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Recently, we discovered and discussed non-Abelian duality in the quark vacua of N ¼ 2 super-Yang-

Mills theory with the UðNÞ gauge group and Nf flavors (Nf > N). Both theories from the dual pair support

non-Abelian strings, which confine monopoles. Now we introduce an N ¼ 2-breaking deformation, a

mass term �A2 for the adjoint fields. Starting from a small deformation, we eventually make it large,

which enforces complete decoupling of the adjoint fields. We show that the above non-Abelian duality

fully survives in the limit of N ¼ 1 supersymmetric QCD (SQCD), albeit some technicalities change.

For instance, non-Abelian strings which used to be Bogomol’nyi-Prasad-Sommerfield saturated in the

N ¼ 2 limit, cease to be saturated inN ¼ 1 SQCD. Our duality is a distant relative of Seiberg’s duality

in N ¼ 1 SQCD. Both share some common features, but have many drastic distinctions. This is due to

the fact that Seiberg’s duality apply to the monopole rather than quark vacua. More specifically, in our

theory we deal with N <Nf <
3
2N massive quark flavors. We consider the vacuum in which N squarks

condense. Then we identify a crossover transition from weak to strong coupling. At strong coupling, we

find a dual theory, UðNf � NÞ SQCD, with Nf light dyon flavors. Dyons condense triggering the

formation of non-Abelian strings, which confine monopoles. Screened quarks and gauge bosons of the

original theory decay into confined monopole-antimonopole pairs and form stringy mesons.
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I. INTRODUCTION AND SETTING THE GOAL:
FROM N ¼ 2 TO N ¼ 1

The dual Meissner effect as the confinement mechanism
[1] in Yang-Mills theories remains obscure despite a
remarkable breakthrough inN ¼ 2 supersymmetric theo-
ries, where the exact Seiberg-Witten solution was found
[2,3]. Seiberg and Witten demonstrated [2,3] that magnetic
monopoles do condense in the so-called monopole vacua
of the N ¼ 2 theory after one switches on a small
N ¼ 2-breaking deformation of the �A2 type. Upon
condensation of the monopoles, chromoelectric flux tubes
(strings) of the Abrikosov-Nielsen-Olesen type [4] are
formed. This leads to confinement of (probe) quarks at-
tached to the endpoints of confining strings.

The Seiberg-Witten mechanism of confinement is essen-
tially Abelian1 [5–9]. This is due to the fact that in the
Seiberg-Witten solution the non-Abelian gauge group of
the underlying N ¼ 2 theory (for example, SUðNÞ) is
broken down to the Abelian subgroup Uð1ÞN�1 by con-
densation (in the strongly coupled monopole vacua) of the
adjoint scalars inherent toN ¼ 2. The subsequent mono-
pole condensation occurs essentially in the Abelian
Uð1ÞN�1 theory. This feature makes the N ¼ 2 theory

dissimilar from pure Yang-Mills, in which there is no
dynamical Abelianization. Hence, to get closer to reality,
a natural desire arises to eliminate the adjoint scalars,
passing if not to N ¼ 0, at least to N ¼ 1. That is
what we will eventually do.
However, N ¼ 1 theories do not support monopoles

(dyons), at least at the quasiclassical level, and the very
meaning of the dual Meissner effect gets obscure. In search
of a non-Abelian confinement mechanism similar in spirit
to the Meissner mechanism of Nambu, ’t Hooft, and
Mandelstam, we recently explored a different, albeit re-
lated, scenario [10,11]. To begin with, we focused on the
quark (rather than monopole) vacuum of N ¼ 2 super-
symmetric QCD (SQCD) with the UðNÞ gauge group
[rather than SUðNÞ] and Nf flavors of fundamental quark

hypermultiplets, with Nf in the interval N <Nf < 2N.

Then, there is no confinement of the chromoelectric
charges; on the contrary, they are Higgs screened.
Instead, the chromomagnetic charges are confined by
non-Abelian strings. They, the chromomagnetic charges,
manifest themselves in a clear-cut manner as junctions of
two nonidentical, albeit degenerate, strings. Moreover, at
strong coupling (where, as we will see, a dual description is
applicable) the quarks and gauge bosons of the original
theory decay into monopole-antimonopole pairs on the
curves of marginal stability (CMS). The (anti)monopoles
forming the pair are confined. In other words, the original
quarks and gauge bosons evolve in the strong coupling
domain into ‘‘stringy mesons’’ with two constituents being
connected by two strings as shown in Fig. 1. These mesons
are expected to lie on Regge trajectories.

1By non-Abelian confinement, we mean such dynamical re-
gime in which at distances of the flux tube formation all gauge
bosons are equally important, while the Abelian confinement
occurs when the relevant gauge dynamics at such distances is
Abelian. Note that Abelian confinement can take place in non-
Abelian theories; the Seiberg-Witten solution is just one
example.
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All of these phenomena take place in the quark vacua of
theN ¼ 2 theory [10,11]. This theory is slightly different
from the Seiberg-Witten model. Namely, as was men-
tioned, the U(1) gauge factor is added, and, then, the
Fayet-Iliopoulos (FI) [12] D-term � is introduced. Then,
we single out the vacuum in which r ¼ N (s)quarks con-
dense. A global color-flavor locked symmetry survives in
the limit of equal quark mass terms. At large � this theory
is at weak coupling and supports non-Abelian flux tubes
(strings) [13–16] (see, also, [17–20] for reviews). It is the
formation of these strings that ensures confinement of
monopoles. Upon reducing the FI parameter �, the theory
goes through a crossover transition [10,21,22] into a
strongly coupled regime, which can be described in terms

of weakly coupled dual N ¼ 2 SQCD, with the Uð ~NÞ �
Uð1ÞN� ~N gauge group and Nf flavors of light dyons.

2 Here

~N ¼ Nf � N; (1.1)

as in Seiberg’s duality in N ¼ 1 theories [24,25], where
the emergence of the dual SUð ~NÞ group was first observed.

The dual theory supports non-Abelian strings due to
condensation of light dyons, much in the same way as
the string formation in the original theory is due to con-
densation of quarks. Moreover, the number of distinct
strings is, of course, the same in the original and dual
theories. The strings of the dual theory confine monopoles
too, rather than quarks [10]. This is due to the fact that the
light dyons condensing in the dual theory carry weightlike
chromoelectric charges (in addition to chromomagnetic
charges). In other words, they carry the quark charges.
The strings formed through condensation of these dyons
can confine only states with the rootlike magnetic charges,
i.e., the monopoles [10]. Thus, our N ¼ 2 non-Abelian
duality is not electromagnetic.

The chromoelectric charges of quarks (or gauge bosons)
are Higgs-screened a large �. As was mentioned above, in
the domain of small � (where the dual description is
applicable) these states decay into the monopole-
antimonopole pairs on CMS; see [11] for the proof of
this fact. The monopoles and antimonopoles forming the
pair cannot abandon each other because they are confined.

Therefore, the original quarks and gauge bosons, with the
passage to the strong coupling domain of small �, evolve
into stringy mesons shown in Fig. 1. A detailed discussion
of these stringy mesons can be found in [19]. The same
picture takes place when we move in the opposite direc-
tion, with the interchange of two theories from the dual
pair.
Deep in the non-Abelian quantum regime, the confined

monopoles were demonstrated [11] to belong to the funda-
mental representation of the global (color-flavor locked)
group. Therefore, the monopole-antimonopole mesons can
be both, in the adjoint and singlet representation of this
group. This pattern of confinement seems to be similar to
what we have in actuality, except that the role of the ‘‘con-
stituent quarks’’ inside mesons is played by the monopoles.
Low-energy dynamics on the world sheet of the non-

Abelian strings under discussion are described by two-
dimensional CP models [13–16]. From the world sheet
standpoint different (degenerate) non-Abelian strings
are different supersymmetric vacua of the CP models.
Confined monopoles are in fact kinks interpolating be-
tween these vacua. Nonperturbative generation of the dy-
namical scale �CP stabilizes the kink inverse sizes and
masses atOð�CPÞ [15,19]. This is in contradistinction with
the absence of classical stabilization of monopoles in the
non-Abelian regime (see, e.g., the discussion of the so-
called ‘‘monopole clouds’’ in [26]).3

In this paper, we report on the second stage of the
program, namely, the study of non-Abelian duality in the
absence of the adjoint fields, in N ¼ 1 SQCD. To pass
fromN ¼ 2 toN ¼ 1, we add a deformation term�A2

in the superpotential. We show that the picture of the non-
Abelian monopole confinement outlined above forN ¼ 2
survives this deformation all the way up to large �, where
the adjoint fields decouple leaving us withN ¼ 1 SQCD.
We start our work from N ¼ 2 SQCD with the UðNÞ

gauge group and Nf massive quark flavors where

N <Nf <
3
2N (1.2)

to ensure infrared freedom in the dual theory at large �.
Since the deformation superpotential (2.2) plays the role of
an effective FI term (being combined with the nonvanish-
ing quark mass terms), there is no need to introduce the FI
term through the D term. Although it is certainly doable,
this would be nothing but an unnecessary complication.
At small�, the deformation superpotential (2.2) reduces

to the Fayet-Iliopoulos F-term with the effective FI pa-
rameter � determined by �� ffiffiffiffiffiffiffiffi

�m
p

, where m presents a

FIG. 1 (color online). Meson formed by monopole-
antimonopole pair connected by two strings. Open and closed
circles denote the monopole and antimonopole, respectively.

2This is in perfect agreement with the results obtained in [23]
where the SUð ~NÞ dual gauge group was identified at the root of
the baryonic Higgs branch in the SUðNÞ gauge theory with
massless (s)quarks.

3To better explain this statement, we should point out that, for
example, in the monopole vacua of N ¼ 2 SQCD, the Seiberg-
Witten solution tells us [2,3] that the theory dynamically
Abelianizes. That Is why it is so difficult to apply the standard
confinement scenario, based on monopole condensation, to
theories without adjoint scalars. We just do not know what
that means, non-Abelian monopole in the Higgs/Coulomb phase.
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typical scale of the quark masses. We focus on the so-
called r vacuum in which r ¼ N quarks condense, with the
subsequent formation of the non-Abelian strings, which
confine monopoles. Much in the same way as in our
previous N ¼ 2 studies [10,11] with the Fayet-
Iliopoulos D-term, there is a crossover transition in �. It
takes place at the boundary of the weak and strong cou-
pling domains. As strong coupling occurs as one reducesffiffiffiffiffiffiffiffi
m�

p
, a dual description applies, in terms of a weakly

coupled non-Abelian infrared-free SQCD with the dual

gauge group Uð ~NÞ � Uð1ÞN� ~N and Nf light dyon flavors.

