4) and (5.6),
we find that the remaining vector field �a

cur;1 and the scalar

field �cur;2 can be expressed in terms of the rank-2 tensor

field �ab
cur;0,

�aa
cur;0 ¼ 0;

�a
cur;1 ¼ � 1

r00�
@b�ab

cur;0;

�cur;2 ¼ 1ffiffiffi
2

p
r00� r10�

@a@b�ab
cur;0:

(5.11)

Relations (5.10) and (5.11) provide the complete descrip-
tion of the Stueckelberg gauge frame for the spin-2 anoma-
lous conformal current. We note that the traceless rank-2
tensor �ab

cur;0 can be identified with the one in the standard

approach to CFT.
Thus, we see that the gauge symmetries and the differ-

ential constraints make it possible to match our approach
and the standard one, i.e., by gauging away the
Stueckelberg fields (5.10) and by solving the differential
constraints (5.4), (5.5), and (5.6) we obtain the standard
formulation of the spin-2 anomalous conformal current.

C. Light-cone gauge frame

For the spin-2 anomalous conformal current, the light-
cone gauge frame is achieved through the use of the
differential constraints (5.4), (5.5), and (5.6) and light-
cone gauge condition.

Using the gauge transformations of the fields �ab
cur;0,

�a
cur;�1 (5.8), we impose the light-cone gauge,

�þa
cur;0 ¼ 0; �þ

cur;� ¼ 0; � ¼ �1: (5.12)

Plugging this gauge in the differential constraints (5.4),
(5.5), and (5.6), we find

�ii
cur;0¼0;

��i
cur;0¼� @j

@þ
�ij

cur;0�
r00z
@þ

h�i
cur;�1�

r00�
@þ

�i
cur;1;

���
cur;0¼

@i@j

@þ@þ
�ij

cur;0þ
2r00z @i

@þ@þ
h�i

cur;�1þ
2r00� @i

@þ@þ
�i

cur;1

þ
ffiffiffi
2

p
r00z r10z

@þ@þ
h2�cur;�2þ

ffiffiffi
2

p
r00� r01�

@þ@þ
�cur;2

þr00z r01� þr00� r10z

@þ@þ
h�cur;0;

��
cur;�1¼� @j

@þ
�j

cur;�1�
ffiffiffi
2

p
r01z

@þ
h�cur;�2�

r01�
@þ

�cur;0;

��
cur;1¼� @j

@þ
�j

cur;1�
r10z
@þ

h�cur;0�
ffiffiffi
2

p
r10�

@þ
�cur;2: (5.13)

We see that we are left with soðd� 2Þ algebra traceless
rank-2 tensor field, two vector fields, and three scalar
fields,

�ij
cur;0

�i
cur;�1; �i

cur;1;

�cur;�2; �cur;0; �cur;2;

(5.14)

which constitute the field content of the light-cone gauge
frame.

VI. SPIN-2 ANOMALOUS SHADOW FIELD

A. Gauge invariant formulation

To discuss gauge invariant formulation of spin-2 anoma-
lous shadow field in the flat space of dimension d � 4 we
use one rank-2 tensor field, two vector fields, and three
scalars fields,

�ab
sh;0;

�a
sh;�1; �a

sh;1;

�sh;�2; �sh;0; �sh;2:

(6.1)

The fields �ab
sh;0, �

a
sh;�1 and �sh;0, �sh;�2 transform in the

respective rank-2 tensor, vector and scalar representations
of the Lorentz algebra soðd� 1; 1Þ. Note that the
tensor field �ab

sh;0 is symmetric �ab
sh;0 ¼ �ba

sh;0 and traceful

�aa
sh;0 � 0. Conformal dimensions of the fields are given by

��ab
sh;0

¼ d

2
� �; ��a

sh;�
¼ d

2
� �þ �; � ¼ �1;

��sh;�
¼ d

2
� �þ �; � ¼ 0;�2: (6.2)

In the framework of AdS/CFT correspondence, � is related
to the mass parameterm of the spin-2 massive AdS field as
in (5.3).
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We now introduce the following differential constraints:

@b�ab
sh;0 � 1

2@
a�bb

sh;0 þ r00� h�a
sh;�1 þ r00z �a

sh;1 ¼ 0; (6.3)

@a�a
sh;�1 þ 1

2r
00
� �aa

sh;0 þ
ffiffiffi
2

p
r10� h�sh;�2 þ r10z �sh;0 ¼ 0;

(6.4)

@a�a
sh;1 þ 1

2r
00
z h�aa

sh;0 þ r01� h�sh;0 þ
ffiffiffi
2

p
r01z �sh;2 ¼ 0;

(6.5)

where the parameters rmn
� and rmn

z are given in (5.7). One

can make sure that these constraints are invariant under the
gauge transformations

��ab
sh;0 ¼ @a�b

sh;0 þ @b�a
sh;0 þ

2r00z
d� 2

�ab�sh;1

þ 2r00�
d� 2

�abh�sh;�1;

��a
sh;�1 ¼ @a�sh;�1 � r00� �a

sh;0;

��a
sh;1 ¼ @a�sh;1 � r00z h�a

sh;0;

��sh;�2 ¼ � ffiffiffi
2

p
r10� �sh;�1;

��sh;0 ¼ �r01� �sh;1 � r10z h�sh;�1;

��sh;2 ¼ � ffiffiffi
2

p
r01z h�sh;1; (6.6)

where �a
sh;0, �sh;�1 are gauge transformation parameters.

We then find that a realization of the operator Ra on
fields (6.1) takes the following form:

Ra�bc
sh;0 ¼ 2�r00� ð�ab�c

sh;�1 þ �ac�b
sh;�1Þ

� 4ð�þ 1Þr00�
d� 2

�bc�a
sh;�1;

Ra�b
sh;�1 ¼ 2

ffiffiffi
2

p ð�þ 1Þr10� �ab�sh;�2;

Ra�b
sh;1 ¼ r00z ð2��ab

sh;0 � �ab�cc
sh;0Þ

þ 2ð�� 1Þr01� �ab�sh;0;

Ra�sh;�2 ¼ 0;

Ra�sh;0 ¼ 2ð�þ 1Þr10z �a
sh;�1;

Ra�sh;2 ¼ 2
ffiffiffi
2

p ð�� 1Þr01z �a
sh;1: (6.7)

Using (6.7), we check that the constraints (6.3), (6.4), and
(6.5) are invariant under transformations of the conformal
algebra.

We proceed with the discussion of the two-point vertex
for the spin-2 anomalous shadow field. The gauge invariant
two-point vertex we find takes the form given (4.8), where
the two-point density �12 is given by

�12 ¼ 1

4jx12j2�þd

�
�ab

sh;0ðx1Þ�ab
sh;0ðx2Þ �

1

2
�aa

sh;0ðx1Þ�bb
sh;0ðx2Þ

�

þ X
�¼�1

!�

2jx12j2�þd�2�
�a

sh;�ðx1Þ�a
sh;�ðx2Þ

þ X
�¼0;�2

!�

2jx12j2�þd�2�
�sh;�ðx1Þ�sh;�ðx2Þ; (6.8)

!1 ¼ 1

2�ð2�þ d� 2Þ ;
!0 ¼ 1;

!�1 ¼ 2ð�þ 1Þð2�þ dÞ;
!2 ¼ 1

4�ð�� 1Þð2�þ d� 2Þð2�þ d� 4Þ ;
!�2 ¼ 4ð�þ 1Þð�þ 2Þð2�þ dÞð2�þ dþ 2Þ:

(6.9)

We check that this vertex is invariant under both gauge
transformations (6.6) and global conformal transforma-
tions of the spin-2 anomalous shadow field. A remarkable
feature of the vertex is its diagonal form with respect to the
gauge fields entering the field content (6.1).

B. Stueckelberg gauge frame

For the spin-2 anomalous shadow field, the Stueckelberg
gauge frame is achieved though the use of differential
constraints (6.3), (6.4), and (6.5) and a Stueckelberg gauge
condition. From gauge transformations (6.6), we see that
the vector field �a

sh;�1 and the scalar fields �sh;�2, �sh;0

transform as Stueckelberg fields, i.e., these fields can be
gauged away via Stueckelberg gauge fixing,

�a
sh;�1 ¼ 0; �sh;�2 ¼ 0; �sh;0 ¼ 0: (6.10)

Using gauge conditions (6.10) in the constraint (6.4), we
find that the field �ab

sh;0 becomes traceless, while using

gauge conditions (6.10) in the constraints (6.3) and (6.5)
we find that the remaining vector field �a

sh;1 and the scalar

field �sh;2 can be expressed in terms of the rank-2 tensor

field �ab
sh;0,

�aa
sh;0 ¼ 0;

�a
sh;1 ¼ � 1

r00z
@b�ab

sh;0;

�sh;2 ¼ 1ffiffiffi
2

p
r00z r01z

@a@b�ab
sh;0:

(6.11)

Relations (6.10) and (6.11) provide the complete descrip-
tion of the Stueckelberg gauge frame for the spin-2 anoma-
lous shadow field.
Plugging (6.10) and (6.11) in (6.8), we find that our �12

(6.8) takes the form (up to the total derivative),

�Stuck:g:fram
12 ¼ k2�

stand
12 ; (6.12)
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�stand
12 ¼ �a1a2

sh;0 ðx1Þ
Oa1b1

12 Oa2b2
12

jx12j2�þd
�b1b2

sh;0 ðx2Þ; (6.13)

k2 � 2�þ dþ 2

4ð2�þ d� 2Þ ; (6.14)

whereOab
12 is defined in (4.16), while �

stand
12 (6.13) stands for

the two-point vertex of the spin-2 anomalous shadow field
in the standard approach to CFT. From (6.12), we see that
our gauge invariant vertex taken to be in the Stueckelberg
gauge frame coincides, up to normalization factor k2, with
the two-point vertex in the standard approach to CFT. The
kernel of vertex �stand (6.13) defines the two-point corre-
lation function of the spin-2 conformal conformal current
taken to be in the Stueckelberg gauge frame.

C. Light-cone gauge frame

For the spin-2 anomalous shadow field, the light-cone
gauge frame is achieved through the use of differential
constraints (6.3), (6.4), and (6.5) and the light-cone gauge.
Taking into account the gauge transformations of the fields
�ab

sh;0,�
a
sh;�1 given in (6.6), we impose the light-cone gauge

condition,

�þa
sh;0 ¼ 0; �þ

sh;� ¼ 0; � ¼ �1: (6.15)

Plugging this gauge condition in the constraints (6.3), (6.4),
and (6.5), we find

�ii
sh;0 ¼ 0;

��i
sh;0 ¼ � @j

@þ
�ij

sh;0 �
r00�
@þ

h�i
sh;�1 �

r00z
@þ

�i
sh;1;

���
sh;0 ¼

@i@j

@þ@þ
h�ij

sh;0 þ
2r00� @i

@þ@þ
�i

sh;�1 þ
2r00z @i

@þ@þ
h2�i

sh;1

þ
ffiffiffi
2

p
r00� r10�

@þ@þ
�sh;�2 þ

ffiffiffi
2

p
r00z r01z

@þ@þ
�sh;2

þ r00z r01� þ r00� r10z

@þ@þ
h�sh;0;

��
sh;�1 ¼ � @j

@þ
�j

sh;�1 �
ffiffiffi
2

p
r10�

@þ
h�sh;�2 � r10z

@þ
�sh;0;

��
sh;1 ¼ � @j

@þ
�j

sh;1 �
r01�
@þ

h�sh;0 �
ffiffiffi
2

p
r01z

@þ
�sh;2: (6.16)

We see that we are left with the soðd� 2Þ algebra traceless
rank-2 tensor field, two vector fields, and three scalar
fields,

�ij
sh;0;

�i
sh;�1; �i

sh;1;

�sh;�2; �sh;0; �sh;2;

