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We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-

Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres.

We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum

of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-

Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the

problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on

a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the

displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic

for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.
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I. INTRODUCTION

In gravitational theories it is expected that very high
energy scattering at small impact parameters is dominated
by the formation and evaporation of black holes. Our basic
understanding of how this might happen in a semiclassical
approximation has led to Hawking’s paradox, the statement
that black holes might lose information with the scattering
being nonunitary [1]. The same understanding that has led
to this paradox shows that black holes have a very large
entropy and that they also have a temperature. Neither of
these features can be explained by classical means.

The gauge/gravity duality has given us a way, in princi-
ple, to formulate these phenomena in a unitary framework,
where the black hole intermediate state should be de-
scribed by some approximately thermal object with large
entropy in a dual quantum field theory. The details of such
an approximately thermal field theory configuration, how-
ever, have not been worked out so far. Large black holes in
anti-de Sitter space have positive specific heat [2] and can
be readily identified with a thermal state in the field theory
[3]. On the other hand, small black holes are not stable
objects (since they evaporate), and a complete description
of the system would require a theory of how such small
black holes form and evaporate. An initial state that pro-
duces the black hole is not thermal, but the dynamics
should be such that the system thermalizes rapidly (the
black hole formation and ringing suggest this kind of
picture [4]). The ensuing evaporation of the black hole
shows that the system should be thought of as being out
of equilibrium, but very long lived. For this second stage of
evaporation one would need a detailed analysis of how the
degrees of freedom—the entropy—of the black hole

escape from it, if one is to claim to have really solved
the black hole information paradox.
An attempt to describe the initial stages of thermaliza-

tion of small black holes1 was done for N ¼ 4 super
Yang-Mills theory in [6], but the details of the dynamics in
that context are still poorly understood. In general, prob-
lems of thermalization in full-fledged quantum field theo-
ries are hard to approach, especially at strong coupling. A
promising strategy to try to address these issues is there-
fore to look for examples with fewer degrees of freedom.
This paper is a first step in this direction, where we show
that formulating the problem of black hole thermalization
in a simpler setting has various advantages.2 One of such
settings is represented by matrix quantum mechanical
systems.
The Banks-Fischler-Shenker-Susskind (BFSS) matrix

model [8] is a prime example of a matrix quantum me-
chanics. It is dual to M theory on a discrete light-cone
quantization of flat space, and it has been argued that it
accommodates black holes, which have been analyzed in
various works [9]. The geometry of the black hole horizon
can be related to properties of the matrix quantum me-
chanics and to the presence of tachyons [10]. Some of the
studies of the BFSS model have also included numerical
analyses based on lattice methods in Euclidean field theory
[11]. However, a detailed analysis of the formation and
thermalization properties of these matrix black holes is still
missing. Moreover, a numerical instability arises in these
Euclidean thermal systems, exactly because eigenvalues
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1These are black holes which are much smaller than the radius
of the anti-de Sitter geometry and behave as ten-dimensional
Schwarzschild black holes [5].

2Other studies of thermalization based on toy models have
been carried out in [7], but part of the system there already
begins in a thermal state and the process of black hole production
is not addressed.

PHYSICAL REVIEW D 83, 106001 (2011)

1550-7998=2011=83(10)=106001(17) 106001-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.106001


can leave the black hole state. As such, the Euclidean
ensemble does not exist, as one would expect when study-
ing systems that cannot be in true equilibrium.

This problem can be fixed by considering instead the
Berenstein-Maldacena-Nastase (BMN) matrix model [12],
where the large volume instability of having a moduli
space of vacua with a continuous spectrum is cured and
the simulations make sense [13]. The BMN matrix model
is in fact a mass deformation of the BFSS model which lifts
the flat directions and has no problems from this point of
view. As the BFSSmodel, it has anM theory interpretation,
as it describes the discrete light-cone quantization of the
theory on a plane wave (rather than on flat space). Another
nice feature of the BMN matrix model is that it can be
thought of as an SUð2Þ invariant sector of N ¼ 4 super
Yang-Mills theory on S3 � R [14]. This means that certain
classes of analysis of this model might also be fruitful to
better understand the physics of that four-dimensional
theory.

Our main interest in this paper is to explore some time
dependent dynamics, in a matrix quantum mechanics set-
ting, that might help us understand how the initial stages of
black hole thermalization might proceed. For this, we need
some simple configurations with given initial conditions
that are similar to the problem of scattering gravitons at
high energies. We can then study more precisely the dy-
namics of the modes that produce the thermalization. In the
analysis of [6], it was argued that particle production in off-
diagonal modes connecting eigenvalues was responsible
for generating the entropy of the black hole configuration
and for trapping the eigenvalues. If we try to mimic this
intuition, we would expect it to work very similarly for the
BFSS matrix model: we could think of scattering two
graviton states with large matrices and hopefully see the
black hole form. Unfortunately, we are unable to do this
because these graviton states in the BFSS matrix model are
very poorly understood: they are bound states at threshold
and therefore we would need a detailed understanding of
their wave function, which we do not have, to do the
analysis.

For this reason and for the reasons mentioned above, we
turn our attention instead to the BMN matrix model. Here
the set of ground states is richer than in the BFSS model,
and instead of scattering eigenvalues off each other, we can
scatter more complicated ground state configurations.
These configurations are given by sets of concentric fuzzy
spheres. Each such fuzzy sphere is a giant graviton [15]
that can grow in size due to the Myers effect [16]. For each
fuzzy sphere, one has a decoupled Uð1Þ set of degrees of
freedom that correspond to the center of mass motion of
the corresponding membrane object. These degrees of
freedom can be excited, leaving the rest of the SUðNÞ
degrees of freedom unaffected. This means that the fuzzy
spheres can be rigidly moved around without being de-
formed, and their geometry is simple to analyze. Thus, it is

a simple matter to find reasonable initial conditions for
these fuzzy spheres. By aiming them properly, we can
make them collide (namely, have two such fuzzy spheres
intersect each other at some time t). The dynamics near the
intersection is interesting. From the point of view of string
theory, these are configurations with branes at angles, so
there is a possibility of having tachyons form at these
intersections [17]. Moreover, even in the absence of tachy-
ons, modes near the intersections are light. As we move the
branes past each other, these modes have a time dependent
mass, and in general, we expect copious particle produc-
tion in these modes if the adiabatic approximation breaks
down. At weak coupling this is similar to the problem of
preheating in inflation [18]. In our case, the matrix model
black hole would result from thermalization after moduli
trapping [19].3 A further advantage that we have in this
setup over the BFSS model is that the classical solutions
corresponding to branes crossing each other are periodic:
the branes can cross repeatedly and the fluctuations that are
produced in this way have time to grow through many
repetitions until they cause a large backreaction.
The main goal of this paper is to describe in detail the

mass spectrum of the bosonic modes stretching between
fuzzy spheres, as we displace the spheres along a direction
longitudinal to their world volume and we make them
intersect. Our calculation is a generalization of the analysis
done in [21] to study the fluctuations around concentric
fuzzy spheres.4 While fluctuations around some fuzzy
sphere configurations have already been considered in the
past by other groups, in this paper we focus our attention on
a different and novel set of configurations. In previous
studies, the displacements of the fuzzy spheres are in the
transverse directions to the spheres and the distance be-
tween the spheres (or other branes [24]) does not change in
time, or does so in such a way that the time dependence of
the off-diagonal modes is perturbatively small [25].
We will argue that in our setup there is a spectrum of

tachyons at the intersection locus of the fuzzy spheres. The
intersection locus being one-dimensional gives us a one-
dimensional tower of such tachyons. There is such a
tachyon even for two D0-branes at some finite distance.
These tachyons can have large negative mass when at least
one of the fuzzy spheres corresponds to a large matrix, so
that any small fluctuation in these modes can grow rapidly
and might lead to fast thermalization. A detailed analysis
of the evolution of the system following the tachyon pro-
duction is beyond the scope of the present work, but we
sketch, nonetheless, a picture of what happens in a simple
case.
The paper is organized as follows. In Sec. II we review

briefly the BMN plane wave matrix model and the classical

3The trapping between D0-branes was analyzed in [20].
4Some studies of the thermodynamics of these configurations

include the works in [22]. Other important results about pro-
tected multiplets can be found in [23].
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vacua of the theory. We present a novel derivation of the
spectrum of fluctuations around concentric fuzzy spheres,
making use of the aforementioned relation between the
BMN matrix model and N ¼ 4 super Yang-Mills theory.
In Sec. III we consider a classical solution of the BMN
matrix model consisting of two fuzzy spheres which are
not concentric, but displaced along a direction longitudinal
to their world volume. After giving a geometrical charac-
terization of the fluctuations around this configuration, we
proceed in Sec. IV with a detailed computation of the
spectrum of off-diagonal fluctuations, both along the trans-
verse directions to the spheres and along the longitudinal
ones. We find that certain longitudinal modes can become
tachyonic. In Sec. V we study the time dependence of these
tachyonic modes as we allow the displaced fuzzy spheres
to oscillate one towards the other along the direction of the
displacement. Some concluding remarks can be found in
Sec. VI, while in the Appendix we present an alternative
derivation of the spectrum of longitudinal fluctuations.

