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We display several examples of how fields with different limiting velocities (the ‘‘speed of light’’) at a

high energy scale can nevertheless have a common limiting velocity at low energies due to the effects of

interactions. We evaluate the interplay of the velocities through the self-energy diagrams and use the

renormalization group to evolve the system to low energy. The differences normally vanish only

logarithmically, so that an exponentially large energy trajectory is required in order to satisfy experimental

constraints. However, we also display a model in which the running is a power-law type, which could be

more phenomenologically useful. The largest velocity difference should be in the system with the weakest

interaction, which suggests that the study of the speed of gravitational waves would be the most stringent

test of this phenomenon.
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I. INTRODUCTION

Many physical systems yield wavelike solutions which
satisfy the wave equation with a speed of propagation ci,�

@2

@t2
� c2ir2

�
�ðx; tÞ ¼ 0; (1)

which is also the massless Klein-Gordon equation. To
leading order, the Lagrangian of any such field obeys a
Lorentz-like symmetry of Lorentz transformations scaled
with the limiting speed ci, even if the underlying system
does not have that invariance. However, if there are mul-
tiple fields, they will, in general, have different limiting
velocities, and there will not be a global Lorentz symmetry.
If the fundamental interactions are emergent phenomenon
from an underlying theory without Lorentz invariance
[1–3], we might expect that particles would display differ-
ent limiting speeds.

In this paper we show how interactions between the
fields can lead to a universal limiting velocity, i.e.
the speed of light, at low energies. We calculate how the
different fields influence each other’s propagation velocity
through the self-energy diagrams, and then use the renor-
malization group (RG) to scale the results to low energy.
Using several examples we show that the condition of
equal velocities is the low energy endpoint of renormal-
ization group evolution.1 A heuristic explanation for this is
that because fields can split into other types of fields, the

propagation velocity of one field approaches that of the
related other fields.
This result could be useful if the fields of the standard

model (SM) are emergent from an underlying theory that is
not Lorentz invariant. Of course, Lorentz invariance is
conventionally taken as one of the foundational principles
underlying all our fundamental interactions. However, the
Weinberg-Witten [7] theorem is usually interpreted as
telling us that non-Abelian gauge bosons and gravitons
cannot be emergent fields arising from any underlying
Lorentz-invariant nongauge theory. All known examples
[1] satisfy this property. Therefore, if the idea of emergent
fields has any application in the fundamental interactions,
it appears to be required that Lorentz invariance is also
emergent.
Our results show that a universal limiting velocity can be

an emergent property in the low energy limit. However, in
general, the difference in velocity runs towards zero only
logarithmically. This means that the underlying scale of
emergence needs to be exponentially far away, making it
difficult to test any feature of that theory which is power
suppressed. For example, we estimate that the scale where
differences in the velocity are of order 10% would be

beyond 1010
13
GeV. Because of this feature we propose a

model that produces much faster power-law running. The
model involves a large number of fields which accelerate
the running. Another consequence of the running speeds is
that observable differences in the velocities would be great-
est if the interactions are the weakest. This suggests that the
measurement of the velocity of gravitational waves would
be the most sensitive test of this aspect of emergence.
This paper has the following structure. In the next sec-

tion we give some general comments on our procedure.
Then, in Secs. III, IV, V, and VI we calculate the beta
functions for Yukawa theories, electrodynamics, Yang-
Mills, and mixed theories, respectively. All cases yield
beta functions such that the limiting velocities run towards
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1During the course of this work we found that this general

approach has also been studied by S.-S. Lee [4] in the context of
emergent supersymmetry. There is also some overlap of our
work with the study of Lifshitz-type theories in Ref. [5]. The
renormalization group running that we describe is also related to
the study of the renormalization of Lorentz-violating electro-
dynamics [6].
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each other at low energy. In Sec. VII, we analyze the
general effects of logarithmic running and address the
phenomenological constraints. Because of the difficulties
posed by logarithmic running, we display a model with
power-law running in Sec. VIII. We close with a summary
and discussion. Some of the more technical details are
described in a pair of appendixes.

II. SETUP

We assume that different species of fermions, scalars,
and gauge fields emerge at some UV scale with different
speeds of light. In condensed matter systems, phonons and
magnons do not propagate at the same speed. Similarly, the
same behavior is expected to carry on in an emergent
theory of nature. In the absence of any form of interactions
between particles, their speeds are expected to be frozen as
we run down to the IR. However, these particles are
interacting due to Yukawa and gauge forces. Hence, the
total Lagrangian of such a system will be given by the sum
of kinetic and interaction terms with certain bare coeffi-
cients specified initially at the UV. The parameter space of
the system is spanned by the different speeds and interac-
tion strengths. According to the principle of self-similarity
and Wilsonian renormalization, the same Lagrangian will
continue to describe the system at different energy scales,
provided that we replace the bare parameters with the
renormalized ones. This can be achieved by integrating
out the high momentummodes as we run down from UV to
IR. Quantum loops are sensitive to high momenta, and
hence can be used to track the evolution of trajectories of
the different speeds and interaction strengths in the pa-
rameter space. The evolution of these trajectories is en-
coded in the � functions that are given by the Gell-Mann
Low equations

�ðgiÞ � �
dgi
d�

¼ ffgjg; (2)

where � is the mass scale we introduce in dimensional
regularization.

In theories with a universal limiting velocity, the Lorentz
symmetry prevents the renormalization of the speed of
light, and one can set c ¼ 1 as a definition of natural units.
However, if different species carry different limiting ve-
locities, ci, then these parameters also get renormalized
and must be treated in the same manner as coupling con-
stants. They carry a scale dependence through the renor-
malization procedure, and also generate their own beta
function. We exploit this property to study the running of
the limiting velocities.

Throughout the paper we use dimensional regularization
(dim-reg). The high energy part of the quantum loops can
be isolated by retaining only the 1=� pieces that arise upon
using dim-reg. Finally, we notice that our treatment is
limited to one-loop corrections, and that the � functions
of the speeds require only self-energy corrections, while

those of the couplings require vertex corrections as well
(see Fig. 1).