(6.17)

which constitute a field content of the spin-2 anomalous
shadow field in the light-cone gauge frame. Note that, in

contrast to the Stueckelberg gauge frame, the vector fields
and the scalar fields become independent field D.o.F. in the
light-cone gauge frame.
Using (6.15) in (6.8) leads to the light-cone gauge-fixed

vertex

�ðl:c:Þ
12 ¼ 1

4jx12j2�þd
�ij

sh;0ðx1Þ�ij
sh;0ðx2Þ

þ X
�¼�1

!�

2jx12j2�þd�2�
�i

sh;�ðx1Þ�i
sh;�ðx2Þ

þ X
�¼0;�2

!�

2jx12j2�þd�2�
�sh;�ðx1Þ�sh;�ðx2Þ; (6.18)

where!� are defined in (6.9). We see that, as in the case of
the gauge invariant vertex (6.8), the light-cone vertex (6.18)
is diagonal with respect to the fields entering the field
content of the light-cone gauge frame (6.17). Note however
that, in contrast to the gauge invariant vertex, the light-cone
vertex is constructed out of the fields (6.17) which are not
subject to any differential constraints.
As before, we see that our gauge invariant vertex gives

easy and quick access to the light-cone gauge vertex.
Namely, all that is required to get the light-cone gauge
vertex (6.18) is to remove the trace of the tensor field �ab

sh;0

and replace the soðd� 1; 1Þ Lorentz algebra vector indices
appearing in the gauge invariant vertex (6.8) by the vector
indices of the soðd� 2Þ algebra.
The kernel of the light-cone vertex (6.18) gives the two-

point correlation function of the spin-2 anomalous confor-
mal current taken to be in the light-cone gauge. Defining
two-point correlation functions for light-cone fields of the
anomalous conformal current (5.14) in the usual way

h�ij
cur;0ðx1Þ;�kl

cur;0jðx2Þi �
�2�ðl:c:Þ

��ij
sh;0ðx1Þ��kl

sh;0ðx2Þ
;

h�i
cur;�ðx1Þ;�j

cur;�ðx2Þi �
�2�ðl:c:Þ

��i
sh;��ðx1Þ��j

sh;��ðx2Þ
;

h�cur;�ðx1Þ;�cur;�ðx2Þi � �2�ðl:c:Þ

��sh;��ðx1Þ��sh;��ðx2Þ ;

(6.19)

we obtain

h�ij
cur;0ðx1Þ; �kl

cur;0ðx2Þi ¼
1

jx12j2�þd
�ij;kl;

h�i
cur;�ðx1Þ; �j

cur;�ðx2Þi ¼
!��

jx12j2�þdþ2�
�ij;

h�cur;�ðx1Þ; �cur;�ðx2Þi ¼ !��

jx12j2�þdþ2�
;

(6.20)

where !� are defined in (6.9) and we use the notation

�ij;kl ¼ 1

2

�
�ik�jl þ �il�jk � 2

d� 2
�ij�kl

�
: (6.21)
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VII. TWO-POINT CURRENT-SHADOW FIELD
INTERACTION VERTEX

We now discuss the two-point current-shadow field in-
teraction vertex. In the gauge invariant approach, the in-
teraction vertex is determined by requiring the vertex to be
invariant under both gauge transformations of currents and
shadow fields. Also, the interaction vertex should be in-
variant under conformal algebra transformations.

Spin-1.—We begin with spin-1 fields. Let us consider
the following vertex:

L ¼ �a
cur;0�

a
sh;0 þ�cur;�1�sh;1 þ�cur;1�sh;�1: (7.1)

Denoting the left-hand side of (4.3) by Csh we find that
under gauge transformations of the current (3.6), (3.7), and
(3.8) the variation of the vertex (7.1) takes the form (up to
total derivative)

��cur;0
L ¼ ��cur;0Csh: (7.2)

From this expression, we see that the vertex L is invariant
under gauge transformations of the current provided the
shadow field satisfies the differential constraint (4.3).
Denoting the left-hand side of (3.4) by Ccur we find
that under gauge transformations of the shadow field
(4.4), (4.5), and (4.6) the variation of the vertex (7.1) takes
the form (up to total derivative)

��sh
L ¼ ��sh;0Ccur; (7.3)

i.e., the vertex L is invariant under gauge transformations
of the shadow field provided the current satisfies the dif-
ferential constraint (3.4).

Making use of the realization of the conformal algebra
symmetries obtained in Sections III and IV, we check that
vertex L (7.1) is invariant under the conformal algebra
transformations.

Spin-2.—We proceed with spin-2 fields. One can make
sure that the following vertex:

L ¼ 1

2
�ab

cur;0�
ab
sh;0 �

1

4
�aa

cur;0�
bb
sh;0 þ

X
�¼�1

�a
cur;��

a
sh;��

þ X
�¼0;�2

�cur;��sh;�� (7.4)

is invariant under gauge transformations of the spin-2
shadow field (6.6) provided the spin-2 current satisfies
the differential constraints (5.4), (5.5), and (5.6). This
vertex (7.4) is also invariant under gauge transformations
of the spin-2 anomalous current (5.8) provided the spin-2
shadow field satisfies the differential constraints
(6.3), (6.4), and (6.5). Using the representation for gener-
ators of the conformal algebra obtained in Sections V and
VI, we check that vertex L (7.4) is invariant under the
conformal algebra transformations.

VIII. ADS/CFT CORRESPONDENCE.
PRELIMINARIES

We now study AdS/CFT correspondence for free mas-
sive AdS fields and boundary anomalous conformal cur-
rents and shadow fields. To this end we use the gauge
invariant CFT adapted description of AdS massive fields
and the modified Lorentz and de Donder gauges found in
Ref. [12]. It is the use of our fields and the modified Lorentz
and de Donder gauges that leads to the decoupled form of
gauge-fixed equations of motion and a surprisingly simple
Lagrangian.9 Owing these properties of our fields and the
modified (Lorentz) de Donder gauge, we simplify signifi-
cantly the computation of the effective action.10 Note that
the modified (Lorentz) de Donder gauge turns out to be
invariant under on-shell leftover gauge symmetries of bulk
AdS fields. Also note that, in our approach, we have gauge
symmetries not only at the AdS side but also at the bound-
ary CFT. Therefore, in the framework of our approach, the
study of AdS/CFT correspondence implies the matching
of:
(i) Lorentz (de Donder) gauge conditions for bulk

massive fields and differential constraints for bound-
ary anomalous conformal currents and shadow
fields;

(ii) leftover on-shell gauge symmetries for bulk massive
fields and gauge symmetries of boundary anoma-
lous conformal currents and shadow fields;

(iii) on-shell global symmetries of bulk massive fields
and global symmetries of boundary anomalous
conformal currents and shadow fields;

(iv) an effective action evaluated on the solution of
equations of motion with the Dirichlet problem
corresponding to the boundary anomalous shadow
field and boundary two-point gauge invariant vertex
for the anomalous shadow field.

Global AdS symmetries in CFT adapted approach.—
Relativistic symmetries of the AdSdþ1 field dynamics are
described by the soðd; 2Þ algebra. In d-dimensional space,
global symmetries of anomalous conformal currents and
shadow fields are also described by the soðd; 2Þ algebra. To
discuss global symmetries of anomalous conformal cur-
rents and shadow fields we have used conformal basis of
the soðd; 2Þ algebra [see (2.3)]. Therefore, for the applica-
tion to the study of AdS/CFT correspondence, it is conve-
nient to realize the relativistic bulk soðd; 2Þ algebra
symmetries by using the basis of the conformal algebra.
The most convenient way to achieve the conformal basis

9Our massive gauge fields are obtained from gauge fields used
in the standard gauge invariant approach to massive fields by the
invertible transformation. Details of the transformation may be
found in Appendices A and B. A discussion of interesting
methods for solving AdS field equations of motion without
gauge fixing may be found in Refs. [28,29].
10We recall that the bulk action evaluated on the solution of the
Dirichlet problem is referred to as effective action in this paper.
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realization of bulk soðd; 2Þ symmetries is to use the
Poincaré parametrization of AdS space,11

ds2 ¼ 1

z2
ðdxadxa þ dzdzÞ: (8.1)

In this parametrization, the soðd; 2Þ algebra transforma-
tions of the massive arbitrary spin AdS field � take the

form �Ĝ� ¼ Ĝ�, where the realization of the soðd; 2Þ
algebra generators Ĝ in terms of differential operators
acting on � is given by

Pa ¼ @a; (8.2)

Jab ¼ xa@b � xb@a þMab; (8.3)

D ¼ x@þ�; � ¼ z@z þ d� 1

2
; (8.4)

Ka ¼ Ka
�;M þ Ra; (8.5)

Ka
�;M ¼ �1

2x
2@a þ xaDþMabxb; (8.6)

Ra ¼ Ra
ð0Þ þ Ra

ð1Þ; (8.7)

Ra
ð1Þ ¼ �1

2z
2@a: (8.8)

The operator Ra
ð0Þ (8.7) does not depend on boundary

coordinates xa, boundary derivatives @a, and the derivative
with respect to the radial coordinate, @z. The operator R

a
ð0Þ

acting on spin D.o.F. depends only on the radial coordinate
z. Thus, we see all that is required to complete description
of the global symmetries of AdS field dynamics is to find
realization of the operator Ra

ð0Þ on space of gauge AdS

fields.
AdS/CFT correspondence for spin-0 anomalous current

and normalizable modes of scalar massive AdS field12.—
Because use of modified Lorentz (de Donder) gauge makes
the study of AdS/CFT correspondence for the spin-1 (spin-
2) field similar to the one the for scalar field we begin with
a brief review of the AdS/CFT correspondence for the
scalar field.

The action and Lagrangian for the massive scalar field in
the AdSdþ1 background take the form13

S ¼
Z

ddxdzL; (8.9)

L ¼ 1
2

ffiffiffiffiffiffi
jgj

q
ðg�	@��@	�þm2�2Þ: (8.10)

In terms of the canonical normalized field � defined by

relation � ¼ zðd�1Þ=2�, the Lagrangian takes the form (up
to total derivative)

L ¼ 1
2jd�j2 þ 1

2jT 	�ð1=2Þ�j2; (8.11)

T 	 � @z þ 	

z
; (8.12)

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2

4

s
: (8.13)

The equation of motion obtained from Lagrangian (8.11)
takes the form

h	� ¼ 0; (8.14)

h	 � hþ @2z � 1

z2

�
	2 � 1

4

�
: (8.15)

The normalizable solution of Eq. (8.14) is given by

�ðx; zÞ ¼ Usc
	 �curðxÞ; (8.16)

Usc
	 � h	

ffiffiffiffiffi
zq

p
J	ðzqÞq�ð	þð1=2ÞÞ; (8.17)

h	 � 2	�ð	þ 1Þ; q2 � h; (8.18)

where J	 stands for the Bessel function. The asymptotic
behavior of solution (8.16) is given by

�ðx; zÞ!z!0 ! z	þð1=2Þ�curðxÞ; (8.19)

i.e., we see that spin-0 current �cur is indeed boundary
value of the normalizable solution.
In the case under consideration, we have no gauge

symmetries and gauge conditions. Therefore, all that is
required to complete the AdS/CFT correspondence is to
match bulk global symmetries of the AdS field �ðx; zÞ and
boundary global symmetries of the current �curðxÞ. Global
symmetries on the AdS side are described in (8.2)-(8.8),
and those on the CFT side are described in (2.5)-(2.8),
respectively. We see that the Poincaré symmetries match
automatically. Using the notation DAdS and DCFT to indi-
cate the respective realizations of the D symmetry on bulk
fields (8.4) and conformal currents (2.7) we obtain the
relation

DAdS�ðx; zÞ ¼ Usc
	 DCFT�curðxÞ; (8.20)

where the expressions for DCFT corresponding to �cur can
be obtained from (2.7) by using � ¼ d

2 þ 	 with 	 given in

(8.13). Thus, D symmetries of �ðx; zÞ and �curðxÞ also
match. To match the Ka symmetries in (2.8) and (8.5) we
note that the respective operators Ra

ð0Þ and Ra act trivially,

Ra
ð0Þ�ðx; zÞ ¼ 0, Ra�curðxÞ ¼ 0 and then make sure that the

Ka symmetries also match.