II. THE BMN MATRIX MODEL

The BMNmatrix model [12] is a massive deformation of
the BFSS matrix model [8]. The latter is obtained from the
dimensional reduction of ten-dimensional N ¼ 1 super
Yang-Mills theory down to 0þ 1 dimensions and has an
action given by

SBFSS ¼ 1

2g2

Z
dt tr

�
ðDtX

IÞ2 þ 1

2
½XI; XJ�2

�
þ fermions;

(2.1)

where XI (I ¼ 1; . . . ; 9) are nine Hermitian matrices. The
covariant time derivative is given by

DtX
I ¼ @tX

I � i½At; X
I� (2.2)

and g is a dimensionful coupling constant that can be
removed by rescaling the fields and the time coordinate.
It can be set to 1, if desired, or factored out of the action
and interpreted as determining ℏ. We will not work in
detail with the fermions in this paper, so we shall just
suppress them from now on. The Hamiltonian of this
system (in the At ¼ 0 gauge) is given by

H ¼ 1

2
tr

�
g2ð�IÞ2 � 1

2g2
½XI; XJ�2

�
: (2.3)

The BMN matrix model system is a massive deforma-
tion of (2.1) that preserves all 32 supersymmetries. It also
preserves a diagonal set of modes that decouple and con-
stitute a system of free degrees of freedom. These are the
‘‘center of mass motion’’ degrees of freedom in the BFSS
matrix model. The BMN matrix model splits the XI into
two groups of variables: X1;2;3, which we will label Xi, and
X4;...;9, which we will label Ya. The action includes addi-
tional terms given by

SBMN ¼ SBFSS � 1

2g2

Z
dt tr

�
�2ðXiÞ2 þ�2

4
ðYaÞ2

þ 2�i�‘jkX
‘XjXk

�
: (2.4)

In the conventions above, � is real and has been rescaled
by a factor of 3 with respect to [12]. It has units of
frequency, as XI. The equations of motion following
from this action are

€Xi ¼ ��2Xi � 3i��ijkXjXk � ½½Xi; XI�; XI�;
€Ya ¼ ��2

4
Ya � ½½Ya; XI�; XI�: (2.5)

It is convenient for our study to recast the potential for
the Xi fields in the following form:

VðXÞ
BMN ¼ 1

2g2
tr½ði½X2; X3� þ�X1Þ2 þ ði½X3; X1� þ�X2Þ2

þ ði½X1; X2� þ�X3Þ2�: (2.6)

In this paper we will choose to rescale� ! 1 by scaling
both the matrices and the time coordinate. This can always
be done. The overall action then has a factor of 1=g2 in
front. This serves as a calibration of ℏ: we are free to
absorb g2 in the definition of ℏ. This has no effect on the
classical physics except for the global normalization of the
energy units. It is only when we quantize the theory that
the value of gwill be important, and it will characterize the
strength of quantum effects or fluctuations around classical
solutions of the dynamics.
An important point to notice is that the potential is a sum

of squares of Hermitian matrices. The VðXÞ
BMN is positive

definite, and the same is true for the other terms in the
potential: the quadratic terms in Ya are obviously a sum of
squares and the rest of the terms in (2.1) are commutator
squared terms with the right sign to make them positive
definite.
Another very useful result to recall is that the BMN

matrix model can be obtained by considering a truncation
to the SUð2Þ invariant configurations of N ¼ 4 super
Yang-Mills theory on S3 � R [14]. The sphere has an
SOð4Þ ’ SUð2ÞL � SUð2ÞR symmetry and the SUð2ÞL in-
variant sector of the theory gives exactly the model above.
In that case, g is identified with the coupling constant of
N ¼ 4 super Yang-Mills theory. The Xi degrees of free-
dom arise from the gauge connection on S3 and, in the
usual field theory analysis, would have mass 2. The Ya

degrees of freedom arise instead from the scalars �a of the
super Yang-Mills theory and would ordinarily have mass
equal to 1. This corresponds to setting � ¼ 2 in the BMN
model above. Equivalently, we can think of this as quantiz-
ing the N ¼ 4 theory on a sphere of radius equal to 2,
rather than 1. This SUð2ÞL invariant reduction is a conve-
nient device to calculate sometimes, and it also explains
why the potential is a sum of squares.
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Fuzzy sphere ground states and fluctuations

The ground states of the BMN matrix model are those
that have zero energy. These are characterized by Ya ¼ 0
and also by

½Xi; Xj� ¼ i�ijkX
k; (2.7)

where we have set � ¼ 1. These are obtained by requiring
that each of the individual squares in the potential vanishes.

The most general solution to this equation is given by a
possibly reducible lie algebra representation of SUð2Þ,
where Xi ’L

�L
i
ðn�Þ, with the sum indicating a sum over

irreducible representations of SUð2Þ. Each irreducible rep-
resentation (which we can label by the size of the repre-
sentation n ¼ 2jþ 1, or by the maximal spin j) gives rise
to a fuzzy sphere configuration. In the BMN model these
are interpreted as giant graviton membranes of the plane
wave limit M theory dual.

If we fix the total size of the matrices N, we can set N ¼P
�n�. The complete set of vacua of the theory is charac-

terized by these possible splittings. This is equal to the
partitions of N.

Given such a configuration, we can think of the ground
state vacuum expectation values as being block diagonal.
We can then ask, what is the spectrum of off-diagonal
fluctuations connecting two of these fuzzy spheres? This
has been analyzed in detail in [21].

Here, wewill reproduce that result using a slightly differ-
ent calculation. The idea is to remember that this matrix
quantum mechanics is an SUð2ÞL invariant reduction of the
UðNÞ N ¼ 4 super Yang-Mills theory on S3 � R. All of
the fuzzy sphere vacua are related to each other by a gauge
transformation in the theory on S3 [26]. The gauge trans-
formation that relates them is not SUð2ÞL invariant, so the
modes that are considered SUð2ÞL invariant get shuffled.
The gauge transformation uses the obvious map S3 !
SUð2Þ, since they are identical spaces. This SUð2Þ has to
be embedded in the gauge group.

For a fuzzy sphere configuration N ¼ P
�n�, we embed

SUð2Þ intoUðNÞ by the action on the fundamental ofUðNÞ
according to

L
�R� ¼L

�ðn�Þ, where we are labeling the
representations by UðNÞ. This SUð2Þ embedding can also
be thought of as SUð2ÞL: the translation on the sphere by
SUð2ÞL generates the sphere itself. Also notice that the
fuzzy sphere configurations are SUð2ÞL invariant only if an
SUð2ÞL rotation is accompanied by a compensating gauge
transformation.

Now let us do some group theory. The Fock space
spectrum of physical polarizations of fluctuations of the
A ¼ 0 vacuum is given by

Specð�Þ ¼ M
j

ðj; jÞ;

SpecðAÞ ¼ M
j

ðj; jþ 1Þ � ðjþ 1; jÞ; (2.8)

where we are using the spin notation for the representa-
tions. The first equation indicates the spectrum of repre-
sentations of the scalar fluctuations, while the second one
represents the transverse fluctuations of gluons. The
energy for the scalars � is 2jþ 1, while for the vectors
it is 2jþ 2.
When we consider the embedding on matrices, we have

that the off-diagonal block connecting block n1 and n2
transforms as j1 � j2 with respect to SUð2Þ. That is, the
matrices transform as

Lj1þj2
j0¼jj1�j2j j

0 with respect to SUð2ÞL.
If we tensor these together, we find that for the scalars we
need to take the tensor product

M
~j

~j�ðj; jÞ ’ M
~j

M~jþj

j0¼j~j�jj
ðj0; jÞ: (2.9)

We can only have SUð2ÞL singlets if j0 ¼ 0, so we find that
the singlet sector is given by the case where j ¼ ~j. We find,
this way, that M

~j

~j�ðj; jÞjsinglet ’
M
~j

ð0; ~jÞ; (2.10)

with energy 2~jþ 1. Notice that ~j is either only half integer
or only integer, as per the usual rules of angular
momentum.
Similarly, we find that for the vectors,M

~j

~j�ððj; jþ 1Þ � ðjþ 1; jÞÞjsinglet

’M
~j

ð0; ~jþ 1Þ � ð0; ~j� 1Þ; (2.11)

with energies 2~jþ 2 and 2~j, respectively. For the special
case ~j ¼ 0, the representation ð0;�1Þ is not counted.
Properly normalizing to the value of � we have used

(i.e., dividing the energies above by 2), we get that on the
fuzzy sphere the scalars Ya have a spectrum under SUð2ÞR
rotations given by

Spec ðYÞ ¼ M
~j

~j; (2.12)

with energies ~jþ 1=2, where ~j is only integer or half
integer and it runs between jj1 � j2j and j1 þ j2 in integer
steps.
Similarly, for the Xi fields, we get a group decomposi-

tion

Spec ðXÞ ¼ M
~j

ð~jþ 1Þ � ð~j� 1Þ; (2.13)

with energies ~jþ 1 and ~j, respectively. Remember that ~j
is always integer or half integer. The same analysis can be
done for fermions; we will not do this here.
The representations ~j appearing in the decomposition of

the off-diagonal matrix fluctuations of Ya are called fuzzy
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monopole harmonics. They are fuzzy spherical harmonics
if the two representations have the same dimension.