The dual gauge group is Higgsed too (with a global color-
flavor locked symmetry preserved) and supports non-
Abelian strings. These strings still confine monopoles
rather than quarks.

Next, we increase the deformation parameter � decou-
pling the adjoint fields and sending the original theory to
the limit of N ¼ 1 SQCD. At large �, the dual theory is
demonstrated to be weakly coupled and infrared-free, with
the Uð ~NÞ gauge group and Nf light dyons D

lA (l ¼ 1; . . . ~N

is the color index in the dual gauge group, while A ¼
1; . . . ; Nf is the flavor index). Our proof is valid provided

the dyon condensate ��� ffiffiffiffiffiffiffiffi
�m

p
is small enough. Non-

Abelian strings [albeit this time non-Bogomol’nyi-Prasad-
Sommerfield (BPS) saturated] are formed which confine
monopoles—qualitatively the same type of confinement as
in the N ¼ 2 duality [10,11]. In the domain of smallffiffiffiffiffiffiffiffi
�m

p
, quark and gauge bosons of original N ¼ 1

SQCD are presented by stringy mesons built from the
monopole-antimonopole pairs connected by two non-
Abelian strings; see Fig. 1.

An interesting aspect, to be discussed in the bulk of the
paper, is the relationship of our duality with that of Seiberg.
To make ourselves clear in this point we should undertake a
small digression in the issue of vacua.

N ¼ 1 SQCD with Nf flavors (N þ 1 � Nf <
3
2N) has

a large number of distinct vacua. We need to classify them.
To this end we can invoke our knowledge of the vacuum
structure in related theories, such asN ¼ 2 SQCD, which
is controlled by the exact Seiberg-Witten solution [2,3].

Let us turn to the latter. Among others, it has N super-
symmetric vacua, which are generically referred to as the
‘‘monopole vacua.’’ The gauge symmetry is spontaneously
broken down to Uð1ÞN�1 in these vacua,4 and the subse-
quent switch on of a small-� deformation leads to the
monopole condensation (in fact, in some of these vacua it
is dyons that condense), the (Abelian) flux tube formation
and confinement of (probe) quarks. As � grows and even-
tually becomes large, the adjoint fields of the N ¼ 2
theory decouple, and we are left with N ¼ 1 SQCD.
The N monopole vacua go though a crossover transition
into a non-Abelian phase. We will say that the above vacua

evolve and become the monopole vacua ofN ¼ 1 SQCD.
The name ‘‘monopole’’ is symbolic. We just continue to
refer in this way to the vacua which used to be the mono-
pole vacua of the N ¼ 2 Seiberg-Witten theory at small
�, into the domain of large � where the Seiberg-Witten
control over dynamics is lost.
At large�, we recoverN ¼ 1 SQCD. TheN monopole

vacua are those in which Seiberg’s duality was established
[24,25]. If the quark fields of the electric theory are en-
dowed with small masses to lift the continuous vacuum
manifold, in the Seiberg magnetic dual theories the meson
field M condenses. Since it is singlet with respect to the
dual color gauge groups SUð ~NÞ, this gauge group remains
unbroken. We stress that the Seiberg M condensation
occurs in the vacua of the dual theory if in the original
electric theory we stay in the monopole vacua. There is
no obvious connection between M and the monopole
fields which the monopole fields are not defined at all in
this set up.5

Our task is to explore dualities in N ¼ 1 SQCD in the
vacua other than the N monopole vacua. For a deeper
understanding of the problem we start, however, from the
quark vacua of the N ¼ 2 Seiberg-Witten theory (with
the addition of the U(1) gauge group and the corresponding
Fayet-Iliopoulos term [12]). This was the beginning of our
program of duality explorations, the N ¼ 2 limit
[10,11,19,21,22]. In this paper, we report the study of the
�-deformation leading us away from N ¼ 2 to N ¼ 1
SQCD, remaining in the quark vacua.
Now, turning to the relation between our duality (plus

monopole confinement) and that of Seiberg [24,25], we
observe that the light dyons DlA of our Uð ~NÞ dual theory
are simultaneously similar to and dissimilar from Seiberg’s
‘‘dual quarks.’’ They have the same quantum numbers, but
the dynamics are different. One can conjecture that, in fact,
Seiberg’s dual quarks are a different-phase implementation
of the dyons DlA. If so, everything else becomes clear.
Indeed, in quantum numbers, the stringy mesons formed
from the monopole-antimonopole pairs correspond to
Seiberg’s neutral mesons MB

A (A, B ¼ 1; . . . ; Nf). Both

incorporate the singlet and adjoint representations of the
global flavor group. The difference is that in our dual
theory, these stringy mesons are nonperturbative objects,
which are rather heavy in the weak coupling regime of the

4In our theory we will have Uð1ÞN , since instead of the
Seiberg-Witten SUðNÞ group we work with UðNÞ.

5A side remark, which will not be elaborated below, is in order
here. In N ¼ 1 SQCD with nonvanishing quark masses the
Intriligator-Seiberg-Shih (ISS) vacuum was detected in 2006
[27,28]. With a generic set of the mass terms the ISS vacuum
is nonsupersymmetric (i.e., its energy is lifted from zero). Given
a special choice of the mass parameters, it can be made super-
symmetric at the classical level. Then, quantum corrections will
lift it from zero, albeit the breaking can be small. In [29], we
considered non-Abelian strings and their junctions in the ISS-
like vacuum ofN ¼ 1 SQCD. Finally, once we started speaking
of Seiberg’s duality beyond the original Seiberg’s duality, we
cannot help mentioning an inspiring paper of Komargodski [30].
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dual theory. This is in sharp contrast to the fact that, in
Seiberg’s dual theory, theMB

A mesons appear as fundamen-
tal fields at the Lagrangian level and are light.

The explanation for these dynamical differences was, in
fact, given above: Seiberg’s duality refers to the monopole
vacua, while ours to the quark vacua (of the r ¼ N type).
DyonsDlA do not condense in the monopole vacua, and the
(infrared-free) dual theory is in the Coulomb phase. In our
vacua, at strong coupling (weak coupling in the dual
theory), the light dyons condense, triggering formation of
the non-Abelian strings and, as a result, the confinement of
monopoles. The dyon condensate is proportional to

ffiffiffiffiffiffiffiffi
�m

p
and represents a would-be run-away vacuum not seen in
the Seiberg dual description, where � is considered to be
strictly infinite (see Fig. 3 in Sec. VI).

Concluding the introductory section, we reiterate that the
overall picture of duality we obtained in previous works
[10,11] inN ¼ 2 theories survives the passage toN ¼1.
Some details change, for instance, the strings cease
to be BPS saturated (correspondingly, supersymmetry on
the string world sheet is lost at the classical level).
Nevertheless, the general pattern of the phenomenon stays
intact.

The paper is organized as follows. In Sec. II, we outline
our basic setup,N ¼ 2 SQCD. Then we introduce a small
deformation parameter � and briefly review non-Abelian
duality observed in [10,11]. In Sec. III, we describe how
the quarks and gauge bosons of the original theory pass
into the monopole-antimonopole pairs, stringy mesons, in
the crossover domain. In Sec. IV, we increase� eventually
decoupling gauge singlets and adjoint scalars of the dual
theory. This is the limit of N ¼ 1 SQCD. Section V is
devoted to the formation of non-Abelian strings and
monopole-antimonopole mesons in the N ¼ 1 theory.
Then we proceed to duality in the quark vacua of the
N ¼ 1 theory. In Sec. VI, we compare our picture to
that of Seiberg. Finally, Sec. VII summarizes our results
and conclusions. In the Appendix, we treat technical de-
tails of the U(3) model with Nf ¼ 5 at small �.

II. BASIC THEORYAT SMALL �

This section presents our basic setup at small �, i.e.,
near the N ¼ 2 limit.

The gauge symmetry of the basic bulk model is UðNÞ ¼
SUðNÞ � Uð1Þ. In the absence of deformation, the model
under consideration is N ¼ 2 SQCD with Nf massive

quark hypermultiplets. We assume that Nf > N but

Nf <
3
2N; see Eq. (1.2). The latter inequality ensures that

the dual theory is not asymptotically free.
In addition, we will introduce the mass term � for the

adjoint matter breaking N ¼ 2 supersymmetry down to
N ¼ 1.

The field content is as follows. The N ¼ 2 vector
multiplet consists of the U(1) gauge field A� and the

SUðNÞ gauge field Aa
�, where a ¼ 1; . . . ; N2 � 1, and their

Weyl fermion superpartners plus complex scalar fields a,
and aa and their Weyl superpartners, respectively. The Nf

quark multiplets of the UðNÞ theory consist of the complex
scalar fields qkA and ~qAk (squarks) and their fermion super-
partners—all in the fundamental representation of the
SUðNÞ gauge group. Here k ¼ 1; . . . ; N is the color index,
while A is the flavor index, A ¼ 1; . . . ; Nf. We will treat

qkA and ~qAk as rectangular matrices with N rows and Nf

columns.
Let us first discuss the undeformed N ¼ 2 theory. The

superpotential has the form

W N¼2 ¼
ffiffiffi
2

p XNf

A¼1

�
1

2
~qAAqA þ ~qAAaTaqA

�
; (2.1)

where A and Aa are chiral superfields, the N ¼ 2
superpartners of the gauge bosons of U(1) and SUðNÞ,
respectively.
Next, we add the mass term for the adjoint fields which

breaks N ¼ 2 supersymmetry down to N ¼ 1,

W ½�� ¼
ffiffiffiffi
N

2

s
�1

2
A2 þ�2

2
ðAaÞ2; (2.2)

where �1 and �2 are mass parameters for the chiral super-
fields in N ¼ 2 gauge supermultiplets, U(1) and SUðNÞ,
respectively. Generally speaking, �1 need not coincide
with �2, but we will assume these parameters to be of
the same order of magnitude and will generically denote
them as �. Clearly, the mass term (2.2) splits the N ¼ 2
supermultiplets, breakingN ¼ 2 supersymmetry down to
N ¼ 1. First, we assume that � is small, much smaller
than the quark masses mA,

� � mA; A ¼ 1; . . . ; Nf: (2.3)

The bosonic part of the action of our basic theory has the
form (for details, see [19])