III. YUKAWA INTERACTIONS

We consider a two-species system, namely, scalars and
fermions, having different speeds of light at the UV and
coupled through Yukawa interaction. The Lagrangian den-
sity reads

Lr ¼ i �c r�
0@0c r � icf �c r ~� � ~@c r þ 1

2
@0�r@0�r

� c2b
2

~@�r � ~@�r � g�r
�c rc r; (3)

where the subscript r denotes the renormalized values of
the fields. The momentum-space propagators for scalars
and fermions are given by

Dbðp0; ~pÞ ¼ i

ðp0Þ2 � c2b ~p
2
;

Sfðp0; ~pÞ ¼ i

p0�0 � cf ~p � ~�
:

(4)

The self-energies of fermions and scalars are, respectively,

�i�ðp0; ~pÞ ¼ ð�igÞ2
Z d4q

ð2�Þ4 Sfðq
0; ~qÞ

�Dbðp0 � q0; ~p� ~qÞ (5)

and

i�ðp0; ~pÞ ¼ �ð�igÞ2
Z d4q

ð2�Þ4 tr½Sfðq0; ~qÞ
� Sfðp0 þ q0; ~qþ ~pÞ�: (6)

In the following, we will be interested only in the
divergent pieces of (5) and (6). The integral (6) is trivial

to perform upon using the substitutions k0 ¼ q0=cf, ~k ¼ ~q,

P0 ¼ p0=cf, and ~P ¼ ~p. Then, one readily finds

i�ðp0; ~pÞ ¼ ig2

8�2cf

�ðp0Þ2
c2f

� ~p2

��
2

�
þ finite

�
: (7)

FIG. 1. The self-energy and vertex diagrams. Only self-
energies will contribute to the running of the speeds, while the
vertex is needed for the running of the coupling strength.
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On the other hand, the integral (5) is more involved and
it needs a bit more attention. Using the substitution

k0 ¼ q0=cf and ~k ¼ ~q, we find

�i� ¼ g2

c2b

Z d4k

ð2�Þ4
k

k2
1

ðp0=cb � cfk
0=cbÞ2 � ð ~k� ~pÞ2

¼ g2

c2b
½�0I0 � ~� � ~I�; (8)

where the integrals I0 and ~I are given by (the details are in
Appendix A)

I0 ¼ ip0

ð4�Þ2
2cb

c2fð1þ aÞ2
�
2

�
þ finite

�
(9)

and

~I ¼ i ~p

ð4�Þ2
2að1þ 2aÞ
3ð1þ aÞ2

�
2

�
þ finite

�
; (10)

where a ¼ cb=cf.

Now, we move to the vertex correction which, to one-
loop order, reads

�igG ¼ ð�igÞ3
Z d4q

ð2�Þ4 Sfðp
0
2 � q0; ~p2 � ~qÞ

� Sfðp0
1 � q0; ~p1 � ~qÞDbðq0; ~qÞ: (11)

Using the change of variables q0=cf ¼ K0, ~q ¼ ~K,

p0
2=cf ¼ P0

2, ~p2 ¼ ~P2, p0
1 ¼ P0

1=cf, and ~p1 ¼ ~P1, and

retaining only the divergent part of the integral, we obtain
(see Appendix A)

� igG ¼ ig3

ð4�Þ2
2

c2fcbð1þ aÞ
�
2

�
þ finite

�
: (12)

At this point, the total Lagrangian including the one-
loop effect is

L0 ¼ Lr þLc þ 2ig2

ð4�Þ2ð1þ aÞ2

�
�

1

cbc
2
f

�c r@0�
0c r � að1þ 2aÞ

3c2b

�c r ~� � @c r

��
2

�

�

þ g2

ð4�Þ2cf
�
1

c2f
@0�r@0�r � ~@�r � ~@�r

��
2

�

�

þ g3

ð4�Þ2cbc2f
2

1þ a

�
2

�

�
�r

�c rc r; (13)

where Lc is the counter Lagrangian

L c ¼ i�Zc
�c r@0�

0c r � i�Zf
cf �c r ~� � ~@c r

þ �Z�

2
@0�r@0�r �

�Zb

2
c2b ~@�r � ~@�r

� g�g�r
�c rc r: (14)

At this point, we can read off the different �s that are
required to absorb the infinities. Furthermore, we define the

bare fields �0 ¼ Z1=2
� �r and c 0 ¼ Z1=2

c c r, bare speeds

cf0 and cb0 , and bare coupling g0 such that the Lagrangian

density reads

L 0 ¼ i �c 0@0�
0c 0 � cf0 �c 0 ~� � ~@c 0 þ 1

2@0�0@0�0

� c2b0 ~@�0 � ~@�0 � g0�0
�c 0c 0: (15)

Comparing (13) and (15) we find

cf0 ¼ cfZ
�1
c Zf;

cb0 ¼ cbZ
�1=2
� Z1=2

b ;

g0 ¼ gZgZ
�1=2
� Z�1

c ��=2;

(16)

where Z ¼ 1þ �,

Zc ¼ 1� 2g2

ð4�Þ2cbðcf þ cbÞ2
�
2

�

�
;

Z� ¼ 1� 2g2

ð4�Þ2c3f

�
2

�

�
;

Zf ¼ 1� 2g2ðcf þ 2cbÞ
3ð4�Þ2cfcbðcf þ cbÞ2

�
2

�

�
;

Zb ¼ 1� 2g2

ð4�Þ2cfc2b

�
2

�

�
;

Zg ¼ 1þ 2g2

ð4�Þ2cfcbðcf þ cbÞ
�
2

�

�
:

(17)

To proceed, we regard all the renormalized quantities
above as functions of the scale � that occurs in dim-reg.
Then, we differentiate the system in Eq. (16) with respect
to � and solve simultaneously for �ðgÞ, �ðcbÞ, and �ðcfÞ
to find

�ðgÞ ¼ g3ð3cbc2f þ 2c2bcf þ c3b þ 4c3fÞ
8�2cbc

3
fðcf þ cbÞ2

;

�ðcbÞ ¼
g2ðc2b � c2fÞ
8�2cbc

3
f

;

�ðcfÞ ¼
g2ðcf � cbÞ

6�2cbðcf þ cbÞ2
:

(18)

Notice that the � functions of cb and cf do not depend on

the vertex correction Zg. Finally, we calculate the � func-

tion of the ratio a ¼ cb=cf to find

�ðaÞ ¼ �ðcbÞ
cf

� cb
c2f

�ðcfÞ

¼ g2

48�2

ða� 1Þ½8aþ 6ð1þ aÞ3�
cbc

2
fð1þ aÞ2 ; (19)
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from which we see that cb ¼ cf is an IR attractive line. We

can also see that by studying the Jacobian J ¼ @�ðciÞ=@cj,
for i, j ¼ cf, cb at the fixed line cf ¼ cb. The eigenvalues

of J are f0; 7g2=24�2c3fg. The positivity of the second

value ensures that cb ¼ cf is an IR attractive fixed line.

We have seen the existence of an attractive IR fixed line
corresponding to a common limiting speed. We will ad-
dress more details about the running in Sec. VII.