11In our approach only soðd� 1; 1Þ symmetries are realized
manifestly. The soðd; 2Þ symmetries could be realized manifestly
by using ambient space approach (see, e.g., [30–32]).
12Also see Refs. [33].
13From now on we use, unless otherwise specified, the
Euclidian signature.
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AdS/CFT correspondence for spin-0 shadow field and
non-normalizable modes of scalar massive AdS field.—
Following the procedure in Ref. [34], we note that non-
normalizable solution of Eq. (8.14) with the Dirichlet
problem corresponding to the boundary shadow scalar field
�shðxÞ takes the form

�ðx; zÞ ¼ 

Z

ddyG	ðx� y; zÞ�shðyÞ; (8.21)

G	ðx; zÞ ¼ c	z
	þð1=2Þ

ðz2 þ jxj2Þ	þðd=2Þ ; (8.22)

c	 � �ð	þ d
2Þ

�d=2�ð	Þ : (8.23)

To be flexible, we use normalization factor 
 in (8.21). For
the case of the scalar field, a commonly used normalization
in (8.21) is achieved by setting 
 ¼ 1. Asymptotic behav-
iors of the Green function (8.22) and solution (8.21) are
well known,

G	ðx; zÞ!z!0
z�	þð1=2Þ�dðxÞ; (8.24)

�ðx; zÞ!z!0
z�	þð1=2Þ
�shðxÞ: (8.25)

From (8.25), we see that our solution has indeed asymp-
totic behavior corresponding to the shadow scalar field.

Using equations of motion (8.14) in the bulk action (8.9)
with Lagrangian (8.11) we obtain the effective action
given by14

� Seff ¼
Z

ddxLeffjz!0; (8.26)

L eff ¼ 1
2�T 	�ð1=2Þ�: (8.27)

Plugging the solution of the Dirichlet problem (8.21)
into (8.26) and (8.27), we obtain the effective action

� Seff ¼ 	c	

2
Z

ddx1d
dx2

�shðx1Þ�shðx2Þ
jx12j2	þd

: (8.28)

Using the commonly used value of 
, 
 ¼ 1, in (8.28), we
obtain the properly normalized effective action found in
Refs. [35,36]. An interesting novelty of our computation of
Seff is that we use the Fourier transform of the Green
function. The details of our computation may be found in
Appendix C in Ref. [9].

IX. ADS/CFT CORRESPONDENCE FOR
SPIN-1 FIELDS

We now discussthe AdS/CFT correspondence for the
bulk spin-1 massive AdS field and boundary spin-1 anoma-
lous conformal current and shadow field. To this end we are
going to use the CFT adapted gauge invariant Lagrangian
and the modified Lorentz gauge condition [12].15 Because
our approach is closely related to the gauge invariant
approach to the massive field we start with a brief review
of the latter approach.
Gauge invariant approach to spin-1 massive field in

AdSdþ1 space.—In the gauge invariant approach, the
spin-1 massive field is described by fields

�A; �; (9.1)

which transform in the respective vector and scalar repre-
sentations of soðd; 1Þ algebra. In the Lorentzian signature,
the Lagrangian given by

e�1L ¼ �1
4F

ABFAB � 1
2F

AFA;

FAB � DA�B �DB�A;

FA � DA�þm�A;

(9.2)

is invariant under the gauge transformations

��A ¼ DA�; �� ¼ �m�: (9.3)

Details of our notation may be found in Appendix A.
Lagrangian (9.2) can be cast into the form which is more
convenient for our purposes,

e�1L ¼ 1
2�

AðD2 �m2 þ dÞ�A þ 1
2�ðD2 �m2Þ�þ 1

2C
2
st;

(9.4)

Cst � DC�C þm�: (9.5)

A. CFT adapted gauge invariant approach to spin-1
massive field in AdSdþ1

In our approach, the spin-1 massive AdS field is de-
scribed by fields

�a; ��1; �1; (9.6)

which are the respective vector and scalar fields of the
soðdÞ algebra. Fields in (9.6) are related by invertible
transformation with fields in (9.1) (see Appendix A). The
CFT adapted gauge invariant action and Lagrangian for
fields (9.6) take the form,

S ¼
Z

ddxdzL; (9.7)

14Following a commonly used setup, we consider the solution
of the Dirichlet problem which tends to zero as z ! 1.
Therefore, in (8.26), we ignore contribution to Seff when z ¼ 1.

15For the spin-1 massless field, the modified Lorentz gauge was
found in Ref. [37], while for the massless arbitrary spin field the
modified de Donder gauge was discovered in Ref. [38].

GAUGE INVARIANT APPROACH TO LOW-SPIN . . . PHYSICAL REVIEW D 83, 106004 (2011)

106004-13



L ¼ 1

2
jd�aj2 þ 1

2
jT ��ð1=2Þ�aj2

þ 1

2

X
�¼�1

ðjd��j2 þ jT ��ð1=2Þþ���j2Þ � 1

2
C2; (9.8)

C � @a�a þ r00� T �þð1=2Þ�1 þ r00z T ��þð1=2Þ��1; (9.9)

where T 	 is given in (8.12), while � and r00z , r00� are

defined in (3.3) and (3.5), respectively. Lagrangian (9.8)
is invariant under gauge transformations

��a ¼ @a�; (9.10)

���1 ¼ r00z T ��ð1=2Þ�; (9.11)

��1 ¼ r00� T ���ð1=2Þ�; (9.12)

where � is a gauge transformation parameter. Details of the
derivation of Lagrangian (9.8) from the one in (9.4) may be
found in Appendix A.

Gauge invariant equations of motion obtained from
Lagrangian (9.8) take the form

h��
a � @aC ¼ 0;

h��1��1 � r00z T ��ð1=2ÞC ¼ 0;

h�þ1�1 � r00� T ���ð1=2ÞC ¼ 0;

(9.13)

where the operator h	 is given in (8.15).
Global AdS symmetries in CFTadapted approach.—The

general form of the realization of global symmetries for
arbitrary spin AdS field was given in (8.2), (8.3), (8.4), and
(8.5). All that is required to complete the description of the
global symmetries is to find the realization of the operator
Ra
ð0Þ on the space of gauge fields. For the case of the spin-1

massive field, the realization of the operator Ra
ð0Þ on the

space of gauge fields (9.6) is given by

Ra
ð0Þ�

b ¼ z�abr00� �1 þ z�abr00z ��1;

Ra
ð0Þ��1 ¼ �zr00z �a;

Ra
ð0Þ�1 ¼ �zr00� �a:

(9.14)

Modified Lorentz gauge.—Modified Lorentz gauge is
defined to be

C ¼ 0; modified Lorentz gauge; (9.15)

where C is given in (9.9). Using this gauge condition in
equations of motion (9.13) gives simple gauge-fixed equa-
tions of motion,

h��
a ¼ 0; h�þ��� ¼ 0; � ¼ �1: (9.16)

Thus, we see that the gauge-fixed equations of motion are
decoupled.

We note that the modified Lorentz gauge and gauge-
fixed equations have leftover on-shell gauge symmetry.
Namely, modified Lorentz gauge (9.15) and gauge-fixed
equations (9.16) are invariant under gauge transformations
given in (9.10), (9.11), and (9.12) provided the gauge trans-
formation parameter satisfies the equation

h�� ¼ 0: (9.17)

B. AdS/CFT correspondence for anomalous current
and normalizable modes of massive AdS field

We now ready to discuss AdS/CFT correspondence for
the spin-1 massive AdS field and spin-1 anomalous con-
formal current. We begin with an analysis of the normal-
izable solution of Eqs. (9.16). The normalizable solution of
Eqs. (9.16) takes the form

�aðx; zÞ ¼ U��
a
cur;0ðxÞ;

��1ðx; zÞ ¼ �U��1�cur;�1ðxÞ;
�1ðx; zÞ ¼ U�þ1�cur;1ðxÞ;

(9.18)

U	 � h�
ffiffiffiffiffi
zq

p
J	ðzqÞq�ð	þð1=2ÞÞ; (9.19)

h� � 2��ð�þ 1Þ; q2 � h: (9.20)

Note that we do not show explicitly the dependence of U	

on parameter � (3.3). The asymptotic behavior of solution
(9.18) is given by

�aðx; zÞ!z!0
z�þð1=2Þ�a

cur;0ðxÞ;
��1ðx; zÞ!z!0 � 2�z��ð1=2Þ�cur;�1ðxÞ;

�1ðx; zÞ!z!0 z�þð3=2Þ

2ð�þ 1Þ�cur;1ðxÞ:

(9.21)

From (9.21), we see that �a
cur;0, �cur;�1 are indeed bound-

ary values of the normalizable solution. In the right-hand
side of (9.18) we use the notation �a

cur;0, �cur;�1 since we

are going to demonstrate that these boundary values are
indeed the gauge fields entering the gauge invariant for-
mulation of the spin-1 anomalous conformal current in
Sec. III. Namely, one can prove the following statements:
(i) For normalizable solution (9.18), modified Lorentz

gauge condition (9.15) leads to the differential con-
straint (3.4) of the spin-1 anomalous conformal
current.

(ii) Leftover on-shell gauge transformations (9.10),
(9.11), and (9.12) of normalizable solution (9.18)
lead to gauge transformations (3.6), (3.7), and (3.8)
of the spin-1 anomalous conformal current.16

16Transformations given in (9.10), (9.11), and (9.12) are off-
shell gauge transformations. Leftover on-shell gauge transfor-
mations are obtained from (9.10), (9.11), and (9.12) by using the
gauge transformation parameter which satisfies Eq. (9.17).
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(iii) On-shell global soðd; 2Þ symmetries of the normal-
izable modes of the spin-1 massive AdSdþ1 field
become global soðd; 2Þ conformal symmetries of
the spin-1 anomalous conformal current.

These statements can easily be proved by using the
following relations for the operator U	:

T 	�ð1=2ÞU	 ¼ U	�1; (9.22)

T �	�ð1=2ÞU	 ¼ �U	þ1h; (9.23)

T �	þð1=2ÞðzU	Þ ¼ �zU	þ1hþ 2U	; (9.24)

h	ðzU	þ1Þ ¼ 2U	; (9.25)

which, in turn, can be obtained by using the following well-
known identities for the Bessel function:

T 	J	 ¼ J	�1; T �	J	 ¼ �J	þ1: (9.26)

Matching of the bulk modified Lorentz gauge and bound-
ary constraint.—As an illustration, we demonstrate how
the differential constraint for the anomalous conformal
current (3.4) can be obtained from the modified Lorentz
gauge condition (9.15). To this end, adapting relations
(9.22) and (9.23) for the respective 	 ¼ �þ 1 and
	 ¼ �� 1 we obtain the relations

T �þð1=2ÞU�þ1 ¼ U�; T ��þð1=2ÞU��1 ¼ �U�:

(9.27)

Plugging solutions �a, ��1 (9.18) in C (9.9) and using
(9.27) we obtain the relation

C ¼ U�Ccur; (9.28)

where Ccur stands for the left-hand side of (3.4). From
(9.28), we see that our modified Lorentz gauge condition
C ¼ 0 (9.15) leads indeed to a differential constraint for
the anomalous conformal current (3.4).