S¼
Z
d4x

�
1

4g22
ðFa

��Þ2þ 1

4g21
ðF��Þ2þ 1

g22
jD�a

aj2

þ 1

g21
j@�aj2þjr�q

Aj2þjr�
�~qAj2þVðqA; ~qA;aa;aÞ

�
:

(2.4)

Here D� is the covariant derivative in the adjoint repre-

sentation of SUðNÞ, while
r� ¼ @� � i

2
A� � iAa

�T
a (2.5)

acts in the fundamental representation. We suppress the
color SUðNÞ indices of the matter fields. The normalization
of the SUðNÞ generators Ta is as follows:

Tr ðTaTbÞ ¼ 1
2�

ab:

The coupling constants g1 and g2 correspond to the U(1)
and SUðNÞ sectors, respectively. With our conventions, the
U(1) charges of the fundamental matter fields are �1=2;
see Eq. (2).
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The scalar potential VðqA; ~qA; aa; aÞ in the action (2.4) is the sum of D and F terms,

VðqA; ~qA;aa;aÞ¼g22
2

�
1

g22
fabc �abacþ �qAT

aqA� ~qAT
a �~qA

�
2þg21

8
ð �qAqA� ~qA �~q

AÞ2þ2g22

��������~qAT
aqAþ 1ffiffiffi

2
p @W �

@aa

��������2

þg21
2

��������~qAq
Aþ ffiffiffi

2
p @W�

@a

��������2þ1

2

XNf

A¼1

fjðaþ ffiffiffi
2

p
mAþ2TaaaÞqAj2þjðaþ ffiffiffi

2
p

mAþ2TaaaÞ �~qAj2g: (2.6)

Here fabc denotes the structure constants of the SUðNÞ
group, mA is the mass term for the Ath flavor, and the sum
over the repeated flavor indices A is implied.

A. Vacuum structure

Now, let us discuss the vacuum structure of this theory
[31]. The vacua of the theory (2.4) are determined by the
zeros of the potential (2.6). In general, the theory has a
number of the so-called r-vacua, in which r quarks con-
dense. The range of variation of r is r ¼ 0; . . . ; N. For
example, r ¼ 0 vacua (there are N such vacua) are always
at strong coupling. We have already explained that they are
called the monopole vacua [2,3]. In this paper, we will
focus on a particular set of vacua with the maximal number
of condensed quarks, r ¼ N. The reason for this choice is
that all U(1) factors of the gauge group are spontaneously
broken in these vacua, and, as a result, they support non-
Abelian strings [13–16]. The occurrence of strings ensures
the monopole confinement in these vacua.

Let us first assume that our theory is at weak coupling, so
that we can analyze it quasiclassically. Below, we will
explicitly formulate conditions on the quark mass terms
and �, which will enforce such a regime.

With generic values of the quark masses, we have

CN
Nf

¼ Nf!

N!ðNf � NÞ! (2.7)

isolated r-vacua in which r ¼ N quarks (out of Nf) de-

velop vacuum expectation values (VEVs). Consider, for
example, the vacuum in which the first N flavors develop
VEVs, to be denoted as (1; 2 . . . ; N). In this vacuum, the
adjoint fields develop VEVs too, namely,

��
1

2
aþ Taaa

��
¼ � 1ffiffiffi

2
p

m1 . . . 0
. . . . . . . . .
0 . . . mN

0
@

1
A: (2.8)

For generic values of the quark masses, the SUðNÞ sub-
group of the gauge group is broken down to Uð1ÞN�1.
However, in the special limit

m1 ¼ m2 ¼ . . . ¼ mNf
; (2.9)

the adjoint field VEVs do not break the SUðNÞ � Uð1Þ
gauge group. In this limit, the theory acquires a global
flavor SUðNfÞ symmetry.

With all quark masses equal and to the leading order
in �, the mass term for the adjoint matter (2.2) reduces to

the Fayet-Iliopoulos F-term of the U(1) factor of the
SUðNÞ�Uð1Þ gauge group, which does not break N ¼2
supersymmetry [6,8]. In this limit, the Fayet-Iliopoulos
F-term can be transformed into the Fayet-Iliopoulos
D-term by an SUð2ÞR rotation; the theory reduces to
N ¼ 2 SQCD described in detail, for example, in[19].
Higher orders in the parameter� breakN ¼ 2 supersym-
metry by splitting all N ¼ 2 multiplets.
If the quark masses are unequal, theUðNÞ gauge group is

broken down to Uð1ÞN by the adjoint field VEV’s (2.8). To
the leading order in�, the superpotential (2.2) reduces toN
distinct FI terms, one in each U(1) gauge factor. N ¼ 2
supersymmetry in each individual low-energy U(1) theory
remains unbroken [31]. It is broken, however, being con-
sidered in the full UðNÞ gauge theory.
Using (2.2) and (2.8) it is not difficult to obtain the quark

field VEVs from Eq. (2.6). By virtue of a gauge rotation,
they can be written as

hqkAi¼ h �~qkAi¼ 1ffiffiffi
2

p
ffiffiffiffiffi
�1

p
. . . 0 0 .. . 0

.. . . . . . . . . . . . . . . . .

0 . . .
ffiffiffiffiffiffi
�N

p
0 .. . 0

0
BB@

1
CCA;

k¼1; . . . ;N; A¼1; . . . ;Nf;

(2.10)

where we present the quark fields as matrices in the color
ðkÞ and flavor ðAÞ indices. The Fayet-Iliopoulos F-term
parameters for each U(1) gauge factor are given (in the
quasiclassical approximation) by the following expres-
sions:

�P¼2

	 ffiffiffiffi
2

N

s
�1m̂þ�2ðmP�m̂Þ



; P¼1; . . . ;N (2.11)

and m̂ is the average value of the first N quark masses,

m̂ ¼ 1

N

XN
P¼1

mP: (2.12)

While the adjoint VEVs do not break the SUðNÞ � Uð1Þ
gauge group in the limit (2.9), the quark condensate (2.10)
does result in the spontaneous breaking of both gauge and
flavor symmetries. A diagonal global SUðNÞ combining
the gauge SUðNÞ and an SUðNÞ subgroup of the flavor
SUðNfÞ group survives, however. This is color-flavor lock-
ing. Below we will refer to this diagonal global symmetry
as to SUðNÞCþF.
Thus, the pattern of the color and flavor symmetry

breaking is as follows:
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U ðNÞgauge�SUðNfÞflavor!SUðNÞCþF�SUð ~NÞF�Uð1Þ;
(2.13)

where ~N ¼ Nf � N. Here SUðNÞCþF is a global unbroken

color-flavor rotation, which involves the first N flavors,
while the SUð ~NÞF factor stands for the flavor rotation of the
~N quarks. The presence of the global SUðNÞCþF group is
instrumental for formation of the non-Abelian strings
[13–16,31]. As we will see shortly, the global symmetry
of the dual theory is, of course, the same, albeit the
physical origin is different.

With unequal quark masses, the global symmetry (2.13)
is broken down to Uð1ÞNf�1 both by the adjoint and squark
VEVs. This should be contrasted with the theory with the
Fayet-Iliopoulos term introduced through the D-term, in
which the quark VEVs are all equal and do not break the
color-flavor symmetry.

Since the global (flavor) SUðNfÞ group is broken by the

quark VEVs anyway, it will be helpful for our purposes to
consider the following mass splitting:

mP¼mP0 ; mK¼mK0 ; mP�mK¼�m; (2.14)

where

P;P0 ¼ 1; . . . ;N and K;K0 ¼ Nþ 1; . . . ;Nf: (2.15)

This mass splitting respects the global group (2.13) in the
(1; 2; . . . ; N) vacuum. Moreover, this vacuum becomes
isolated. No Higgs branch develops. We will often use
this limit below.

B. Perturbative excitations

Now, let us discuss the perturbative excitation spectrum.
To the leading order in �, in the limit (2.14), the super-
potential (2.2) reduces to the Fayet-Iliopoulos F-term of
the U(1) factor of the gauge group. Since both U(1) and
SUðNÞ gauge groups are broken by the squark condensa-
tion, all gauge bosons become massive. In fact, with non-
vanishing �P’s [see, Eq. (2.11)], both the quarks and
adjoint scalars combine with the gauge bosons to form
long N ¼ 2 supermultiplets [8]; for a review see [19].
In the limit (2.14)

�P � �;

and all states come in representations of the unbroken
global group (2.13), namely, in the singlet and adjoint
representations of SUðNÞCþF,

ð1; 1Þ; ðN2 � 1; 1Þ; (2.16)

and in the bifundamental representations

ð �N; ~NÞ; ðN; �~NÞ: (2.17)

We mark representations in (2.16) and (2.17) with respect
to two non-Abelian factors in (2.13). The singlet and
adjoint fields are (i) the gauge bosons and (ii) the first N
flavors of the squarks qkP (P ¼ 1; . . . ; N), together with
their fermion superpartners. The bifundamental fields are

the quarks qkK with K ¼ N þ 1; . . . ; Nf. These quarks

transform in the two-index representations of the global
group (2.13) due to the color-flavor locking.
In the limit (2.14), the mass of the ðN2 � 1; 1Þ adjoint

fields is

mðN2�1;1Þ ¼ g2
ffiffiffi
�

p
; (2.18)

while the singlet field mass is

mð1;1Þ ¼ g1

ffiffiffiffi
N

2

s ffiffiffi
�

p
: (2.19)

The bifundamental field masses are given by

mð �N; ~NÞ ¼ �m: (2.20)

The above quasiclassical analysis is valid if the theory is
at weak coupling. This is the case if the quark VEVs are
sufficiently large so that the gauge coupling constant is
frozen at a large scale. From (2.10), we see that the quark
condensates are of the order of

ffiffiffiffiffiffiffiffi
�m

p
; see, also, [2,3,23,32].

As was mentioned, we assume that �1 ��2 ��. In this
case, the weak coupling condition reduces toffiffiffiffiffiffiffiffi

�m
p 	 �N¼2; (2.21)

where �N¼2 is the scale of the N ¼ 2 theory, and we
assume that all quark masses are of the same order
mA �m. In particular, the condition (2.21), combined
with the condition (2.3) of smallness of �, implies that
the average quark mass m is very large.

