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We investigate the fermionic condensate and the vacuum expectation value of the energy-momentum

tensor for a massive fermionic field in the geometry of two parallel plates on the background of

Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions, in the

presence of a constant gauge field. Bag boundary conditions are imposed on the plates and periodicity

conditions with arbitrary phases are considered along the compact dimensions. The nontrivial topology of

the background spacetime leads to an Aharonov-Bohm effect for the vacuum expectation values induced

by the gauge field. The fermionic condensate and the expectation value of the energy-momentum tensor

are periodic functions of the magnetic flux with period equal to the flux quantum. The boundary induced

parts in the fermionic condensate and the vacuum energy density are negative, with independence of the

phases in the periodicity conditions and of the value of the gauge potential. Interaction forces between the

plates are thus always attractive. However, in physical situations where the quantum field is confined to

the region between the plates, the pure topological part contributes as well, and then the resulting force

can be either attractive or repulsive, depending on the specific phases encoded in the periodicity

conditions along the compact dimensions, and on the gauge potential, too. Applications of the general

formulas to cylindrical carbon nanotubes are considered, within the framework of a Dirac-like theory for

the electronic states in graphene. In the absence of a magnetic flux, the energy density for semiconducting

nanotubes is always negative. For metallic nanotubes the energy density is positive for long tubes and

negative for short ones. The resulting Casimir forces acting on the edges of the nanotube are attractive for

short tubes with independence of the tube chirality. The sign of the force for long nanotubes can be

controlled by tuning the magnetic flux. This opens the way to the design of efficient actuators driven by

the Casimir force at the nanoscale.
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I. INTRODUCTION

In a good number of problems one needs to consider a
physical model on the background of some manifold with
compactified spatial dimensions. Many high-energy theo-
ries of fundamental physics are formulated in a higher-
dimensional spacetime and it is commonly assumed that
the extra dimensions are compactified. In particular, addi-
tional compact dimensions have been extensively used in
supergravity and superstring theories. From the inflation-
ary point of view, universes with compact dimensions,
under certain conditions, should be considered a rule rather
than an exception [1]. Models of a compact universe with
nontrivial topology may play an important role by provid-
ing proper initial conditions for inflation. There has been a
large activity to search for signatures of nontrivial topology
by identifying ghost images of galaxies, clusters or qua-
sars. Recent progress in observations of the cosmic micro-
wave background provides an alternative way to observe
the topology of the Universe. An interesting application of

the field theoretical models with compact dimensions re-
cently appeared in nanophysics [2]. The long-wavelength
description of the electronic states in graphene can be
formulated in terms of the Dirac-like theory in three-
dimensional spacetime with the Fermi velocity playing
the role of speed of light (see, e.g., Refs. [3,4]). Single-
walled carbon nanotubes are generated by rolling up a
graphene sheet to form a cylinder and the background
spacetime for the corresponding Dirac-like theory has
topology R2 � S1. For another class of graphene-made
structures, called toroidal carbon nanotubes, one has as
background topology R1 � ðS1Þ2.
The boundary conditions imposed on fields along com-

pact dimensions give rise to a modification of the spectrum
of the vacuum fluctuations and, as a result, to Casimir-type
contributions in the vacuum expectation values (VEVs) of
physical observables (for the topological Casimir effect
and its role in cosmology see [5] and references therein).
In models of Kaluza-Klein type, the Casimir effect has
been used as a stabilization mechanism for moduli fields
and as a source for dynamical compactification of the
extra dimensions, in particular, for quantum Kaluza-Klein*Also at Tomsk State Pedagogical University, Tomsk
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gravity (see Ref. [6]). The Casimir energy can also serve as
a model for dark energy needed for the explanation of the
present accelerated expansion of the universe (see [7] and
references therein). In addition, recent measurements of
the Casimir forces between macroscopic bodies provide a
sensitive test for constraining the parameters of long-range
interactions, as predicted by modern unification theories of
fundamental interactions [8]. The influence of extra com-
pactified dimensions on the Casimir effect in the classical
configuration of two parallel plates has been recently dis-
cussed in [9], for the case of a scalar field, and in [10], for
the electromagnetic field with perfectly conducting bound-
ary conditions.

More recently, interest has been focussed on the topic of
the Casimir effect in braneworld models with large extra
dimensions. This type of models (for a review see [11])
naturally appear in the string/M theory context and they
provide a novel setup for discussing phenomenological
and cosmological issues related with extra dimensions. In
braneworld models the investigation of quantum effects is
of considerable phenomenological value, both in particle
physics and in cosmology. The braneworld corresponds to
a manifold with boundaries and the bulk fields will give
Casimir-type contributions to the vacuum energy and, as a
result, to the vacuum forces acting on the branes. The
Casimir forces provide a natural mechanism for stabilizing
the radion field in the Randall-Sundrum model, as required
for a complete solution of the hierarchy problem. In addi-
tion, the Casimir energy gives a contribution to both the
brane and the bulk cosmological constants. Hence, it has to
be taken into account in any self-consistent formulation of
the braneworld dynamics. The Casimir energy and corre-
sponding Casimir forces within the framework of the
Randall-Sundrum braneworld [12] have been evaluated in
Ref. [13] by using both dimensional and zeta function
regularization methods. Local Casimir densities were
considered in Ref. [14]. The Casimir effect in higher-
dimensional generalizations of the Randall-Sundrum
model with compact internal spaces has been investigated
in [15].

In the present paper we will study the fermionic con-
densate, the Casimir energy density and the vacuum
stresses for a massive fermion field in the geometry of
two parallel plates on a spacetime with an arbitrary number
of toroidally compactified spatial dimensions. We will
impose generalized periodicity conditions along the com-
pact dimensions with arbitrary phases and MIT bag bound-
ary conditions on the plates. The presence of a constant
gauge field will be assumed as well. Though the corre-
sponding field strength vanishes, the nontrivial topology of
the background spacetime leads to Aharonov-Bohm-like
effects on the vacuum expectation values. The total
Casimir energy in the geometry under consideration has
been discussed in Ref. [16], in the absence of a gauge field.
The investigation of local physical characteristics in the

Casimir effect, such as the expectation value of the energy-
momentum tensor and the fermionic condensate, is of
considerable interest. Indeed, local quantities contain
more information on the vacuum fluctuations than global
ones. In addition to describing the physical structure of
the quantum field at a given point, the energy-momentum
tensor acts as the source in Einstein’s equations and,
therefore, it plays an important role in modeling a self-
consistent dynamics which involves the gravitational field.
The fermionic condensate plays an important role in the
models of dynamical chiral symmetry breaking (see review
in [17] for chiral symmetry breaking in the Nambu-Jona-
Lasino and Gross-Neveu models on the background of a
curved spacetime with nontrivial topology and [18] for
very recent developments).
The fermion Casimir energy for two parallel plates in

four-dimensional Minkowski spacetime with trivial topol-
ogy has been considered in [19], for a massless field, and
in [20] in the massive case. For arbitrary number of
dimensions, the corresponding results are generalized in
Refs. [21,22] for the massless and massive cases, respec-
tively. The fermionic condensate for a massless field has
been considered in Ref. [23]. The Casimir problem for
fermions coupled to a static background field in one spatial
dimension is investigated in [24]. The interaction energy
density and the corresponding force are computed in the
limit that the background becomes concentrated at two
points. The fermionic Casimir effect for parallel plates
with imperfect bag boundary conditions modeled by
�-like potentials is studied in [25]. The topological
Casimir effect and the vacuum expectation value of the
fermionic current for a massive fermionic field in a space-
time with an arbitrary number of toroidally compactified
spatial dimensions have been considered in [26,27].
The paper is organized as follows. In the next section,

we specify the eigenfunctions and the eigenmodes for the
Dirac equation in the region between the plates assuming
bag boundary conditions on them. The fermionic conden-
sate in this region is considered in Sec. III. By using an
Abel-Plana-type summation formula, we express the
condensate as the sum of a pure topological, single plate
contribution and interference parts. Various limiting cases
are then considered. The vacuum expectation value of
the energy-momentum tensor is investigated in Sec. IV.
A generalization for a conformally flat background
spacetime is given. In Sec. V we study applications
of the general formulas to the Casimir effect for electrons
in a carbon nanotube, within the framework of a three-
dimensional Dirac-like model. The main results of the
paper are summarized in Sec. VI.

II. FERMIONIC EIGENFUNCTIONS

Consider a spinor field, c , propagating on a
(Dþ 1)-dimensional flat spacetime with spatial topo-
logy Rpþ1 � ðS1Þq, pþ qþ 1 ¼ D. We will denote by
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zpþ1 ¼ ðz1; . . . ; zpþ1 � zÞ and zq ¼ ðzpþ2; . . . ; zDÞ the

Cartesian coordinates along the uncompactified and the
compactified dimensions, respectively. For these co-
ordinates we have �1< zl <1, l ¼ 1; . . . ; pþ 1, and
0 � zl � Ll for l ¼ pþ 2; . . . ; D, with Ll being the length
of the l-th compact dimension. We assume that along the
compactified dimensions the field obeys quasiperiodic
boundary conditions

c ðt; zpþ1; zq þ LlelÞ ¼ e2�i�lc ðt; zpþ1; zqÞ; (2.1)

with constant phases j�lj � 1=2 and el is the unit vector
along the direction of the coordinate zl, l ¼ pþ 2; . . . ; D.
Condition (2.1) includes the periodicity conditions for
both untwisted and twisted fermionic fields as special cases
with �l ¼ 0 and �l ¼ 1=2, respectively. The special cases
�l ¼ 0, �1=3 are realized in nanotubes.