IV. NONCOVARIANT ELECTRODYNAMICS

In this section, we study the RG flow of the limiting
speeds of fermions and photons. The noncovariant and
gauge-invariant Lagrangian density reads

Lr ¼ �1
4Fr��F

��
r þ i �c rð@0 þ iecgA0rÞ�0c r

� i �c rðcf ~@þ iecf ~ArÞ � ~�c r; (20)

where Fr�� ¼ @�Ar� � @�Ar�, @� ¼ ð@0; cg ~@Þ, and cg is

the photon speed. The photon propagator in the Feynman
gauge is given by

Dg��ðk0; ~kÞ ¼
�i	��

ðk0Þ2 � c2g ~k
2
: (21)

To find the photon and fermion self-energies, it proves
easier to write the interaction Lagrangian in the formLI ¼
�ec��

�c rA
�
r ��c r, where c�� ¼ diagðcg;�cf;�cf;

�cfÞ. Hence, the fermion self-energy is

�i�ðp0; ~pÞ¼ ð�ieÞ2c��c
���

�
Z d4q

ð2�Þ4Sfðq
0; ~qÞD
�

g ðp0�q0; ~p� ~qÞ��;

¼�e2	
�
c��c
�

c2g
��½�0I0� ~� � ~I���; (22)

where I0 and I1 are given in (9) and (10) after replacing cb
with cg. The photon self-energy is given by

i�
�ðp0; ~pÞ ¼ �ð�ieÞ2c
�c��
Z d4q

ð2�Þ4
� tr½��Sfðq0; ~qÞ��Sfðp0 þ q0; ~pþ ~qÞ�:

(23)

Using the substitution k0 ¼ q0=cf, ~k ¼ ~q, P0 ¼ p0=cf,

and ~P ¼ ~p, we can put �
� in a standard integral form.

Hence,

i�
�ðp0; ~pÞ ¼ 4i

3ð4�Þ2
e2c
�c��

cf
ðP�P� � P2	��Þ

�
2

�

�
;

(24)

where P ¼ ðp0=cf; ~pÞ. Explicit calculations shows that

P 
�
� ¼ 0, where P 
 ¼ ðp0; cg ~pÞ, and hence �
� is

gauge invariant as expected.

The counter Lagrangian reads

L c ¼ Lc gauge þ i�Zc
�c r@0�

0c r � i�Zf
cf �c r ~� � ~@c r;

(25)

and Lc gauge is the counterterm for the gauge sector. Then,

from (22) and (25), and after using the properties of �
matrices, we can immediately read Zc and Zf,

Zc ¼ 1� 2e2ð3c2f � c2gÞ
ð4�Þ2cgðcf þ cgÞ2

�
2

�

�
;

Zf ¼ 1� 2e2ðc2g þ c2fÞð2cg þ cfÞ
3ð4�Þ2cfcgðcg þ cfÞ2

�
2

�

�
:

Now we come to the counterterms in the gauge sector.
A general counterterm written in momentum space takes
the form

LcgaugeðpÞ¼A0r�A½ðp0Þ2�	00ððp0Þ2�c2g ~p
2Þ�A0;r

þAir½c2g�gBBp
ipjþ�ijð�Aðp0Þ2

�c2g�gB
~p2Þ�Ajr�2Air�Acgp

0piA0r: (26)

One can show that all the infinities in (24) can be absorbed
using �A and �gB ,

ZA ¼ 1� 4

3ð4�Þ2
e2

cf

�
2

�

�
;

ZgB ¼ 1� 4

3ð4�Þ2
e2cf

c2g

�
2

�

�
;

(27)

where, as usual, Z ¼ 1þ �. We write Lc gaugeðpÞ in the

compact form

Lc gaugeðpÞ ¼ A�rM
��A�r; (28)

with

M00 ¼ c2g�A ~p
2;

M0i ¼ �cg�Ap
0pi;

Mij ¼ c2g�gBp
ipj þ �ijð�Aðp0Þ2 � c2g�gB

~p2Þ:
(29)

It is trivial to see that P 
M

� ¼ 0, and hence M
� is

gauge invariant.

Now, defining the bare fields c 0 ¼ Z1=2
c c r, A0

0 ¼
Z1
AZ

�1=2
gB A0

r , and Ai
0 ¼ Z1=2

A Ai
r, and bare speeds cf0 and

cg0, the Lagrangian density reads

L0¼�1
4F 0��F

��
0 þ i �c 0@0�

0c 0� icf0 �c 0 ~� � ~@c 0: (30)

The bare gauge field Lagrangian in momentum space is
given by A0�M

��
0 A0�, and

M00
0 ¼ c2g0 ~p

2;

M0i
0 ¼ �cg0p

0pi;

Mij
0 ¼ c2g0p

ipj þ �ijððp0Þ2 � c2g0 ~p
2Þ:

(31)
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The relations between the bare and renormalized speeds
are

cf0 ¼ cfZ
�1
c Zf; cg0 ¼ cgZ

�1=2
A Z1=2

gB ; (32)

from which we obtain

�ðcgÞ ¼ 4e2

3ð4�Þ2
ðc2g � c2fÞ
cfcg

;

�ðcfÞ ¼ 8e2

3ð4�Þ2
ðcf � cgÞð4c2f þ 3cfcg þ c2gÞ

cgðcf þ cgÞ2
:

(33)

These � functions have the same structure as in the case of
Yukawa interactions, and we immediately conclude that
cf ¼ cg is an IR attractive line.

V. NONCOVARIANT YANG-MILLS THEORIES

In this section we generalize the results of QED to the
case of non-Abelian gauge theories. We take the gauge
group to be SUðNÞ, and the fermions in the fundamental
representation

L r ¼ Lr free þ gcg	��
�c rA

a�
r ��c rt

a

� gcgf
abc@�A

a
r�A

�b
r A�c

r

� 1
4g

2c2gf
eabfecdAa

r�A
b
r�A

c�
r Ad�

r ; (34)

where g is the coupling constant, ta are the group gener-
ators, and fabc are the group structure constants. Lr free is
the free part of the Lagrangian,

Lr free ¼ �1
4F

a
r��F

a��
r þ i �c r@0�

0c r � icf �c r
~@ � ~�c r;

(35)

where as in the case of QED Fa
r�� ¼ @�A

a
r� � @�A

a
r�,

@� ¼ ð@0; cg ~@Þ, and cg is the gauge boson speed.

The fermion self-energy is identical to the case of QED;
one just includes the quadratic Casimir operator in the
fundamental representation C2ðNÞ ¼ ðN2 � 1Þ=2N into
Eq. (22) to find

Zc ¼ 1� 2C2ðNÞg2ð3c2f � c2gÞ
ð4�Þ2cgðcf þ cgÞ2

�
2

�

�
;

Zf ¼ 1� 2C2ðNÞg2ðc2g þ c2fÞð2cg þ cfÞ
3ð4�Þ2cfcgðcg þ cfÞ2

�
2

�

�
:

In calculating the gauge boson self-energy �ab

�, one

encounters, in addition to the fermion loop, gauge boson
and ghost loops,

i�ab

� ¼

�
�i

5C2ðGÞg2
3ð4�Þ2cg

ðP
P� � P 2	
�Þ

þ i
4CðNÞg2c
�c��

3cf
ðP�P� � 	��P2Þ

�
�ab

�
2

�

�
;