III. DUALITYAT SMALL� IN THEQUARKVACUA

A. Dual theory

Now, we will relax the condition (2.21) and pass to the
strong coupling domain at

j ffiffiffiffiffiffi
�P

p j � �N¼2; jmAj � �N¼2: (3.1)

N ¼ 2 SQCD with the Fayet-Iliopoulos term (introduced
as the D-term) was shown [10,11] to undergo a crossover
transition upon reduction of the FI parameter. The results
obtained in [10] are based on studying the Seiberg-Witten
curve [2,3,23] in N ¼ 2 SQCD on the Coulomb branch,
and, therefore, do not depend on the type of the FI defor-
mation. We briefly review these results here, adjusting our
consideration [10,11] to fit the case of the Fayet-Iliopoulos
F-term induced by the adjoint mass �.
The domain (3.1) can be described in terms of weakly

coupled (infrared-free) dual theory with the gauge group

U ð ~NÞ � Uð1ÞN� ~N; (3.2)

and Nf flavors of light dyons.6

6Previously, the SUð ~NÞ gauge group was identified as dual [23]
on the Coulomb branch at the root of the baryonic Higgs branch
in the N ¼ 2 supersymmetric SUðNÞ Yang-Mills theory with
massless quarks.
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Light dyons DlA

l ¼ 1; . . . ; ~N; A ¼ 1; . . . ; Nf (3.3)

are in the fundamental representation of the gauge group
SUð ~NÞ and are charged under the Abelian factors indicated
in Eq. (3.2). In addition, there are (N � ~N) light dyons DJ

(J ¼ ~N þ 1; . . . ; N), neutral under the SUð ~NÞ group, but
charged under the U(1) factors.

In the Appendix, we present the low-energy effective
action for the dual theory in a specific example: N ¼ 3,
Nf ¼ 5, and ~N ¼ 2. In particular, starting from this action,

we find the dyon condensates in the quasiclassical approxi-
mation. Generalization of these results to arbitraryN and ~N
has the following form:

hDlAi¼ h �~DlAi¼ 1ffiffiffi
2

p
0 ... 0

ffiffiffiffiffi
�1

p
. . . 0

.. . . . . . . . . . . . . . . . .

0 . . . 0 0 ...
ffiffiffiffiffiffi
� ~N

p
0
BB@

1
CCA;

hDJi¼ h �~DJi¼
ffiffiffiffiffi
�J

2

s
; J¼ ~Nþ1; . . . ;N:

(3.4)

The most important feature apparent in (3.4), as com-
pared to the squark VEVs of the original theory (2.10), is a
‘‘vacuum jump’’ [10],

ð1; . . . ;NÞ ffiffiffi
�

p
	�N¼2

!ðNþ1; . . . ;Nf; ~Nþ1; . . . ;NÞ ffiffiffi
�

p
��N¼2

:

(3.5)

In other words, if we pick up the vacuum with nonvanish-
ing VEVs of the first N quark flavors in the original theory
at large �, Eq. (2.4), and then reduce � below �N¼2, the
system goes through a crossover transition and ends up in
the vacuum of the dual theory with the nonvanishing VEVs
of ~N last dyons (plus VEVs of (N � ~N) SUð ~NÞ singlets).

The Fayet-Iliopoulos parameters �P in (3.4) are deter-
mined by the quantum version of the classical expressions
(2.11). They are expressible via the roots of the Seiberg-
Witten curve in the given r ¼ N vacuum [31]. Namely,

�P ¼ 2

8<
:

ffiffiffiffi
2

N

s
�1m̂��2ð

ffiffiffi
2

p
eP þ m̂Þ

9=
;; (3.6)

where eP are the double roots of the Seiberg-Witten
curve [23],

y2 ¼ YN
P¼1

ðx��PÞ2 � 4

�
�ffiffiffi
2

p
�
N� ~N YNf

A¼1

�
xþmAffiffiffi

2
p

�
; (3.7)

while �P are gauge invariant parameters on the Coulomb
branch. We recall that m̂ in Eq. (3.6) is still the average of
the first N quark masses (2.12). The curve (3.7) describes
the Coulomb branch of the theory for ~N <N � 1. The case
~N ¼ N � 1 is special. In this case, we must make a shift in
Eq. (3.7) [23],

mA ! ~mA ¼ mA þ�N¼2

N
; ~N ¼ N � 1: (3.8)

We will not consider this special case at large � since it is
incompatible with the condition Nf < 3=2N or ~N <N=2.

In the r ¼ N vacuum, the curve (3.7) has N double roots
and reduces to

y2 ¼ YN
P¼1

ðx� ePÞ2; (3.9)

where quasiclassically (at large masses) eP’s are given by

the mass parameters,
ffiffiffi
2

p
eP 
 �mP, P ¼ 1; . . . ; N.

As long as we keep �P and masses small enough [i.e., in
the domain (3.1)] the coupling constants of the infrared-
free dual theory (frozen at the scale of the dyon VEVs) are
small: the dual theory is at weak coupling.
At small masses, in the region (3.1), the double roots of

the Seiberg-Witten curve are

ffiffiffi
2

p
eI¼�mIþN;

ffiffiffi
2

p
eJ¼�N¼2 exp

�
2�i

N� ~N
J

�
(3.10)

for ~N <N � 1, where

I ¼ 1; . . . ; ~N and J ¼ ~N þ 1; . . . ; N: (3.11)

In particular, the ~N first roots are determined by the masses
of the last ~N quarks—a reflection of the fact that the non-
Abelian sector of the dual theory is not asymptotically free
and is at weak coupling in the domain (3.1).
From Eqs. (3.4), (3.6), and (3.10), we see that the VEVs

of the non-Abelian dyonsDlA are determined by
ffiffiffiffiffiffiffiffi
�m

p
and

are much smaller than the VEVs of the Abelian dyons DJ

in the domain (3.1). The latter are of the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
. This circumstance is most crucial for our analy-

sis in this paper. It will allow us to eventually increase �
and decouple the adjoint fields without spoiling the weak
coupling condition in the dual theory; see Sec. IV.
In the special case, ~N ¼ N � 1 masses in (3.10) should

be shifted according to (3.8).
Now, let us consider either equal quark masses or the

mass choice (2.14). Both the gauge group and the global
flavor SUðNfÞ group are broken in the vacuum. However,

the color-flavor locked form inherent to (3.4) under the
given mass choice guarantees that the diagonal global
SUð ~NÞCþF symmetry survives. More exactly, the unbroken
global group of the dual theory is

SU ðNÞF � SUð ~NÞCþF � Uð1Þ: (3.12)

The SUð ~NÞCþF factor in (3.12) is a global unbroken color-
flavor rotation, which involves the last ~N flavors, while the
SUðNÞF factor stands for the flavor rotation of the first N
dyons.
Thus, a color-flavor locking takes place in the dual

theory too. Much in the same way as in the original theory,
the presence of the global SUð ~NÞCþF group is the reason
behind formation of the non-Abelian strings. For generic
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quark masses, the global symmetry (2.13) is broken down
to Uð1ÞNf�1.

In the equal mass limit, or given the mass choice (2.14),
the global unbroken symmetry (3.12) of the dual theory at
small � coincides with the global group (2.13), which
manifests in the r ¼ N vacuum of the original theory at
large �. This has been already announced previously.

Note, however, that this global symmetry is realized in
two very distinct ways in the dual pair at hand. As was
already mentioned, the quarks and UðNÞ gauge bosons of
the original theory at large � come in the (1,1), ðN2 � 1; 1Þ,
ð �N; ~NÞ, and ðN; �~NÞ representations of the global group (2.13)
, while the dyons and Uð ~NÞ gauge bosons form (1,1),

ð1; ~N2 � 1Þ, ðN; �~NÞ, and ð �N; ~NÞ representations of (3.12).
We see that the adjoint representations of the (Cþ F) sub-
group are different in two theories. How can this happen?

The quarks and gauge bosons, which form the adjoint
(N2 � 1) representation of SUðNÞ at large � and the dyons
and gauge bosons, which form the adjoint ( ~N2 � 1) repre-
sentation of SUð ~NÞ at small � are, in fact, distinct states.
The (N2 � 1) adjoints of SUðNÞ become heavy and de-
couple as we pass from large to small � along the line
���N¼2. Moreover, some composite ( ~N2 � 1) adjoints
of SUð ~NÞ, which are heavy and invisible in the low-energy
description at large �, become light at small � and form the
DlK dyons (K ¼ N þ 1; . . . ; Nf) and gauge bosons of

Uð ~NÞ. The phenomenon of the level crossing takes place
(Fig. 2). Although this crossover is smooth in the full
theory, from the standpoint of the low-energy description,
the passage from large to small �means a dramatic change:
the low-energy theories in these domains are completely
different; in particular, the degrees of freedom in these
theories are different.

This logic leads us to the following conclusion. In
addition to light dyons and gauge bosons included in the
low-energy theory at small �, we must have heavy fields,
which form the adjoint representation ðN2 � 1; 1Þ of the
global symmetry (3.12). These are screened quarks and
gauge bosons from the large-� domain. Let us denote them

as MP0
P (here P, P0 ¼ 1; . . . ; N).

As has been already noted in Sec. I, at small � they
decay into the monopole-antimonopole pairs on the
CMS.7 This is in accordance with results obtained for
N ¼ 2 SU(2) gauge theories [2,3,33] on the Coulomb
branch at zero �, while for the theory at hand it is proven
in [11]. The general rule is that the only states which exist
at strong coupling inside CMS are those which can become

massless on the Coulomb branch [2,3,33]. For our theory,
these are light dyons shown in Eq. (3.4), gauge bosons of
the dual gauge group, and monopoles.
At small nonvanishing �, the monopoles and anti-

monopoles produced in the decay process of the adjoint
ðN2 � 1; 1Þ states cannot escape from each other and fly off
to asymptotically large separations because they are con-
fined. Therefore, the (screened) quarks or gauge bosons

evolve into stringy mesons MP0
P (P, P0 ¼ 1; . . . ; N) in the

strong coupling domain of small �—the monopole-
antimonopole pairs connected by two strings [10,11], as
shown in Fig. 1.
By the same token, at large �, in addition to the light

quarks and gauge bosons, we have heavy fields MK0
K (here

K, K0 ¼ N þ 1; . . . ; Nf), which form the adjoint ( ~N2 � 1)

representation of SUð ~NÞ. This is schematically depicted in
Fig. 2.

The MK0
K states are (screened) light dyons and gauge

bosons of the dual theory. In the large-� domain, they
decay into the monopole-antimonopole pairs and form
stringy mesons [10] shown in Fig. 1.