Matching of bulk and boundary gauge symmetries.—As
the second illustration, we demonstrate how gauge trans-
formations of the anomalous conformal current (3.6), (3.7),
and (3.8) can be obtained from leftover on-shell gauge
transformations of the massive AdS field (9.10), (9.11), and
(9.12). To this end we note that the corresponding normal-
izable solution of the equation for gauge transformation
parameter (9.17) takes the form

�ðx; zÞ ¼ U��cur;0ðxÞ: (9.29)

Plugging�a (9.18) and � (9.29) in (9.10), we see that (9.10)
leads indeed to (3.6). To match boundary gauge transfor-
mation (3.7) and bulk gauge transformation (9.11) we plug
the solution for � (9.29) in bulk gauge transformation
(9.11) and adapt relation (9.22) for 	 ¼ � to obtain

���1ðx; zÞ ¼ r00z T ��ð1=2ÞU��cur;0ðxÞ ¼ U��1r
00
z �cur;0ðxÞ

(9.30)

on the one hand. On the other hand, the solution for ��1

(9.18) implies

���1ðx; zÞ ¼ �U��1��cur;�1ðxÞ: (9.31)

Comparing (9.30) and (9.31) we see that boundary gauge
transformation (3.7) and bulk gauge transformation (9.11)
match. In the same way one can make sure that the remain-
ing boundary gauge transformation (3.8) and bulk gauge
transformation (9.12) also match.
Matching of bulk and boundary global symmetries.—

We note that the representation for generators given in
(8.2), (8.3), (8.4), and (8.5) is valid for the gauge invariant
theory of AdS fields. This to say that our modified Lorentz
gauge respects the Poincaré and dilatation symmetries, but
breaks the conformal boost symmetries (Ka symmetries).
In other words, expressions for generators Pa, Jab, and D
given in (8.2), (8.3), and (8.4) are still valid for the gauge-
fixed AdS fields, while the expression for the generator Ka

(8.5) should be modified to restore Ka symmetries for the
gauge-fixed AdS fields. Therefore, let us first demonstrate
the matching of the Poincaré and dilatation symmetries.
What is required is to demonstrate the matching of the
soðd; 2Þ algebra generators for bulk AdS field given in
(8.2), (8.3), and (8.4) and the ones for the boundary con-
formal current given in (2.5), (2.6), and (2.7). As for gen-
erators of the Poincaré algebra, Pa, Jab, they already
coincide on both sides [see formulas (2.5) and (2.6) and
the respective formulas (8.2) and (8.3)]. Next, consider the
dilatation generator D. Here we need an explicit form of
the solution to the bulk theory equations of motion given in
(9.18). Using the notations DAdS and DCFT to indicate the
respective realizations of the dilatation generatorD on bulk
field (8.4) and boundary current (2.7), we obtain the
relations

DAdS�
aðx; zÞ ¼ U�DCFT�

a
cur;0ðxÞ;

DAdS��1ðx; zÞ ¼ �U��1DCFT�cur;�1ðxÞ;
DAdS�1ðx; zÞ ¼ U�þ1DCFT�cur;1ðxÞ;

(9.32)

where DCFT corresponding to �a
cur;0, �cur;�1, �cur;1 can be

obtained from (2.7) and the respective conformal dimen-
sions (3.2). Thus, the generators DAdS and DCFT also
match.
We now turn to the matching of the Ka symmetries. As

we have already said, our modified Lorentz gauge breaks
the Ka symmetries. To demonstrate this we note that Ka

transformations of gauge fields (9.6) are given by

Ka�b ¼ Ka
��

b þMabe�e þ z�abr00� �1 þ z�abr00z ��1

� 1
2z

2@a�b;

Ka�1 ¼ Ka
��1 � zr00� �a � 1

2z
2@a�1;

Ka��1 ¼ Ka
���1 � zr00z �a � 1

2z
2@a��1; (9.33)
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where Ka
� and Mabc are defined in (2.12) and (2.13), while

� is given in (8.4). Using these transformation rules we
find that C (9.9) transforms as

KaC ¼ Ka
�þ1C� 1

2z
2@aC� 2�a; (9.34)

i.e., we see that the modified Lorentz gauge condition
C ¼ 0 is not invariant under the Ka transformations,

KaCjC¼0 ¼ �2�a: (9.35)

This implies that generator Ka given in (8.5) should be
modified to restore the Ka symmetries of the gauge-fixed
AdS field theory. To restore these broken Ka symmetries
we should, following standard procedure, add compensat-
ing gauge transformations to maintain the Ka symmetries.
Thus, in order to find improved Ka

impr transformations of

the gauge-fixed AdS fields (9.6) we start with the generic
global Ka transformations (9.33) supplemented by the
appropriate compensating gauge transformations

Ka
impr�

b ¼ Ka�b þ @b�Ka
;

Ka
impr��1 ¼ Ka��1 þ r00z T ��ð1=2Þ�Ka

;

Ka
impr�1 ¼ Ka�1 þ r00� T ���ð1=2Þ�Ka

;

(9.36)

where �Ka
stands for the parameter of the compensating

gauge transformations. Computing the Ka
impr transforma-

tion of C

Ka
imprC ¼ Ka

�þ1C� 1
2z

2@aC� 2�a þh��
Ka
; (9.37)

and requiring the Ka
impr transformation to maintain the

gauge condition C ¼ 0,

Ka
imprCjC¼0 ¼ 0; (9.38)

we get the equation for �Ka

h��
Ka � 2�a ¼ 0: (9.39)

Thus, we obtain the nonhomogeneous second-order differ-
ential equation for the compensating gauge transformation
parameter �Ka

. Plugging normalizable solution (9.18) in
(9.39) we obtain the equation:

h��
Kaðx; zÞ ¼ 2U��

a
cur;0ðxÞ: (9.40)

Using (9.25), the solution to Eq. (9.40) is easily found to be

�Kaðx; zÞ ¼ zU�þ1�
a
cur;0ðxÞ: (9.41)

Plugging (9.18) and (9.41) in (9.36), we make sure that
improved Ka

impr transformations lead to the conformal

boost transformations for the spin-1 anomalous conformal
current given in (2.4) and (2.8) with operator Ra defined
in (3.9).

C. AdS/CFT correspondence for anomalous shadow
field and non-normalizable mode

of massive AdS field

We proceed to a discussion of AdS/CFT correspondence
for the bulk spin-1 massive AdS field and boundary spin-1
anomalous shadow field.
Matching of the effective action and boundary two-point

vertex.—In order to find the bulk effective action Seff we
should, following the standard strategy, solve the bulk
equations of motion with the Dirichlet problem corre-
sponding to the boundary anomalous shadow field and
plug the solution into the bulk action. Using gauge invari-
ant equations of motion (9.13) in bulk action (9.7), we
obtain the following effective action:

Seff ¼ �
Z

ddxLeffjz!0; (9.42)

Leff ¼ 1

2
�aT ��ð1=2Þ�a þ 1

2

X
�¼�1

��T ��ð1=2Þþ���

� 1

2
ðr00z ��1 þ r00� �1ÞC: (9.43)

As we have already seen, the use of the modified Lorentz
gauge considerably simplifies the equations of motion.
Now, using modified Lorentz gauge (9.15) in (9.43), we
obtain

L effjC¼0 ¼ 1

2
�aT ��ð1=2Þ�a þ 1

2

X
�¼�1

��T ��ð1=2Þþ���;

(9.44)

i.e. we see that Leff is also simplified. In order to find Seff
we should solve gauge-fixed equations of motion (9.16)
with the Dirichlet problem corresponding to the boundary
anomalous shadow field and plug the solution into (9.44).
We now discuss the solution to equations of motion (9.16).
Because gauge-fixed equations of motion (9.16) are

similar to the ones for the scalar AdS field (8.14) we can
simply apply the result in Sec. VIII. This is to say that the
solution of Eqs. (9.16) with the Dirichlet problem corre-
sponding to the spin-1 anomalous shadow field takes the
form

�aðx; zÞ ¼ 
1;0

Z
ddyG�ðx� y; zÞ�a

sh;0ðyÞ;

��1ðx; zÞ ¼ 
0;�1

Z
ddyG��1ðx� y; zÞ�sh;1ðyÞ;

�1ðx; zÞ ¼ 
0;1

Z
ddyG�þ1ðx� y; zÞ�sh;�1ðyÞ;

(9.45)


1;0 � 1; (9.46)


0;�1 � � 1

2ð�� 1Þ ; 
0;1 � 2�; (9.47)

where the Green function is given in (8.22).
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Using the asymptotic behavior of the Green function G	

(8.24), we find the asymptotic behavior of our solution

�aðx; zÞ!z!0
z��þð1=2Þ�a

sh;0ðxÞ;

��1ðx; zÞ!z!0 � z��þð3=2Þ

2ð�� 1Þ�sh;1ðxÞ;

�1ðx; zÞ!z!0
2�z���ð1=2Þ�sh;�1ðxÞ:

(9.48)

From these expressions, we see that our solution has indeed
asymptotic behavior corresponding to the spin-1 anoma-
lous shadow field. Note that because the solution has non-
integrable asymptotic behavior (9.48), such a solution is
referred to as the non-normalizable solution in the
literature.

We now explain the choice of the normalization factors

1;0, 
0;�1 in (9.46) and (9.47). The choice of 
1;0 is a

matter of convention. Following commonly used conven-
tion, we set this normalization factor to be equal to 1. The
remaining normalization factors 
0;�1 are then determined

uniquely by requiring that the modified Lorentz gauge
condition for the spin-1 massive AdS field (9.15) amount
to the differential constraint for the spin-1 anomalous
shadow field (4.3). With the choice made in (9.46) and
(9.47) we find the relations

@a�a ¼
Z

ddyG�ðx� y; zÞ@a�a
sh;0ðyÞ;

T ��þð1=2Þ��1 ¼
Z

ddyG�ðx� y; zÞ�sh;1ðyÞ;

T �þð1=2Þ�1 ¼
Z

ddyG�ðx� y; zÞh�sh;�1ðyÞ:

(9.49)

From these relations and (9.9), we see that our choice of

1;�1 (9.47) allows us to match the modified Lorentz gauge

for the spin-1 massive AdS field (9.15) and the differential
constraint for the spin-1 anomalous shadow field given in
(4.3). We note the helpful relations for the Green function
which we use for the derivation of relations (9.49),

T ��þð1=2ÞG��1 ¼ �2ð�� 1ÞG�;

T �þð1=2ÞG�þ1 ¼ 1

2�
hG�;

(9.50)

where G	 � G	ðx� y; zÞ.
All that remains to obtain Seff is to plug the solution of

the Dirichlet problem for the AdS field (9.45) into (9.42)
and (9.44). Using the general formula given in (8.28), we
obtain

� Seff ¼ 2�c��; (9.51)

where � and c� are defined in (3.3) and (8.23), respectively,
and � is the gauge invariant two-point vertex of the spin-1
anomalous shadow field given in (4.8) and (4.9).

Thus we see that imposing the modified Lorentz gauge
on the spin-1 massive AdS field and computing the bulk
action on the solution of equations of motion with the

Dirichlet problem corresponding to the boundary anoma-
lous shadow field, we obtain the gauge invariant two-point
vertex of the spin-1 anomalous shadow field.
Because in the literature Seff is expressed in terms of

the two-point vertex taken in the Stueckelberg gauge
frame, �stand (4.15), we use (4.14) and represent our result
(9.51) as

� Seff ¼ �ð2�þ dÞ
2�þ d� 2

c��
stand: (9.52)

This relation was obtained in Ref. [10]. The fact that Seff is
proportional to �stand is expected because of the conformal
symmetry, but for the systematical study of AdS/CFT
correspondence it is important to know the normalization
factor in front of �stand (9.52). Our normalization factor
coincides with the one found in Ref. [10].17

Note that we have obtained the more general relation
given in (9.51), while relation (9.52) is obtained from
(9.51) by using the Stueckelberg gauge frame. An attrac-
tive feature of our approach is that it provides the possi-
bility to use other gauge conditions which might be
preferable in certain applications. This is to say that, in
the light-cone gauge frame, relation (9.51) takes the form

� Seff ¼ 2�c��
ðl:c:Þ: (9.53)

Note that the transformation of relation (9.52) to the one in
(9.53) requires cumbersome computations because the
Stueckelberg gauge frame removes the scalar field entering
the light-cone gauge frame (see Secs. IVB and IVC). It is
relation (9.53) that seems to be the most suitable for the
study of the duality of the light-cone gauge Green-Schwarz
AdS superstring and the corresponding boundary gauge
theory.
Matching of bulk and boundary gauge symmetries.—

The modified Lorentz gauge (9.15) and gauge-fixed equa-
tions (9.16) are invariant under gauge transformations
given in (9.10), (9.11), and (9.12) provided the gauge trans-
formation parameter satisfies Eq. (9.17). The non-
normalizable solution to this equation is given by

�ðx; zÞ ¼
Z

ddyG�ðx� y; zÞ�shðyÞ: (9.54)

We now note that, on the one hand, plugging (9.54) in
(9.10), (9.11), and (9.12) and using relations (9.50) we
represent the on-shell gauge transformations of �aðx; zÞ,
��1ðx; zÞ, and �1ðx; zÞ as

17The computation of Seff for the spin-1 massless field may be
found in Ref. [36] and, in the framework of our approach, in
Ref. [9].
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��a ¼
Z

ddyG�ðx� y; zÞ@a�shðyÞ;

���1 ¼ r00z
2ð�� 1Þ

Z
ddyG��1ðx� y; zÞh�shðyÞ;

��1 ¼ �2�r00�

Z
ddyG�þ1ðx� y; zÞ�shðyÞ:

(9.55)

On the other hand, relations (9.45) imply

��aðx; zÞ ¼
1;0

Z
ddyG�ðx� y; zÞ��a

sh;0ðyÞ;

���1ðx; zÞ ¼
1;�1

Z
ddyG��1ðx� y; zÞ��sh;1ðyÞ;

��1ðx; zÞ ¼
1;1

Z
ddyG�þ1ðx� y; zÞ��sh;�1ðyÞ:

(9.56)

Comparing (9.55) with (9.56) we see that the on-shell
leftover gauge symmetries of the solution of the Dirichlet
problem for the spin-1 massive AdS field amount to gauge
symmetries of the spin-1 anomalous shadow field (4.4),
(4.5), and (4.6).