(36)

where C2ðGÞ ¼ N and CðNÞ ¼ 1=2 are group factors,
P� ¼ ðp0; cg ~pÞ, and P� ¼ ðp0=cf; ~pÞ. As in QED, the

infinities can be absorbed into the counterterm
Aa
�rM

��Aa
�r, where M�� are given in Eq. (29). Hence,

we find

ZA ¼ 1þ
�
� 4CðNÞg2

3ð4�Þ2cf
þ 5C2ðGÞg2

3ð4�Þ2cg
��

2

�

�
;

ZgB ¼ 1þ
�
� 4CðNÞg2cf

3ð4�Þ2c2g
þ 5C2ðGÞg2

3ð4�Þ2cg
��

2

�

�
:

(37)

Gluon loops will not modify their own propagation speed,
due to the Lorentz-like symmetry of that sector when
considered in isolation. This is visible in the formulas
above. Since �ðcgÞ / ðZgB � ZAÞ, the gauge bosons and

ghost contributions cancel in obtaining �ðcgÞ. Overall, the
� functions read

�ðcgÞ ¼ 4CðNÞg2
3ð4�Þ2

ðc2g � c2fÞ
cfcg

;

�ðcfÞ ¼ 8C2ðNÞg2
3ð4�Þ2

ðcf � cgÞð4c2f þ 3cfcg þ c2gÞ
cgðcf þ cgÞ2

;

(38)

which, apart from group factors, are identical to the QED
case.

VI. EMERGENCE OF LORENTZ SYMMETRY
IN A MIXED SYSTEM

The emergence of a universal Lorentz symmetry in the
above examples is intriguing to explore a more general
setup consisting of multispecies and/or mixing between
fermions, bosons, and gauge fields. Before delving into
the most general case, we derive a general formula that
enables us to calculate the � functions of such complex
systems. This is done in Appendix B.

A. Yukawa-electrodynamics

Now, let us consider the more general case of Yukawa-
electrodynamics. In this theory a fermion couples to a
scalar through Yukawa interaction, and minimally to a
Uð1Þ gauge field. The scalar is neutral under theUð1Þ field.
We assume that the fermion, scalar, and gauge field all
have different speeds of light, cf, cb, and cg, respectively.

This is the simplest generalization of the above cases. The
scalar and gauge field self-energies are identical to their
expressions in Yukawa and QED sections, while the fer-
mion self-energy is the sum of the contributions from the

EMERGENCE OF A UNIVERSAL LIMITING SPEED PHYSICAL REVIEW D 83, 105027 (2011)

105027-5



scalar and gauge field. The calculations of the correspond-
ing Z renormalizations are very straightforward, and can be
obtained directly from the previous two sections. Thus, Z�,

Zb, ZA, and ZgB are given by their expressions in Eqs. (17)

and (27), respectively, while

Zc ¼ 1þ
�
� 2e2ð3c2f � c2gÞ

ð4�Þ2cgðcf þ cgÞ2

� 2g2

ð4�Þ2cbðcb þ cfÞ2
��

2

�

�
;

Zf ¼ 1þ
�
� 2e2ðc2g þ c2fÞð2cg þ cfÞ

3ð4�Þ2cfcgðcg þ cfÞ2

� 2g2ðcf þ 2cbÞ
3ð4�Þ2cfcbðcf þ cbÞ2

��
2

�

�
:

(39)

The relations between the bare and renormalized quantities
are given as before,

cf0 ¼ cfZ
�1
c Zf;

cb0 ¼ cbZ
�1=2
� Z1=2

b ;

cg0 ¼ cgZ
�1=2
A Z1=2

gB :

In order to find the � functions of cb, cf, and cg, we use

Eq. (B11) to find

�cf ¼ cf

�
g
@

@g
þ e

@

@e

�
ð
f � 
c Þ;

�cb ¼ � cbg

2

@

@g
ð
� � 
bÞ;

�cg ¼ � cge

2

@

@e
ð
A � 
gBÞ;

(40)

where Z ¼ 1þ 
ð2=�Þ. Finally, the � functions read

�ðcfÞ ¼
g2ðcf � cbÞ

6�2cbðcf þ cbÞ2

þ 8e2ðcf � cgÞð4c2f þ 3cfcg þ c2gÞ
3ð4�Þ2cgðcg þ cfÞ2

;

�ðcbÞ ¼
g2ðc2b � c2fÞ
8�2c3fcb

;

�ðcgÞ ¼ 4e2

3ð4�Þ2
ðc2g � c2fÞ
cfcg

:

(41)

This is exactly expected: since only fermions can couple to
both scalars and gauge fields, we find that the photon and
scalar speeds of light are identical to those found before,
while the fermion speed gets contributions from both
Yukawa and gauge sectors.

We can see that cf ¼ cb ¼ cg is an IR attractive

fixed line by computing the eigenvalues of the Jacobian
J ¼ ð@�i=@cjÞjcf¼cb¼cg , where i, j ¼ cf, cb, cg,

8<
:0;

ð7g2 þ 12e2Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið7g2 þ 12e2Þ2 � 304g2e2
p

48�2
> 0

9=
;:
(42)

B. The general case

We consider Nf fermions interacting with Nb scalars or

gauge bosons. Although we shall carry out the calculation
in the case of Yukawa interactions, the Abelian and non-
Abelian � functions have the same structure as we pointed
out above.
The general Lagrangian density reads

L ¼ i �c a�
0@0c a � icfa

�c a ~� � ~@c a þ 1
2@0�i@0�i

� 1
2c

2
bi
~@�i � ~@�i � �c aðuiab þ i�5vi

abÞc b�i; (43)

where summation over repeated indices is implied.
Denoting ziab ¼ uab þ ivi

ab and noticing that zi ! ziy, as
we move zi across the vertex � �c c [8], we find

Zc a
¼ 1� 2

ð4�Þ2
X
c;i

ziacz
i�
ca

cbiðcfc þ cbiÞ2
�
2

�

�
;

Zfa ¼ 1� 2

3ð4�Þ2
X
c;i

ziacz
�i
caðcfc þ 2cbiÞ

cfacbiðcfc þ cbiÞ2
�
2

�

�
;

Z�i
¼ 1� 16

ð4�Þ2
X
a;b

ziabz
�i
ba

ðcfa þ cfbÞ3
�
2

�

�
;

Zbi ¼ 1� 8

3ð4�Þ2
X
a;b

ziabz
�i
baðc2fb þ 4cfacfb þ c2faÞ
c2biðcfa þ cfbÞ3

�
2

�

�
:

(44)