B. More on the non-Abelian strings and
confined monopoles

Since dyons develop VEVs in the r ¼ N vacuum, which
break the gauge group [see (3.4)] our dual theory supports
strings. In fact, the minimal stings in our theory are the ZN

strings, progenitors of the non-Abelian strings [13–16].
At generic mA, the dual gauge group (3.2) reduces to

Uð1ÞN; the low-energy theory is Uð1ÞN gauge theory with
the Fayet-Iliopoulos F-term for each U(1) factor. The ZN

strings for this theory are thoroughly studied in [31]. In the
low-energy approximation, the ZN strings are BPS satu-
rated. Tensions of all N elementary ZN strings are given by
the FI parameters [31],

TBPS
P ¼ 2�j�Pj; P ¼ 1; . . . ; N: (3.13)

In the limit (2.14), the color-flavor locking takes place
and the global group of the dual theory becomes that of
Eq. (3.12). In this case, ~N of the set of N ZN strings
(associated with windings of non-Abelian DlA dyons)

elementary

ξΛ2

composite

elementary

composite

FIG. 2. Evolution of the SUðNÞ and SUð ~NÞ gauge bosons and
light quarks (dyons) vs �.

7An explanatory remark regarding our terminology is in order.
Strictly speaking, such pairs can be formed by monopole-
antidyons and dyon-antidyons as well, the dyons carrying root-
like electric charges. In this paper, we refer to all such states
collectively as to ‘‘monopoles.’’ This is to avoid confusion with
dyons which appear in Eq. (3.4). The latter dyons carry weight-
like electric charges and, roughly speaking, behave as quarks;
see [10] for further details.
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acquire orientational zero modes and become non-Abelian.
They can be analyzed within the general framework devel-
oped in [13–16]; see [19] for a review. The internal
dynamics of the orientational zero modes are described
by a two-dimensional N ¼ ð2; 2Þ supersymmetric CP
model living on the string world sheet [13–16]. For the
original theory (2.4), it is the CPðN � 1Þmodel for ~N ¼ 0.
For nonzero ~N, the string becomes semilocal. Semilocal
strings do not have a fixed transverse radius, they acquire
size moduli; see [34] for a review of the Abelian semilocal
strings. The non-Abelian semilocal strings in N ¼ 2
SQCD with Nf > N were studied in [13,16,35,36]. The

internal dynamics of these strings is qualitatively described
by a weighted CPðNf � 1Þ model with N positive and ~N

negative charges associated with N orientational moduli
and ~N size moduli. [Aspects of a quantitative description
and its interrelation with the weighted CPðNf � 1Þ model

will be discussed in [37].] In the dual theory, N and ~N
interchange; it is governed by the weighted CPðNf � 1Þ
model with ~N positive (orientations) and N negative (size)
charges nK, K ¼ ðN þ 1Þ; . . . ; Nf and �P, P ¼ 1; . . . ; N,

respectively [11]. The above moduli are subject to the
constraint

jnKj2 � j�Pj2 ¼ 2 ~�; (3.14)

where ~� is a coupling constant of the dual world sheet
theory. It is determined by the gauge coupling constant of
the dual bulk theory at the scale � ffiffiffi

�
p

[11,14,15],

~� ¼ 2�

~g22
: (3.15)

Distinct elementary non-Abelian strings correspond to
different vacua of the CP model under consideration.
Confined monopoles of the bulk theory are identified
with the junctions of two degenerate elementary non-
Abelian strings [15,16,38]. These are seen as kinks inter-
polating between different vacua of the CP model.
Nonperturbative generation of the dynamical scale �CP

in the CP model stabilizes these kinks in the non-
Abelian regime, making their inverse sizes and masses of
the order of �CP [15,19]. Thus, the notion of the confined
monopole becomes well defined in the non-Abelian limit.

The identification of confined monopoles with the
CP-model kinks reveals the global quantum numbers of
the monopoles. For example, it was known for a long
time that the kinks in the quantum limit form a fundamental
representation of the global SUðNÞ group in theN ¼ð2;2Þ
supersymmetric CPðN � 1Þ models [39,40]. In [11], we
generalized this result to the case of theN ¼ ð2; 2Þ super-
symmetric weighted CP models. We showed that the kinks
(confinedmonopoles) are in the fundamental representation
of the global group (3.12).

More exactly, in the limit (2.14) they form the ðN; 1Þ þ
ð1; ~NÞ representations of the global group (3.12). This
means that the total number of stringy mesons MB

A formed

by the monopole-antimonopole pairs connected by two
different elementary non-Abelian strings (Fig. 1) is N2

f.

The mesons MP0
P form the singlet and ðN2 � 1; 1Þ adjoint

representations of the global group (3.12), the mesons MK
P

and MP
K form bifundamental representations ðN; �~NÞ

and ð �N; ~NÞ, while the mesons MK0
K form the singlet and

ð1; ~N2 � 1Þ adjoint representations. [Here, as usual,
P ¼ 1; . . . ; N and K ¼ ðN þ 1Þ; . . . ; Nf.]

All these mesons with spins that are not too high have
masses

m
MP0

P
� ffiffiffi

�
p

; (3.16)

as determined by the string tensions (3.13). They are
heavier than the elementary states, namely, dyons and

dual gauge bosons which form the (1,1), ðN; �~NÞ, ð �N; ~NÞ,
and ð1; ~N2 � 1Þ representations and have masses �~g2

ffiffiffi
�

p
.

Therefore, the (1,1), ðN; �~NÞ, ð �N; ~NÞ, and ð1; ~N2 � 1Þ
stringy mesons decay into elementary states, and we

are left with MP0
P stringy mesons in the representation

ðN2 � 1; 1Þ. Thus, our confinement picture in the bulk
theory outlined above is confirmed by the world sheet
analysis.
This concludes our extended introduction and adjust-

ments necessary to pass to the study of theN ¼ 1 theories.

IV. FLOWING TO N ¼ 1 QCD

With all preparatory work done, we begin our journey in
the N ¼ 1 theories. In this section, we increase the ad-
joint mass� and decouple the adjoint matter. In the course
of this process, the theory at hand flows toN ¼ 1 SQCD.
So, now we assume that

j�j 	 jmAj; A ¼ 1; . . . ; Nf: (4.1)

Then, the N ¼ 2 multiplets are split. We consider the
quark masses to be small enough to guarantee that the
original theory (2.4) is at strong coupling, while the dual
theory is at weak coupling.

A. Decoupling the Uð1ÞðN� ~NÞ sector
At first, we will impose the condition

j�j � �N¼2; (4.2)

implying [in conjunction with (4.1)] that all parametersffiffiffiffiffiffi
�P

p
are much smaller than�N¼2. Then, our dual theory is

at weak coupling; see Eqs. (3.6) and (3.10). From (3.10),
we see that VEVs of non-Abelian dyons DlA are much
smaller than those of the Abelian dyons DJ. Consider the
low-energy limit of the dual theory, i.e., energies much

lower than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
. In this scale, the Abelian dyons DJ

J ¼ ð ~N þ 1Þ; . . . ; N
are heavy and decouple. These dyons interact with
(N � ~N þ 1) U(1) gauge fields; see Eq. (3.2). In this set
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of gauge bosons, (N � ~N) U(1) fields also become heavy

(with masses g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
). Only one remains. As a result,

in the low-energy limit we are left with the dual theory with
the gauge group

U ð ~NÞ (4.3)

and Nf flavors of dyons

DlA; l ¼ 1; . . . ; ~N; A ¼ 1; . . . ; Nf:

The superpotential in this theory is

W ¼ ffiffiffi
2

p XNf

A¼1

�
1

2
~DAbUð1ÞDA þ ~DAb

pTpDA

�

þW ½��ðbUð1Þ; bpÞ: (4.4)

Here, bUð1Þ is a scalar field, the N ¼ 2 superpartner of

BUð1Þ
� , where BUð1Þ

� is a particular linear combination of the
dual gauge fields not interacting with the DJ dyons. We
renormalized bUð1Þ so that charges of the DlA dyons with

respect to this field are 1
2 . This amounts to redefining its

coupling constant ~g2Uð1Þ. Moreover, bp is an SUð ~NÞ adjoint
chiral field, the N ¼ 2 superpartner of the dual SUð ~NÞ
gauge field. Finally, W ½�� is a � dependent part of the

superpotential; cf. (2.2).
The deformation superpotentialW ½�� given in Eq. (2.2)

can be expressed in terms of invariants uk; see Eq. (A7).
Namely,

W ½�� ¼ �2u2 ��2

N

�
1�

ffiffiffiffi
2

N

s
�1

�2

�
u21; (4.5)

where u2 and u1 should be understood as functions of bUð1Þ
and bp. These functions are determined by the exact
Seiberg-Witten solution. We will treat them in Sec. IVB.
Note that with the singlet dyons decoupled, the VEVs of
the non-Abelian dyons are

hDlAi¼ h �~DlAi¼ 1ffiffiffi
2

p
0 .. . 0

ffiffiffiffiffi
�1

p
. . . 0

.. . . . . . . . . . . . . . . . .

0 .. . 0 0 .. .
ffiffiffiffiffiffi
� ~N

p
0
BB@

1
CCA; (4.6)

where the first ~N �’s are of the order of �m; see (3.10).

B. Decoupling the adjoint matter

As will be shown in Sec. IVC, the masses of the gauge
fields and dyons DlA in the Uð ~NÞ gauge theory, with the
superpotential (4.4), do not exceed

ffiffiffiffiffiffiffiffi
�m

p
, while the

adjoint matter mass of is of the order of �. Therefore, in
the limit (4.1), the adjoint matter decouples. Below scale
�, our theory becomes dual to N ¼ 1 SQCD with the
scale

~� N�2 ~N ¼ �N� ~N
N¼2

�
~N

: (4.7)

The only condition we impose to keep this infrared-free
theory in the weak coupling regime isffiffiffiffiffiffiffiffi

�m
p � ~�: (4.8)

This means that at large�, we must keep the quark masses
small enough. The larger the value of �, the smaller the
quark masses, so that the product �m is constrained from

above by ~�2. This is always doable.
We would like to stress that although this procedure is

perfectly justified in the r ¼ N vacuum we work in, it does
not work, for example, in the monopole vacua. In these
vacua, VEVs of the light matter (the Abelian monopoles)

are of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, which, in turn, sets the mass

scale in the dual Abelian Uð1ÞN gauge theory [2].
Therefore, we cannot decouple the adjoint matter, keeping
the dual theory at weak coupling. As soon as we increase�
well above the above scale, we break the weak coupling
condition in the dual Uð1ÞN gauge theory.
In contrast, in the r ¼ N vacuum we can take � much

larger than the quark masses and decouple the adjoint
matter. If the condition (4.8) is fulfilled, the dual theory
stays at weak coupling. The reason is that it is the quark
masses rather than �N¼2 that determine the ‘‘non-
Abelian’’ roots of the Seiberg-Witten curve and VEVs of
the non-Abelian dyons; see (3.10).
Given the superpotential (4.4), we can explicitly inte-

grate out the adjoint matter. To this end, we expand W ½��
in powers of bUð1Þ and bp,