In this paper we are interested in the fermionic con-
densate and in the VEV of the energy-momentum tensor
induced by two parallel plates located at z ¼ 0 and z ¼ a.
On the boundaries the field obeys MIT bag boundary
conditions

ð1þ i��n�Þc ¼ 0; z ¼ 0; a; (2.2)

with �� being the Dirac matrices and n� the outward

oriented (with respect to the region under consideration)
normal to the boundary. Note that from the condi-
tions (2.2) it follows that, on the boundaries, �c c ¼ 0
and n� �c��c ¼ 0, where �c ¼ c y�0 is the Dirac adjoint

and the dagger denotes Hermitian conjugation. In the
discussion below the calculations will be done for the
region between the plates, 0< z < a, where we have

n� ¼ ��pþ1
� at z ¼ 0 and n� ¼ �pþ1

� at z ¼ a. The ex-

pressions for the VEVs in the regions z < 0 and z > a are
obtained as limiting cases.

The dynamics of the massive spinor field is governed by
the Dirac equation

i��@�c �mc ¼ 0: (2.3)

In the (Dþ 1)-dimensional spacetime, the Dirac matrices

are ND � ND matrices with ND ¼ 2½ðDþ1Þ=2�, where the
square brackets mean integer part of the enclosed
expression. We will take these matrices in the Dirac
representation

�0 ¼ 1 0
0 �1

� �
; �� ¼ 0 ��

��þ
� 0

� �
;

� ¼ 1; 2; . . . ; D:

(2.4)

From the anticommutation relations for the Dirac
matrices one has ���

þ
� þ ���

þ
� ¼ 2���. In the case

D ¼ 2 we have ND ¼ 2 and the Dirac matrices are �� ¼
ð�P3; i�P1; i�P2Þ, with �P� being the 2� 2 Pauli matrices.

The boundary conditions (2.1) and (2.2) lead to the
modification of the spectrum for vacuum fluctuations of
the fermionic field and, as a result, to the topological and

boundary induced Casimir effects on the VEVs of physical
observables. For the evaluation of the VEVs we need
the complete set of positive- and negative-energy solutions
to the Dirac equation satisfying the boundary condi-
tions (2.2). The dependence on the coordinates parallel
to the plates, zk ¼ ðz1; . . . ; zp; zpþ2; . . . ; zDÞ, can be pre-

sented in the standard exponential form expðikk � zkÞ, with
kk ¼ðkp;kqÞ and kp ¼ ðk1; . . . ; kpÞ, kq ¼ ðkpþ2; . . . ; kDÞ.
The eigenvalues for the components of the wave vector
along the compactified dimensions are determined from
the periodicity conditions (2.1):

k q ¼ ð2�ðnpþ2 þ �pþ2Þ=Lpþ2; . . . ; 2�ðnD þ �DÞ=LDÞ;
(2.5)

with npþ2; . . . ; nD ¼ 0;�1;�2; . . . . For the components

along the uncompactified dimensions one has �1<
kl <1, l ¼ 1; . . . ; p. The corresponding positive- and
negative-energy eigenspinors have the form

c ðþÞ
� ¼ A�e

�i!t
’

�i�þ � r’=ð!þmÞ

 !
;

c ð�Þ
� ¼ A�e

i!t
i� � r	=ð!þmÞ

	

 !
;

(2.6)

where � ¼ ð�1; . . . ; �DÞ, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2pþ1 þ k2

q þm2
q

and � is the collective index for the set of quantum
numbers specifying the solutions (see below). The spinors
in (2.6) are given by the expressions

’ ¼ eikk�zk ð’þeikpþ1z þ ’�e�ikpþ1zÞ;
	 ¼ e�ikk�zk ð	þeikpþ1z þ 	�e�ikpþ1zÞ:

(2.7)

From the boundary condition (2.2) on the plate at z ¼ 0
we find the following relations between the spinors in (2.7):

’þ ¼ �mð!þmÞ þ k2pþ1 � kpþ1�pþ1�
þ
k � kk

ðm� ikpþ1Þð!þmÞ ’�;

	� ¼ �mð!þmÞ þ k2pþ1 � kpþ1�
þ
pþ1�k � kk

ðmþ ikpþ1Þð!þmÞ 	þ;

(2.8)

where �k ¼ ð�1; . . . ; �p; �pþ2; . . . ; �DÞ. We will assume

that they are normalized in accordance with ’þ�’� ¼
	þþ	þ ¼ 1. As a set of independent spinors we will take

’� ¼ wð�Þ and 	þ ¼ wð�Þ0, wherewð�Þ,� ¼ 1; . . . ; ND=2,
are one-column matrices having ND=2 rows with the

elements wð�Þ
l ¼ �l�, and wð�Þ0 ¼ iwð�Þ. Now the set of

quantum numbers specifying the eigenfunctions (2.6) is
� ¼ ðk; �Þ. From the boundary condition at zpþ1 ¼ a
it follows that the eigenvalues of kpþ1 are roots of the

transcendental equation

ma sinðkpþ1aÞ=ðkpþ1aÞ þ cosðkpþ1aÞ ¼ 0: (2.9)
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All these roots are real. We will denote the positive
solutions of Eq. (2.9) by 
n ¼ kpþ1a, n ¼ 1; 2; . . . . For a

massless field one has 
n ¼ �ðn� 1=2Þ. Note that
Eq. (2.9) does not contain the parameters of the compact
subspace and is the same as in the corresponding problem
on the topologically trivial Minkowski spacetime (see [5]).
Note that this will not be the case in a more general class of
compact subspaces.

The normalization coefficient A� in (2.6) is determined

from the orthonormalization condition

Z
dzk

Z a

0
dzpþ1c ð�Þþ

� c ð�Þ
�0 ¼ ���0 : (2.10)

Here, the symbol ���0 is understood as the Dirac delta

function for continuous indices and the Kronecker delta for
discrete ones. The substitution of the eigenfunctions (2.6)
into this condition leads to the result

A2
� ¼ !þm

4ð2�Þp!aVq

�
1� sinð2kpþ1aÞ

2kpþ1a

��1
; (2.11)

where Vq ¼ Lpþ2 � � �LD is the volume of the compact

subspace.
We can generalize the eigenfunctions given above to

the situation when an external electromagnetic field with
vector potential A� ¼ const is present. In spite of the fact

that the corresponding magnetic field strength vanishes, the
nontrivial topology of the background spacetime leads
to the appearance of an Aharonov-Bohm-like effect for
the physical observables. In particular, the corresponding
VEVs depend on A�. Now the Dirac equation has the form

i��ð@�þ ieA�Þc �mc ¼0 and, by making use the gauge

transformation A�¼A0
�þ@��ðxÞ, c ðxÞ¼ c 0ðxÞe�ie�ðxÞ,

with the function �ðxÞ ¼ A�x
�, we see that the new

function c 0ðxÞ satisfies the Dirac equation with A0
� ¼ 0

and the quasiperiodicity conditions similar to (2.1) with the
replacement

�l ! ~�l ¼ �l þ eAlLl=ð2�Þ: (2.12)

The eigenvalues for the wave-vector components along
compact dimensions are defined by kl ¼ 2�ðnl þ ~�lÞ=Ll

and the corresponding eigenspinors are obtained from
those given above with the replacement (2.12).

III. FERMIONIC CONDENSATE

The fermionic condensate is among the most important
quantities that characterize the properties of the quantum
vacuum. Although the corresponding operator is local,

due to the global nature of the vacuum, this quantity
carries important information about the global properties
of the background spacetime. Having the complete set of
eigenspinors, we can evaluate the fermionic condensate
by using the mode sum

h �c c i ¼ X
�

�c ð�Þ
� ðxÞc ð�Þ

� ðxÞ; (3.1)

where h� � �i stands for VEV. By taking into account the
expression (2.6) for the negative-energy eigenspinors,
the fermionic condensate in the region between the plates
can be expressed as

h �c c i ¼ � ND

aVq

X
nq2Zq

Z dkp

ð2�Þp
X1
n¼1

sinð
nz=aÞ
!a

� ma sinð
nz=aÞ þ 
n cosð
nz=aÞ
1� sinð2
nÞ=ð2
nÞ ; (3.2)

where nq ¼ ðnpþ2; . . . ; nDÞ and

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
n=a

2 þ k2
p þ k2

q þm2
q

: (3.3)

Of course, the expression on the rhs of Eq. (3.2) is diver-
gent. We will assume that some cutoff function is present,
without writing it explicitly.
For the further evaluation of the fermionic condensate

we apply to the sum over n in Eq. (3.2) the Abel-Plana-type
summation formula

X1
n¼1

�fð
nÞ
1�sinð2
nÞ=ð2
nÞ

¼� �mafð0Þ
2ðmaþ1Þþ

Z 1

0
dxfðxÞ� i

Z 1

0
dx

fðixÞ�fð�ixÞ
xþma
x�mae

2xþ1
;