For the Xi variables, the ~j representations appearing in
the decomposition are called fuzzy monopole vector (ten-
sor) harmonics and fuzzy vector (tensor) harmonics if the
two representations have the same size.

Notice that we only described the physical fluctuations.
The typical configurations also have zero modes due to
gauge transformations. These zero modes have been pro-
jected out. If we add them, we get that X has an additional
set of zero modes that are described by the fuzzy monopole
spherical harmonics. There is one more thing that needs to

be remarked: the zero mode associated with rotations in the
diagonal Uð1Þ is absent, as nothing is charged under it.
For matrices of the same size the theory has an

enhanced SUð2Þ unbroken gauge symmetry and the
modes organize themselves into triplets and singlets of
SUð2Þ. This generalizes to when one has more coincident
fuzzy spheres.

III. KICKING THE SPHERES

We now consider the following classical solutions of the
BMN matrix model5:

hXii ¼
Li
ðn1Þ þ Reðbi1 � 1ðn1Þ expðitÞÞ 0 � � �

0 Li
ðn2Þ þ Reðbi1 � 1ðn2Þ expðitÞÞ � � �

..

. ..
. . .

.

0
BBBB@

1
CCCCA: (3.1)

We have turned on modes proportional to the identity that decouple on each diagonal block and describe the center of mass
motion of the fuzzy spheres. These modes leave the shape of the spheres invariant, but move their centers of mass in time.
A similar kicking of the spheres can be done by turning on a displacement ba� along the Ya directions,

hYai ¼
Reðba1 � 1ðn1Þ expðit=2ÞÞ 0 � � �

0 Reðba2 � 1ðn2Þ expðit=2ÞÞ � � �
..
. ..

. . .
.

0
BBB@

1
CCCA: (3.2)

Notice that in order to obey the equations of motion (2.5),
the Ya directions must have a frequency that is half the
frequency of the Xi directions. For the rest of this paper we
shall set hYai ¼ 0.

We now restrict our analysis to the case of two diagonal
blocks, with ranks n1 and n2. We will first study the
dynamics of the off-diagonal modes connecting the two
fuzzy spheres when they are large, i.e. with n1, n2, and
n1 � n2 being large. For the configurations with bi� ¼ 0,
the off-diagonal modes have a high angular frequency
starting at n1 � n2, so this frequency is much larger than
the frequency of the zero mode that we are kicking. This
means that small fluctuations on these degrees of freedom
are expected to be adiabatic for a typical bi�.

There is a clear procedure to analyze this type of con-
figuration. One thinks of this as a Born-Oppenheimer ap-
proximation, where one can solve the dynamics of fast
degrees of freedom as we freeze the slow degrees of free-
dom. The fast degrees of freedom are the off-diagonal
modes and the slow degrees of freedom are going to be
the zeromodes that we turned on. They are only fast relative
to the motion we have described if their spin is large. We
will analyze these by freezing the result at some time t and
studying the spectrum of quadratic fluctuations of the off-
diagonal modes for that frozen configuration. Since t is

fixed for the analysis, we can use the rotational symmetry

of the system to align ~b1 � ~b2 along the 3-axis (i.e. only

b31 � b32 � 0).Moreover, a combination of the form n1 ~b1 þ
n2 ~b2 is proportional to the center of mass of the whole
system and is a decoupled degree of freedom. This means
that all the dynamics we are interested in depend only on
~b1 � ~b2. We can, without loss of generality, set ~b1 ¼ 0.
Also, we can choose the displacements to be real.
In the rest of this section we will give a geometric

characterization of what type of results we expect to find.
A detailed analysis of the spectrum of these fluctuations
will then follow in the next section.

Geometric characterization of the dynamics

These matrix configurations can be described geometri-
cally in the M theory plane wave geometry. A fuzzy sphere
of rank n corresponds to anM2-brane giant graviton of size
proportional to its light-cone momentum n (the proportion-
ality constant depends on conventions). In matrix coordi-
nate units, n acts as a cutoff on the range of the angular
momentum (see [27]), so that the size of the sphere is also
proportional to the maximum eigenvalue j. Defining the
radius of the sphere as given by the distance to the center of
mass (this is also done in matrix theory [28]), we get

5These configurations are non–Bogomolnyi-Prasad-Sommerfeld.
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R2 ¼ ðX1 � x1cmÞ2 þ ðX2 � x2cmÞ2 þ ðX3 � x3cmÞ2
¼ jðjþ 1Þ: (3.3)

At large j we have that the radius is R ¼ jþ 1=2þ
oð1=jÞ. Notice that the spacing of the radii between differ-
ent j is essentially �j. These M2-branes are described as
D2-branes. Off-diagonal modes connecting different such
configurations are interpreted as strings stretching between
the D2-branes, while the eigenvalues are interpreted as
D0-branes. It is standard to think of the D2-branes as
branes that have absorbed D0-branes and, as a conse-
quence, have a strong magnetic field on their world volume
[29]. As a matrix of rank n has n eigenvalues, this is the
magnetic flux threading the D2-brane sphere. A string
ending on the D2-brane is charged under this magnetic
field and experiences a magnetic monopole flux of strength
n. As is well known, if we consider a charged scalar degree
of freedom on a sphere with a magnetic monopole back-
ground and if we restrict to the lowest Landau level, the
wave functions carry angular momentum and can be ar-
gued to be localized on the sphere so that they cover an area
of order 1=n. The angular momentum points in the direc-
tion on which we localize the wave function on the sphere.
If we reverse the charge, the angular momentum points in
the opposite direction.

If we have two fuzzy spheres of sizes j, j0, at rest, they
can be described by two concentric spheres of ranks n, n0.
Now let us consider strings stretching between them. If we
attach n states to one sphere and n0 states to the other
sphere, we get a total of nn0 possible strings. These strings
will have an endpoint on a sphere that is associated with a
positive charge, and the other end on the other sphere will
have the opposite charge (the string theory is oriented). The
effective magnetic flux that the particle sees is n� n0. This
describes the minimal angular momentum that the modes
connecting the fuzzy spheres can have: jj� j0j. This is also
the length of a string stretched from the north pole of one
fuzzy sphere to the north pole of the other one.

The string of maximum length has angular momentum
given by jþ j0 and a mass of order jþ j0 in appropriate
units. The angular momentum vector can be obtained by
taking the difference of the position vectors of the end-
points of the string. This is depicted in Fig. 1. The angular
momentum vector of the string state points parallel to the
string. Also, the geometric length is proportional to the
length of the angular momentum vector (this also happens
for noncommutative field theories on the Moyal plane
[30]). We depict in the figure various highest weight states.
The longest string goes from the north pole of one fuzzy
sphere to the south pole of the other. Notice also that each
string endpoint can be thought of as occupying a uniform
fixed area on each sphere. The sphere with n1 eigenvalues
has n1 such patches, and similarly, the second one, with n2
eigenvalues, will be divided into n2 patches. Each of these

is to be thought of as a D0-brane endpoint (region) on the
sphere.
If we compare with the spectrum of the Ya fluctuations,

we get a precise matching between the possible values of
angular momentum we compute geometrically in this way
and the ones we obtain from the field theory calculation.
These are transverse polarizations of the strings to the three
directions in which the branes are embedded. For polar-
izations of the string modes in the brane 3-plane, they have
extra spin: indeed, they carry one unit of spin that is either
along the direction of the string, or opposite to it (only
transverse polarizations appear on the string), and one can
match this to the values of angular momentum of the Xi

fluctuations as well. Again, the geometric estimate of the
mass is good enough. Notice that there are, in general,
corrections of order one to the mass.
Now we can consider what happens when we displace

the spheres (see Fig. 2). It is clear that the density of the
string endpoints on each fuzzy sphere is not going to
change. This is because this is roughly the density of
eigenvalues per unit area. Moreover, since the endpoints
of the string are charges in a very strong magnetic field, the
magnetic field is good at keeping them from changing
positions. Roughly speaking, we should imagine that the
string ends are stuck to a particular D0-brane and that these
D0-branes are heavy and do not get moved around much by
the force of a string. Indeed, in perturbation theory the

FIG. 1 (color online). An off-diagonal mode can be thought of
as a string stretching between two D2-branes. In this figure we
consider the case of zero displacement, i.e. concentric spheres.
The angular momentum of a state is given by subtracting the
position vectors of the string endpoints. Using the symmetries of
the system, the angular momentum vector can always be chosen
to be aligned along the vertical axis.
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tension of the D-branes is large [31]. So we can argue that
the endpoint location of the string on each fuzzy sphere
will not change, nor will the way we think about its angular
momentum in the 3-direction (the one that is preserved by
the configuration). However, the length of the string will
change.