W ½��ðbUð1Þ;bpÞ¼c1�2b
2
Uð1Þþc2�2ðbpÞ2þc3�2mbUð1Þ

þc4�2�N¼2bUð1ÞþO

�
�2ðbpÞ4
�2

N¼2

�

þO

��2b
3
Uð1Þ

�N¼2

�
; (4.9)

where

m ¼ 1

Nf

XNf

A¼1

mA: (4.10)

We then note that

c4 ¼ 0: (4.11)

Indeed, a nonvanishing c4 would produce a VEVof bUð1Þ of
the order of �N¼2, which, in turn, would imply VEVs of

certain dyons DlA to be of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, in direct

contradiction with Eqs. (4.6) and (3.10).
Moreover, since VEVs of bUð1Þ and bp are of the order of

the quark masses (rather than �N¼2), we can neglect
higher-order terms in the expansion (4.9) and keep only
linear and quadratic terms in the b fields. Higher-order
terms are suppressed by powers of m=�N¼2.
Now, substituting (4.9) into (4.4) and integrating over

bUð1Þ and bp, we get the superpotential, which depends
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only on DlA. Minimizing it and requiring VEVs of DlA to
be given by (4.6) [see also (3.10)] we fix the coefficients c1,
c2, and c3,

c1¼
~N

4

�
1þ	

~N

N

�
; c2¼1

2
; c3¼

~Nffiffiffi
2

p 	

�
1þ ~N

N

�
; (4.12)

where

	 ¼ 1�
ffiffiffiffi
2

N

s
�1

�2

: (4.13)

After eliminating the adjoint matter, the superpotential
takes the form

W ¼ � 1

2�2

�
ð ~DAD

BÞð ~DBD
AÞ � 
D

~N
ð ~DAD

AÞ2
�

þ
�
mA � 	ð1þ ~N

NÞ
1þ 	

~N
N

m

�
ð ~DAD

AÞ; (4.14)

where the color indices are contracted inside each paren-
theses, while


D ¼ 	
~N
N

1þ 	
~N
N

: (4.15)

This equation presents our final large-� answer for the
superpotential of the theory dual to N ¼ 1 SQCD in the
(1; . . . ; N) vacuum. The second term is the dyon mass term,
while the first one describes the dyon interaction.

One can check that minimization of this superpotential
leads to correct dyon VEVs; cf. Eq. (4.6). Of course, the
theory with the superpotential (4.14) possesses many other
vacua in which different dyons (and different number of
dyons) develop VEVs. We consider only one particular
vacuum here. As was explained in Sec. III, if we choose the
(1; . . . ; N) vacuum in the original theory above the cross-
over, then we end up in the (0; . . . ; 0; N þ 1; . . . ; Nf) vac-

uum in the dual theory below the crossover; see (3.5).
Vacua with a different number of condensed D’s seen in
(4.14) are spurious. The reason is that if we start from an
r < N vacuum in the original theory, the dual gauge group
(below the crossover) would be different from Uð ~NÞ. Thus,
the dual theory would not be the Uð ~NÞ gauge theory of
dyons DlA (l ¼ 1; . . . ; ~N) with the superpotential (4.14).

Summarizing this section, we pass to the limit of large�
decoupling the adjoint matter in the dual theory. This
leaves us with the dual Uð ~NÞ gauge theory, with the super-
potential (4.14). At this point, one should ask: Are we sure
that � is large enough to decouple the adjoint matter in the
original theory (2.4), as well as in the dual theory, so that
the original theory becomes N ¼ 1 SQCD?

Strictly speaking, it is not easy to directly answer this
question, since in the domain (4.8), the original theory is at
strong coupling, and our control over its dynamics is
limited. Nevertheless, one can give the following argu-
ment. Let us denote the low-energy scale of the original

N ¼ 1 SQCD as �. In terms of the scale of the original
theory (2.4) at large � we have

�2N� ~N ¼ �N�N� ~N
N¼2: (4.16)

The (s)quark masses are small, and the scale of excitations
in N ¼ 1 SQCD are determined by the parameter (4.16).
The nonvanishing masses just lift the Higgs branch making
all vacua isolated. Therefore, if we require that

� 	 �; (4.17)

we can be sure that the adjoint matter is decoupled in the
original theory. Now, the weak coupling condition for the
dual theory (4.8) can be rewritten in terms of � as follows:

m � �

�
�

�

�ðð3NÞ=ðN�2 ~NÞÞ
: (4.18)

Since the quark mass scale m is at our disposal, we can
always choose it to be sufficiently small. Below, we assume
that both conditions (4.17) and (4.18) are met.
If we further increase � (keeping the quark masses

fixed), we hit the upper bound in (4.18) and the dual theory
(4.14) goes through a crossover into strong coupling.8 Still
further increase of the parameter �,ffiffiffiffiffiffiffiffi

�m
p 	 �;

brings us in the weak coupling regime in the original
N ¼ 1 SQCD. In this regime, the (s)quark fields con-
dense, thus, completely Higgsing the UðNÞ gauge group.
Non-Abelian strings are formed, which confine mono-
poles. This regime is quite similar to that studied in
[41–43] in the massless version of the theory (2.4), with
a large Fayet-Iliopoulos D-term.
We stress that in this domain (largem) the (s)quark fields

condense, while in our present setup (small m), the quarks
and gauge bosons decay into the monopole-antimonopole
stringy mesons on CMS.

C. Perturbative mass spectrum

In this section, we briefly discuss the perturbative mass
spectrum of the dual Uð ~NÞ gauge theory, with the super-
potential (4.14), at large �. At first, we assume the limit
(2.14) for the quark masses.
The Uð ~NÞ gauge group is completely Higgsed, and the

masses of the gauge bosons are

mSUð ~NÞ ¼ ~g2
ffiffiffi
�

p
(4.19)

for the SUð ~NÞ gauge bosons, and

mUð1Þ ¼ ~g1

ffiffiffiffi
N

2

s ffiffiffi
�

p
(4.20)

8To avoid this, one can simultaneously decrease m.
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for the U(1) gauge boson. Here, ~g1 and ~g2 are dual gauge
couplings for U(1) and SUð ~NÞ gauge bosons, respectively,
while � is a common value of the first ~N �P’s [see Eqs. (3.6)
and (3.10)],

�¼2

8<
:

ffiffiffiffi
2

N

s
�1m̂þ�2ðmlast�m̂Þ

9=
;; mlast¼mK;

K¼ðNþ1Þ; . . . ;Nf:
(4.21)

The dyon masses are determined by the D-term potential

Vdual
D ¼ ~g22

2
ð �DAT

pDA � ~DAT
p �~D

AÞ2 þ ~g21
8
ðjDAj2 � j ~DAj2Þ2

(4.22)

and the F-term potential following from the superpotential
(4.14). Diagonalizing the quadratic form given by these
two potentials we find that out of 4 ~NNF real degrees of
freedom of the scalar dyons, ~N2 are eaten by the Higgs
mechanism, ( ~N2 � 1) real scalar dyons have the same mass
as the non-Abelian gauge fields [Eq. (4.19)], while one
scalar dyon has mass (4.20). These dyons are scalar super-
partners of the SUð ~NÞ and U(1) gauge bosons in N ¼ 1
massive vector supermultiplets, respectively.

Other 2ð ~N2 � 1Þ dyons form a ð1; ~N2 � 1Þ representa-
tion of the global group (3.12). Their mass is as follows:

mð1; ~N2�1Þ ¼
�

�2

¼ 2ðmlast � 	m̂Þ; (4.23)

where � is given in Eq. (4.21), while two real singlet dyons
have mass

mð1;1Þ ¼
ffiffiffiffi
N

2

s
�

�1

¼ 2

0
@m̂�

ffiffiffiffi
N

2

s
�2

�1

�m

1
A: (4.24)

Masses of 4N ~N bifundamental fields are given by the mass
split of N first and ~N last quark masses [see (2.14)],

mð �N; ~NÞ ¼ �m: (4.25)

All these dyons are the scalar components of the N ¼ 1
chiral multiplets.

We see that the masses of the gauge multiplets and those
of chiral matter get a large split in the limit of large � and
small mA. Chiral matter becomes much lighter than the
gauge multiplets; cf. [19,44]. Most important is the fact
that in the theory (4.14), vacuum expectation values are
developed by the light dyons, with masses given by (4.24)
in the limit (2.14). Thus, we have an extreme type-I super-
conductivity in the vacuum of the dual theory.

For generic quark masses, the perturbative excitation
spectrum is rather complicated. We summarize it here for
a particular case ffiffiffiffi

~N

2

s
~g1 ¼ ~g2; 	 ¼ 0: (4.26)

The first condition means that (with our normalizations)
the gauge couplings in the SUð ~NÞ and U(1) sectors are the
same, while the last condition implies that we consider a
single-trace deformation superpotential in (2.2). Under
these conditions, the masses of the gauge bosons ðA�Þkl are

mgauge ¼ ~g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k þ �l

2

s
: (4.27)

Moreover, ~N2 real dyons have the same masses. They are
the N ¼ 1 superpartners of the massive gauge bosons.
Other 2 ~N2 real dyons form a ~N � ~N complex matrix. The
masses of the elements of this matrix are

mKK0 ¼mKþmK0 ; K;K0 ¼ ðNþ1Þ; . . . ;Nf: (4.28)

The remaining 4N ~N of dyons [which become bifundamen-
tals in the limit (2.14)] have masses

mPK¼mP�mK; P¼1; . . . ;N; K¼ðNþ1Þ; . . . ;Nf:

(4.29)

Again, we see that the dyons with masses (4.28) and (4.29)
are much lighter than the gauge bosons and their scalar
superpartners. It is the diagonal elements of the dyon
matrix with the masses (4.28) that develop vacuum expec-
tation values.