Zfa , Zc a
can be read directly from the Yukawa expressions

in Eq. (17), while Z�i
and Zbi are obtained using a series of

integrals similar to those given in Appendix A. Notice that
quantum loops can also generate off-diagonal corrections
Zc ac b

if the couplings ziab contain off-diagonal compo-

nents. These corrections will induce kinetic mixing terms
of the form i
ab

�c a@
0�0c b þ i�ab

�c a@
i�ic b. In Lorentz-

invariant theories, where 
ab ¼ �ab, we can always find a
basis where 
ab ¼ �ab are diagonal by performing
SOðNfÞ rotations. However, in the present case, and since,

in general, 
ab � �ab, we have the freedom to diagonalize
either the time-time or the space-space components.
Diagonalizing the time-time component, and hence work-
ing in a basis where we have canonical kinetic terms, will
always leave space-space mixing terms. We assume that
these terms are always small compared to the diagonal
speeds, i.e. �ab=cfa � 1 for all a, and we ignore their

evolution in the following analysis. The same thing can
also be said about kinetic mixing terms for bosons.
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To be able to use the grand formula (B11) we define

ziab ¼ g3iab; z�iab ¼ g�3iab;

cfa ¼ g1a; cbi ¼ g2i;
(45)

and

Z�i
¼ Z1i; Zbi ¼ Z2i; Zzi

ab
¼ Z3iab;

Zz�i
ab
¼ Z�3iab; Zfa ¼ Z4a; Zc a

¼ Z5a:
(46)

Now, we write (B11) as

��M ¼ 2g�M

X
�N

n�N;�M

X

O

p
Og
O
@
�N

@g
O
; (47)

where the Greek indices run from 1 to 3 and �3, and the
upper case Latin letters run over a and i. The nonzero
values in (47) are n1i0;2i ¼ ��ii0=2, n2i0;2i ¼ �ii0=2,
n4a0;1a ¼ �aa0 , n5a0;1a ¼ ��aa0 , p3;abi ¼ 1=2, and p�3;abi ¼
1=2. Hence, we obtain

�ðcbiÞ¼
8

3ð4�Þ2cbi
X
a;b

ziabz
�i
ba½6c2bi �ðc2fa þ4cfacfb þc2fbÞ�

ðcfa þcfbÞ3
;

�ðcfaÞ¼
4

3ð4�Þ2
X
ib

ziabz
�i
ba½3cfa �cfb �2cbi�
cbiðcfb þcbiÞ2

: (48)

Again, we find in this general setup that cfa ¼ cbi ¼ c

for all i, and a is a fixed line. To study the nature of this line
we perform a perturbation to the system about this line; i.e.
we construct the Jacobian matrix at cfa ¼ cbi ¼ c.

Defining �i
a ¼ ziaaz

�i
aa and �i

a ¼ P
b�az

i
abz

�i
ba we find

JðNfþNbÞ�ðNfþNbÞ ¼
J1Nf�Nf

J2Nf�Nb

J3Nb�Nf
J4Nb�Nb

" #
; (49)

where

J1a;a ¼
P
i
½2�i

a þ 3�i
a�

3ð4�Þ2c3 ;

J1a;c ¼ �
P
i
ziacz

�i
ca

3ð4�Þ2c3 ;

J2a;i ¼
�2½�i

a þ �i
a�

3ð4�Þ2c3 ;

J3i;a ¼
�4½�i

a þ �i
a�

ð4�Þ2c3 ;

J4i;j ¼ �i;j

4
P
a
½�i

a þ �i
a�

ð4�Þ2c3 :

(50)

Although we were not able to diagonalize J analytically,
numerical calculations show that we always have a spec-
trum of positive eigenvalues on the top of a zero mode. In
Fig. 2 we plot the smallest eigenvalue � of J, which
governs the behavior of cfa and cbi , against the number

of fermions Nf for a fixed number of bosons Nb. We find

that � / Nf for large Nf. Hence, the effective running

increases with the number of species as expected.

VII. IMPLICATIONS OF LOGARITHMIC
RUNNING

Let us consider how the differing speeds approach each
other by studying the situation where the speeds are rela-
tively close, but not identical, at some scale ��. We treat
this problem to first order in the speed difference. If we
define the relative speed difference as

	 ¼ cb
cf

� 1; (51)

the generic beta function has the form

�ð	Þ ¼ �
@	

@�
¼ bg2

4�2c3
	þOð	2Þ; (52)

where b is a constant of order unity and where we denote
the common low energy limit as cf 	 cb 	 c.

If the coupling g were to be treated as a constant, this
running could be integrated to yield

	ð�Þ ¼ 	�
�
�

��

�
bg2=4�2c3

: (53)

The rescaling is of power-law form. If the coupling con-
stant is small, the power-law exponent is also small and the
running is slow. However, if the coupling is large (and
constant) the running would be rapid with a power-law
form, leading quickly to a universal speed of light.
However, the coupling itself also runs. For example, the

Yukawa coupling beta function can be integrated to yield

g2ð�Þ
4�c3

¼ 4�g2�
5 logð�2

�2Þ
; (54)
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FIG. 2 (color online). The smallest eigenvalue of J (vertical)
against the number of fermions Nf (horizontal) taking Nb ¼ 1.

The calculations are based on values of ziab between 0 and 1

generated randomly at each Nf. The plot shows that � / Nf for

large Nf.
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with �>�. While this coupling could be large at high
energy, it runs to smaller values at low energy.2 This
produces a quite different form for the running of the
relative speeds. The correct form for the running of 	 is

	ð�Þ ¼ 	�
�logð�2

�2�
Þ

logð�2

�2Þ
�
2b=5 ¼ 	�

�
g2ð�Þ
g2ð��Þ

�
2b=5

: (55)

This implies that the difference in the speeds runs only
logarithmically.

There are tight constraints on the equality of the limiting
velocities for the different particles. For direct measure-
ment of the velocities, we can look at timing accomplished
at high energy accelerators. For example, at CERN LEP,
the electron beam travels at essentially the limiting veloc-
ity, since E=m ¼ � 	 105. The timing of the accelerator
relies on this limiting velocity being the speed of light.
Because the timing of each bunch is recorded within
�50 ns over about 1000 revolutions in the 27 km accel-
erator [9], we estimate that this constrains 	 
 10�7 for
electrons.

However, indirect constraints are more powerful, and
these have been described by Altschul [10]. For ce > c,
energetic electrons traveling faster than the speed of light
will radiate Cherenkov light, losing energy until they move
at only the speed of light. This effect produces a maximum
energy for subluminal motion, which is constrained by the
observation of energetic electrons in astrophysics. For
ce < c, there is a constraint from the cutoff frequency in
synchrotron emission. These constraints are more powerful
than direct measurements because they bound factors of

�c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2e=c

2
p 	 1=

ffiffiffiffi
	

p
rather than the linear bounds

on 	 from the velocity measurements. Altschul’s bounds
are j	j & 10�14.

In order to achieve this close equality of the different
speeds with logarithmic running, the running needs to
occur over an exponentially large energy range. For ex-
ample, even if we take 	� � 10�1 and �=�� � 2 (which
barely allows perturbation theory to be used near the
energy ��), we would need logð�=meÞ � 1013, where we
have generously used me as the low energy scale. This
clearly poses a problem for model building.