If we use the same labels for the string endpoints as
before, that is, if we label them by their angular momen-
tum, we find that the length is given by

L2 ’ ð�L1Þ2 þ ð�L2Þ2 þ ð�L3 � bÞ2; (3.4)

where b is the displacement. The masses should then be
roughly given by

M2 ’ ð� ~LÞ2 � 2b�L3 þ b2: (3.5)

The mass formula will attain the minimum value on a

sphere for fixed ð� ~LÞ2 when �L3 takes either the maxi-
mum or the minimum value, depending on the sign of b.

Clearly, this value will be minimized when the spheres
touch. The states with minimum energy have their spin
aligned along the 3-axis shown in the figure (the strings of

length zero do not have a horizontal component of ~L).
There will be corrections to this simple geometric formula.
This can be seen from comparing the values of the energy
when the spheres are concentric to those that are obtained
from the exact answer. These corrections to the mass
squared are of order j and can, in principle, make some
of the modes tachyonic. This is what one can expect from
the intuition of branes at angles [17]. To check this requires
doing a computation, which we do in the next section.
What is important to notice is that if there are tachyons,
they are localized near where the spheres touch. In this

examples this is a circle, so one can expect that these
degrees of freedom are like a one-dimensional field theory
set of modes.
Notice that the naive geometrical correction is propor-

tional to �L3. If we treat it as an operator in the theory of

angular momentum, it commutes with ð� ~LÞ2, so even
though the configurations break the rotational symmetry,
the spherical harmonic representation of the states should
remain diagonal. This is similar to what happens in the
computation of the Zeeman splitting in the hydrogen atom.
We will see this explicitly when we do the full computa-
tion. Also notice that the most tachyonic mode will depend
on the displacement because, of all the vertical strings, the
one that is the shortest depends on the precise value of b.
This means that since in our kicked sphere solution the
displacement is changing with time, which off-diagonal
mode is the most tachyonic depends on time. If all of these
start condensing, one expects that, since they carry angular
momentum, the axial symmetry will be broken classically:
the spheres will deform nonuniformly and change shape.
The L3 will remain a constant of motion and the axial
symmetry will only be restored quantum mechanically by
averaging over the orientation of the resulting shape. The
axial symmetry can be restored later again classically if the
system thermalizes, and any coarse grained observation
becomes sufficiently homogeneous (this usually requires
large N). Such effects would be expected when we form a
nonrotating black hole in the gravity theory.

IV. SPECTRUM OF FLUCTUATIONS

Now we are ready to start calculating the spectrum of
fluctuations of off-diagonal modes for displaced fuzzy
spheres. As we have described above, at large N the off-
diagonal modes connecting two fuzzy spheres are generi-
cally heavy, except where the fuzzy spheres intersect. We
have also argued that geometrically it seems that the basis
of spherical harmonics is preserved.
We will expand both the Xi and Ya variables in spherical

monopole harmonics. This is because the off-diagonal
matrices have the same rank. The fuzzy vector spherical
harmonics will be particular linear combinations of these.
The basis of matrices will be labeled by Y‘m 2
Homðn2; n1Þ, which explains how we think of these as

matrices. The conjugate harmonics are Yy
‘m ¼

ð�1ÞmY‘;�m 2 Homðn1; n2Þ. They are normalized so that

tr ðYy
‘mY‘0m0 Þ ¼ 1

2�‘‘0�mm0 : (4.1)

The matrices Ya that are off-diagonal and connect the
two fuzzy spheres will be Hermitian and expanded as
follows:

Ya ¼X
‘;m

ya‘mY‘m þ ðya‘mÞ�Yy
‘m; (4.2)

or, writing the blocks more explicitly,

FIG. 2. The length of the strings changes as we displace the
fuzzy spheres.
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Ya ¼ X
‘;m

0 ya‘mY‘m

ðya‘mÞ�Yy
‘m 0

 !
: (4.3)

We will do the same for the Xi matrices. The difference is
that the Xi matrices will also have a vacuum expectation
value as in (3.1). As argued above, we can take

hX3i ¼
L3
ðn1Þ 0

0 L3
ðn2Þ þ b

0
@

1
A; (4.4)

where b is the displacement of the second fuzzy sphere,
while we take hX1i and hX2i with no displacement. Our
goal is to compute the masses of the fluctuations in terms of
‘,m, n1, n2, b and any possible mixings between the states.
To do this, we will need the following commutation
relations for the Y‘m:

½L3; Y‘m� ¼ mY‘m;

½Lþ; Y‘m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘�mÞð‘þmþ 1Þp

Y‘mþ1;

½L�; Y‘m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘þ 1�mÞp

Y‘m�1; (4.5)

and their adjoints

½L3; Yy
‘m� ¼ �mYy

‘m;

½Lþ; Yy
‘m� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ 1Þp

Yy
‘m�1;

½L�; Yy
‘m� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘�mÞð‘þmþ 1Þp

Yy
‘mþ1; (4.6)

where L� ¼ L1 � iL2.
First we study the fluctuations of Ya, which are easier to

analyze, and then those of Xi. We will do the calculation
for arbitrary values of n1, n2 with the configurations being
off shell (frozen at finite displacement).

A. Transverse fluctuations

To compute the spectrum of transverse fluctuations we

need to expand the Lagrangian in fluctuations �Ya ¼P
‘;m�y

a
‘mY‘m þ ð�ya‘mÞ�Yy

‘m, keeping only the terms up

to quadratic order. Since the Ya do not have a vacuum
expectation value (vev) and they always appear at least
quadratically in the action, we can just truncate the action
to quadratic order in Ya and replace the Xi by their vevs.
There can be no mixing between Xi and Ya [this is easiest
to argue by the fact that the Ya carry SOð6Þ symmetry
labels and the configurations under study are SOð6Þ invari-
ant]. The expansion of the Lagrangian is straightforward
and yields

L ðYÞ ¼ 1
2 trð _YaÞ2 � 1

8 trðYaÞ2 þ 1
2 tr½hXii; Ya�2

¼ 1
2 trð _YaÞ2 � 1

8 trðYaÞ2 þ 1
2 tr½hX3i; Ya�2

þ 1
2 tr½hXþi; Ya�½hX�i; Ya�: (4.7)

The first thing we compute is the kinetic term, which is
obviously given by

L ðYÞ
kin ¼

1

2

X
‘;m

j� _ya‘mj2: (4.8)

For b ¼ 0 it is easy to see that the potential can be written
as [21]

L ðYÞ
mass ¼ �1

2 tr½Yað14Ya þ ½Li; ½Li; Ya��Þ�: (4.9)

Since ½Li; ½Li; Y‘m�� ¼ ‘ð‘þ 1ÞY‘m, this implies that at
b ¼ 0 we get that the mass terms are given by

L ðYÞ
mass ¼ � 1

2

X
‘;m

�
‘þ 1

2

�
2j�ya‘mj2: (4.10)

This matches, of course, with the result obtained in Sec.
using group theoretical arguments. A more detailed de-
scription of these spherical harmonics can be found in [32].