(3.4)

with the function

fðxÞ¼ sinðxz=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þk2

pa
2þm2

nq
a2

q ½masinðxz=aÞþxcosðxz=aÞ�:

(3.5)

Formula (3.4) is a special case of the summation for-
mula derived in Ref. [28] on the basis of the generalized
Abel-Plana formula (see also Ref. [29]). In Eq. (3.5) and
the discussion below we use the notation

m2
nq

¼ k2nq
þm2; k2nq

¼ XD
l¼pþ2

½2�ðnl þ �lÞ=Ll�2:

(3.6)

After the application of formula (3.4), the fermionic con-
densate is split into
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h �c c i ¼ h �c c ið0Þ þ h �c c ið1Þ � 2ND

�Vq

X
nq2Zq

Z dkp

ð2�Þp
Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
pþm2

nq

p dx
sinhðxzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � k2
p �m2

nq

q m sinhðxzÞ þ x coshðxzÞ
xþm
x�m e

2ax þ 1
; (3.7)

where

h �c c ið0Þ ¼ �NDm

2Vq

X
nq2Zq

Z dkpþ1

ð2�Þpþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
pþ1 þm2

nq

q ;

(3.8)

is the fermionic condensate in the topology Rpþ1 � ðS1Þq
when the boundaries are absent. The term

h �c c ið1Þ ¼ � ND

2�Vq

X
nq2Zq

Z dkp

ð2�Þp

�
Z 1

0
dx

x sinð2xzÞ �m cosð2xzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2

p þm2
nq

q (3.9)

is the part induced by the plate at z ¼ 0 when the second
plate is absent. The last term on the right of formula (3.7)
comes from the last term in Eq. (3.4) and it is induced by
the presence of the second plate. Note that this term
vanishes at z ¼ 0.

For points away from the boundaries, the boundary
induced part is finite and the cutoff function in the
corresponding expressions can be safely removed.
Renormalization is needed for the purely topological part
only. The latter has been investigated in Ref. [26] (for the
topological fermionic Casimir effect in de Sitter (dS)
spacetime with toroidally compactified spatial dimensions
see Ref. [30]). By making use of the zeta function tech-
nique, the corresponding renormalized expression is
presented in the form

h �c c ið0Þ ¼ � NDm

ð2�ÞðDþ1Þ=2
X0

nq2Zq

cosð2�nq ��qÞ

�
fðD�1Þ=2ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
pþ2n

2
pþ2 þ � � � þ L2

Dn
2
D

q
Þ

ðL2
pþ2n

2
pþ2 þ � � � þ L2

Dn
2
DÞðD�1Þ=2 ;

(3.10)

with �q ¼ ð�pþ2; . . . ; �DÞ, and
f�ðzÞ ¼ z�K�ðzÞ: (3.11)

The prime on the summation sign in (3.10) means that the
term nq ¼ 0 is excluded from the sum. An alternative

expression for h �c c ið0Þ is obtained in Ref. [26] using the
Abel-Plana summation formula. In the discussion below
we will be concentrated on the boundary induced parts.

For further transformation of the single plate part (3.9),
we write the function in the integrand as

x sinð2xzÞ �m cosð2xzÞ
¼ �1

2½ðmþ ixÞe2ixz þ ðm� ixÞe�2ixz�: (3.12)

In the integral over x in (3.9) we rotate the integration
contour by an angle �=2, for the term with the exponent
e2ixz, and by ��=2, for the term with the exponent e�2ixz.
As a result, we get

h �c c ið1Þ ¼ ND

2�Vq

X
nq2Zq

Z dkp

ð2�Þp

�
Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
pþm2

nq

p dx
ðm� xÞe�2xzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

p �m2
nq

q : (3.13)

It follows from this expression that h �c c ið1Þ is always
negative. By using the relation

Z
dkp

Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
pþm2

nq

p fðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

p �m2
nq

q

¼ �ðpþ1Þ=2

�ððpþ 1Þ=2Þ
Z 1

mnq

dxðx2 �m2
nq
Þðp�1Þ=2fðxÞ; (3.14)

we find

h �c c ið1Þ ¼ ApND

Vq

X
nq2Zq

Z 1

mnq

dxðx2 �m2
nq
Þðp�1Þ=2

� ðm� xÞe�2xz; (3.15)

with the notation

Ap ¼ ð4�Þ�ðpþ1Þ=2

�ððpþ 1Þ=2Þ : (3.16)

The integral in Eq. (3.15) is expressed in terms of the
modified Bessel function of the second type, namely

h �c c ið1Þ ¼ NDð2zÞ�p�1

ð2�Þp=2þ1Vq

X
nq2Zq

½2mzfp=2ð2mnq
zÞ

� fp=2þ1ð2mnq
zÞ�: (3.17)

In the absence of compact dimensions, from Eq. (3.17)
one finds

h �c c ið1Þ
RD ¼ NDð2zÞ�D

ð2�ÞðDþ1Þ=2

�½2mzfðD�1Þ=2ð2mzÞ�fðDþ1Þ=2ð2mzÞ�: (3.18)

Let us consider some limiting cases of the general
formula (3.17). In the limit when the length of one of
the compactified dimensions, say zj, j � pþ 2, is large,
Lj ! 1, the dominant contribution to the sum over nj in

Eq. (3.17) comes from large values of nj and we can

replace the corresponding summation by an integral, with
the help of the relation
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�

Lj

Xþ1

nj¼�1
fð2�jnj þ �jj=LjÞ !

Z 1

0
dyfðyÞ: (3.19)

The integral is evaluated by using the formula

Z 1

0
dyf�ðc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b2

q
Þ ¼ 1

c

ffiffiffiffi
�

2

r
f�þ1=2ðbcÞ;

and we can see that, from Eq. (3.17), the corresponding
formula is obtained for the topology Rpþ2 � ðS1Þq�1.
At small distances from the boundary, z 	 m�1, Ll, the
main contribution to the series in Eq. (3.17) comes from
large values of nl and we can replace the summation by the
integration and to the leading order we find

h �c c ið1Þ 
 �ND�ððDþ 1Þ=2Þ
ð4�ÞðDþ1Þ=2zD

: (3.20)

This leading behavior does not depend on the lengths of
the compact dimensions and, as it is seen from Eq. (3.18),
coincides with boundary induced part of the fermionic
condensate for a single plate in a space with trivial topol-
ogy RD in the case of a massless field.

Now, let us consider the limit Ll 	 z. In this case, and
for �l ¼ 0, the main contribution comes from the zero
mode with nq ¼ 0 and to the leading order we find

h �c c ið1Þ 
 Nð2zÞ�p�1

ð2�Þp=2þ1Vq

½2mzfp=2ð2mzÞ � fp=2þ1ð2mzÞ�:

Comparing with (3.18), we see that the quantity

Vqh �c c ið1Þp;q=ND coincides with the corresponding result

for a plate in topologically trivial ðpþ 1Þ-dimensional
space, Rpþ1. The contribution of the nonzero modes is
exponentially suppressed and, for �l � 0, the zero mode
is absent. Assuming that mz is fixed, to leading order
we have

h �c c ið1Þ ¼ � NDm
pþ1
0 e�2m0z

2Vqð4�m0zÞðpþ1Þ=2 ; (3.21)

where

m2
0 ¼

XD
l¼pþ2

ð2��l=LlÞ2: (3.22)

In this case, the boundary induced part in the fermionic
condensate is exponentially suppressed.
Using (3.14), we can also simplify the expression for

the second plate induced part in Eq. (3.7). Combining with
Eq. (3.15) we find

h �c c i ¼ h �c c ið0Þ � ApND

Vq

X
nq2Zq

Z 1

mnq

dx
ðx2 �m2

nq
Þðp�1Þ=2

xþm
x�m e

2ax þ 1

� ½ðmþ xÞðe2xz þ e2ax�2xzÞ � 2m�; (3.23)

where the second term on the right-hand side (rhs) is
the boundary induced part, which is always negative.
For a massless field, by using the expansion ðey þ 1Þ�1 ¼
�P1

n¼1ð�1Þne�ny, from this formula we find

h �c c i ¼ h �c c ið0Þ þ 2ND

ð4�Þp=2þ1Vq

X
nq2Zq

kp=2þ1
nq

X1
n¼1

ð�1Þn X
j¼1;2

Kp=2þ1ð2knq
ðan� jaj � zjÞÞ

ðan� jaj � zjÞp=2 ; (3.24)

where a1 ¼ 0 and a2 ¼ a and where knq
is defined by

Eq. (3.6). In the case of trivial topology RD, from here
we obtain

h �c c iRD ¼ ND�ððDþ 1Þ=2Þ
ð4�ÞðDþ1Þ=2aD

� X1
n¼1

ð�1Þn
�

1

ðn� z=aÞD þ 1

ðn� 1þ z=aÞD
�
:

(3.25)

The series in these formula are given in terms of the
Hurwitz zeta function. The last expression can be further
simplified, for odd values of D, as

h �c c iRD ¼ �ND�ððDþ 1Þ=2Þ
2Dþ2�ðD�1Þ=2aD

dD�1

dxD�1

1

sinð�xÞ
��������x¼z=a

:

(3.26)

In the special case D ¼ 3, from here we obtain the result
given in Ref. [23].