V. STRINGS AND CONFINED MONOPOLES
AT LARGE �

Since in the dual theory (4.14) the dyons develop vac-
uum expectation values, [see Eq. (3.4)] this theory supports
strings. Consider the limit (2.14) in which the global color-
flavor group (3.12) is restored and these strings become
non-Abelian. As was discussed in Sec. IVC, the mass
terms of those dyons that develop VEVs are much smaller
than the gauge boson masses in the dual gauge groupUð ~NÞ.
Therefore, we deal with the type-I superconductor. A de-
tailed discussion of the non-Abelian string solutions for
this case will be presented elsewhere. Here, we briefly
mention certain peculiar features of such strings.
These strings are not BPS saturated; their profile func-

tions satisfy second-order equations of motion. These pro-
file functions have logarithmic long-range tails formed
by light dyonic scalars with masses (4.23) and (4.24); see
[45] where Abelian strings in the extreme type-I super-
conducting vacuum were studied. The string tension in this
regime is

T ¼ 4�j�j
logð~g�=mÞ ; (5.1)

while their transverse sizes scale as

R� logð~g�=mÞ
~g

ffiffiffi
�

p ; (5.2)

with the logarithmic accuracy. Here, � is given in
Eq. (4.21), and we assume that ~g2 � ~g1 � ~g.
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As was mentioned in Sec. III B, the internal dynamics of
the non-Abelian strings in the N ¼ 2 limit at small � is
qualitatively described by an N ¼ ð2; 2Þ supersymmetric
weighted CP model [13–16]; see also [37]. In the dual
bulk theory, the string world sheet model is CPðNf � 1Þ
with ~N positive charges associated with the orientational
modes and N negative charges associated with string’s
size moduli (the latter are specific for semilocal string)
[10,11,13,16,35,36].

At large �, the semilocal strings at hand are no longer
BPS saturated. Their size moduli �P are lifted, and the
string tends to shrink in type-I superconductors and to
expand in type-II superconductors [34,46]. Remember,
we deal with type I. Thus, the shrinkage of the semilocal
strings results in conventional local strings. They are sta-
ble. The size moduli of the semilocal strings acquire
masses of the order of

m� � 1

~g
ffiffiffi
�

p
R2

� ~g
ffiffiffi
�

p
log2ð~g�=mÞ ; (5.3)

cf. [46]. Then, the world sheet theory effectively reduces to
the CPð ~N � 1Þ model, which describes the orientational
mode dynamics. In particular, as a matter of fact, the
constraint (3.14) is replaced by

jnKj2 ¼ 2 ~�: (5.4)

Another feature of the non-Abelian strings in the extreme

type-I superconductors is that the coupling constant ~� of
the CPð ~N � 1Þ model becomes very large,

~�� ~g2�

m
: (5.5)

This effect is due to the presence of a long-range tail in the
string in the type-I superconductor. Using the one-loop
renormalization equation in the asymptotically free
CPð ~N � 1Þ model

4� ~�ð�Þ ¼ ~N ln

ffiffiffi
�

p
�CP

; (5.6)

we find that the CPð ~N � 1Þ model scale becomes expo-
nentially small,

�CP � ffiffiffi
�

p
exp

�
�const

~g2�

m

�
: (5.7)

Now, it is time discuss confined monopoles of the bulk
theory corresponding to kinks in the world sheet CP
model. At large �, the non-Abelian strings are no longer
BPS saturated, and, consequently, the N ¼ ð2; 2Þ super-
symmetry in the world sheet CP model is lost.
Nonsupersymmetric CPð ~N � 1Þ model no longer has ~N
degenerate vacua; the true vacuum is unique, but the model
has a family of quasivacua [47,48]. The splittings are of the
order of �CP. Thus, ~N different non-Abelian strings are
split in their tensions. This implies two-dimensional con-
finement of monopoles, along the string [48], in addition to
their permanent attachment to strings. The monopoles

cannot move freely along the string. They are combined
into monopole-antimonopole pairs; the attraction is due to
the fact that the string between the monopole and antimo-
nopole at hand has a slightly higher tension than the strings
outside.
However, this effect is tiny (because of the small value

of the parameter �CP) and does not determine the distance
between the monopole and antimonopole in the stringy
meson in Fig. 1. This distance is determined by the clas-
sical string tension (5.1) itself (and the kink masses), rather
than the tiny quantum differences between the tensions of
different non-Abelian strings. Therefore, we will ignore
this effect, the tension splitting.
Another effect which affects the formation of monopole-

antimonopole stringy mesons at large� is the lifting of the
size moduli of the semilocal string; see (5.3). Although the
kinks that are in the ð1; ~NÞ representation of the global
group (3.12) are still light (their masses are of the order of
�CP), the kinks in the ðN; 1Þ representation become heav-
ier. We expect them to have masses of the order of the
masses of the �-excitations [see (5.3)],

mkink
ðN;1Þ �

~g
ffiffiffi
�

p
logð~g�=mÞ : (5.8)

These kinks (confined monopoles) form stringy mesons
in the adjoint representation of the SUðNÞ subgroup of the
global group. We recall that the ðN2 � 1; 1Þ stringy mesons
are former (screened) quarks and gauge bosons of the
original N ¼ 1 SQCD. As was already explained, below
the crossover [at small

ffiffiffiffiffiffiffiffi
�m

p
, see (4.8)] the quarks and

gauge bosons decay into the monopole-antimonopole pairs

and form stringy mesons MP0
P , P ¼ 1; . . . ; N, shown in

Fig. 1.
From the kink mass (5.3) and the string tension (5.1), we

expect the mass of the MP0
P mesons to be

m
MP0

P
� ffiffiffiffi

T
p

; (5.9)

provided the meson spins are of the order of unity. The
masses of these stringy mesons are determined by the
string tension, much in the same way as in the N ¼ 2
limit; see (3.16).

VI. RELATION TO SEIBERG’S DUALITY

The last but not the least topic to discuss is the relation
between our duality (and the monopole confinement
mechanism) at large � and Seiberg’s duality in N ¼ 1
SQCD [24,25]. The light dyons DlA of our Uð ~NÞ dual
theory could be identified with Seiberg’s dual quarks.
This is natural since they carry the same quantum numbers:
both are in fundamental representations of the dual gauge
group Uð ~NÞ and the global flavor group SUðNfÞ.
Moreover, the stringy mesons formed by the monopole-

antimonopole pairs correspond to Seiberg’s neutral mesons
MB

A , A, B ¼ 1; . . . ; Nf, which are in the singlet or adjoint
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representations of global flavor group both in our and
Seiberg’s dual descriptions of N ¼ 1 SQCD. This con-
ceptual similarity does not extend further, however. There
is a crucial distinction: in our dual theory, the stringy
mesons are nonperturbative objects and are rather heavy,
with masses determined by the string tension, (5.9). The
dual gauge bosons and, in particular, dyons DlA, are much
lighter; see (4.19), (4.20), (4.23), and (4.24), respectively.

At the same time, in Seiberg’s dual theory, the MB
A

mesons appear as fundamental fields at the Lagrangian
level and are light. As was already mentioned in Sec. I,
our understanding of these dramatic differences is that
Seiberg’s duality refers to N monopole vacua in which
the meson fields MB

A condense, making the dyons (dual
quarks) heavy [25,28]. Let us briefly review how this
happens. Consider the Uð ~NÞ version of Seiberg’s dual
theory with the superpotential

W S ¼
ffiffiffi
2

p ð ~DAD
BÞMA

B þ�mAM
A
A; (6.1)

where we conjectured that Seiberg’s dual quarks can be
identified with our dyons DlA. Following [25,28], we as-
sume that the MB

A fields develop VEVs making dyons
heavy and integrate dyons out. The gluino condensation
in the Uð ~NÞ gauge theory with no matter induces the super-
potential

W eff
S ¼ ~N�ðð2 ~N�NÞ=ð ~NÞÞðdetMÞð1= ~NÞ þ�mAM

A
A: (6.2)

Strictly speaking, the scale of Seiberg’s dual theory should
appear in the first term here. However, this scale is esti-
mated to be of the order of the scale of the originalN ¼ 1
QCD � [28], and in this estimate we do not distinguish
between the two.

Minimizing this superpotential with respect to MB
A , we

find

hMi ��ðN� ~N=NÞmð ~N=NÞ: (6.3)

The presence of N vacua in N ¼ 1 SQCD is well known
and follows, e.g., fromWitten’s index. It is also known that
these vacua are continuously connected to N monopole
vacua of N ¼ 2 SQCD through the � deformation
[32,49–51]. Since the dual quarks do not condense in these
vacua, the nonasymptotically free Seiberg’s dual theory is
in the Coulomb phase (‘‘free dyonic phase’’). This is true
for energies above the scale of the M-field VEVs (6.3).
Below this scale, all dyons decouple and Seiberg’s dual
theory becomes pure Yang-Milles theory with the Uð ~NÞ
gauge group. It flows into the strong coupling, and the
SUð ~NÞ sector becomes confining. The U(1) gauge factor
remains unbroken.

In Fig. 3, we show schematically the evolution of differ-
ent vacua versus � at small m. The vertical axis in this
figure corresponds to �, while the horizontal axis sche-
matically represents VEVs of various fields in the given

vacuum. At small �, near the Coulomb branch of N ¼ 2
SQCD, we have the Uð1ÞN Abelian gauge theories in the N
monopole vacua. Condensation of the monopoles leads to
formation of the electric Abrikosov-Nielsen-Olesen strings
and Abelian confinement of quarks [2,3]. One U(1) factor
remains unbroken. At ���, these vacua go through a
crossover into the non-Abelian phase. In the limit of infi-
nite�, they are described via Seiberg’s dual theory. It is the
Uð ~NÞ infrared-free non-Abelian gauge theory with neutral
mesonic fields described by the superpotential (6.1)
[24,25,28]. As was reviewed above, theM fields condense,
and the theory is in the Coulomb phase for dyons DlA.
Our dual theory applies to the r ¼ N quark vacuum of

the original N ¼ 1 SQCD, rather than the monopole
vacua. In the strong coupling regime at small m [described
by a weakly coupled dual theory in the domain (4.8)], the
light dyons DlA condense in this vacuum, triggering for-
mation of the non-Abelian strings with confinement of
monopoles ensuing automatically. This vacuum has dyon
condensate proportional to

ffiffiffiffiffiffiffiffi
�m

p
[see (4.6)] and represents

a runaway vacuum not seen in Seiberg’s dual description,
where � is considered to be strictly infinite.
There exists a bunch of other ‘‘hybrid’’ vacua in the

theory, in which at small � we deal with r < N quarks and
somemonopoles condensing. All of them have an unbroken
U(1) gauge group [52]. We do not study them in this paper.
A few words about the relation of our r ¼ N vacuum to

the Intriligator-Seiberg-Shih vacuum [27]. This vacuum
looks rather similar to ours. The dyons DlA (Seiberg’s
dual quarks) condense in both of these vacua. However,
clearly these vacua are different. In particular, for a generic
choice of the quark masses, supersymmetry is broken
in the ISS vacuum, while the r ¼ N vacuum is supersym-
metric. Also, the ISS vacuum has dyon VEVs of the order