We now turn on b. Notice that schematically it is hX3i ¼

L3 þ b
0 0
0 1

� �
, so that

½hX3i; �Ya� ¼ ½L3; �Ya� þ b

�
0 0
0 1

� �
; �Ya

�
¼ X

‘;m

ðm� bÞ�ya‘mY‘m � ðm� bÞð�ya‘mÞ�Yy
‘m:

(4.11)

Notice that the addition of b does not mix the Y‘m with
each other in the commutator; all it does is replace
m ! m� b in the commutation relations. This is what
makes the computation so simple. This is what we were
arguing for geometrically in the previous section. When we
square the expression above, we get the same result as
when b ¼ 0, plus additional terms that are cross terms and
a quadratic term in b,

!2
‘m ¼ ð‘þ 1

2Þ2 �m2 þ ðm� bÞ2 	 0: (4.12)

Notice that these are all positive, because ‘ 	 m. The
minimum possible value, fixing ‘ and m but varying b, is
given by b ¼ m, in which case the frequency squared is

!2
‘m ¼ ð‘þ 1

2Þ2 �m2 (4.13)

and the minimum value this can acquire is given by
m ¼ �‘, so that the mass is

!2
‘‘ ¼ ‘þ 1

4: (4.14)

So, as we go to higher and higher ‘, we find that the mode
is more and more massive at the place where it is lightest

(namely, for b ¼ m). However, this only grows as
ffiffiffi
‘

p
,

which is subleading to the typical value of the frequency
which is of order ‘. If we compare this with our geometric
result in Eq. (3.5), we find that it matches it very closely

and it is exactly the same if we interpret ð� ~LÞ2 with
the usual quantum value ‘ð‘þ 1Þ plus the 1=4 from the
background curvature of the plane wave.
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B. Longitudinal fluctuations

Now we analyze the fluctuations of the Xi fields. This is
trickier than for the Ya fluctuations. First, the Xi have vevs,
so that expanding the action in fluctuations is more in-
volved. Second, the system is a gauged quantum mechani-
cal system. This means that there are zero modes that
should be projected out of the dynamics. Finally, for the
displaced fuzzy spheres we are not at an extremum of the
potential, so the gradient of the potential does not vanish.
This means that the Hessian that determines quadratic
fluctuations is not invariant under nonlinear field redefini-
tions, unlike in the case of an extremum of the potential
where the Hessian is a symmetric tensor on the tangent
space of the corresponding configuration point. This is
potentially problematic for the removal of the zero modes,
as the group ofUðNÞ rotations of the configuration gives us
a nonlinear geometric space.

All of these problems are solvable in practice. What we
need to do is to argue that our fluctuations are orthogonal to
linearized gauge transformations on a particular configu-
ration defined by a background. Since we have a metric on
the configuration space defined by the kinetic term, this is a
well-defined procedure.

We expand the fluctuations of the off-diagonal blocks as
follows6:

X3 ’ L3 þ b
0 0

0 1

 !
þX

‘;m

�x3‘mY‘m þ ð�x3‘mÞ�Yy
‘m;

Xþ ’ Lþ þX
‘;m

�xþ‘m�1Y‘m þ ð�x�‘mþ1Þ�Yy
‘m;

X� ’ L� þX
�x�‘mþ1Y‘m þ ð�xþ‘m�1Þ�Yy

‘m: (4.15)

Notice that we have shifted the index m in the coefficients
of the X� fluctuations by �1. The reason for doing this is
that the matrices Lþ and L� usually are associated with
angular momentum 1. However, the configurations with
�x ¼ 0 are spherically invariant, so the Lþ and L� matri-
ces should be associated with having no spin: in this way
the spin of the matrix is canceled by the spin of the label.
The kinetic term for the longitudinal fluctuations will then
be given by

LðXÞ
kin ¼ 1

2

X
‘;m

j� _x3‘mj2 þ
1

2
j� _xþ‘m�1j2 þ

1

2
j� _x�‘mþ1j2: (4.16)

Notice that the metric on these fluctuations is diagonal,
but the coefficients are not 1. This is important for
evaluating frequencies and for projecting out the gauge
fluctuations.

Now let us perform a gauge transformation that is off
diagonal, with parameters ��‘mY‘m þ H:c: This is neces-
sary for the generator to be Hermitian. We find that

��X
3¼ i½��‘mY‘mþH:c:;X3�
¼�iðm�bÞ��‘mY‘mþ iðm�bÞ���‘mYy

‘m: (4.17)

Again, notice that b just shifts the value of m for this
calculation. Similarly, we find that

��X
þ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘�mÞð‘þmþ 1Þp
��‘mY‘mþ1

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ 1Þp

���‘mY
y
‘m�1;

��X
� ¼ ð��X

þÞy: (4.18)

We then require that the allowed �xi‘m are orthogonal to the

��‘m variations of the configuration. The conjugate varia-
bles to these rotations vanish. Classically, this means that
for fluctuations proportional to ��‘m we have to impose the

constraint _��‘m ¼ 0, so that ��‘m ¼ 0.
These gauge transformations are unphysical and are

projected out by the Gauss law constraint. To match our
labeling, we should replace the dummy index m ! m� 1
or m ! mþ 1 in the various terms in the expansion of
��X

þ and ��X
�. This way, we get that

��X
þ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ 1Þp
��‘m�1Y‘m

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

p
���‘mþ1Y

y
‘m;

��X
� ¼ ð��X

þÞy (4.19)

and we see the consistency of the conventions of spin
labeling, for the ��‘m appear in the same way as the
�xi‘m in the expansion of the fields. Notice how in the

gauge variations the coefficient of Y‘‘ in ��X
� vanishes,

and also the one of Y‘;�‘ in ��X
þ. This is the object with

maximum helicity (total spin along the 3-axis) at fixed ‘. It
has helicity ‘þ 1 and �‘� 1, respectively. From our
previous considerations these are the modes that are most
likely to become very light. We will see that they can
indeed become tachyonic for some values of b.
Now we move on to analyze the potential for these

fluctuations. Using the following identities,

i½X2; X3� þ X1 þ iði½X3; X1� þ X2Þ ¼ ½Xþ; X3� þ Xþ;

i½X2; X3� þ X1 � iði½X3; X1� þ X2Þ ¼ �½X�; X3� þ X�;

i½X1; X2� ¼ 1
2½X�; Xþ�; (4.20)

the potential can be rewritten as

VðXÞ
BMN ¼ 1

2 tr½ð12½X�; Xþ� þ X3Þ2
þ ð½Xþ; X3� þ XþÞð�½X�; X3� þ X�Þ�: (4.21)

If we expand in quadratic fluctuations, we can expand each
term in the square to linearized order and get some
quadratic terms. There is an additional term that arises,

6An equivalent way of doing this computation is to expand the
fluctuations in the basis of eigenstates of the b ¼ 0 problem,
which was originally solved in [21]. We outline this alternative
derivation in the Appendix.
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because when we turn on b, the background no longer
satisfies ½Xþ; X�� ¼ 2X3. The other two equations are
satisfied. These contributions from the potential not being
at a minimum affect the coefficient of �xþ�x� in the
quadratic terms.

Writing (4.15) in blocks we have that, schematically,

�Xþ ¼ 0 �xþY
ð�x�Þ�Yy 0

 !
; (4.22)

plus a similar expansion for �X�. To expand to quadratic
order the total potential in off-diagonal modes, there are
two contributions: those that are linear in the fluctuations in
each term of the potential that is squared and those that are
quadratic in the fluctuations. The linear terms are off
diagonal; the quadratic terms are block diagonal. The
following intermediate calculations are useful before
giving the final answer:

�X3 þ 1

2
½L�; �Xþ�� 1

2
½Lþ; �X�� ¼X

‘;m

�
�x3‘m þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘�mÞð‘þmþ 1Þp
�xþ‘m � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ 1Þp
�x�‘m

�
Y‘m þH:c:;

½�Xþ; hX3i�þ ½Lþ; �X3� þ�Xþ ¼X
‘;m

ððb�mþ 1Þ�xþ‘;m�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘�mþ 1Þ

p
�x3‘;m�1ÞY‘m

þ ððm� bþ 1Þð�x�‘mþ1Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

p
ð�x3‘mþ1Þ�ÞYy

‘m; (4.23)

and a similar equation involving �X�. All these terms are
off diagonal (being proportional to the Y‘m). Notice that
because of our conventions, only the same values of ‘, m
appear in all of the coefficients of these linear terms: that is,
the mixing of modes only mixes the same values of ‘, m.
This simplification makes the problem very tractable for

these modes as well. In the end, we need to understand how
three modes mix, but one such mode is projected out
because of the gauge constraint. The general mass reduces
to diagonalizing a 2� 2 matrix for each value of ‘, m.
This can be combined to give a block diagonal term in

1
2 ½X�; Xþ� þ X3 proportional to

0 0

0 b

 !
þ 1

2

�x�ð�x�Þ�YYy � �xþð�xþÞ�YYy 0

0 �xþð�xþÞ�YyY � �x�ð�x�Þ�YyY

 !
: (4.24)

When we square and take traces, expanding to quadratic
order in fluctuations, this gives us a contribution to the
mass matrix equal to

1
2bð�xþð�xþÞ� � �x�ð�x�Þ�Þ: (4.25)

Notice that the contribution from this term is negative or
positive for different modes depending on the sign of b.