Extracting the parts corresponding to the single plates,
the fermionic condensate can also be presented in the form

h �c c i ¼ h �c c ið0Þ þ X
j¼1;2

h �c c ið1Þj þ�h �c c i; (3.27)

where h �c c ið1Þj is that part in the condensate induced by a

single plate located at z ¼ aj, with a1 ¼ 0 and a2 ¼ a, and

the interference term is given by the expression

�h �c c i ¼ ApND

Vq

X
nq2Zq

Z 1

mnq

dx
ðx2 �m2

nq
Þðp�1Þ=2

xþm
x�m e

2ax þ 1

� ½2mþ ðx�mÞðe�2xz þ e2xz�2axÞ�: (3.28)

As it is seen from this formula, the interference part in the
fermionic condensate is always positive. Note that the
divergences on the plates are contained in the single plate
parts and that the interference term is finite for all values
0 � z � a. For a massless field, similar to Eq. (3.24), one
finds the expression
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�h �c c i ¼ � 2ND

ð4�Þp=2þ1Vq

X
nq2Zq

kp=2þ1
nq

X1
n¼1

ð�1Þn X
j¼1;2

Kp=2þ1ð2knq
ðanþ jaj � zjÞÞ

ðanþ jaj � zjÞp=2 : (3.29)

In the limit Ll 	 a and for �l ¼ 0, the main contribution comes from the zero mode with nq ¼ 0 and to leading order we
find �h �c c i 
 ND�h �c c iRpþ1=ðNpþ1VqÞ, where

�h �c c iRpþ1 ¼ ApNpþ1

Z 1

m
dx

ðx2 �m2Þðp�1Þ=2
xþm
x�m e

2ax þ 1
½2mþ ðx�mÞðe�2xz þ e2xz�2axÞ� (3.30)

is the interference part in the fermionic condensate for the
geometry of two parallel plates in (pþ 1)-dimensional
spacetime with trivial topology Rpþ1. When �l � 0, there
is no zero mode and the interference part is exponentially
suppressed by the factor e�2am0 , where m0 is defined
in Eq. (3.22).

In the discussion above we have considered the fermi-
onic condensate in the region between the plates,
0< z < a. For the regions z < 0 and z > a, the expression
for the fermionic condensate has the form

h �c c i ¼ h �c c ið0Þ þ h �c c ið1Þ; (3.31)

where the plate induced part is given by Eq. (3.17) with
the replacement z ! jzj, in the region z < 0, and with the
replacement z ! z� a, in the region z > a.

In the presence of a constant gauge field A�, the corre-

sponding formulas for the fermionic condensate are ob-
tained from those given above by the replacement (2.12).
From these formulas it follows that the fermionic conden-
sate is a periodic function of AlLl with the period of the
flux quantum �0 ¼ 2�=jej (�0 ¼ 2�ℏc=jej in standard
units). It is an even function of ~�l.

The formulas corresponding to the special case with a
single compact dimension are obtained from those
given above by taking p¼D�2, q¼1, and knq

¼
2�jnD þ �Dj=LD. In Fig. 1 we plot, for the simplest

Kaluza-Klein-type model with spatial topology R3 � S1,
the dependence of the fermionic condensate for a massless
fermionic field vs the ratio z=a, in the region between the
plates, for untwisted and twisted fermionic fields, for sev-
eral values of the ratio L=a. The dashed lines correspond to
the fermionic condensate for the geometry of two plates in
a space with topology R4, defined by Eq. (3.25). Note that,
for a massless field, the pure topological part vanishes.
As it is seen from the graphs, for an untwisted (twisted)

field the absolute value of the fermionic condensate in-
creases with decreasing (increasing) length of the compact
dimension.

IV. VACUUM EXPECTATION VALUE OF
THE ENERGY-MOMENTUM TENSOR

Another important local characteristic of the fermionic
vacuum is the VEV of the energy-momentum tensor. In
order to find this we use the mode-sum formula

hT��i ¼ i

2

X
�

½ �c ð�Þ
� �ð�@�Þc

ð�Þ
� � ð@ð� �c ð�Þ

� Þ��Þc
ð�Þ
� �;

(4.1)

where the brackets denote the symmetrization over the
indices enclosed. By taking into account the expressions
for the spinor eigenfunctions, we find the following

1
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0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8
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0.0

z a

a
4

FIG. 1. Fermionic condensate between two plates, in the model with spatial topology R3 � S1, as a function of z=a for untwisted
(�4 ¼ 0, left plot) and twisted (�4 ¼ 1=2, right plot) fields. The numbers near the curves correspond to the values of the ratio L4=a.
The dashed lines in both plots correspond to the fermionic condensate for two plates on background of the space with trivial topology
R4 [see Eq. (3.25)].
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expressions for the components of the vacuum energy-
momentum tensor (no summation over �)

hT�
�i ¼ �ND�

�
�

2aVq

X
nq2Zq

Z dkp

ð2�Þp
X1
n¼1

fð�Þð
nÞ=!
1� sinð2
nÞ=ð2
nÞ ;

(4.2)

where ! is defined in Eq. (3.3) and

fð0ÞðxÞ ¼ !2½1� cosðxÞ cosðxð2zpþ1=a� 1ÞÞ�;
fðlÞðxÞ ¼ �ðk2l =!2Þfð0ÞðxÞ; l � 0; pþ 1;

fðpþ1ÞðxÞ ¼ �k2pþ1:

(4.3)

As in the case of the fermionic condensate, we assume the
presence of the cutoff function in (4.2). It can be checked
that the VEVs of the separate components obey the trace
relation

hT�
�i ¼ mh �c c i; (4.4)

with the fermionic condensate given by Eq. (3.2).
The total vacuum energy (per unit volume along the

directions zl, l ¼ 1; 2; . . . ; p) in the region 0< zpþ1 < a,

0 � zl � Ll, l ¼ pþ 2; . . . ; D, is obtained integrating
hT0

0i over this region. By taking into account the expression
for the energy density from Eq. (4.2) and (2.9) for the
eigenvalues, we obtain the following expression for the
vacuum energy:

E ¼ �ND

2

X
nq2Zq

Z dkp

ð2�Þp
X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2nq

þ 
2
n=a

2 þm2
q

:

(4.5)

It coincides with the total energy of the fermionic vacuum
in the region under consideration, evaluated as the sum of
zero-point energies of elementary oscillators. Hence, we
have shown that the vacuum energy obtained by integration
of the energy density in the region between the plates does
coincide with the energy evaluated as the sum of the zero-
point energies of elementary oscillators. This means that
the surface energy located on the boundaries is zero for the
boundary conditions under consideration. Note that the
surface energy vanishes for scalar fields with Dirichlet or
Neumann boundary conditions as well, but this is not the
case for a scalar field with Robin boundary conditions (see
Refs. [28,31]). The total vacuum energy in the region
between the plates, defined by Eq. (4.5), is investigated
in Ref. [16]. Here we will be concerned with the vacuum
energy density and stresses.

For the evaluation of the VEVs, given by Eq. (4.2), we
apply to the sums over n the summation formula (3.4).
After steps similar to those already described in the case
of the fermionic condensate, the VEV of the energy-
momentum tensor can be expressed in the decomposed
form (no summation over �)

hT�
�i ¼ hT�

�ið0Þ þ hT�
�ið1Þ

� ApND

Vq

��
�

X
nq2Zq

Z 1

mnq

dx
ðx2 �m2

nq
Þðp�1Þ=2

xþm
x�m e

2ax þ 1
F�ðxÞ;

(4.6)

where Ap is given by Eq. (3.16) and we have defined the

functions

F�ðxÞ¼
x2�m2

nq

pþ1

�
2þme2xz

x�m
�me�2xz

xþm

�
; �¼0; . . . ;p;

F�ðxÞ¼k2�

�
2þme2xz

x�m
�me�2xz

xþm

�
; �¼pþ2; . . . ;D;

F�ðxÞ¼�2x2; �¼pþ1: (4.7)

In Eq. (4.6), the term (no summation over �)

hT�
�ið0Þ ¼�ND�

�
�

2Vq

X
nq2Zq

Z dkpþ1

ð2�Þpþ1

fð�Þ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
pþ1þm2

nq

q ; (4.8)

with fð0Þ0 ¼ k2
pþ1 þm2

nq
, fðlÞ0 ¼ �k2l , l ¼ 1; . . . ; pþ 1, is

the VEVof the energy-momentum tensor for the topology
Rpþ1 � ðS1Þq when the boundaries are absent. This back-
ground is homogeneous and the corresponding densities
are uniform. The second term on the rhs of Eq. (4.6) is
induced by the plate at z ¼ 0 when the second plate is
absent (again no summation over �):

hT�
�ið1Þ ¼

NDm��
�

4�Vq

Z dkp

ð2�Þp
X

nq2Zq

Z 1

0
dx

f
ð�Þ
0 ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ k2
p þm2

nq

q

�
�
e�2ixz

mþ ix
þ e2ixz

m� ix

�
; (4.9)

where

fð0Þ0 ðxÞ ¼ x2 þ k2
p þm2

nq
; fðpþ1Þ

0 ðxÞ ¼ 0;

fðlÞ0 ðxÞ ¼ �k2l ; l ¼ 1; . . . ; p; pþ 2; . . . ; D:
(4.10)

The last term on the rhs of Eq. (4.6) is induced by the
presence of the second plate. Note that the vacuum stress
along the direction normal to the plates vanishes in the
geometry of a single plate and is uniform in the region
between the two plates. The renormalized expressions for

the purely topological part hT�
�ið0Þ are given in Ref. [26]. In

particular, for the corresponding energy density one has

hT0
0ið0Þ ¼

ND

ð2�ÞðDþ1Þ=2
X0

nq2Zq

cosð2�nq � ~�qÞ

�
fðDþ1Þ=2ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
pþ2n

2
pþ2 þ � � � þ L2

Dn
2
D

q
Þ

ðL2
pþ2n

2
pþ2 þ � � � þ L2

Dn
2
DÞðDþ1Þ=2 :

(4.11)
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where, as before, the prime means that the term nq ¼ 0 is

excluded from the sum. Note that (no summation over �)

hT�
� ið0Þ ¼ hT0

0ið0Þ for � ¼ 1; . . . ; pþ 1. In the discussion

below we will be concerned with the boundary induced
parts.