Matching of bulk and boundary global symmetries.—
The matching can be demonstrated by following the pro-
cedure we used for the spin-1 anomalous current in
Sec. IXB. Therefore to avoid repetitions we briefly discuss
some necessary details. The matching of bulk and bound-
ary Poincaré symmetries is obvious. Using conformal di-
mensions for the spin-1 anomalous shadow field given in
(4.2), the solution for bulk fields in (9.45), and the bulk
dilatation operator (8.4) we make sure that the dilatation
bulk and boundary symmetries also match. In order to
match Ka symmetries we consider improved Ka

impr trans-

formations with compensating gauge transformation pa-
rameters satisfying Eqs. (9.39). Using the relation for the
Green function

h	ðzG	�1Þ ¼ �4ð	� 1ÞG	; (9.57)

it is easy to see that the solution to Eq. (9.39) with �a as in
(9.45) is given by

�Kaðx; zÞ ¼ z
�
1;0

Z
ddyG��1ðx� y; zÞ�a

sh;0ðyÞ; (9.58)


�
1;0 � � 1

2ð�� 1Þ : (9.59)

Using (9.45) and (9.58) in (9.36), we make sure that im-
proved bulk Ka

impr symmetries amount to Ka symmetries of

the spin-1 anomalous shadow field given in (2.8) and (4.7).
To summarize, we note that it is the matching of the bulk

on-shell leftover gauge symmetries of the solution to the
Dirichlet problem and bulk global symmetries and the
respective boundary gauge symmetries of the anomalous
shadow field and boundary global symmetries that explains
why the effective action coincides with the gauge invariant
two-point vertex for the boundary anomalous shadow field
[see (9.51)].

X. ADS/CFT CORRESPONDENCE FOR
SPIN-2 FIELDS

Before discussing AdS/CFT correspondence for the
spin-2 massive AdS field and spin-2 anomalous conformal
current and shadow field we present our CFT adapted
gauge invariant approach to the spin-2 massive AdS field.
Because our approach is closely related to the gauge in-
variant approach to the massive field we start with a brief
review of the latter approach.
Gauge invariant approach to the spin-2 massive field in

AdSdþ1 space.—In the gauge invariant approach, the spin-
2 massive field is described by gauge fields

�AB; �A; �; (10.1)

which transform in the respective rank-2 tensor, vector, and
scalar representations of soðd; 1Þ algebra. In the Lorentzian
signature, the Lagrangian found in Ref. [39] takes the
form18

1

e
L ¼ 1

4
�ABEEH�

AB þ 1

2
�AEMax�

A þ 1

2
�D2�

þm�AðDB�BA �DA�BBÞ þ f�DA�A

�m2 � 2

4
�AB�AB þm2 þ d� 2

4
�AA�BB

þ fm

2
�AA�� d

2
�A�A þ ðdþ 1Þm2

2ðd� 1Þ �2; (10.2)

f �
�

2d

d� 1
m2 þ 2d

�
1=2

; (10.3)

where the respective second-derivative Einstein-Hilbert
and Maxwell operators EEH, EMax are given by

EEH�
AB ¼ D2�AB �DADC�CB �DBDC�CA

þDADB�CC þ �ABðDCDE�CE �D2�CCÞ;
EMax�

A ¼ D2�A �DADB�B: (10.4)

Lagrangian (10.2) is invariant under gauge transformations

��AB ¼ DA�B þDB�A þ 2m

d� 1
�AB�;

��A ¼ DA��m�A;

�� ¼ �f�;

(10.5)

where �A, � are gauge transformation parameters. In
Ref. [12], we found new representation for Lagrangian
(10.2),

18A recent interesting discussion of massive AdS fields may be
found in [40].
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1

e
L ¼ 1

4
�ABðD2 �m2 þ 2Þ�AB � 1

8
�AAðD2 �m2

� 2dþ 4Þ�BB þ 1

2
�AðD2 �m2 � dÞ�A

þ 1

2
�ðD2 �m2 � 2dÞ�þ 1

2
CA
stC

A
st þ 1

2
C2
st;

(10.6)

CA
st ¼ DB�BA � 1

2
DA�BB þm�A;

Cst ¼ DA�A þm

2
�AA þ f�:

(10.7)

From (10.6), we see that it is the use of quantities CA
st and

Cst that simplifies the structure of the gauge invariant
Lagrangian. We note also that the relations CA

st ¼ 0,
Cst ¼ 0 define the standard de Donder gauge condition
for the spin-2 massive field.19

Interrelation of the gauge invariant Lagrangian and
Pauli-Fierz Lagrangian.—As is well known, the spin-2
massive AdS field can be described by the Pauli-Fierz
Lagrangian given by

1

e
LPF ¼ 1

4
�AB

PF ðEEH�PFÞAB �m2 � 2

4
�AB

PF�
AB
PF

þm2 þ d� 2

4
�AA

PF�
BB
PF ; (10.8)

where �AB
PF is the rank-2 tensor field of soðd; 1Þ algebra.

The Pauli-Fierz Lagrangian can be obtained from the
gauge invariant Lagrangian (10.2) in an obvious way.
Namely, gauge transformations (10.5) allow us to gauge
away the fields �A and �. Doing so and identifying the
rank-2 tensor field in (10.1) with �AB

PF , we get the Pauli-
Fierz Lagrangian from the gauge invariant Lagrangian
(10.2),

L PF ¼ Lj�AB��AB
PF;�

A¼0;�¼0: (10.9)

For the case of flat space, it is well known that the gauge
invariant Lagrangian can be obtained from the Pauli-Fierz
Lagrangian. It turns out that this interrelation is still valid
in AdS space too. Namely, introducing the following rep-
resentation of the Pauli-Fierz field in terms of gauge fields
(10.1):

�AB
PF ¼ �AB þ 1

m
ðDA�B þDB�AÞ þ 2

mf
DADB�

þ 2m

ðd� 1Þf �
AB�; (10.10)

and plugging such �AB
PF (10.10) into the Pauli-Fierz

Lagrangian (10.8), we obtain the gauge invariant
Lagrangian (10.2).20

A. CFTadapted gauge invariant approach to the spin-2
massive field in AdSdþ1

We now discuss our CFT adapted approach to the spin-2
massive AdS field. For details of the derivation of the CFT
adapted gauge invariant Lagrangian, see Appendix B.
In our approach, the spin-2 massive field is described by

the gauge fields

�ab;

�a�1; �a
1 ;

��2; �0; �2:

(10.11)

The fields �ab, �a
�1 and �0, ��2 are the respective rank-2

tensor, vector and scalar fields of the soðdÞ algebra. The
CFT adapted gauge invariant Lagrangian for these fields
takes the form [12]

L ¼ 1

4
jd�abj2 � 1

8
jd�aaj2

þ 1

4
jT ��ð1=2Þ�abj2 � 1

8
jT ��ð1=2Þ�aaj2

þ 1

2

X
�¼�1

ðjd�a
�j2 þ jT ��ð1=2Þþ��

a
�j2Þ

þ 1

2

X
�¼0;�2

ðjd��j2 þ jT ��ð1=2Þþ���j2Þ

� 1

2
CaCa � 1

2
C1C1 � 1

2
C�1C�1; (10.12)

where we use the notation

Ca � @b�ab � 1
2@

a�bb þ r00z T ��þð1=2Þ�a
�1

þ r00� T �þð1=2Þ�a
1 ;

C1 � @a�a
1 � 1

2r
00
� T ���ð1=2Þ�aa þ r10z T ���ð1=2Þ�0

þ ffiffiffi
2

p
r10� T �þð3=2Þ�2;

C�1 � @a�a�1 � 1
2r

00
z T ��ð1=2Þ�aa þ ffiffiffi

2
p

r01z T ��þð3=2Þ��2

þ r01� T ��ð1=2Þ�0; (10.13)

and T 	 is given in (8.12), while � and rmn
z rmn

� are defined

in (5.3) and (5.7), respectively. Lagrangian (10.12) is in-
variant under the gauge transformations

19A recent discussion of the standard de Donder-Feynman
gauge for massless fields may be found in Refs. [41–43]. To
our knowledge the explicit form of CA

st, Cst (10.7) has not been
discussed in the earlier literature.

20To our knowledge, formula (10.10) is new and has not been
discussed in the earlier literature. For 4d flat space, formula
(10.10) was given in Ref. [44], while for flat space with d > 4, in
Ref. [8].

GAUGE INVARIANT APPROACH TO LOW-SPIN . . . PHYSICAL REVIEW D 83, 106004 (2011)

106004-19



��ab ¼ @a�b þ @b�a þ 2r00�
d� 2

�abT �þð1=2Þ�1

þ 2r00z
d� 2

�abT ��þð1=2Þ��1;

��a�1 ¼ @a��1 þ r00z T ��ð1=2Þ�a;

��a
1 ¼ @a�1 þ r00� T ���ð1=2Þ�a;

���2 ¼
ffiffiffi
2

p
r01z T ��ð3=2Þ��1;

��0 ¼ r10z T �þð1=2Þ�1 þ r01� T ��þð1=2Þ��1;

��2 ¼
ffiffiffi
2

p
r10� T ���ð3=2Þ�1; (10.14)

where �a, ��1 are gauge transformation parameters.
The gauge invariant equations of motion obtained from

Lagrangian (10.12) take the form

h��
ab � @aCb � @bCa � 2r00z �ab

d� 2
T ��þð1=2ÞC�1

� 2r00� �ab

d� 2
T �þð1=2ÞC1 ¼ 0;

h��
a�1 � @aC�1 � r00z T ��ð1=2ÞCa ¼ 0;

h�þ1�
a
1 � @aC1 � r00� T ���ð1=2ÞCa ¼ 0;

h��2��2 �
ffiffiffi
2

p
r01z T ��ð3=2ÞC�1 ¼ 0;

h��0 � r01� T ��þð1=2ÞC�1 � r10z T �þð1=2ÞC1 ¼ 0;

h�þ2�2 �
ffiffiffi
2

p
r10� T ���ð3=2ÞC1 ¼ 0; (10.15)

where h	 is defined in (8.15). We see that the gauge
invariant equations of motion are coupled.