The kinetic term (4.24) suggests that we normalize the

fields slightly differently, �x� ¼ ffiffiffi
2

p
�X�, to have canoni-

cal normalizations for every mode. The terms in the ex-
pansion can be rewritten as

�x3‘m þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

p
�xþ‘m

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ 1Þp
�x�‘m

¼ 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ1Þ

2

q
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘þ1�mÞ

2

q� � �x3‘m

�Xþ
‘m

�X�
‘m

0
BB@

1
CCA


 V3�X: (4.26)

Similarly, we find a Vþ and V� given by

Vþ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘�mÞð‘þmþ1Þp
;

ffiffiffi
2

p ðb�mÞ; 0
� �

;

V�¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þmÞð‘�mþ1Þp
; 0;

ffiffiffi
2

p ðm�bÞ
� �

: (4.27)

We have shifted m ! m� 1 in the equations above so that
we are comparing the same coefficients of ‘, m.
The mass matrix is given by squaring these vectors and

adding them together, including also the contribution
of (4.25),

!2
‘m¼ðV3ÞyV3þ1

2
ðVþÞyVþþ1

2
ðV�ÞyV�þ

0 0 0

0 b 0

0 0 �b

0
BB@

1
CCA:

(4.28)

The end result is given by
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!2
‘m ¼

1þ ‘þ ‘2 �m2 ðb�mþ 1Þ�� ðb�m� 1Þ�þ
ðb�mþ 1Þ�� bþ ðb�mÞ2 þ�2� ��þ��
ðb�m� 1Þ�þ ��þ�� �bþ ðb�mÞ2 þ�2þ

0
BB@

1
CCA; (4.29)

where we have defined the shorthand notation

�� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘�mþ 1Þ

2

s
: (4.30)

Of particular interest to us is when m ¼ ‘þ 1 for �X�
‘;m

(i.e. �þ ¼ 0), and when m ¼ �‘� 1 for �Xþ
‘;m (i.e.

�� ¼ 0). For these cases there is no mixing with any other
mode, and these fields have maximum spin in the
3-direction for fixed ‘. We have already argued why these
modes are important. Their masses are given by

ð!�
‘;‘þ1Þ2 ¼ �bþ ðb� ‘� 1Þ2;

ð!þ
‘;�‘�1Þ2 ¼ bþ ðbþ ‘þ 1Þ2: (4.31)

These modes are tachyonic for b ¼ �ð‘þ 1Þ on an inter-
val for b of order

ffiffiffi
‘

p
. Notice that there is a tower of

tachyonic modes for each b labeled by ‘ with a quadratic
dispersion relation. This can be interpreted as a tower of
tachyonic modes on a circle in the presence of some
holonomy for a gauge field under which these fields are
charged. Other modes for which m is not maximal in the
sense above are not tachyonic.

From the equation for the masses above we still need to
project out the gauge variations. This is straightforward,
but tedious. If we call the projection matrix that projects
onto the gauge degrees of freedom �‘m, then 1��‘m is
the projection in the orthogonal components. The mass
matrix we need is then given by

!2
‘m;phys ¼ ð1� �‘mÞ!2

‘mð1� �‘mÞ: (4.32)

The precise expressions are not very illuminating.
However, none of the modes that appear this way are
tachyonic, except the ones that we have already discussed.

We can also check that the eigenvalues of the above
matrix are ‘2, ð‘þ 1Þ2, 0 when we set b ¼ 0 (as originally
found in [21]) as a consistency check. For b ¼ 0 the modes
with zero eigenvalue are the gauge zero modes. For b � 0
these modes seem to become massive (the determinant is
not zero), but as we have argued already, this is an artifact
of the linearization. After all, expanding to second order in
these gauge variations we find that

VðXÞ
BMNðb;��Þ’VðXÞ

BMNðbÞþ@bV
ðXÞ
BMNðbÞð��2Þþ . . . ; (4.33)

and the second term only vanishes for b ¼ 0. However, the
potential is invariant, so b must be corrected to second
order in gauge fluctuations. This is a nonlinear change of
variables. This is why it is better to project on directions
orthogonal to the gauge transformations than to try and sort
this second order variation and how it affects the metric of
the other modes.

It is clear that when we consider the above result, we
should organize the modes according to the following
criteria. If the two fuzzy spheres intersect for some
b > 0, we should fix K ¼ ‘�m for the modes where b ’
m (those that are near the intersection). For each suchK we
get a tower of states on a circle labeled by the different
values ‘ (or m) (there are two states for general ‘, m).
These look like a tower of fields in one dimension. For
b < 0 we would do the same by fixing K ¼ ‘þm for the
modes near the intersecting fuzzy spheres.
Notice that this result is very similar to results that have

been found in other matrix models with fuzzy spheres [33].
Since in their case the solutions with displaced fuzzy
spheres are critical points of the potential, the issues with
zero modes do not appear.

C. Interpretation fromN ¼ 4 super Yang-Mills theory

We would like to look at what we have obtained so far
from the point of view ofN ¼ 4 super Yang-Mills theory
on S3 � R. The results above are expected to give details of
an SUð2ÞL invariant subsector of this theory on the sphere.
After all, the BMN dynamics is exactly the truncation to
the SUð2ÞL invariant subsector of the field theory. Thus,
any dynamical feature present in the SUð2ÞL invariant
truncation is a feature of the full N ¼ 4 super Yang-
Mills theory on the sphere. In particular, the unstable
modes we found in the matrix model are necessarily un-
stable modes in the full field theory.
For all the fluctuations we have studied, notice that,

apart from the bounds on the total magnetic moment,
jj1 � j2j, our results are essentially independent of the
values n1 and n2. If we think back to how the plane
wave matrix model is related to a truncation of N ¼ 4
super Yang-Mills theory on S3, we realize that we
should not be surprised by this fact. The splitting into
n1 and n2 as fuzzy spheres is artificial in N ¼ 4 super
Yang-Mills theory. The fuzzy spheres are gauge trans-
formations of the vacuum. However, b matters: its pres-
ence gives states with nonzero energy. In the field theory
setup the total angular momentum of physical states also
matters, but not the details of the splitting into n1, n2, as
these would just give a multiplicity of components with
different masses from different angular momentum
objects.
To make things precise, we should remember that the

fields Xi arise from the gauge connection on S3, while the
fields Ya arise from the constant scalar modes of the field
theory. The way to do this is simple: since we have an S3

sphere, the spatial components of the gauge connection can
be written in a basis of left invariant one-forms ei,
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A ðtÞ ¼ Xiðx; tÞei: (4.34)

The spatial component of the field strength (chromo-
magnetic field) is given by

dAþA ^A ¼ dXi ^ ei þ Xidei þ 1
2½Xi; Xj�ei ^ ej:

(4.35)

Restricting to SUð2Þ invariant states requires that Xi be
constant. Thus on such configurations the first term van-
ishes. However, the one-forms are not exact, dei � 0.
Instead they satisfy the Maurer-Cartan equations. Thus
the second and third terms do not vanish. Even for constant
diagonal Xi there is a nonzero result for the magnetic field.
Considering the magnetic field squared part of the
Hamiltonian gives an expression that is exactly the term
in the potential given by Eq. (2.6), after one accounts for
various normalization issues. Thus, a nontrivial diagonal
displacement in the Xi (of size b) corresponds to a chromo-
magnetic field of strength proportional to b (the commu-
tator squared term vanishes for this configuration).

Notice that in such a description of the theory the
parameter b would correspond to a magnetic field that
leaves invariant an SUð2ÞL of rotations on the S3 (the
electric field is related to the time derivative of the Xi). It
also leaves invariant an Uð1ÞR of rotations along the direc-
tion of said magnetic field. For such a system the SUð2Þ
spherical harmonics under SUð2ÞL and the Uð1Þ quantum
numbers completely specify the spectrum for the scalar
fluctuations; after all, these are originally classified as the
ðn; nÞ representations under SUð2Þ � SUð2Þ. The first
quantum number determines n, while the second quantum
number denotes the z component of spin in the SUð2ÞR.
Moreover, this symmetry splits the degeneracy in energies
for fluctuations with different Uð1ÞR completely.

When truncating to SUð2ÞL invariant states, the choices
of fuzzy spheres matter again, but this does not affect the
energies, just the SUð2ÞL labels of the fields that get
twisted. As we also argued, the SUð2ÞR labels are tied
very closely to the SUð2ÞL labels of the field around the
trivial vacuum. Since the system preserves the SUð2ÞL
symmetry, we find that the splitting of modes into
SUð2ÞR representations is preserved in the trivial vacuum.
This is not obvious in the matrix model computation since
we were turning on a vacuum expectation value that breaks
the SUð2ÞR symmetry to Uð1ÞR and, in principle, could
induce mixing between modes with different SUð2ÞR rep-
resentations. This nonmixing between modes looks like a
happy coincidence from the matrix quantum mechanics
point of view. Here we see that there is a symmetry reason
from super Yang-Mills theory for that to happen.
Moreover, each such ðn; nÞ can contribute at most one
singlet under SUð2ÞL for each value of the Uð1Þ angular
momentum.