The single plate part, Eq. (4.9), can be further simplified.
With this aim, in the term with the exponent e2ixz (e�2ixz),
we rotate the integration contour in the complex plane x by
the angle �=2 (� �=2). By using the integration formula
(3.14), we find the following result (no summation over �)

hT�
� ið1Þ ¼�m

ApND

Vq

X
nq2Zq

Z 1

mnq

dx
ðx2�m2

nq
Þðp�1Þ=2

ðxþmÞe2xz Fð�Þ
0 ðxÞ;

(4.12)

with the notations

F
ð�Þ
0 ðxÞ ¼ x2 �m2

nq

pþ 1
; � ¼ 0; 1; . . . ; p;

F
ð�lÞ
0 ðxÞ ¼ k2�; � ¼ pþ 2; . . . ; D;

(4.13)

and Fðpþ1Þ
0 ðxÞ ¼ 0. Note that the boundary induced parts in

the vacuum stresses along the uncompactified directions
parallel to the plates are equal to the boundary induced part
in the energy density. This result is a consequence of the
Lorentz invariance of the problem along these directions.
The energy density is negative everywhere. In the absence
of compact dimensions, from Eq. (4.12) one finds (no
summation over �)

hT�
� ið1Þ ¼ mh �c c ið1Þ=D; (4.14)

for � ¼ 0; . . .D� 1, and hTD
D ið1Þ ¼ 0. In Eq. (4.14)

h �c c ið1Þ is given by Eq. (3.18). Of course, Eq. (4.14) is a
direct consequence of the trace relation (4.4).

When the length of the j-th compact dimension is
large, we replace the summation over nj in Eq. (4.12) by

an integral, with the help of Eq. (3.19). As next step, we

introduce a new integration variable v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2

nq

q
. After

changing to polar coordinates in the ðy; vÞ plane, the an-
gular part of the integral is evaluated explicitly and, as it
can be seen from Eq. (4.12), to leading order the result is
obtained for the topology Rpþ2 � ðS1Þq�1.

For points near the plate, z 	 Ll, the dominant contri-
bution to the series in Eq. (4.12) comes from large values of
nl. Replacing the corresponding summations by integra-
tions, we see that, to leading order, the behavior of the
VEV coincides with the one for topologically trivial space.
If, in addition, z 	 m�1, combining Eq. (4.14) with
Eq. (3.20), one finds (no summation over �)

hT�
� ið1Þ 
 �mND�ððDþ 1Þ=2Þ

ð4�ÞðDþ1Þ=2DzD
; (4.15)

for � ¼ 0; . . . ; D� 1. For Ll 	 z the behavior of the
VEVs is essentially different, depending on the phases �l

in the periodicity conditions. When �l ¼ 0, l ¼ 0; . . . ; D,
the contribution of the nonzero modes is exponentially
suppressed and the dominant contribution comes from
the zero mode nq ¼ 0. For the components along the

uncompactified dimensions, to leading order we have

(no summation over �) hT�
� ið1Þ 
 NDhT�

� ið1ÞRpþ1=ðVqNpþ1Þ,
� ¼ 0; . . . ; pþ 1, where hT�

�ið1ÞRpþ1 is the corresponding

VEV for two parallel plates in the space Rpþ1 located at
z ¼ 0 and z ¼ a. For the stress along the l-th compact
dimension the contribution of the zero mode vanishes
and, in the case under consideration (�l ¼ 0), the domi-
nant contribution comes from the modes with nl ¼ �1,
nj ¼ 0, j � l, and the stress is exponentially suppressed

(no summation over l): hTl
lið1Þ / e�2z=Ll . We have also

assumed that Ll 	 m�1. For �l � 0 the VEVs are expo-
nentially suppressed and to leading order we have (no
summation over �)

hT�
� ið1Þ 
 � ð4�Þ�ðpþ1Þ=2NDmmpþ1

0

4Vqðm0zÞðpþ3Þ=2e2m0z
; (4.16)

for � ¼ 0; . . . ; p and m0 one recovers Eq. (3.22). We have
a similar exponential suppression for the stresses along the
compact dimensions.
Now we return to the two plate geometry. Combining

Eq. (4.12) with Eq. (4.6), for the VEV of the energy-
momentum tensor in the region between the plates, we
find (no summation over �)

hT�
�i ¼ hT�

�ið0Þ � ��
�

ApND

Vq

� X
nq2Zq

Z 1

mnq

dx
ðx2 �m2

nq
Þðp�1Þ=2

xþm
x�m e

2ax þ 1
G�ðxÞ; (4.17)

where

G�ðxÞ ¼
x2 �m2

nq

pþ 1

�
2þ m

x�m
ðe2xz þ e2ax�2xzÞ

�
;

� ¼ 0; 1; . . . ; p; (4.18)

G�ðxÞ ¼ k2�

�
2þ m

x�m
ðe2xz þ e2ax�2xzÞ

�
;

� ¼ pþ 2; . . . ; D; (4.19)

and Gpþ1ðxÞ ¼ Fpþ1ðxÞ. From here, it follows that the

boundary induced part in the vacuum energy density is
always negative. It can be easily checked that the boundary
induced parts obey the trace relation (4.4). For the VEV in
the geometry of two parallel plates located at z ¼ 0 and
z ¼ a in aD-dimensional space with topology RD, one has
(no summation over �)
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hT�
�iRD ¼ � ND�

�
�

ð4�ÞD=2�ðD=2Þ

�
Z 1

m
dx

ðx2 �m2Þðp�1Þ=2
xþm
x�m e

2ax þ 1
G0�ðxÞ; (4.20)

where the expression for G0�ðxÞ, with � ¼ 0; 1; . . . ;

D� 1, is obtained from Eq. (4.18) by the replacement
mnq

! m and G0DðxÞ ¼ �2x2. For a massless field this

result reduces to

hT�
�iRD ¼ � ð1� 2�DÞND

ð4�ÞðDþ1Þ=2aDþ1
�ðDþ 1Þ�ððDþ 1Þ=2Þ

� diagð1; . . . ; 1;�DÞ: (4.21)

Note that hT�
�iRD ¼ ð1� 2�DÞNDhT�

�iðscÞRD , where hT�
�iðscÞRD is

the corresponding VEV for a scalar field with Dirichlet or
Neumann boundary conditions on the plates.

For a massless field and in the presence of com-
pact dimensions, the expressions for the VEV of the
energy-momentum tensor are obtained from general
formulas (4.17) by putting m ¼ 0. Alternative expres-
sions are derived using the expansion ðey þ 1Þ�1 ¼
�P1

n¼1ð�1Þne�ny. After integration one finds (no summa-
tion over �)

hT�
� i ¼ hT�

� ið0Þ þ 2ND

ð2�Þp=2þ1Vq

� X1
n¼1

ð�1Þn
ð2anÞpþ2

X
nq2Zq

Gð0Þ
� ð2anknq

Þ; (4.22)

with the notations

Gð0Þ
� ðxÞ ¼ fp=2þ1ðxÞ; � ¼ 0; . . . ; p;

Gð0Þ
� ðxÞ ¼ ð2ank�Þ2fp=2ðxÞ; � ¼ pþ 2; . . . ; D;

Gð0Þ
pþ1ðxÞ ¼ �ðpþ 1Þfp=2þ1ðxÞ � x2fp=2ðxÞ: (4.23)

The corresponding vacuum densities are uniform. In this
case the boundary induced part in the total energy (per unit
volume along uncompactified dimensions) of the vacuum
is aVq�hT0

0i and the corresponding result obtained from

Eq. (4.22) coincides with the result derived in Ref. [16] by
using zeta function techniques.