Global AdS symmetries.—We now discuss the realiza-
tion of the global AdS symmetries on the space of gauge
fields (10.11). The realization of the global AdS symme-
tries is already given in (8.2)-(8.8). All that remains to
complete the description of these symmetries is to find
the realization of the operator Ra

ð0Þ on the space of gauge

fields (10.11). The action of the operator Ra
ð0Þ on the space

of gauge fields (10.11) is found to be

Ra
ð0Þ�

bc ¼ zr00�

�
�ab�c

1 þ �ac�b
1 �

2�bc

d� 2
�a

1

�

þ zr00z

�
�ab�c

�1 þ �ac�b
�1 �

2�bc

d� 2
�a

�1

�
;

Ra
ð0Þ�

b
1 ¼ �zr00� �ab þ z�abð ffiffiffi

2
p

r10� �2 þ r10z �0Þ;
Ra
ð0Þ�

b
�1 ¼ �zr00z �ab þ z�abð ffiffiffi

2
p

r01z ��2 þ r01� �0Þ;
Ra
ð0Þ�2 ¼ �z

ffiffiffi
2

p
r10� �a

1 ;

Ra
ð0Þ�0 ¼ �zr10z �a

1 � zr01� �a�1;

Ra
ð0Þ��2 ¼ �z

ffiffiffi
2

p
r01z �a�1: (10.16)

Modified de Donder gauge.—The modified de Donder
gauge is defined to be

Ca¼0; C�1¼0; C1¼0; modified deDonder gauge;

(10.17)

where Ca, C�1 are given in (10.13). Using this gauge in
equations of motion (10.15) gives the surprisingly simple
gauge-fixed equations of motion,

h��
ab ¼ 0; h�þ��

a
� ¼ 0; � ¼ �1;

h�þ��� ¼ 0; � ¼ 0;�2: (10.18)

We see that the gauge-fixed equations are decoupled.
The modified de Donder gauge and gauge-fixed equa-

tions have leftover on-shell gauge symmetry. Namely, the
modified de Donder gauge (10.17) and gauge-fixed equa-
tions (10.18) are invariant under the gauge transformations
given in (10.14) provided the gauge transformation pa-
rameters satisfy the equations

h��
a ¼ 0; h�þ��� ¼ 0; � ¼ �1: (10.19)

B. AdS/CFT correspondence for anomalous current
and normalizable modes of massive AdS field

We are now ready to discuss the AdS/CFT correspon-
dence for the bulk spin-2 massive AdS field and boundary
spin-2 anomalous conformal current.21 To this end we use
our CFT adapted approach to AdS field dynamics and the
modified de Donder gauge.
First of all, we note that the normalizable solution of

equations of motion (10.18) is given by

�abðx; zÞ ¼ U��
ab
cur;0ðxÞ;

�a
�1ðx; zÞ ¼ �U��1�

a
cur;�1ðxÞ;

�a
1ðx; zÞ ¼ U�þ1�

a
cur;1ðxÞ;

��2ðx; zÞ ¼ U��2�cur;�2ðxÞ;
�0ðx; zÞ ¼ �U��cur;0ðxÞ;
�2ðx; zÞ ¼ U�þ2�cur;2ðxÞ;

(10.20)

where U	 is defined in (9.19). From (10.20), we find the
asymptotic behavior of the normalizable solution

21To our knowledge AdS/CFT correspondence for the bulk
spin-2 massive AdS field and boundary spin-2 anomalous con-
formal current has not been studied in the literature.
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�abðx; zÞ!z!0
z�þð1=2Þ�ab

cur;0ðxÞ;
�a

�1ðx; zÞ!
z!0 � 2�z��ð1=2Þ�a

cur;�1ðxÞ;

�a
1ðx; zÞ!

z!0 z�þð3=2Þ

2ð�þ 1Þ�
a
cur;1ðxÞ;

��2ðx; zÞ!z!0
4�ð�þ 1Þz��ð3=2Þ�cur;�2ðxÞ;

�0ðx; zÞ!z!0 � z�þð1=2Þ�cur;0ðxÞ;

�2ðx; zÞ!z!0 z�þð5=2Þ

4�ð�� 1Þ�cur;2ðxÞ:

(10.21)

From (10.21), we see that the fields �ab
cur;0, �

a
cur;�1, �cur;0,

�cur;�2 are indeed boundary values of the normalizable

solution. Moreover, in the right-hand side of (10.20), we
use the notation �ab

cur;0, �a
cur;�1, �cur;0, �cur;�2 because

these boundary values turn out to be the gauge fields
entering our gauge invariant formulation of the spin-2
anomalous conformal current in Sec. VA. Namely, one
can prove the following statements:

(i) Leftover on-shell gauge transformations (10.14) of
the normalizable solution (10.20) lead to gauge
transformations of the anomalous conformal current
(5.8).22

(ii) For the normalizable solution (10.20), the modified
de Donder gauge condition (10.17) leads to the
differential constraints (5.4), (5.5), and (5.6) of the
anomalous conformal current.

(iii) On-shell global soðd; 2Þ bulk symmetries of the
normalizable spin-2 massive modes in AdSdþ1 be-
come global soðd; 2Þ boundary conformal symme-
tries of the spin-2 anomalous conformal current.

These statements can be proved following the procedure
we demonstrated for the spin-1 fields in Sec. IXB.
Therefore, to avoid repetitions we briefly discuss some
necessary details.

Matching of bulk and boundary gauge symmetries.—To
match gauge symmetries we analyze leftover on-shell
gauge symmetries which are described by the solutions
of equations given in (10.19). The normalizable solution to
these equations takes the form,

�aðx; zÞ ¼ U��
a
cur;0ðxÞ;

��1ðx; zÞ ¼ �U��1�cur;�1ðxÞ;
�1ðx; zÞ ¼ U�þ1�cur;1ðxÞ:

(10.22)

Plugging (10.20) and (10.22) into bulk gauge transforma-
tions (10.14) we make sure that the leftover on-shell
bulk gauge transformations amount to boundary gauge

transformations of the spin-2 anomalous conformal current
given in (5.8).
Matching of bulk de Donder gauge and boundary dif-

ferential constraints.—Plugging the solution to equations
for AdS fields (10.20) into the modified de Donder gauge
and using relations (9.22) and (9.23), we make sure that the
modified de Donder gauge (10.17) amounts to differential
constrains (5.4), (5.5), and (5.6).
Matching of bulk and boundary global symmetries.—

The matching of bulk and boundary Poincaré symmetries
is obvious. Using conformal dimensions for the spin-2
anomalous current given in (5.2), the solution for bulk
fields in (10.20), and the bulk dilatation operator (8.4) we
make sure that the dilatation bulk and boundary symme-
tries also match. As before, what is nontrivial is to match
Ka symmetries. As in the case of the modified Lorentz
gauge, the modified de Donder gauge breaks bulk Ka

symmetries. In order to restore these broken Ka symme-
tries we add compensating gauge transformations to the
generic Ka symmetries,

Ka
impr ¼ Ka þ ��Ka : (10.23)

The compensating gauge transformation parameters can
usually be found by requiring improved transformations
(10.23) to maintain the modified de Donder gauge (10.17),

Ka
imprC

b¼0; Ka
imprC�1¼0; Ka

imprC1¼0: (10.24)

Doing so, we make sure that Eqs. (10.24) amount to the
equations for the compensating gauge transformation pa-
rameters,

h��
bKa ¼ 2�ab � �ab�cc;

h��1�
Ka

�1 ¼ 2�a
�1;

h�þ1�
Ka

1 ¼ 2�a
1 :

(10.25)

Using (9.25) and (10.20), we find the solution for the
compensating gauge transformation parameters,

�bKaðx; zÞ ¼ zU�þ1ð�ab
cur;0ðxÞ � 1

2�
ab�cc

cur;0ðxÞÞ;
�Ka

�1ðx; zÞ ¼ �zU��
a
cur;�1ðxÞ;

�Ka

1 ðx; zÞ ¼ zU�þ2�
a
cur;1ðxÞ;

(10.26)

where operator U	 is given in (9.19). Plugging (10.20) and
(10.26) in (10.23), we make sure that the improved bulk
Ka

impr symmetries of the spin-2 massive AdS field amount

to Ka symmetries of the spin-2 anomalous conformal
current given in (2.8) and (5.9).

C. AdS/CFT correspondence for anomalous shadow
field and non-normalizable mode

of massive AdS field

We proceed to a discussion of AdS/CFT correspondence
for the bulk spin-2 massive AdS field and boundary spin-2
anomalous shadow field.

22Transformations given in (10.14) are off-shell gauge trans-
formations. Leftover on-shell gauge transformations are ob-
tained from (10.14) by using gauge transformation parameters
which satisfy Eqs. (10.19).
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Matching of the effective action and boundary two-point
vertex. In order to find Seff we should solve the equations of
motion with the Dirichlet problem corresponding to the
boundary anomalous shadow field and plug the solution
into action. Using equations of motion (10.15) in the bulk
action (9.7) with Lagrangian (10.12), we obtain the bound-
ary effective action (9.42) with Leff given by

Leff ¼1

4
�abT ��ð1=2Þ�ab�1

8
�aaT ��ð1=2Þ�bb

þ1

2

X
�¼�1

�a
�T �þ��ð1=2Þ�a

�

þ1

2

X
�¼0;�2

��T �þ��ð1=2Þ��;

�1

2
ðr00z �a�1þr00� �a

1ÞCa

þ
�
r00z
4
�aa�r01zffiffiffi

2
p ��2�

r01�
2
�0

�
C�1

þ
�r00�
4
�aa�r10z

2
�0�

r10�ffiffiffi
2

p �2

�
C1: (10.27)

We have demonstrated that the use of the modified de
Donder gauge considerably simplifies the equations of
motion. Now using modified de Donder gauge (10.17) in
(10.27), we obtain

Leff j Ca¼0
C�1¼0

¼ 1

4
�abT ��ð1=2Þ�ab � 1

8
�aaT ��ð1=2Þ�bb

þ 1

2

X
�¼�1

�a
�T ��ð1=2Þþ��

a
�

þ 1

2

X
�¼0;�2

��T ��ð1=2Þþ���; (10.28)

i.e., we see thatLeff is also considerably simplified. To find
Seff we should solve the gauge-fixed equations of motion
(10.18) with the Dirichlet problem corresponding to the
boundary anomalous shadow field and plug the solution
into Leff . To this end we discuss the solution of the
equations of motion (10.18).

Our equations of motion take the decoupled form and
similar to the equations of motion for the massive scalar
AdS field. Therefore, we can apply the procedure described
in Sec. VIII. Doing so, we obtain the solution of Eq. (10.18)
with the Dirichlet problem corresponding to the spin-2
anomalous shadow field,

�abðx; zÞ ¼ 
2;0

Z
ddyG�ðx� y; zÞ�ab

sh;0ðyÞ; (10.29)

�a
�ðx;zÞ ¼
1;�

Z
ddyG�þ�ðx� y;zÞ�a

sh;��ðyÞ; �¼�1;

(10.30)

��ðx;zÞ¼
0;�

Z
ddyG�þ�ðx�y;zÞ�sh;��ðyÞ; �¼0;�2;

(10.31)


2;0 ¼ 1; (10.32)


1;�1 ¼ � 1

2ð�� 1Þ ; 
1;1 ¼ 2�;


0;�2 ¼ 1

4ð�� 1Þð�� 2Þ ;

0;0 ¼ �1; 
0;2 ¼ 4�ð�þ 1Þ;

(10.33)

where the Green function G	 is given in (8.22), while � is
defined in (5.3). The choice of normalization factor 
2;0

(10.32) is a matter of convention. The remaining normal-
ization factors given in (10.33) are uniquely determined by
requiring that the modified de Donder gauge (10.17)
amount to the differential constraints for the spin-2 anoma-
lous shadow field.
Using the asymptotic behavior of the Green function

given in (8.24), we find the asymptotic behavior of our
solution

�abðx; zÞ!z!0
z��þð1=2Þ�ab

sh;0ðxÞ;

�a
�1ðx; zÞ!

z!0 � z��þð3=2Þ

2ð�� 1Þ�
a
sh;1ðxÞ;

�a
1ðx; zÞ!

z!0
2�z���ð1=2Þ�a

sh;�1ðxÞ;

��2ðx; zÞ!z!0 z��þð5=2Þ

4ð�� 1Þð�� 2Þ�sh;2ðxÞ;

�0ðx; zÞ!z!0 � z��þð1=2Þ�sh;0ðxÞ;
�2ðx; zÞ!z!0

4�ð�þ 1Þz���ð3=2Þ�sh;�2ðxÞ;

(10.34)

which tells us that the solution (10.29), (10.30), and (10.31)
has indeed asymptotic behavior corresponding to the
anomalous shadow field.
Finally, to obtain the effective action we plug the solu-

tion of the Dirichlet problem for AdS fields, (10.29),
(10.30), and (10.31) into (9.42) and (10.28). Using the
general formula given in (8.28), we obtain

� Seff ¼ 2�c��; (10.35)

where � and c� are defined in (5.3) and (8.23), respectively,
and � is the gauge invariant two-point vertex of the spin-2
anomalous shadow field given in (4.8) and (6.8).
Thus, using the modified de Donder gauge for the spin-2

massive AdS field and computing the bulk action on the
solution of equations of motion with the Dirichlet problem
corresponding to the boundary anomalous shadow field,
we obtain the gauge invariant two-point vertex of the spin-
2 anomalous shadow field.
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Using (6.12), we can represent our result (10.35) in the
Stueckelberg gauge frame

� Seff ¼ �ð2�þ dþ 2Þ
2ð2�þ d� 2Þ c��

stand; (10.36)

while, in the light-cone gauge frame, our result is repre-
sented as

� Seff ¼ 2�c��
ðl:c:Þ; (10.37)

where �ðl:c:Þ is given in (6.18). Relation (10.36) with the
normalization factor in front of �stand as in (10.36) was
obtained in Ref. [11].23 Note that we have obtained the
more general relation given in (10.35), while relation
(10.36) is obtained from (10.35) by using the
Stueckelberg gauge frame. It is our general relation
(10.35) that provides the possibility for the derivation of
all other relations like the ones in (10.36) and (10.37) just
by choosing appropriate gauge conditions. Note that the
transformation of relation (10.36) to the one in (10.37)
requires cumbersome computations because the
Stueckelberg gauge frame removes the vector and scalar
field entering the light-cone gauge frame (see Secs. VIB
and VIC).