We should also ask, what kind of instability do the
modes between intersecting fuzzy spheres represent in

super Yang-Mills theory. Clearly, the fuzzy sphere is a
gauge artifact, but not the presence of a magnetic field.
So we should ask what kind of instabilities can arise in the
presence of a constant chromo-magnetic field on a sphere.
If we take b to be large, this corresponds to a large
magnetic field. By thinking in terms of engineering units,
the magnetic field b generates a scale in the system that, if
b is large, is much shorter in length than the radius of the
sphere. Under such conditions we can ignore the radius of
the sphere and treat the magnetic field as if it were constant
in space. The only scale in the problem is associated with
b. The mass squared of the unstable mode should therefore
be linear in b ( just a result of dimensional analysis). If one
has momentum p along the direction of the magnetic field,
the spectrum gives modes with frequencies of the form
!2

‘m ¼ �jbj þ p2. This is exactly the result we find in

Eq. (4.31), if we identify p ¼ ‘þ 1� b.
Such a result is well known. It is the Nielsen-Olesen

instability [34] (see also [35]). This instability is due to the
fact that gluons charged under the field that acquired a
magnetic field have a large magnetic moment that is
enough to drive them tachyonic. For scalars there is no
magnetic moment, and the localization effects in a mag-
netic field cost energy via the uncertainty principle, so
these modes are not tachyonic, just as we found for the
fluctuations of the Ya fields. For fermions, one can get zero
modes, which is the familiar connection between massless
fermions and index theory. Incidentally, it is well known
that it is the magnetic moment contribution to the �
function of non-Abelian gauge theories that turns the
sign contribution for vector particles relative to scalar
particles. It was argued that this would also lead to an
effective action where the chromo-magnetic field con-
denses [36]. The Nielsen-Olesen instability would destroy
that type of order.

V. TIME DEPENDENCE FOR
THE TACHYONIC MODES

So far in our analysis we have considered configurations
that are frozen in time. We have seen that tachyons can
form in the region where the two fuzzy spheres intersect
and we have argued that they do not mix with any other
mode. At this point an interesting question to ask is what
happens to these tachyons as we let our system evolve. In
this section we present a straightforward analysis for the
simplest possible trajectory, namely, an oscillation of the
spheres along one fixed direction.
Consider two fuzzy spheres of sizes j1 and j2. The

tachyons appear for any integer value from jj1 � j2j all
the way to j1 þ j2 if the smaller sphere is allowed to
oscillate from the center all the way to the outside of the
larger sphere. As we have computed in (4.31), the mass for
these tachyons is given by

ðm�
‘ ðtÞÞ2 ¼ ð‘þ 1� bðtÞÞ2 � bðtÞ; (5.1)
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where we do not write the label m, which is set equal to

�ð‘þ 1Þ. We take bðtÞ ¼ ~b sint, so as to have a simple
sinusoidal motion along the X3 direction. The motion in t is
periodic with period 2�, so the full analysis can be re-
stricted to the interval t 2 f0; 2�g. We need to solve the
differential equation

€q ‘ðtÞ þ ðm�
‘ ðtÞÞ2qðtÞ ¼ 0: (5.2)

This is the equation for a harmonic oscillator with time
dependent mass. It is somewhat similar7 to the Mathieu
equation that describes parametric resonances and, in
cosmology, the fluctuations of the inflaton around the
minimum of the potential during preheating [18].

In general, there are two linearly independent solutions
to Eq. (5.2), which we call q1ðtÞ and q2ðtÞ. We can relate the
initial time problem (at time t) to the problem one period
later (at time tþ 2�) using a periodicity matrix

q1ðtþ 2�Þ
q2ðtþ 2�Þ

 !
¼ A B

C D

 !
q1ðtÞ
q2ðtÞ

 !
: (5.3)

This equation can be diagonalized, so we can choose the
solutions to be eigenvalues of the matrix above. The
Wronskian of the solution is constant, so the matrix trans-
forming between one and the other has a determinant
equal to 1. Also, since the differential equation has real
coefficients, the solutions can be made real, and in that
case, the matrix above is real as well. Hence, the eigenval-
ues are either real or unitary. These eigenvalues serve as
Lyapunov exponents for the classical periodic orbit. When
the eigenvalues are unitary the system is stable; when the
eigenvalues are real the system is unstable.

The system can be interpreted also as a Schrödinger
problem with fixed energy in a periodic potential,8 which
is the negative of the ðm�

‘ ðtÞÞ2 function. If the solutions are
quasiperiodic (the eigenvalues are in the unit circle), one of
the functions is identified with positive frequency and the
other one is identified with negative frequency modes. This
is the case where the functions q‘ðtÞ belong to a band of the
periodic potential.

Generically, if there are regions where the mode is
tachyonic, the corresponding Schrödinger particle needs
to tunnel through the barrier. This phenomenon generically
leads to the property that the eigenvalues of the matrix
above are nonunitary, with the tunneling amplitude char-
acterizing the growth of the signal. We can, in general,
estimate this using a WKB approximation.

The large eigenvalue tells us how the modes grow around
these periodic solutions, and it describes the discrete time
dependence of the instability under various oscillations.
The two linearly independent solutions can also be thought
of as coefficients of raising/lowering operators. The matrix

computed in this basis is a Bogoliubov transformation for
each period, and the amplitude growth correlates with the
amount of particle creation between oscillations.
For us, the most important question to ask is which of all

the modes above grows the fastest, as these modes will
dominate the initial stages of the brane collapse problem. It
is not hard to figure out that the tachyon with the highest ‘
will generally dominate. First, it will be tachyonic for
the longest time during the periodic trajectory, not only
because the range of bwhere it is tachyonic is larger (recall

that this range is of order
ffiffiffi
‘

p
), but also because the motion

of the oscillations is slower at larger displacement. This
means that the main condensation of modes will happen
between the north pole of one fuzzy sphere and the south
pole of the other one. We can do this numerically for

various values of the amplitude of oscillation ~b and for
different values of ‘. This is shown in Figs. 3 and 4.
Notice also that because condensation happens for vari-

ous modes with different ‘, the system classically breaks
the rotation symmetry around the axis of symmetry for
small perturbations on the off-diagonal modes. Each of
these is expected to decohere from the others once the
nonlinearities set in, because the classical trajectories di-
verge rapidly from each other. Also, as seen in the figures,
any small amount of backreaction can move modes be-
tween the oscillation bands and the growth bands. Let us
assume that this will happen for some fixed value of the
off-diagonal perturbation in the classical picture. The time
to reach this value will depend on the initial amplitude of
the off-diagonal mode. If we begin in an adiabatic ground
state for these modes in the nontachyonic region, we can
estimate the initial size of fluctuations by a harmonic
oscillator wave function. This is a power-law function of
ℏ. The growth is exponential (and can easily be of a few
orders of magnitude per oscillation), so the time growth for

FIG. 3 (color online). Here we show the norm of the maximum
eigenvalue of the periodicity matrix for various values of ‘ as a
function of the amplitude ~b, labeling the horizontal axis. We
clearly see the band structure of the problem and that the largest
value of ‘ is typically the one with the most amplification so long
as it is tachyonic.

7Albeit more complicated and not generically solvable in
terms of elementary functions.

8For an elementary treatment see [37].
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quantum perturbations around a fixed classical periodic
orbit to the stages where backreaction becomes important
is logarithmic in the ℏ ! 0 limit. As we increase ℏ, the
time to reach backreaction is shorter. In the very quantum
regime the approximations used here break down and a
more robust formalism with quantum backreaction needs
to be developed (an initial attempt of such a setup has been
recently pursued in [38]). This suggests that in the strong
coupling regime thermalization could be very fast.

VI. CONCLUSION

The purpose of this paper was to initiate a study of the
process of formation and thermalization of black holes,
using the gauge/gravity correspondence. Since these are
notoriously complicated problems to address in ordinary
field theories, our strategy has been to focus our attention
on simplified models with a reduced number of degrees of
freedom.