Similar to Eq. (3.27), the VEVof the energy-momentum
tensor may be presented in the decomposed form

hT�
�i ¼ hT�

�ið0Þ þ
X
j¼1;2

hT�
�ið1Þj þ�hT�

�i; (4.24)

where hT�
�ið1Þj is the part in the VEV induced by a single

plate at z ¼ aj, with a1 ¼ 0, a2 ¼ 0. The interference

part in Eq. (4.6) is given by the expression (no summation
over �)

�hT�
�i¼���

�

ApND

Vq

X
nq2Zq

Z 1

mnq

dx
ðx2�m2

nq
Þðp�1Þ=2

xþm
x�me

2axþ1
H�ðxÞ;

(4.25)

with the notation

H�ðxÞ ¼
x2 �m2

nq

pþ 1

�
2� m

xþm
ðe�2xz þ e�2xða�zÞÞ

�
;

� ¼ 0; 1; . . . ; p;

H�ðxÞ ¼ k2�

�
2� m

xþm
ðe�2xz þ e�2xða�zÞÞ

�
;

� ¼ pþ 2; . . . ; D; (4.26)

and Hpþ1ðxÞ ¼ Fpþ1ðxÞ. The surface divergences in the

VEVof the energy-momentum tensor are contained in the
single plate parts only and the interference part is every-
where finite. For a massless field, the single plate parts
in the VEV of the energy-momentum tensor vanish and
the interference part coincides with the second term
on the rhs of Eq. (4.22). In the limit Ll 	 a and for
�l ¼ 0 the dominant contribution to the interference part
comes from the zero mode nq. To leading order, we

find (no summation over �) �hT�
� i ¼ ND�hT�

� iRpþ1=
ðVqNpþ1Þ, � ¼ 0; 1; . . . ; pþ 1, where �hT�

� iRpþ1 is the

VEV for two plates in a ðpþ 1Þ-dimensional spacetime
with topology Rpþ1. For the stress along the l-th compact
dimension, the contribution of the zero mode vanishes.
The dominant contribution comes from the modes with
nl ¼ �1, nj ¼ 0, j � l, and the stress is exponentially

suppressed: �hTl
li / e�2a=Ll , where we have additionally

assumed that Ll 	 m�1. For �l � 0 and Ll 	 a the
interference part in the VEV of the energy-momentum
tensor is suppressed by the factor e�2am0 , with m0 defined
in Eq. (3.22).
In the regions zpþ1 < 0 and zpþ1 > a the expression for

the VEVof the energy-momentum tensor has the form

hT�
�i ¼ hT�

�ið0Þ þ hT�
�ið1Þ; (4.27)

where the boundary induced part is given by Eq. (4.12),
with the replacements z ! jzj and z ! z� a for the re-
gions z < 0 and z > a, respectively. In the presence of a
constant gauge field A�, the formulas for the VEV of the

energy-momentum tensor are obtained by the replacement
(2.12). As in the case of the fermionic condensate, the
vacuum energy-momentum tensor is a periodic function
of AlLl with the period of the flux quantum.
The vacuum forces per unit surface of the plates are

equal to the normal stress evaluated at z ¼ 0 and z ¼ a.

By taking into account that hTpþ1
pþ1ið1Þ ¼ 0 one finds, in the

region between the plates,
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Pð0þÞ ¼ Pða�Þ ¼ �hTpþ1
pþ1ið0Þ � �hTpþ1

pþ1i
¼ �hTpþ1

pþ1 ið0Þ

� 2ApND

Vq

X
nq2Zq

Z 1

~mnq

dx
x2ðx2 � ~m2

nq
Þðp�1Þ=2

xþm
x�m e

2ax þ 1
;

(4.28)

where ~m2
nq

¼ P
D
l¼pþ2½2�ðnl þ ~�lÞ=Ll�2 þm2. The term

�hTpþ1
pþ1ið0Þ does not depend on the plate separation, it is

a purely topological part in the vacuum forces. For this

term, one has hTpþ1
pþ1ið0Þ ¼ hT0

0ið0Þ, with hT0
0ið0Þ given by

Eq. (4.11). The last term on the rhs of Eq. (4.28) is induced
by the presence of the second plate and determines the
interaction forces between the plates. This term is negative
and the interaction forces between the plates are always
attractive, with independence of the periodicity conditions
along compact dimensions and of the value of the gauge
potential. In absence of the gauge field, Eq. (4.28) coin-
cides with the result obtained in Ref. [16], by differentia-
tion of the total Casimir energy. For the vacuum forces in
the regions z < 0 and z > a, only the pure topological part
contributes, and one has

Pð0�Þ ¼ PðaþÞ ¼ �hTpþ1
pþ1ið0Þ: (4.29)

When the quantum field lives in all regions, the pure
topological parts of the force acting from the left and
from the right-hand sides of the plate compensate and the
resulting force is determined by the last term on the rhs of
Eq. (4.28). In some important physical situations (bag
model in QCD, finite-length carbon nanotubes, higher-
dimensional models with orbifolded extra dimensions)
the quantum field is confined to the interior of some region
and there is no field outside. For the problem under con-
sideration, if the quantum field is confined in the region
between the plates, the total Casimir force, acting per unit
surface of the plate, is determined by Eq. (4.28) and the
pure topological part contributes as well. The resulting
force can be either attractive or repulsive, depending on
the phases in the periodicity conditions along the compact
dimensions, and also on the gauge potential. In this case,
the Casimir effect could be used as a stabilization mecha-
nism for both the interplate distance and the size of the
compact subspace in Kaluza-Klein-type models and in
braneworlds. This is a quite remarkable and very useful
result, because this force could be, in principle, easily
controlled.

In Fig. 2, we have plotted the ratio of the boundary
induced part in the Casimir energy (per unit surface along
uncompactified dimensions) for two parallel plates in the
spacetime with topology R3 � S1 by the Casimir energy in

R3, EðbÞ
R3�S1

=ER3 ¼ LhT0
0iðbÞ=hT0

0iR3 (L being the length of

the compact dimension), with hT0
0iðbÞ ¼ hT0

0i � hT0
0ið0Þ, for

a massless fermionic field, as a function of a=L. The values
on each of the curves correspond to those of the para-
meter �4. Note that from Eq. (4.21) one has hT0

0iR3 ¼
�7�2=ð2880a4Þ. The feature described before is apparent:
for large values of a=L the Casimir energy is suppressed
for �4 � 0.
For a massless case the fermionic field is conformally

invariant. We can generate the corresponding VEVs in
conformally flat spacetimes by using standard conformal
transformation techniques (see, for instance, [32]) and the
formulas given above. Consider a conformally flat space-
time with the line element

ds2 ¼ �2ðzlÞ
�
dt2 �XD

i¼1

ðdziÞ2
�
; (4.30)

and spatial topology Rpþ1 � ðS1Þq, with 0 � zl � Ll,
l ¼ pþ 2; . . . ; D. As before, we assume the presence of
two boundaries located at z ¼ 0 and z ¼ a (zpþ1 � z),

with the boundary conditions ½1þ i�
�
ð�Þnð�Þ��c ð�Þ ¼ 0,

where the subscript � specifies the quantities on the
background described by Eq. (4.30). For curved space
gamma matrices we have �

�
ð�Þ ¼ e

�
l �

l, with the tetrad

field e�l ¼ ��1��
l . By taking into account that, under

the conformal transformation for a massless field, one
has c ð�Þ ¼ ��Dc and nð�Þ� ¼ �n�, we see that the

MIT bag boundary condition is conformally invariant.
For the fermionic condensate and the VEV of the energy-
momentum tensor on the spacetime (4.30), one finds

h �c c ið�Þ ¼ h �c c ið�Þ;RD þ��Dh �c c i;
hT�

�ið�Þ ¼ hT�
�ið�Þ;RD þ��D�1hT�

�i;
(4.31)
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FIG. 2. Ratio of the boundary induced part in the Casimir
energy for two parallel plates in the spacetime with spatial
topology R3 � S1 by the standard Casimir energy in R3, for a
massless fermionic field, as a function of a=L. The values on
each of the curves correspond to those of the parameter �4.
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where h �c c ið�Þ;RD and hT�
�ið�Þ;RD are the corresponding

VEVs for spacetime (4.30) with trivial spatial topology
RD. Note that for points away from the boundaries,
all divergences are contained in these terms and the
renormalization procedure is needed for them only.
The second terms on the rhs of Eq. (4.31) are induced by
the nontrivial topology and by the boundaries. Most im-
portant special cases of Eq. (4.30) are the dS and the anti-de
Sitter (AdS) spacetimes, with�2

dS ¼ 1=ðHtÞ2 and�2
AdS ¼

1=ðkzÞ2, described in the inflationary and Poincaré coor-
dinates, respectively. In particular, the results for the AdS
bulk can be applied to massless Dirac fields in higher-
dimensional Randall-Sundrum-type braneworld models
with two branes and with compact internal spaces.

V. CASIMIR DENSITIES IN CARBON NANOTUBES

In a significant variety of planar condensed matter sys-
tems, the low-energy sector is very well described by the
Dirac-like model. A well-known example is the important
case of graphene. In this section we apply general results
obtained above for electrons in cylindrical nanotubes of
finite length. Recently, carbon nanotubes have attracted a
lot of attention due to the experimental observation in them
of a number of novel electronic properties, what renders
them very important for technological purposes. A single-
wall cylindrical nanotube is a graphene sheet rolled into a
cylindrical shape. The low-energy excitations of the elec-
tronic subsystem in a graphene sheet can be described by a
pair of two-component spinors, c A and c B, corresponding
to the two different triangular sublattices of the honeycomb
lattice of graphene (see, for instance, [2,3]). The Dirac
equation for these spinors has the form

ðiv�1
F �0D0 þ i�lDl �mÞc J ¼ 0; (5.1)

where J ¼ A, B, l ¼ 1, 2, and D� ¼ @� þ ieA� with

e ¼ �jej for electrons. In Eq. (5.1), vF 
 108 cm=s rep-
resents the Fermi velocity which plays the role of the speed
of light. To make the treatment more general, we have
included in Eq. (5.1) the mass (gap) term. The gap in the
energy spectrum is essential for many physical applica-
tions. It can be generated by a number of mechanisms (see,
for example, [3,33–36]). In particular, they include the
breaking of symmetry between two sublattices by intro-
ducing a staggered on-site energy [3], the phenomenon of
magnetic catalysis [33], and the deformations of bonds in
the graphene lattice [34]. Another approach is to attach a
graphene monolayer to a substrate, the interaction with
which breaks the sublattice symmetry [35]. Note that the
Casimir interaction between graphene sheets, resulting
from the quantum fluctuations of the bulk electromagnetic
field, has been recently investigated in Ref. [37] (for the
comparison of the results based on the hydrodynamic and
Dirac models of dispersion for graphene, see Ref. [38]).