VIII. EMERGENT LORENTZ SYMMETRY:
TOWARD MODEL BUILDING

In any realistic model of emergence without an intrinsic
Lorentz invariance, we do not expect the different species
to emerge with the same limiting speed. In the above
sections we showed that there is a potential mechanism

to overcome this problem in a class of models whenever we
run the renormalization group down to lower energies.
However, we found that the speeds of light are forced to
run logarithmically along with the running coupling con-
stants. This is a relatively slow running if we want to meet
the stringent constraints on Lorentz violations without
having to fine-tune the speeds at the UV. In this section,
we propose a way out of this situation.
In order to increase the effect of RG running, there are

two options. One is to keep the coupling constant large and
unchanged with energy scale. Such a nearly conformal
theory would convert logarithmic running into power-law
running, as we saw in the last section. We also need the
large coupling such that the exponent is large. Such theo-
ries are under active investigation [11] in the context of
‘‘walking technicolor,’’ where slowly running but strongly
interacting theories are used to provide dynamical breaking
of the electroweak theory while not producing excessive
flavor changing processes. Should walking technicolor
theories prove successful, it would be quite interesting to
tie those results with the idea of an emergent limiting
velocity. The other option is if there are a very large
number of fields of different scales, such that the running
is increased by a large (and energy dependent) factor. We
explore this option below.
We introduce a large number Nf of hidden fermions in

addition to the SM ones [12]. Moreover, we assume that all
these fermions (hidden and SM) have the same origin, and
hence all have the same initial speed of light 1þ cf� , withjcf� j � 1, at some UVemergence scale ��. As a warm-up

calculation, we assume that the fermions have a common
initial charge e� under a single Uð1Þ gauge sector. The
gauge photon emerges with some initial speed 1þ cg� ,

with jcg� j � 1, that is different from the speed of fermions.

At the UV scale the fermions are taken to be massless and
hence will participate in the running of the gauge coupling
as well as photon and fermions speeds. As we run down our
RG equations, some of the hidden fermions become mas-
sive and decouple from the RG equations. We model the
dependence on the mass scale using a power law,

Nfð�Þ ¼ �f

�
�

Mf

�

f

; (56)

where �f and 
f are positive constants, and Mf is an IR

mass scale.3 Since the fermions have a common initial
speed and a common initial coupling strength, the evolu-
tion of the system can be modeled with a single cf and e

common to all fermions. Therefore, to one-loop order we
have

2Clearly, for the running coupling in Yang-Mills theory, the
coupling is small at high energies and becomes large only at low
energy. However, the essential point is the same—that the
coupling constant does not remain large at all energy scales.

3This exact behavior is also exhibited in models of large extra
dimensions where the Kaluza-Klein modes (from the 4D point of
view) obey a power law as in Eq. (56) [13]. In this context,Mf is
the lowest Kaluza-Klein mode Mf � 1=L, where L is the size of
the extra dimension, and 
 ¼ d is the number of extra
dimensions.
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�
de

d�
¼ e3

12�2
Nfð�Þ; �

dcf
d�

¼ e2ðcf � cgÞ
3�2

;

�
dcg
d�

¼ e2ðcg � cfÞ
6�2

Nfð�Þ: (57)

Integrating this system yields the running charge

e2ð�Þ ¼ e2�
1þ e2��f

6�2
f
½ð��
Mf
Þ
f � ð �Mf

Þ
f �
; (58)

and speeds

cgð�Þ � cfð�Þ
cg� � cf�

¼ e2ð�Þ
e2�

��
e2ð�Þ
e2�

��
�

��

�

f
�
e2ð0Þ=3�2
f

	 e2ð�Þ
e2�

: (59)

Hence, we see that both eð�Þ and cgð�Þ � cfð�Þ experi-
ence power-law running with IR values given by

cgð0Þ � cfð0Þ
cg� � cf�

	 e2ð0Þ
e2�

	 6�2
f

e2��f

�
M

��

�

f

: (60)

Therefore, we can choose ��=M� 1014=
f in order to
meet the stringent requirement 	� 10�14. However, tak-
ing e2� & 1, so that we can trust our perturbation theory
weakens the coupling strength to values �10�14. This is
way below any interesting phenomenology.

In order to cure this problem, we introduce a large
number of hidden Uð1Þ sectors in addition to the SM
Uð1Þhyp. We also assume that all these gauge sectors

emerge with the same initial speed of light. In addition,
we take all fermions to be charged under the different
Uð1Þ’s with the same initial charge. As in the case of
fermions, we assume that the hidden Uð1Þ’s are massless
at the UV scale; then they become massive and decouple as
we run down the RG equations. Hence, the gauge sector
obeys the scale-dependent relation

Ngð�Þ ¼ �g

�
�

Mg

�

g

: (61)

Under these assumptions the second equation in (57) is
replaced by

�
dcf
d�

¼ e2ðcf � cgÞ
3�2

Ngð�Þ: (62)

The solution of eð�Þ is still given by Eq. (58), while that of
cgð�Þ � cfð�Þ can be expressed in terms of the hyper-

geometric function. Instead, we numerically integrate our
system, setting appropriate values of the parameters 
f,


g, �f, and �g. From Fig. 3 we see that introducing many

copies of Uð1Þ’s achieves power-law suppression of 	 in a

very short interval. Since the many Uð1Þ’s do not over-
whelm the evolution of e, we can still get reasonable
coupling strength in the IR.
To understand the choice of parameters used in the

simulation in Fig. 3, it is instructive to calculate the total
number of fermions and gauge fields as seen in the UV.
Using Eqs. (56) and (61), and the numerical coefficients
given in Fig. 3 (take 
g ¼ 2), we find Ng 	 109 and

Nf 	 6, which explains the above findings (we check our

perturbative results below). Because the RG flow of e is
enhanced only by a few fermionic species, the coupling
constant runs only logarithmically, while the huge number
of gauge fields that participate in the RG equation of
speeds force the running of cg � cf to be extremely fast.

Because the freezing of the speeds sets in almost imme-
diately, we can try to replace the power-law numbers in
Eqs. (56) and (61) by constant numbers. The idea is that we
just need to have Ng � Nf * 1 for a short interval until

the speeds freeze to their desired values. Then, we can
immediately integrate the RG equations to find

e2ð�Þ ¼ e2�
1þ Nfe

2�
6�2 logð��

� Þ
;

cgð�Þ � cfð�Þ
cg� � cf�

ffi
�
e2ð�Þ
e2�

�
2Ng=Nf

:

(63)

At this point, one must make sure that higher loop correc-
tions are suppressed; otherwise our perturbative expansion
breaks down. Including the multiloop polarization graphs,

e

2 4 6 8 10 12 14

10 13

10 10

10 7

10 4

0.1

FIG. 3 (color online). Numerical simulation of the running of
the charge e, and ratio 	 ¼ 1� cf=cg. The horizontal axis is in

units of logð�=MfÞ. We take Mg ¼ Mf ¼ 1, �g ¼ 10�3,

�f ¼ 5, 
f ¼ 10�2, ��=Mf ¼ 106, and 
g ¼ 1, 1.2, and 2 for

the dashed, dot-dashed, and continuous lines, respectively. We
also use the initial conditions cf� ¼ 0:6, cg� ¼ 0:3, and e� ¼ 0:5.