U(1)    monopole condensation
            quark confinement

N

U(N) Coulomb phase

for DlA

crossover

µ=Λ

µ

U(N)xU(1) = 0

monopole confinement

r=N vacuum

N−N

ISS vacuum

D
lA

monopole confinement

D
lA

= 0U(N)

µ= Λ /
2

m

crossover

FIG. 3. �-evolution of different vacua at small m. N monopole
vacua are shown by thick solid lines on the left, while the r ¼ N
vacuum is on the right. The ISS vacuum is shown by a thick
dashed line. Gauge groups in different regimes are indicated as
well as condensed or confined states.
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of
ffiffiffiffiffiffiffiffi
m�

p
, while in the r ¼ N vacuum they are much larger,

proportional to
ffiffiffiffiffiffiffiffi
�m

p
. Still, the presence of the DlA con-

densate indicates that the ISS vacuum could have physics
similar to that in our r ¼ N vacuum. In particular, it could
exhibit confinement of monopoles and a phenomenon
similar to our decay of quarks and gauge bosons of the
original N ¼ 1 SQCD into the monopole-antimonopole
stringy mesons. Since the ISS vacuum is not supersym-
metric, it may not exist at all �. This would explain why
we do not see this vacuum in our dual theory (4.14) in the
domain (4.18). We show this vacuum by the dashed line in
Fig. 3. The fate of the ISS vacuum in the framework of our
construction calls for further studies.

VII. CONCLUSIONS

Let us summarize our findings. We started from our
recent development of the non-Abelian duality in the quark
vacua of N ¼ 2 super-Yang-Mills theory with the UðNÞ
gauge group andNf flavors (Nf > N). The fact thatNf > N

is very crucial, as will be emphasized below. The quark
mass terms are introduced in a judiciously chosen way.
Instead of the Fayet-Iliopoulos term of the D type, as
previously shown, we introduce it through a superpotential
(i.e., F type). We construct dual pairs. Both theories from
the dual pair support non-Abelian strings, which confine
monopoles.

Next, we undertake a next step, basically in the un-
charted waters. We introduce an N ¼ 2-breaking defor-
mation, a mass term �A2 for the adjoint fields. Our final
goal is to make the adjoint fields heavy and thus pass to
N ¼ 1 SQCD.

Starting from a small deformation, we eventually make
it large, which enforces complete decoupling of the adjoint
fields. We show that theN ¼ 2 non-Abelian duality fully
survives in the limit of N ¼ 1 SQCD, albeit some tech-
nicalities change. For instance, non-Abelian strings which
used to be BPS saturated in the N ¼ 2 limit, cease to be
saturated in N ¼ 1 SQCD. They become strings typical
of the extreme type-I superconducting regime.

Our duality is a distant relative of Seiberg’s duality in
N ¼ 1 SQCD. Both share common features but have
many drastic distinctions. This is due to the fact that
Seiberg’s duality apply to the monopole rather than quark
vacua.

More specifically, in our theory we deal with
N<Nf<

3
2N massive quark flavors. We consider the vac-

uum in which N squarks condense. Then we identify a
crossover transition fromweak to strong coupling. At strong
coupling, we find a dual theory, UðNf � NÞ SQCD, with
Nf light dyon flavors. The dual theory is at weak coupling

provided �m is small enough (at large � this requires
taking m to be rather small). Condensation of light dyons
DlA in this theory triggers the formation of non-Abelian
strings and confinement of monopoles. Quarks and gauge
bosons of the original N ¼ 1 SQCD decay into the

monopole-antimonopole pairs on CMS and form stringy
mesons shown in Fig. 1.
We would like to stress that the condition ~N > 1 is

crucial for our construction. As was explained in Sec. IV,
the presence of the dual non-Abelian group allows us to
increase �, eventually decoupling the adjoint field and,
simultaneously, keeping the dual theory at weak coupling.
The reason is that we can take quark masses rather small
to satisfy the weak coupling condition (4.8). If the dual
gauge group were Abelian, the light matter VEVs would be

of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N¼2

p
, hence the theory would go

into the strong coupling regime once we increase �
above �N¼2.
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APPENDIX: U(3) THEORY WITH Nf ¼ 5
AT SMALL �

In this Appendix, following [10], we consider a specific
example of U(3) gauge theory with Nf ¼ 5 quark flavors

(so that N ¼ 3, ~N ¼ 2) and present the low-energy dual
theory at small values of the FI parameter; see (3.1). The
gauge group (3.2) in this case has the form

U ð2Þ � Uð1Þ8 � Uð1Þ; (A1)

where Uð1Þ8 denotes a U(1) factor of the gauge group,
which is associated with the T8 generator of the U(3) gauge
group of the original theory.
The bosonic part of the effective low-energy action of

the theory in the domain (3.1) has the form

Sdual¼
Z
d4x

�
1

4~g22
ðFp

��Þ2þ 1

4g21
ðF��Þ2þ 1

4~g28
ðF8

��Þ2

þ 1

~g22
j@�bpj2þ 1

g21
j@�aj2þ 1

~g28
j@�b8j2

þjr1
�D

Aj2þjr1
�
~DAj2þjr2

�D
3j2

þjr2
�
~D3j2þVðD; ~D;bp;b8;aÞ

�
: (A2)

Here, Bp
� (p ¼ 1, 2, 3), B8

�, and A� are gauge fields of

(A1), while Fp
��, F8

��, and F�� are their field strengths.

Their scalar N ¼ 2 superpartners bp and b8 in terms of
the fields of the original theory (2.4) have the form

b3¼ 1ffiffiffi
2

p ða3þa3DÞ forp¼3; b8¼ 1ffiffiffiffiffiffi
10

p ða8þ3a8DÞ; (A3)
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where subscript D means dual scalar fields [2,3], while field a is the same as in (2.4). Covariant derivatives are defined in
accordance with the charges of the DlA and D3 dyons; see [10] for more details. Namely,

r1
� ¼ @� � i

0
@1
2
A� þ ffiffiffi

2
p

Bp
�
�p

2
þ 1

2

ffiffiffiffiffiffi
10

3

s
B8
�

1
A; r2

� ¼ @� � i

0
@1
2
A� �

ffiffiffiffiffiffi
10

3

s
B8
�

1
A: (A4)

The coupling constants g1, ~g8, and ~g2 correspond to two U(1) and the SU(2) gauge groups, respectively. The scalar
potential VðD; ~D; bp; b8; aÞ in the action (A2) is

VðD; ~D;bp;b8;aÞ¼ ~g22
4
ð �DA�

pDA� ~DA�
p �~D

AÞ2þ10

3

~g28
8
ðjDAj2�j ~DAj2�2jD3j2þ2j ~D3j2Þ2þ ~g21

8
ðjDAj2�j ~DAj2

þjD3j2�j ~D3j2Þ2þ ~g22
2

�������� ffiffiffi
2

p
~DA�

pDAþ
ffiffiffi
2

p @W �

@bp

��������2þ ~g21
2

�������� ~DAD
Aþ ~D3D3þ

ffiffiffi
2

p @W �

@a

��������2

þ ~g28
2

��������
ffiffiffiffiffiffi
10

3

s
~DAD

A�2

ffiffiffiffiffiffi
10

3

s
~D3D

3þ ffiffiffi
2

p @W �

@b8

��������2þ1

2

	��������ðaþ�p
ffiffiffi
2

p
bpþ

ffiffiffiffiffiffi
10

3

s
b8þ ffiffiffi

2
p

mAÞDA

��������2

þ
��������ðaþ�p

ffiffiffi
2

p
bpþ

ffiffiffiffiffiffi
10

3

s
b8þ ffiffiffi

2
p

mAÞ �~DA

��������2þ
��������a�2

ffiffiffiffiffiffi
10

3

s
b8þ ffiffiffi

2
p

m3

��������2ðjD3j2þj ~D3j2Þ


: (A5)

The theory (A2) is at weak coupling in the domain (3.1) but
the derivatives of the superpotential (2.2) entering in (A5)
(which determine VEVs of dyons) are rather complicated
functions of fields a, b8, and bp. In [31], we used the exact
Seiberg-Witten solution of our theory to determine these
derivatives in the r ¼ N vacuum. Here, we briefly review
this calculation.

First, we make a quantum generalization

@W �

@bp
!�2

@u2
@bp

;
@W�

@b8
!�2

@u2
@b8

;
@W �

@a
!�1

ffiffiffiffi
2

N

s
@u2
@a

;

(A6)

where

uk ¼ hTrð12aþ TaaaÞki; k ¼ 1; . . . ; N; (A7)

are gauge invariant parameters which describe the
Coulomb branch.

To select the desired vacuum (1,2,3) [which transforms
into (4,5,3) vacuum below crossover] among all other
vacua in the Seiberg-Witten curve, we require that the
curve has the factorized form (3.9), while the double roots
eP are semiclassically (at large masses) given by mass

parameters,
ffiffiffi
2

p
eP 
 �mP, P ¼ 1; . . . ; N.

Using explicit expressions from [53–56], which
express derivatives of uk with respect to scalar fields aa

(a ¼ 1, 2, 3) of the original theory (2.4) and taking into
account monodromies, which convert these derivatives into
derivatives with respect to bp, b8, and a [10,31] we obtain

@u2
@a

¼ e1 þ e2 þ e3;
1ffiffiffi
2

p @u2
@b3

¼ e1 � e2;

1ffiffiffiffiffiffi
10

p @u2
@b8

¼ 1ffiffiffi
3

p ðe1 þ e2 � 2e3Þ;
(A8)

where eP are double roots of the Seiberg-Witten curve (3.7)
with shifted masses (3.8) for the case N ¼ 3, ~N ¼ 2.
Vacua of the theory (A2) are determined by zeros of all

D and F-terms in (A5). Using the derivatives of the super-
potential (2.2) obtained above, we get the VEVs of dyons
in the form

hDlAi¼ h �~DlAi¼ 1ffiffiffi
2

p 0 0 0
ffiffiffiffiffi
�1

p
0

0 0 0 0
ffiffiffiffiffi
�2

p
 !

;

hD3i¼ h �~D3i¼
ffiffiffiffiffi
�3

2

s
;

(A9)

where FI parameters �P are determined by (3.6). The
obvious generalization of this formula to an arbitrary N
and ~N gives Eq. (3.4) quoted in the main text.
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