Matching of bulk and boundary gauge symmetries.—
The modified de Donder gauge (10.17) and gauge-fixed
equations (10.18) are invariant under the gauge transfor-
mations given in (10.14) provided the gauge transforma-
tion parameters satisfy Eqs. (10.19). The non-normalizable
solution to Eqs. (10.19) is given by

�aðx; zÞ ¼
Z

ddyG�ðx� y; zÞ�sh;0ðyÞ;

��ðx; zÞ ¼ 
1;�

Z
ddyG�þ�ðx� y; zÞ�sh;��ðyÞ;

(10.38)

� ¼ �1, where 
1;�1 are given in (10.33). Plugging

(10.38), (10.29), (10.30), and (10.31) in (10.14) we make
sure the on-shell leftover gauge symmetries of the solution
of the Dirichlet problem for the spin-2 massive AdS field
amount to the gauge symmetries of the spin-2 anomalous
shadow field (6.6).

Matching of bulk and boundary global symmetries.—
The matching can be demonstrated by following the pro-
cedure we used for the spin-2 anomalous current in
Sec. XB. Therefore to avoid repetitions we briefly discuss
some necessary details. The matching of bulk and bound-
ary Poincaré symmetries is obvious. Using conformal di-
mensions for the spin-2 anomalous shadow given in (6.2),
the solution for bulk fields in (10.29), (10.30), and (10.31),
and the bulk dilatation operator (8.4), we make sure that
dilatation bulk and boundary symmetries also match. In
order to match Ka symmetries we consider improved Ka

impr

transformations (10.23) with gauge transformation pa-
rameters that satisfy Eqs. (10.25). Using (9.57), we see
that the solution to Eqs. (10.25) with the right-hand sides
as in (10.29) and (10.30) is given by

�bKaðx; zÞ ¼ z
�
2;0

Z
ddyG��1ðx� y; zÞ

�
�
�ab

sh;0ðyÞ �
1

2
�ab�cc

sh;0ðyÞ
�
;

�Ka

�1ðx; zÞ ¼ z
�
1;�1

Z
ddyG��2ðx� y; zÞ�a

sh;1ðyÞ;

�Ka

1 ðx; zÞ ¼ z
�
1;1

Z
ddyG�ðx� y; zÞ�a

sh;�1ðyÞ; (10.39)


�
2;0 � � 1

2ð�� 1Þ ; (10.40)


�
1;�1 �

1

4ð�� 1Þð�� 2Þ ; 
�
1;1 � �1; (10.41)

where the Green function is given in (8.22). Using these
compensating gauge transformation parameters in im-
proved bulk Ka

impr symmetries (10.23) we make sure that

these Ka
impr symmetries amount to Ka symmetries of the

spin-2 anomalous shadow field given in (2.8) and (6.7).
To summarize, it is the matching of the bulk on-shell

leftover gauge symmetries of the solution to the Dirichlet
problem and bulk global symmetries and the respective
boundary gauge symmetries of the anomalous shadow field
and boundary global symmetries that explains why the
effective action coincides with the gauge invariant two-
point vertex for the boundary anomalous shadow field [see
(10.35)].
Comparing our results for the spin-1 and spin-2 fields

given in (9.51) and (10.35), respectively, we see that our
approach gives a uniform description of the interrelation
between the effective action of massive AdS fields and the
two-point gauge invariant vertex of shadow fields. Note
however that the value of � for the spin-1 field (3.3) should
not be confused with the one for the spin-2 field (5.3). For
the case of the arbitrary spin-s field, the � was found in
Refs. [12,48],

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

�
sþ d� 4

2

�
2

s
: (10.42)

All that is required to generalize relation (10.35) to arbi-
trary spin-s fields is to plug � (10.42) in (10.35). A detailed
study of arbitrary spin fields will be given in forthcoming
publication.

XI. CONCLUSIONS

In this paper, we extend the gauge invariant
Stueckelberg approach to the CFT initiated in Refs. [8,9]
to the study of anomalous conformal currents and shadow

23The computation of Seff for the spin-2 massless field may be
found in Refs. [45–47]. In the framework of our approach, Seff
was studied in Ref. [12].
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fields. In the framework of the AdS/CFT correspondence
the anomalous conformal currents and shadow fields are
related to massive fields of AdS string theory. It is well
known that all Lorentz covariant approaches to string field
theory involve large amount of Stueckelberg fields and the
corresponding gauge symmetries (see, e.g., [49]). Because
our approach to anomalous conformal currents and shadow
fields also involves Stueckelberg fields we believe that our
approach will be helpful to understand string/gauge theory
duality better. Note also that we obtain the gauge invariant
vertex for anomalous shadow fields which provides quick
and easy access to the light-cone gauge vertex. In the
framework of AdS/CFT correspondence this vertex is re-
lated to the AdS field action evaluated on the solution of
the Dirichlet problem. Because one expects that the quan-
tization of the AdS superstring is straightforward only in
the light-cone gauge we believe that our light-cone gauge
vertex will also be helpful in various studies of AdS/CFT
duality. The results obtained should have a number of the
following interesting applications and generalizations.

(i) In this paper, we considered the gauge invariant
approach for spin-1 and spin-2 anomalous conformal
currents and shadow fields. It would be interesting to
generalize our approach to the case of arbitrary spin
anomalous conformal currents and shadow fields.

(ii) In this paper we studied the two-point gauge invari-
ant vertex of anomalous shadow fields. A general-
ization of our approach to the case of 3-point and
4-point gauge invariant vertices will give us the
possibility to study various applications of our ap-
proach along the lines of Refs. [50–52]

(iii) Because our modified de Donder gauge leads to a
considerably simplified analysis of AdS field
dynamics we believe that this gauge might also
be useful to better understand various aspects of
AdS/QCD correspondence which are discussed,
e.g., in Refs. [53,54].

(iv) Dirac’s idea of arranging d-dimensional conformal
physics in dþ 2 dimensional multiplets was heav-
ily pushed recently (see Refs. [55–57]). We think
that the use of the methods and approaches devel-
oped in Refs. [55–57] may be very useful for the
study of AdS/CFT correspondence.

(v) The Becchi-Rouet-Stora-Tyutin approach is one
of powerful approaches to the analysis of various
aspects of relativistic dynamics (see, e.g., Refs. [58–
63]. We think that an extension of this approach to
the case anomalous conformal currents and shadow
fields should be relatively straightforward.

(vi) In the last few years, there were interesting devel-
opments in studying the mixed symmetry fields
[64–68]. It would be interesting to apply methods
developed in these references to studying anoma-
lous conformal currents and shadow fields. There
are other various interesting approaches in the

literature which could be used to discuss the gauge
invariant formulation of anomalous conformal cur-
rents and shadow fields. This is to say that various
recently developed interesting formulations of field
dynamics in terms of unconstrained fields in flat
space may be found in Refs. [69–71].
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APPENDIX A: DERIVATION OF THE CFT
ADAPTED LAGRANGIAN FOR A
SPIN-1 MASSIVE FIELD IN AdSdþ1

In this Appendix, we explain some details of the deri-
vation of the CFT adapted gauge invariant Lagrangian for
the spin-1 massive field given in (9.8). The presentation in
this Appendix is given by using the Lorentzian signature.
The Euclidean signature Lagrangian in Sec. IXA is ob-
tained from the Lorentzian signature Lagrangian by simple
substitution L ! �L.
Spin-1 massive field.—We use the field �A carrying

flat Lorentz algebra soðd; 1Þ vector indices A; B ¼
0; 1; . . . ; d� 1; d. The field�A is related to the field carry-
ing the base manifold indices ��, � ¼ 0; 1; . . . ; d, in the
standard way �A ¼ eA��

�, where eA� is vielbein of

AdSdþ1 space. For the Poincaré parametrization of
AdSdþ1 space (8.1), vielbein eA ¼ eA�dx

� and Lorentz

connection, deA þ!AB ^ eB ¼ 0, are given by

eA� ¼ 1

z
�A
�; !AB

� ¼ 1

z
ð�A

z �
B
� � �B

z �
A
�Þ; (A1)

where �A
� is Kronecker delta symbol. We use a covariant

derivative with the flat indices DA,

D A � e
�
AD�; DA ¼ �ABDB; (A2)

where e
�
A is the inverse of AdS vielbein, eA�e

�
B ¼ �A

B and

�AB is the flat metric tensor. With a choice made in (A1),
the covariant derivative takes the form

DA�B ¼ @̂A�B þ�B
z�

A��AB�z; @̂A � z@A; (A3)

where we adopt the following conventions for the deriva-
tives and coordinates: @A ¼ �AB@B, @A ¼ @=@xA,
xA � �A

�x
�, xA ¼ xa, xd with the identification xd � z.

In an arbitrary parametrization of AdS, the Lagrangian
of the spin-1 massive field is given in (9.4). We now use the
Poincaré parametrization of AdS and introduce the follow-
ing quantity:

C � DC�C þm�þ 2�z: (A4)
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We note that it is the relation C ¼ 0 that defines the
modified Lorentz gauge. Using the relations (up to total
derivative)

e�AD2�A ¼ eð�Aðh0 AdS � 1Þ�A þ 4�zC

þ ðd� 7Þ�z�z � 4m��zÞ; (A5)

e�D2� ¼ e�h0 AdS� (A6)

C2
st ¼ C2 � 4�zCþ 4�z�z; (A7)

h0 AdS � z2ðhþ @2zÞ þ ð1� dÞz@z; (A8)

e � deteA�, we represent Lagrangian (9.4) and C (A4) as

e�1L ¼ 1

2
�Aðh0 AdS �m2 þ d� 1Þ�A

þ 1

2
�ðh0 AdS �m2Þ�þ d� 3

2
�z�z

� 2m��z þ 1

2
C2; (A9)

C ¼ @̂A�A þ ð2� dÞ�z þm�: (A10)

Using canonically normalized fields ~�A, ~�, and C
defined by

�A ¼ zðd�1Þ=2 ~�A; � ¼ zðd�1Þ=2 ~�; C¼ zðdþ1Þ=2C;

(A11)

we obtain

L ¼ 1

2
~�A

�
hþ @2z � 1

z2

�
m2 þ d2 � 1

4
þ 1� d

��
~�A

þ 1

2
~�

�
hþ @2z � 1

z2

�
m2 þ d2 � 1

4

��
~�

þ d� 3

2z2
~�z ~�z � 2m

z2
~�z ~�þ 1

2
C2; (A12)

C ¼ @A ~�A þ 3� d

2z
~�z þm

z
~�: (A13)

In terms of the soðd� 1; 1Þ tensorial components of the

field ~�A given by ~�a, ~�z, Lagrangian (A12) and C (A13)
take the form

L ¼ L1 þL0 þ 1
2C

2; (A14)

L 1 ¼ 1
2
~�aK̂0

~�a (A15)

L 0 ¼ 1
2
~�zK̂3�d

~�z þ 1
2
~�K̂d�1

~�� 2m

z2
~�z ~�; (A16)

C ¼ @a ~�a þT ð3�dÞ=2 ~�z þm

z
~�; (A17)

K̂ ! ¼ hþ @2z � 1

z2

�
�2 � 1

4
þ!