The running of e is logarithmic, while the running of 	 is power
law. Very small values of 	 are achieved in a very short interval
of running as we increase 
g, i.e. as we increase the number of

gauge sectors. We also note that for 
g ¼ 2 the value of 	 is

saturated by the error tolerance of the code. More powerful
computations may give smaller values.
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and assuming Ng � Nf * 1, we find that the RG running

of the electric charge will be given by

�
de

d�
¼ e

�
4

3
Nf

e2

ð4�Þ2 þ C2NgNf

�
e2

ð4�Þ2
�
2

þ C3N2
gN

2
f

�
e2

ð4�Þ2
�
3 þ � � �

�
; (64)

where C2 and C3 are, respectively, the two-loop and three-
loop numerical coefficients, and the dots represent higher
order corrections.4 These corrections continue the same
trend as the lowest order ones. Hence, the perturbative
expansion can be trusted as long as NgNf < 16�2=e2.

We explored the parameter space, Nf and Ng, searching

for the parameters that would allow the use of perturbation
theory and, at the same time, give 	< 10�14. We found
that ��=�IR 	 500 is a threshold value under which no
parameters exist. In Fig. 4 we show the allowed parameter
space (number of species) for ��=�IR ¼ 103 and 1016. We
see that the condition for validity of perturbation theory
puts a severe constraint on the number of fermions. This
constraint may be relaxed if we notice that the condition
NfNg < 16�2=e2 is important mostly at the initial run,

when e is relatively large. However, once e runs down

the scale, for example, by means of nonperturbative
RG treatment, the above condition may be satisfied with
Nf �Oð10Þ even for ��=�IR & 102. So, as long as the

nonperturbative result does not change the overall trend
dramatically, fast running would be expected to still be
obtained even if the perturbative analysis is not reliable in
detail.
Assuming that the masses of the hidden sectors are

larger than �IR, these masses decouple below �IR and
drop from the RG equations. Therefore, one needs only a
constant large number of copies, Ng � 1 and Nf * 1, to

accomplish the emergence of an IR Lorentz-invariant fixed
point in a relatively short interval of running. Moreover
choosing the ratio Ng=Nf � 1, we can meet the stringent

constraints on the parameter 	. This opens up the possi-
bility that many copies of hidden sectors may suppress
Lorentz-violating effects already present at the TeV scale.

IX. DISCUSSION

Achieving a universal speed of light is a challenge for
theories which do not postulate a fundamental Lorentz
symmetry. This problem is visible in known emergence
models [1] and also in Horava-Lifshitz gravity [2]. For
emergent gauge fields, the Weinberg-Witten theorem [7]
suggests that this will be a continual challenge, as a
Lorentz-noninvariant initial theory may be required.

1.00 1.05 1.10 1.15 1.20

1300

1400

1500

1600

1700

1 2 3 4 5 6

500

1000

1500

FIG. 4 (color online). The allowed parameter space (number of species) for ��=�IR ¼ 103 (left panel) and 1016 (right panel). The
horizontal and vertical axes are, respectively, Nf and Ng. We take e2IR=4� 	 1=129, and then we solve for e� from the first formula in

Eq. (63). In all cases we check that e2� < 4� so we can trust our perturbation theory even in the UV. The red region is the intersection

between the yellow and green areas. The green (upper) region represents the parameters that satisfy 	 ffi j cgð�IRÞ�cfð�IRÞ
cg��cf�

j ffi
ðe2IR
e2�
Þ2Ng=Nf < 10�14, while parameters in the yellow (lower) region ensure the validity of perturbation theory, i.e. NfNg < 16�2=e2�.

4In fact, at three loops, there are both N2
gNf and N2

gN
2
f terms.

The later dominate for Nf * 1.
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We have shown through several examples that a com-
mon limiting velocity can be emergent at low energies even
if the original high energy theory involves fields satisfying
the wave equation with different velocities. There is a
heuristic rationale for this in that, since fields can transform
into each other through interactions, the endpoint where all
the fields travel in unison is preferred. The renormalization
group treatment indeed produces this outcome.

Because the running is only logarithmic for simple
systems, it would take an exponentially large amount of
running in order that the limiting velocities be close
enough to agree with experiment. We addressed the phe-
nomenological constraints in Sec. VII. However, power-
law running is also possible if the coupling is large and
constant, or if there are a very large number of interacting
degrees of freedom. We have reported on a model with this
latter property.

It is important to note that not all forms of Lorentz
violation disappear at low energies. The renormalization
of a general parametrization of Lorentz violation of QED
has been studied in Ref. [6], and some operators that grow
at low energy are found. A well-behaved emergent theory
must avoid those operators.

The running of the limiting velocities only happens due
to the interactions that couple one type of particle to
another. This implies that the running will be weakest if
the coupling is weak. At low energies the gravitational
coupling is by far the weakest of all the fundamental
forces. This implies that the most plausible velocity differ-
ence would be that of gravity. While there have been some
claims that the speed of gravity has been indirectly mea-
sured [14], the consensus appears to be that there is no
experimental constraint on the speed of gravity [15].
However, indirectly there is a stringent limit at the 10�15

level on the difference of the speeds of gravity and that of
light from gravitational Cherenkov radiation [16] which is
valid if the speed of gravity is less than that of light. Future
experiments with gravitational wave detectors provide the
best opportunity to measure or constrain the difference if
the speed of gravity is greater than that of light.
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APPENDIX A: USEFUL INTEGRALS

In this appendix we work out the details of the integrals

I0 and ~I appearing in Eq. (8). These integrals are given by

I0 ¼
Z dk0

2�
k0

Z d ~k

ð2�Þ3
1

ðk0Þ2 � ~k2

� 1

ðp0=cb � cfk
0=cbÞ2 � ð ~k� ~pÞ2 (A1)

and

~I ¼
Z dk0

2�

Z d ~k

ð2�Þ3
~k

ðk0Þ2 � ~k2

� 1

ðp0=cb � cfk
0=cbÞ2 � ð ~k� ~pÞ2 : (A2)

To perform the integral I0, we first use the Feynman trick to
find

I0 ¼
Z dk0

2�
k0

Z d ~k

ð2�Þ3
Z 1

0
dx

1

ð ~k2 � �2Þ2 ; (A3)

where �2 ¼ �xð1� xÞ ~p2 þ xðk0Þ2 þ ð1� xÞ�
ðp0=cb � cfk

0=cbÞ2. Next, we interchange the integrals

dx and d ~k and perform the integral over d ~k to find

I0 ¼ � i

ð4�Þ3=2 �
�
1

2

�Z dk0

2�
k0

Z 1

0
dx

1ffiffiffiffiffiffi
�2

p : (A4)