For the geometry of a carbon nanotube the spatial to-
pology is R1 � S1. The nanotube is characterized by its
chiral vector Ch ¼ nwa1 þmwa2, where nw, mw are inte-
gers, a1 and a2 are the basis vectors of the hexagonal lattice

of graphene and a ¼ ja1j ¼ ja2j ¼ 2:46 �A is the lattice
constant. For the length of the compact dimension, one has

L ¼ jChj ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2w þm2

w þ nwmw

p
, where for zigzag and

armchair nanotubes, Ch ¼ ðnw; 0Þ and Ch ¼ ðnw; nwÞ, re-
spectively. All other cases correspond to chiral nanotubes.
In the case nw �mw ¼ 3qw, qw 2 Z, the nanotube will be
metallic and in the case nw �mw � 3qw the nanotube will
be a semiconductor with an energy gap inversely propor-
tional to its diameter. We will assume that the nanotube has
finite length, a. As the Dirac field lives on the cylinder
surface, it is natural to impose bag boundary conditions
(2.2) on the cylinder edges which insure a zero fermion flux
through these edges. The additional confinement of the
fermionic field along the tube axis leads to the change of
the VEVs. The corresponding expressions for the fermi-
onic condensate and the energy-momentum tensor are
obtained from the formulas of the previous sections, taking
D ¼ 2, p ¼ 0, q ¼ 1. The periodicity condition along the
compact dimension for the fields c J depends on the chi-
rality of the nanotube. For metallic nanotubes, we have
periodic boundary condition (�l ¼ 0) and for semiconduc-
tor nanotubes, depending on the chiral vector, there are two
classes of inequivalent boundary conditions, corresponding
to �l ¼ �1=3. These phases have opposite signs for the
sublattices A and B. The presence of the gauge field in
Eq. (5.1) leads to an Aharonov-Bohm effect in carbon
nanotubes [39]. This effect manifests itself in a periodic
energy gap modulation and conductance oscillations,
as a function of the enclosed magnetic flux, with a period
of the order of the flux quantum. As we will see below,
similar oscillations arise for the fermionic condensate and
Casimir densities.
First, we consider the fermionic condensate (see

Ref. [40] for the fermionic condensate and VEV of
the fermionic current in a (2þ 1)-dimensional conical
spacetime, in the presence of a circular boundary).
The corresponding expression is obtained from the formu-
las in Sec. III taking p ¼ 0, D ¼ 2 and summing the
contributions coming from the two sublattices with oppo-
site signs of �2 � �. For an infinite carbon nanotube, from
Eq. (3.10) one has, for the pure topological part,

h �c c ið0Þcn ¼ � 2mvF

�L

X1
n¼1

e�nmL

n
cosð2�n�Þ

� cosð2�n�=�0Þ; (5.2)

where � ¼ A2L is the magnetic flux across the nanotube
and � ¼ 0, 1=3 for a metallic and for a semiconducting
nanotube, respectively. In the case of a nanotube of finite
length, a, the general expression (3.23) takes the form
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h �c c icn ¼ h �c c ið0Þcn � vF

�L

Xþ1

n¼�1

X
j¼þ;�

Z 1

mðjÞ
n

dx
ðmþ xÞðe2xz þ e2ax�2xzÞ � 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �mðjÞ2
n

q
ðxþm
x�m e

2ax þ 1Þ
; (5.3)

with the notation

mð�Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð�Þ2
n þm2

q
; kð�Þ

n ¼ 2�jnþ ���=�0j=L:
(5.4)

Note that for metallic nanotubes the contribution of the
terms with j ¼ þ and j ¼ � coincide. In the absence of
the magnetic flux, the sublattices give the same contribu-
tion to the condensate. For a massless field the purely
topological part vanishes and the boundary induced part
reduces to

h �c c icn ¼ 1

�L

Xþ1

n¼�1

X
j¼þ;�

kðjÞn

X1
l¼1

ð�1Þl½K1ð2kðjÞn ðal� zÞÞ

þ K1ð2kðjÞn ðal� aþ zÞÞ�: (5.5)

As already mentioned, the condensate is a periodic func-
tion of the magnetic flux, with period equal to the flux
quantum �0. Various important limiting cases directly
follow from the analysis given above.

Now we turn to the VEV of the energy-momentum
tensor. For the pure topological part, we have the expres-
sion (no summation over �)

hT�
�ið0Þcn ¼ 2vF�

�
�

�L3

X1
n¼1

cosð2�n�Þ

� cosð2�n�=�0ÞC�ðnmLÞ e
�nmL

n3
; (5.6)

with the notations

C0ðxÞ ¼ C1ðxÞ ¼ 1þ x; C2ðxÞ ¼ �2� 2x� x2:

(5.7)

In particular, in absence of magnetic flux, the correspond-
ing energy density is positive for metallic nanotubes and
negative for semiconducting ones. This means that, from
the topological viewpoint, semiconducting nanotubes are
more stable. For a finite length nanotube, from Eq. (4.17)
we find the following expression (no summation over �)

hT�
�icn ¼ hT�

�ið0Þcn � vF�
�
�

�L

� Xþ1

n¼�1

X
j¼þ;�

Z 1

mðjÞ
n

dx
ðx2 �mðjÞ2

n Þ�1=2

xþm
x�m e

2ax þ 1
GðjÞ

� ðxÞ;

(5.8)

where

GðjÞ
0 ðxÞ ¼ ðx2 �mðjÞ2

n Þ
�
2þ m

x�m
ðe2xz þ e2ax�2xzÞ

�
;

GðjÞ
1 ðxÞ ¼ �2x2;

GðjÞ
2 ðxÞ ¼ kðjÞ2n

�
2þ m

x�m
ðe2xz þ e2ax�2xzÞ

�
:

(5.9)

In absence of magnetic flux, the energy density corre-
sponding to Eq. (5.8) is always negative for semiconduct-
ing nanotubes. For metallic nanotubes the energy density is
positive for long tubes and negative for short ones. The
forces acting on the tube edges are determined by the
component hT1

1icn. As already explained before, the force
corresponding to the second term on the rhs of Eq. (5.8) is
attractive, with independence of the nanotube chirality and
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FIG. 3. VEVof the energy density (left plot) and vacuum stresses (right plot) for a metallic nanotube, as functions of the tube length,
for several values of its circumference, L=a0 (numbers near the curves). On the left plot full/dashed curves correspond to l ¼ 1=l ¼ 2,
respectively.
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of the magnetic flux. This term dominates for short nano-
tubes. As regards the first term, it dominates for long tubes
and, in the absence of magnetic flux, it corresponds to the
attractive force for metallic nanotubes and to the repulsive
force for semiconducting ones. Hence, in absence of a
magnetic flux, the resulting force is always attractive for
metallic nanotubes, whereas for semiconducting ones the
force is attractive for short tubes and repulsive for long
ones. The sign of the force for long nanotubes can be
simply controlled by tuning up the magnetic flux. This
result is again of high technological importance.

In the massless case, the above formulas take the form
(no summation over �)

hT�
�icn ¼ hT�

�ið0Þcn þ 2vF�
�
�

�L

� X1
s¼1

ð�1Þs
ð2asÞ2

X
j¼þ;�

Xþ1

n¼�1
Gð0Þ

� ð2sakðjÞn Þ; (5.10)

with the notations

Gð0Þ
0 ðxÞ ¼ xK1ðxÞ;

Gð0Þ
2 ðxÞ ¼ x2K0ðxÞ;

Gð0Þ
1 ðxÞ ¼ �xK1ðxÞ � x2K0ðxÞ:

(5.11)

In Fig. 3 we have plotted the vacuum energy density and
vacuum stresses for a massless fermionic field in metallic
nanotubes as functions of the tube length in absence of
magnetic flux, a0 being an arbitrary length scale.
For long tubes the pure topological part dominates in the

VEVof the energy density and in the case of the values for
parameters corresponding to Fig. 3 one has

hTl
licn 
 hTl

lið0Þcn ¼ 2vF�ð3Þ
�L3

diagð1; 1;�2Þ; (5.12)

with �ð3Þ 
 1:202. The effective pressure on the tube
edges is defined by �hT1

1icn and, as seen from the right
plot, it is always negative, corresponding to attractive
forces between the edges for metallic nanotubes.
Figure 4 is a corresponding plot of the VEVs of the

energy density and stresses for semiconducting nanotubes
(� ¼ 1=3), for a massless field in the absence of magnetic
flux. Now, for long tubes we have the limiting value

hTl
l icn 
 hTl

lið0Þcn ¼ � 0:340vF

L3
diagð1; 1;�2Þ: (5.13)

The forces acting on the tube edges are attractive at small
distances and repulsive at large distances.
In Fig. 5 we have plotted the vacuum energy density as a

function of the magnetic flux for metallic (left plot) and
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FIG. 4. The same as in Fig. 3 for semiconducting nanotube (� ¼ 1=3).
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semiconducting (right plot) nanotubes, respectively. Recall
that the vacuum densities are periodic functions of the
magnetic flux, with period equal to the flux quantum.
The numbers labelling the curves correspond to the values
of the ratio L=a.