�
; (A18)

where � and T 	 are defined in (3.3) and (8.12), respec-
tively. In terms of fields (9.6) defined by

~�a ¼ �a;

~�z ¼ r00z ��1 þ r00� �1;

~� ¼ �r00� ��1 þ r00z �1;

(A19)

where r00z , r00� are defined in (3.5), we represent L1 (A15)

and L0 (A16) as

L1 ¼ 1

2
�ah��

a; L0 ¼ 1

2

X
�¼�1

��h�þ���; (A20)

while C (A17) takes the desired form given in (9.9).
Noticing the relation

T y
	�ð1=2ÞT 	�ð1=2Þ ¼ �@2z þ 1

z2

�
	2 � 1

4

�
; (A21)

and taking into account expressions for h	 (8.15) and L1,
L0 (A20), we see that Lagrangian (A14) takes the form of
the CFT adapted gauge invariant Lagrangian (9.8).
Lagrangian (9.4) is invariant under gauge transforma-

tions (9.3). Making the rescaling � ¼ zðd�3Þ=2�, we check
that these gauge transformations lead to the ones given in
(9.10), (9.11), and (9.12).

APPENDIX B: DERIVATION OF THE CFT
ADAPTED LAGRANGIAN FOR THE
SPIN-2 MASSIVE FIELD IN AdSdþ1

We present details of the derivation of the CFT adapted
gauge invariant Lagrangian and the respective gauge trans-
formations of the spin-2 massive field given in (10.12) and
(10.14).
In an arbitrary parametrization of AdS, the Lagrangian

for the spin-2 massive field is given in (10.6). We now use
the Poincaré parametrization of AdS and introduce the
following quantities:

CA � CA
st þ 2�zA � �A

z�
BB; C � Cst þ 2�z: (B1)

We note that it is the relations CA ¼ 0, C ¼ 0 that define
the modified de Donder gauge. Using the relations (up to
total derivative)

1

4
e�ABD2�AB ¼ e

�
1

4
�ABðh0 AdS � 2Þ�AB

þ d� 5

2
�zA�zA þ 2�zz�AA

� d

4
�AA�BB þ 2�zACA ��AACz

� 2m�zA�A þm�AA�z

�
; (B2)
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1
2C

A
stC

A
st ¼ 1

2C
ACA � 2�zACA þ�AACz þ 2�zA�zA

� 2�zz�AA þ 1
2�

AA�BB; (B3)

e�AD2�A¼eð�Aðh0AdS�1Þ�Aþ4�zCþðd�7Þ�z�z

�2m�AA�z�4f��zÞ; (B4)

C2
st ¼ C2 � 4�zCþ 4�z�z; (B5)

where h0 AdS is given in (A8), we represent Lagrangian
(10.6) and CA, C (B1) as

e�1L¼1

4
�ABðh0AdS�m2Þ�AB�1

8
�AAðh0AdS�m2Þ�BB

þd�1

2
�zA�zA�2m�zA�A

þ1

2
�Aðh0AdS�m2�d�1Þ�Aþd�3

2
�z�z

�2f��zþ1

2
�ðh0AdS�m2�2dÞ�

þ1

2
CACAþ1

2
CC; (B6)

CA ¼ @̂B�AB � 1

2
@̂A�BB þ ð1� dÞ�zA þm�A;

C ¼ @̂A�A þ ð2� dÞ�z þm

2
�AA þ f�:

(B7)

Using canonically normalized fields and quantities ~CA, ~C,

�AB ¼ zðd�1Þ=2 ~�AB; �A ¼ zðd�1Þ=2 ~�A; �¼ zðd�1Þ=2 ~�;

CA¼ zðdþ1Þ=2 ~CA; C¼ zðdþ1Þ=2 ~C; (B8)

we obtain

L ¼ 1

4
~�ABK̂0

~�AB � 1

8
~�AAK̂0

~�BB þ 1

2
~�AK̂dþ1

~�A

þ 1

2
~�K̂2d

~�þ d� 1

2z2
~�zA ~�zA � 2m

z2
~�zA ~�A

þ d� 3

2z2
~�z ~�z � 2f

z2
~�z ~�þ 1

2
~CA ~CA þ 1

2
~C ~C; (B9)

~Ca ¼ @b ~�ab � 1

2
@a ~�BB þT �ðd�1Þ=2 ~�za þm

z
~�a;

~Cz ¼ @a ~�za � 1

2
T ðd�1Þ=2 ~�BB þT �ðd�1Þ=2z ~�zz þm

z
~�z;

~C ¼ @a ~�a þT �ðd�3Þ=2 ~�z þ m

2z
~�AA þ f

z
~�; (B10)

where � and K̂! are defined in (5.3) and (A18), respec-
tively. In terms of new fields defined by the relations

�ab ¼ ~�ab þ 1

d� 2
�ab ~�zz; �za ¼ ~�za; �a ¼ ~�a;

�zz ¼ u

2
~�zz; �z ¼ ~�z; �¼ ~�; (B11)

Lagrangian L (B9) and ~CA, ~C (B10) take the form

L ¼ L2 þL1 þL0 þ 1
2
~CA ~CA þ 1

2
~C ~C; (B12)

L 2 ¼ 1
4�

abK̂0�
ab � 1

8�
aaK̂0�

bb; (B13)

L1 ¼ 1

2
�zaK̂1�d�

za þ 1

2
�aK̂1þd�

a � 2m

z2
�za�a; (B14)

L 0 ¼ 1

2
�zzK̂4�2d�

zz þ 1

2
�zK̂4�

z þ 1

2
�K̂2d�

� 2g

z2
�zz�z � 2f

z2
�z�; (B15)

~Ca ¼ @b�ab � 1

2
@a�bb þT ð1�dÞ=2�za þm�a

z
;

~Cz ¼ @a�za � 1

2
T ðd�1Þ=2�aa þ uT ð3�dÞ=2�zz þm�z

z
;

(B16)

~C ¼ @a�a þT ð3�dÞ=2�z þm�aa

2z
� g�zz

ðd� 2Þzþ
f�

z
;

g � m

�
2
d� 2

d� 1

�
1=2

; u �
�
2
d� 1

d� 2

�
1=2

; (B17)

where f is defined in (10.3). We proceed as follows.
(i) First, we note that L2 (B13) can be represented as

L 2 ¼ 1
4�

abh��
ab � 1

8�
aah��

bb; (B18)

where � and h� are given in (5.3) and (8.15),
respectively.

(ii) Introducing vector fields �a
�1 by the orthogonal

transformation

�za ¼ r00z �a
�1 þ r00� �a

1 ;

�a ¼ �r00� �a�1 þ r00z �a
1 ;

(B19)

where r00z , r00� are given in (5.7) we cast L1 (B14)

into the form

L 1 ¼ 1

2

X
�¼�1

�a
�h�þ��

a
�: (B20)

We note that the inverse of the transformation (B19)
is given by

�a
�1 ¼ r00z �za � r00� �a;

�a
1 ¼ r00� �za þ r00z �a:

(B21)

(iii) Introducing scalar fields�0,��2 by the orthogonal
transformation
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�zz ¼ s11��2 þ s12�0 þ s13�2;

�z ¼ s21��2 þ s22�0 þ s23�2;

� ¼ s31��2 þ s32�0 þ s33�2;

(B22)

s11 ¼
�ð2�þ dÞð2�þ d� 2Þðd� 2Þ

16�ð�� 1Þðd� 1Þ
�
1=2

;

s12 ¼
�ð2�þ dÞð2�� dÞd
8ð�2 � 1Þðd� 1Þ

�
1=2

;

s13 ¼
�ð2�� dÞð2�� dþ 2Þðd� 2Þ

16�ð�þ 1Þðd� 1Þ
�
1=2

;

s21 ¼ �
�ð2�� dÞð2�þ d� 2Þ

8�ð�� 1Þ
�
1=2

;

s22 ¼
�
dðd� 2Þ
4ð�2 � 1Þ

�
1=2

;

s23 ¼
�ð2�þ dÞð2�� dþ 2Þ

8�ð�þ 1Þ
�
1=2

;

s31 ¼
�ð2�� dÞð2�� dþ 2Þd

16�ð�� 1Þðd� 1Þ
�
1=2

;

s32 ¼ �
�ð2�þ d� 2Þð2�� dþ 2Þðd� 2Þ

8ð�2 � 1Þðd� 1Þ
�
1=2

;

s33 ¼
�ð2�þ dÞð2�þ d� 2Þd

16�ð�þ 1Þðd� 1Þ
�
1=2

; (B23)

we cast L0 (B15) into the form

L 0 ¼ 1

2

X
�¼�2;0;2

��h�þ���: (B24)

For the reader’s convenience, we note that the
inverse of the transformation (B22) is given by

��2 ¼ s11�
zz þ s21�

z þ s31�;

�0 ¼ s12�
zz þ s22�

z þ s32�;

�2 ¼ s13�
zz þ s23�

z þ s33�:

(B25)

(iv) Representing ~Ca, ~Cz, ~C in terms of the vector fields
�a

�1 and the scalar fields �0, ��2 and introducing
Ca, C�1 by relations

Ca ¼ ~Ca;

C1 ¼ r00�
~Cz þ r00z ~C;

C�1 ¼ r00z ~Cz � r00�
~C;

(B26)

we find that these Ca, C�1 take the form given in
(10.13). We note the helpful relation

~CA ~CA þ ~C ~C ¼ CaCa þ C�1C�1 þ C1C1: (B27)

(v) Making use of relation (A21) and taking into ac-
count expressions forL2 (B18),L1 (B20),L0 (B24)
and formula (B27), we see that Lagrangian (B12)
takes the form of the CFT adapted gauge invariant
Lagrangian (10.12).

We now present some details of the derivation of gauge
transformations given in (10.14). Lagrangian (10.6) is in-
variant under gauge transformations given in (10.5). In
terms of canonically normalized fields (B8), these gauge
transformations take the form

� ~�ab ¼ @a�b þ @b�a � 2

z
�ab�z þ 2m�ab

ðd� 1Þz �;

� ~�za ¼ @a�z þT ðd�1Þ=2�a;

� ~�zz ¼ 2T ðd�3Þ=2�z þ 2m

ðd� 1Þz �;

� ~�a ¼ @a��m

z
�a;

� ~�z ¼ T ðd�3Þ=2��m

z
�z;

� ~� ¼ � f

z
�:

(B28)

In terms of fields defined in (B11), gauge transformations
(B28) take the form

��ab ¼ @a�b þ @b�a þ 2�ab

d� 2
T �ðd�1Þ=2�z þ 2m�ab

d� 2
�;

��za ¼ @a�z þT ðd�1Þ=2�a;

��zz ¼ uT ðd�3Þ=2�z þ mu

ðd� 1Þz �;

��a ¼ @a��m

z
�a;

��z ¼ T ðd�3Þ=2��m

z
�z;

�� ¼ � f

z
�: (B29)

Introducing new gauge transformation parameters by the
orthogonal transformation

�z ¼ r00z ��1 þ r00� �1; � ¼ �r00� ��1 þ r00z �1; (B30)

and using vector fields�a�1 (B21) and scalar fields�0,��2

(B25), we find that gauge transformations (B29) take de-
sired form given in (10.14).
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