Further, we exchange the integrals dx and dk0, and rear-
range the integrands to find

I0 ¼ � i

ð4�Þ3=2 �
�
1

2

�Z 1

0
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� c2f=c

2
bÞ þ c2f=c

2
b

q
�

Z dk0

2�

k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ 2k0R0 �M2

q ; (A5)

where

R0 ¼ � ð1� xÞp0cf=c
2
b

xð1� c2f=c
2
bÞ þ c2f=c

2
b

;

M2 ¼ �xð1� xÞ ~p2 þ ð1� xÞðp0Þ2=c2b
xð1� c2f=c

2
bÞ þ c2f=c

2
b

:

(A6)

Then, we perform the integral over dk0, after analytically
continuing from 1 to d ¼ 1� � dimensions, to obtain

I0¼ i

ð4�Þ2
cf

c2b
p0

Z 1

0
dx

ð1�xÞ1��=2ð�1Þ��=2

½xð1�c2f=c
2
bÞþc2f=c

2
b�3=2��

� �ð�=2Þ
��=2½xðp0Þ2=c2b�xðxþð1�xÞc2f=c2bÞ��=2

: (A7)

Finally, we find
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I0 ¼ ip0

ð4�Þ2
2cb

c2fð1þ aÞ2
�
2

�
þ finite

�
; (A8)

where a ¼ cb=cf. Similarly, we can show

~I ¼ i ~p

ð4�Þ2
2að1þ 2aÞ
3ð1þ aÞ2

�
2

�
þ finite

�
: (A9)

The vertex correction in Eq. (11) results in the integral

�igG ¼ g3

cfc
2
b

Z dK0

2�

Z d ~K

ð2�Þ3
ðK0Þ2 � ~K2

c2fðK0Þ2=c2b � ~K2

� 1

½ðP0
1 � K0Þ2 � ð ~P1 � ~KÞ2�

� 1

½ðP0
2 � K0Þ2 � ð ~P2 � ~KÞ2� : (A10)

Next, we use the Feynman trick to get

� igG ¼ 2g3

cfc
2
b

Z dK0

2�

Z d ~K

ð2�Þ3 ð
~K2 � ðK0Þ2Þ

�
Z 1

0
dx

Z 1�x

0
dy

1

½ ~K2 � �2�3 ; (A11)

where

�2 ¼ ½1þ yð�1þ c2f=c
2
bÞ�ðK0Þ2 � 2½ð1� x� yÞP0

1

þ P0
2x�K0 þ ½ð1� x� yÞ ~P1 þ x ~P2�2

þ ð1� x� yÞP2
1 þ xP2

2: (A12)

Then, proceeding as we did before, we finally obtain the
result in Eq. (12).

APPENDIX B: A GENERAL SETUP TO
CALCULATE THE � FUNCTIONS

We assume that the parameter space is spanned by gi, i,
j ¼ 1; 2; . . . ; C couplings (these could be coupling
strengths as well as speeds). Quantum loops will generate
Zm, m, l ¼ 1; 2; . . . ; D corrections to the original
Lagrangian, and we restrict our treatment to one-loop
order. In general, we may write

gi0 ¼ gið�Þ YD
m¼1

Z
nm;i
m ð�Þ��pi : (B1)

Taking the derivative of (B1) with respect to � we obtain

g0ið�Þ YD
m¼1

Z
nm;i
m ð�Þ��pi þ gið�ÞXD

l¼1

nl;iZ
0
lð�Þ

� YD
m�l

Z
nm;i
m ð�Þ��pi þ gið�Þ�pi

� YD
m¼1

Z
nm;i
m ð�Þ��pi�1 ¼ 0: (B2)

Writing Zmð�Þ ¼ 1þ 
mð�Þ 2� we find Z0
lð�Þ ¼ 2

� �P
C
j¼1

@
l

@gj
g0jð�Þ. Also, using the definition �ið�Þ �

�@gið�Þ
@� , Eq. (B2) becomes

�ið�Þ YD
m¼1

�
1þ 2

�

mð�Þ

�
nm;i þ gið�Þ

�XD
l¼1

XC
j¼1

2

�
nl;i

@
l

@gj
�jð�ÞYD

m�l

Z
nm;i
m ð�Þ

þ gið�Þpi�
YD
m

�
1þ 2

�

mð�Þ

�
nm;i ¼ 0: (B3)

Since we are only interested in one-loop corrections, we
can ignore all Oð1=�2Þ terms. Hence, Eq. (B3) reads

�ið�Þ
�
1þ 2

�

XD
m¼1


mð�Þnm;i

�
þ 2

�
gið�ÞXD

l¼1

XC
j¼1

nl;i�jð�Þ

� @
l

@gj
þ gið�Þpi�

�
1þ 2

�

XD
m¼1


mð�Þnm;i

�
¼ 0: (B4)

Now, we can rewrite Eq. (B4) in the following simple
expression:

�ið�Þ
�
1þ 2

�
Aið�Þ

�
þ 2

�

XC
j�i

Cijð�Þ�jð�Þ

¼ �gið�Þpi

�
�þ 2

XD
m¼1


mð�Þnm;i

�
; (B5)

where

Aið�Þ ¼ XD
m¼1

�

mð�Þ þ gið�Þ@
m

@gi

�
nm;i;

Cijð�Þ ¼ gið�Þ XD
m¼1

@
m

@gj
nm;i:

(B6)

Equation (B5) can also be written in the matrix form

M
$ ð�Þ ~�ð�Þ ¼ �gp

!
�
�þ 2

XD
m¼1


mnm;i

�
; (B7)

where
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M
$ ð�Þ ¼

1þ 2
�A1

2
� C12 . . . 2

� C1C
2
� C21 1þ 2

�A2 . . . 2
� C2C

. . . . . . . . . . . .
2
� CC1

2
� CC2 . . . 1þ 2

�AC

0
BBB@

1
CCCA:
(B8)

The inverse of M
$ ð�Þ is given by

M
$ �1ð�Þ ¼

1� 2
�A1 � 2

� C12 . . . � 2
� C1C

� 2
� C21 1� 2

�A2 . . . � 2
� C2C

. . . . . . . . . . . .

� 2
� CC1 � 2

� CC2 . . . 1� 2
�AC

0
BBBBB@

1
CCCCCA

þO
�
1

�2

�
: (B9)

Hence, solving for ~� from (B7) we obtain

�i ¼ 2gipi

�
Ai �

XD
m¼1


mnm;i

�
þ 2

XC
j�i

Cijgjpj: (B10)

Finally, we rearrange the terms to find

�i ¼ 2gi
XD
m¼1

nm;i

XC
j¼1

pjgj
@
m

@gj
: (B11)
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