VI. CONCLUSIONS

In this paper we have considered the effect of compact
spatial dimensions on the fermionic condensate and VEV
of the energy-momentum tensor for a massive fermion
field in the geometry of two parallel plates on which the
field obeys MIT bag boundary condition. Along the com-
pact dimensions, we have assumed periodicity conditions
(2.1) with constant phases �l. The eigenvalues of the wave-
vector component normal to the plates are roots of the
transcendental Eq. (2.9). The mode sums for the fermionic
condensate and the energy-momentum tensor contain
series over these eigenvalues. By applying analytic con-
tinuation techniques, as the Abel-Plana-type summation
formula, to these series, we have been able to explicitly
extract and separate, in a cutoff independent way, the
purely topological part and the contributions induced by
the single plates. Purely topological contributions were
investigated in Ref. [26], and here we have been mainly
concerned with the boundary induced parts.

In a (Dþ 1)-dimensional spacetime with spatial topol-
ogy Rpþ1 � ðS1Þq and with two parallel boundaries, the
fermionic condensate is given by Eq. (3.23), there the first
term on the rhs is a purely topological contribution and
the second term is induced by the presence of the plates.
The boundary induced part is always negative, whereas the
purely topological one, given by Eq. (3.10), can be either
positive or negative, depending on the values of the phases
in the periodicity conditions along the compact dimen-
sions. For a massless field, the general formula for the
fermionic condensate could be further simplified to
Eq. (3.24). Extracting there the contributions correspond-
ing to the geometry of a single plate, the fermionic con-
densate could also be presented in the alternative form
(3.27). The fermionic condensate induced by a single plate,
located at z ¼ 0, is given by Eq. (3.17). The condensate
diverges on the boundary. For points near the boundary, the
leading term in the asymptotic expansion over the distance
from the plate is given by Eq. (3.20). This term does not
depend on the lengths of the compact dimensions and
coincides with the boundary induced contribution of the
fermionic condensate for a single plate, in a space with
trivial topology RD. Far from the plate, the asymptotic
behavior of the fermionic condensate essentially depends
on the phases present in the periodicity conditions along
the compact dimensions.

For �l ¼ 0, l ¼ pþ 2; . . . ; D, the main contri-
bution comes from the zero mode and the quantity

Vqh �c c ið1Þp;q=ND coincides with the corresponding result

for a plate in topologically trivial (pþ 1)-dimensional

space, Rpþ1. For �l � 0, the zero mode is absent and
the boundary induced part in the fermionic condensate is
suppressed by the factor e�2m0z, where m0 is defined in
Eq. (3.22). The interference part in the representation
(3.27) for the fermionic condensate is given by
Eqs. (3.28) and (3.29) for massive and for massless fields,
respectively. Surface divergences are contained in the
single plate parts and the interference contribution is finite
and positive everywhere.
The VEV of the energy-momentum tensor was inves-

tigated in Sec. IV. In the region between the plates, this
VEV is given by Eq. (4.17), where the second term on the
rhs is induced by the plates. The vacuum stresses along the
uncompactified dimensions parallel to the plates are equal
to the energy density. The boundary induced contribution
to the energy density and stresses along the compact di-
mensions are always negative, whereas the corresponding
contribution to the stress normal to the plates is positive
and, moreover, a uniform function. For a massive field, the
energy density and stresses along the directions parallel to
the plates depend on the distance from the plate and
diverge on the boundaries. For a massless field the VEV
of the energy-momentum tensor is uniform, and given by
Eq. (4.22). An alternative representation for the VEVof the
energy-momentum tensor is (4.24), with the interference
part defined in Eq. (4.25). The single plate contributions, in
this decomposition, are given by (4.12). The surface diver-
gences in the VEVs are contained in the single plate parts
and the interference part is finite everywhere. Near the
plates, the VEV of the energy-momentum tensor is domi-
nated by the single plate parts and the leading term in the
corresponding asymptotic expansion is given by Eq. (4.15).
In the geometry of a single plate and at large distances
from the plate, compared to the length of the compact
dimension, the behavior of the VEV is essentially different
and crucially depends on the phases �l included in the
periodicity conditions. Thus, for periodic boundary con-
ditions, �l ¼ 0, the dominant contribution comes from
the zero mode and for the components along the uncom-
pactified dimensions one has (no summation over �)

hT�
�ið1Þ 
NDhT�

� ið1ÞRpþ1=ðVqNpþ1Þ, �¼0; . . . ;pþ1, where

hT�
�ið1ÞRpþ1 is the corresponding VEV for plates in the space

Rpþ1. The stress along the l-th compact dimension is sup-

pressed by the factor e�2z=Ll . For �l � 0 all components of
the vacuum energy-momentum tensor are suppressed by
the factor e�2m0z.
The formulas derived for the fermionic condensate and

for the VEV of the energy-momentum tensor are easily
generalized to the case when a constant gauge field is
present. In spite of the fact that the corresponding magnetic
field strength vanishes, the nontrivial topology of the con-
figuration leads to an Aharonov-Bohm-type effect on the
vacuum expectation values. The corresponding formulas
are obtained from those in the absence of a gauge field by
the replacement (2.12).
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The vacuum force per unit surface of the plates is deter-
mined by the normal stress and, for the region between the
plates, it is given by Eq. (4.28), where the first term is the
pure topological part and the second one the interaction part
of the force. When the quantum field lives in all regions of
space, the pure topological parts of the force acting from the
left- and from the right-hand sides of every plate compen-
sate each other, and the resulting force is just determined by
the interaction part. This turns out to be always attractive,
with independence of the periodicity conditions along the
compact dimensions and the value of the gauge potential. In
more physical situations, however, when the quantum field
is confined in the region between the plates, the pure topo-
logical part contributes to the resulting force as well and in
these cases the final forces can be either attractive or re-
pulsive. Remarkably, the Casimir effect can then be used as
a stabilization mechanism for both the interplate distance
and for the size of the compact subspace in Kaluza-Klein-
type models and in braneworld theories.

For massless fermionic fields, the Casimir densities for
the two plate geometry in conformally flat spacetimes with
compact spatial dimensions are obtained from the results
above simply by using standard conformal transformation
techniques. The corresponding fermionic condensate and
the VEVof the energy-momentum tensor are thus given by
Eq. (4.31), where the separate contributions: the one in-
duced by nontrivial topology and the other by the boundary
conditions, are given by the second terms on the right-hand
sides. The most important examples of configurations of
this type are dS and AdS spacetimes.

In Sec. V, we have applied our general results to
the electrons in finite-length graphene nanotubes. The
long-wavelength excitations of this system is basically
described by Dirac’s theory, with the Fermi velocity

playing the role of speed of light. The corresponding
expressions for the fermionic condensate and for the
Casimir densities are obtained from the results of the pre-
ceding sections by summing the contributions of the two
triangular sublattices of the honeycomb lattice of the gra-
phene sheet, with opposite signs of the phases along the
compact dimension. In the presence of a magnetic flux, the
fermion condensate is given by Eqs. (5.3) and (5.5), for
massive and for massless fields, respectively. The pure
topological contribution is then given by (5.2). In these
formulas, the values � ¼ 0 and � ¼ 1=3 correspond to
metallic and to semiconducting nanotubes, respectively.
The corresponding expressions for the VEV of the
energy-momentum tensor have the form (5.8) and (5.10).
The VEVs are periodic functions of the magnetic flux with
period equal to the flux quantum. In the absence of mag-
netic flux, the Casimir forces acting on the edges of the
nanotube are always attractive for metallic nanotubes.
However, for semiconductor nanotubes the forces are at-
tractive for short tubes and repulsive for longer ones. In the
presence of the magnetic flux, the sign of the force for long
tubes can be controlled by tuning the flux. This possibility
opens the way to the design of efficient actuators driven by
the Casimir force at the nanoscale, which is a most cher-
ished goal of present day technology.

ACKNOWLEDGMENTS

A.A. S. was supported by the ESF Programme ‘‘New
Trends and Applications of the Casimir Effect.’’ E. E. and
S.D.O. were partially funded by MICINN (Spain) under
Project No. FIS2006-02842, by CPAN Consolider Ingenio
Project, and by AGAUR (Catalonia) under Contract
No. 2009SGR-994.

[1] A. Linde, J. Cosmol. Astropart. Phys. 10 (2004) 004.
[2] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical

Properties of Carbon Nanotubes (Imperial College Press,
London, 1998); Nanoscience: Nanotechnologies and
Nanophysics, edited by C. Dupas, P. Houdy, and M.
Lahmani (Springer, Berlin, 2007).

[3] G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[4] D. P. Di Vincenzo and E. J. Mele, Phys. Rev. B 29, 1685
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