The prototypical example of such models is the BFSS
matrix quantum mechanics describing M theory on
the discrete light-cone quantization of flat space.
Unfortunately, this model possesses some features that
make its study extremely challenging. These features in-
clude the presence of flat directions in the potential (which
give rise to a continuous spectrum and to the difficulty of
distinguishing between single-particle and multiparticle
states) and the absence of a tunable coupling constant.
Moreover, the wave function of bound states in this model
is not known, making it impossible to describe scattering
processes in the regime of high energy and small impact
parameters, where the nonlinearities of gravity become
important and black hole formation takes place.9

We have therefore considered a different model, the
BMN matrix model given by (2.4), where many of the
problems that plague the BFSS model no longer occur.
For example, the mass terms in the BMN model lift flat
directions and give rise to a discrete spectrum with an
isolated set of classical vacua, the fuzzy spheres that
have been the central ingredient of our setup. In the limit
of large mass, these different vacua are divided into super-
selection sectors described by harmonic oscillators, and the
spectrum of their fluctuations can be studied. While the
supersymmetric vacua of the model consist of concentric
spheres, one can also consider non–Bogomolnyi-Prasad-
Sommerfeld configurations obtained by displacing the
centers of the spheres. These are obtained by turning on
the diagonal modes that control the center of mass motion
of the spheres without deforming their shape. In this way,
one can set up a scattering problem, that might be used as a
proxy, under computational control, for the high energy
scattering of particles in gravity.
We have started our analysis by considering two fuzzy

spheres, displaced along a direction in their world volume
and frozen in time in that position. The formation and
thermalization of a black hole can be associated with
copious particle production in off-diagonal modes of a
configuration. The presence of classical tachyons makes
the analysis simpler, as we get a classical instability that
can, in principle, drive the system towards thermalization.
Expanding the fields in fuzzy spherical harmonics, we have
found that the modes with the maximal angular momentum
along the direction of the displacement become tachyonic
at the intersection locus between the two spheres.
Interestingly, this instability has a four-dimensional inter-
pretation. It can be regarded, in fact, as a Nielsen-Olesen
instability in N ¼ 4 super Yang-Mills theory, of which
the BMNmodel is a truncation. The role of the background
magnetic field is played in our system by the displacement
vector.
An obvious generalization of our initial conditions

would be to allow for a displacement of the fuzzy spheres
also along the transverse directions (this corresponds to
turning on some hYai � 0). The analysis in this case is
slightly complicated by the fact that the fluctuations of the
Xi and the Ya fields get coupled and the diagonalization
problem becomes less straightforward. One could also try
to include the fermionic modes, which have not been
considered here.
In the last part of the paper, we have allowed our initial

configuration to evolve in time, describing a periodic mo-
tion, with the two fuzzy spheres oscillating along the
direction of the displacement and crossing each other
repeatedly. This is the simplest trajectory to study and
gives rise to a dynamics that is somewhat similar to the
physics of preheating during inflation. We have argued that
the tachyonic modes that form at the intersection locus
between the spheres typically get reinforced after each

FIG. 4 (color online). Here we show the maximum eigenvalue
of the periodicity matrix for various values of ‘, where we
explore the problem in the region of large amplitude ~b, labeling
again the horizontal axis. Asymptotically, the amplification
becomes of order one, since the time during which each mode
is tachyonic on a single oscillation becomes very small.

9Most of the work in the past aimed at matching the loop
expansion of the BFSS matrix model with perturbative expan-
sions in gravity has been mostly limited to linearized examples
or to terms protected by nonrenormalization theorems; see, for
example, [39,40] for a review.
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period of the oscillation. The growth is exponential, and
can potentially give rise to a fast thermalization of the other
degrees of freedom living on the spheres. So if these
instabilities would cause the BMN model to thermalize
fast, it is suggestive that the Nielsen-Olesen instability
could drive fast thermalization in QCD processes like
heavy-ion collisions. This thermalization is observed in
experiments at the Relativistic Heavy Ion Collider [41],
and it is argued that this happens in a very short time
scale [42].

A better understanding of the details of this dynamics is
surely desirable, and this paper can be considered as a first
step toward this ambitious goal. In particular, we find it
extremely interesting to try to estimate from our setup the
time scales characterizing the various phases of the black
hole evolution, for example, the thermalization time. To
this regard, it has recently been conjectured [4] (prompted
by the analysis in [43]) that black holes are the ‘‘fastest
scramblers’’ in nature. By fastest it is intended that the
thermalization time scale is logarithmic in the number of
degrees of freedom of the system, rather than a power law,
as was originally proposed in [44]. Our hope is that it might
be possible to check this claim using the ideas and tech-
niques we have presented in this paper.

An even more involved scenario would start with a
configuration that carries angular momentum on the plane.
Such a scenario might lead to different black hole shapes.
The time dependent analysis we performed would be more
complicated because there is more mixing between modes
(the system does not preserve an azimuthal symmetry).

We conclude by repeating the observation in the
Introduction that the BMN matrix model is amenable to
being put on a computer. We can think of implementing
numerical simulations of our system, where we define
some initial configuration of displaced fuzzy spheres and
let them evolve. Such simulations should provide us with a
more accurate description of the details of the dynamics

that follows the formation of the tachyons, and shed light
on what happens during the first phases of the evolution of
the black holes. We are currently looking into this.
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APPENDIX: AN ALTERNATIVE DERIVATION
OF THE LONGITUDINAL SPECTRUM

In this appendix we present an alternative derivation of
the spectrum of longitudinal fluctuations (4.31). The idea is
to expand the fluctuations in the basis of eigenstates of the
b ¼ 0 system.
We start by rewriting the quadratic potential for the �Xi

fluctuations as

VðXÞ
BMN ¼ 1

2
tr

�
ð�Xi þ i�ijk½hXji; �Xk�Þ2

� i�ij3�Xi

�
0 0
0 b

� �
; �Xj

��
: (A1)

The case with b ¼ 0 was worked out in detail in [21],
where it was found that the solution to the eigenvalue
problem

�Xi
ð�Þ þ i�ijk½Lj; �Xk

ð�Þ� ¼ 	��X
i
ð�Þ (A2)

is 	� ¼ ð0;�‘; ‘þ 1Þ with

�Xþ
ð0Þ ¼ 
‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

‘ð‘þ 1Þ

s
Y‘mþ1 þ H:c:; �X�

ð0Þ ¼ 
‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘�mþ 1Þ

‘ð‘þ 1Þ

s
Y‘m�1 þ H:c:;

�X3
ð0Þ ¼ 
‘m

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp Y‘;m þ H:c:; �Xþ

ð�‘Þ ¼ ��‘�1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘þmþ 1Þ

‘ð2‘þ 1Þ

s
Y‘mþ1 þ H:c:;

�X�
ð�‘Þ ¼ �‘�1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘�mþ 1Þ

‘ð2‘þ 1Þ

s
Y‘m�1 þ H:c:; �X3

ð�‘Þ ¼ �‘�1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘�mÞ

‘ð2‘þ 1Þ

s
Y‘m þ H:c:;

�Xþ
ð‘þ1Þ ¼ �‘þ1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘�mþ 1Þ
ð‘þ 1Þð2‘þ 1Þ

s
Y‘mþ1 þ H:c:; �X�

ð‘þ1Þ ¼ ��‘þ1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘þmþ 1Þ
ð‘þ 1Þð2‘þ 1Þ

s
Y‘m�1 þ H:c:;

�X3
ð‘þ1Þ ¼ �‘þ1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmþ 1Þð‘�mþ 1Þ

ð‘þ 1Þð2‘þ 1Þ

s
Y‘m þ H:c: (A3)
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Expanding the off-diagonal fluctuations in the basis of
eigenstates above,

�Xi ¼ X
�

�Xi
ð�Þ; (A4)

the potential (A1) becomes

1

2
tr

��X
�

	��X
i
ð�Þ � i�ij3

�
0 0

0 b

 !
; �Xj

ð�Þ

��
2

� i�ij3
X
�;�

�Xi
ð�Þ

�
0 0

0 b

 !
; �Xj

ð�Þ

��
: (A5)

We can write the blocks explicitly as

1

4
tr
X
�;�

ð	�	�ðð�Xþ
ð�ÞÞy�Xþ

ð�Þ

þ ð�X�
ð�ÞÞy�X�

ð�Þ þ 2ð�X3
ð�ÞÞy�X3

ð�ÞÞ
þ bðbþ 	� þ 	� þ 1Þð�Xþ

ð�ÞÞy�Xþ
ð�Þ

þ bðb� 	� � 	� � 1Þð�X�
ð�ÞÞy�X�

ð�ÞÞ: (A6)

Taking the trace, it is easy to see that the first line of the
expression above reproduces the b ¼ 0 spectrum

1

2

X
‘;m

‘2j�‘�1;mj2 þ ð‘þ 1Þ2j�‘þ1;mj2; (A7)

with the 
‘m modes being the gauge variation zero modes.
The second line gives instead [here we call �xð�Þ whatever
is multiplying the spherical harmonics in (A3), including
the square roots]

b

4

X
�;�

X
‘;m

ððbþ 	� þ 	� þ 1Þð�xþð�ÞÞ�‘mð�xþð�ÞÞ‘m

þ ðb� 	� � 	� � 1Þð�x�ð�ÞÞ�‘mð�x�ð�ÞÞ‘mÞ: (A8)

Expanding the sums in � and� in (A8) and combining this
with (A7), it is straightforward to check that the resulting
massmatrix admits the same eigenvalues obtained in (4.31).
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