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Electromagnetic Casimir piston in higher-dimensional spacetimes
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We consider the Casimir effect of the electromagnetic field in a higher-dimensional spacetime of the
form M X N, where M is the four-dimensional Minkowski spacetime and /N is an n-dimensional
compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed
cylinder is investigated. Different combinations of perfectly conducting boundary conditions and
infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that
if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled
towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary
conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where
one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates
inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature
regime and the low temperature regime are investigated for the case where the cross section of the cylinder
in M is large. It is found that if the separation between the plates is much smaller than the size of IV,
the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in
the (4 + n)-dimensional Minkowski spacetime. However, if the size of /N is much smaller than the
separation between the plates, the leading term of the Casimir force is 1 + //2 times the Casimir force on
a pair of large parallel plates in the four-dimensional Minkowski spacetime, where % is the first Betti
number of JN. In the limit the manifold N vanishes, one does not obtain the Casimir force in the four-
dimensional Minkowski spacetime if % is nonzero. Therefore the data obtained from Casimir experiments
suggest that the first Betti number of the extra dimensions should be zero.
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I. INTRODUCTION

In 1948, Casimir proposed the existence of a force of
magnitude

. mhcA
240a*

between two parallel perfectly conducting (PC) plates of
area A which are separated by a distance a due to the
vacuum fluctuations of electromagnetic field [1]. Since
1970s, Casimir effect has aroused the interest of many
researchers for its close relations with many other areas
of physics such as quantum field theory, atomic physics,
condensed matter physics, nanotechnology, astrophysics,
and mathematical physics [2]. Although the original pro-
posal of Casimir considered only the electromagnetic field,
nowadays the scope of Casimir effect includes all other
quantum fields. The Casimir effect or vacuum energy is an
vital component of quantum field theory.
Higher-dimensional spacetimes have become ubiquitous
in the theories of high energy physics especially in super-
string and supergravity theories. Different spacetimes with
extra dimensions have been proposed to solve some fun-
damental problems in physics such as the hierarchy prob-
lem and the dark energy problem. The Casimir energy
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plays an important role in the studies of these extra dimen-
sional spacetimes. On the one hand, it has been investi-
gated as a candidate for the dark energy that accounts for
the accelerated expansion of the Universe [3-9]. On the
other hand, it was studied for its role in the stabilization
mechanism of extra dimensions [10-19].

In recent years, there is an increased interest in studying
the Casimir effect on objects in spacetimes with extra
dimensions [3,10,20—40]. It is desirable to investigate
how the presence of extra dimensions would change the
direction and the magnitude of the Casimir force. However,
most of these works studied the scalar fields. Only very few
works tried to address the problem on electromagnetic
fields since it is more complicated due to the presence of
gauge freedom. In some works, the simple relation be-
tween the Casimir force on a pair of large parallel plates
due to a massless scalar field and the Casimir force on a
pair of large parallel plates due to an electromagnetic field
was wrongly extended to other scenarios.

By definition, the zero temperature Casimir energy is a
divergent sum of the zero point energies of a quantum field.
There are various methods such as cutoff method and zeta
regularization method to remove the divergence and ex-
tract a physically meaningful Casimir energy. However,
these divergence removal procedures can sometimes lead
to ambiguities. In 2004, the piston configuration was in-
troduced [41] and it quickly attracted a lot of attention
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because the divergence of the Casimir energy in this con-
figuration can be unambiguously removed. The zero tem-
perature Casimir force acting on a piston due to scalar
fields or electromagnetic fields in the 4D Minkowski
spacetime was soon investigated in [42-45]. This was
then extended to rectangular piston in Minkowski space-
times of arbitrary dimensions [46,47] and to the finite
temperature effect [48]. There are also a number of works
which considered the generalized piston configurations
[49-57]. Lately, there is an interest in considering the
piston configuration in spacetimes with extra dimensions
such as the Kaluza-Klein spacetime and the Randall-
Sundrum spacetime [26,28-33,36-38]. However, as men-
tioned above, the works in this direction were restricted to
scalar fields. To the best of our knowledge, no work has
considered the electromagnetic Casimir effect on a piston
in higher-dimensional spacetimes. Although the results on
scalar fields might give some general picture about the case
of electromagnetic fields, however, it has been known that
the direction and the magnitude of the Casimir force is very
sensitive to the type of the fields, the boundary conditions,
and the geometry of the objects [2]. A careful study of the
electromagnetic Casimir effect in higher-dimensional
spacetime is essential to avoid drawing unfounded conclu-
sions from the results for scalar fields. In fact, we are going
to see from this work that the electromagnetic Casimir
effect imposes a topological condition on the extra dimen-
sions, which is something that have never been discovered
from the study of Casimir effect due to scalar fields.

The electromagnetic Casimir effect on a pair of large
parallel perfectly conducting plates in the Kaluza-Klein
spacetime with internal space S' and in the Randall-
Sundrum spacetime have been considered in [27] and
[40], respectively. As pointed out in [40], for an electro-
magnetic field in spacetimes with extra dimensions, one
can either treat the field as a bulk field and impose the
perfectly conducting boundary conditions introduced in
[58] or one can use dimensional reduction to reduce the
electromagnetic field to a tower of massive vector fields in
the 4D Minkowski spacetime and impose the 4D perfectly
conducting conditions on the massive vector fields. These
two approaches lead to different Casimir effects. The first
approach is a genuine higher-dimensional Casimir effect,
whereas the second approach is essentially the Casimir
effect of 4D massive vector fields.

In this work, we are going to consider the bulk electro-
magnetic Casimir effect in higher-dimensional spacetimes
with arbitrary compact extra dimensions. The spacetime
M is assumed to have the form M X N, where M is the
4D Minkowski spacetime and N is a manifold of dimen-
sion n, assumed to be compact and connected. We are
interested in the Casimir effect in the spacetime M due
to the vacuum fluctuations of the electromagnetic field in a
piston system. The piston system consists of a cylinder of
length L and a piston which can move freely inside the
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FIG. 1. A piston system.

cylinder (See Fig. 1). The position of the piston is given by
x' = a. The cross section of the cylinder and the piston are
the same and assumes the general form ) X N, where ()
is a two-dimensional simply connected domain with
boundary 9() a smooth curve. For the boundary conditions
on the walls of the cylinder and the piston, we impose
either the perfectly conducting boundary conditions or
the infinitely permeable boundary conditions proposed
by Ambjgrn and Wolfram [58]. Since the works by
Marachevsky [44] and Kirsten and Fulling [28], there has
been a trend in considering piston with arbitrary cross
sections. Although studying a piston with rectangular cross
section is enough for drawing conclusion about the Casimir
effect on large parallel plates, it is desirable to know
whether the properties of the Casimir force would be
affected by the size and the geometry of the piston. In
fact, a number of works have shown that the geometry of
the piston has strong effect on the strength of the Casimir
force [49-51,55]. In view of the interest in studying
Casimir effect in generalized pistons [49-57], we think
that it is necessary for us to consider piston with arbitrary
cross section here.

The Casimir energy of the piston system is given by the
sum of the Casimir energy inside the left chamber, the
Casimir energy inside the right chamber and the Casimir
energy outside the cylinder. The latter does not depend on
a and therefore will not contribute to the Casimir force
acting on the piston [41]. Omitting this term, we have

E;éi;;on _ Eg;linder(a) + Eé}zllinder(L _ a), (1)
cylinder . . . . .
where E¢5,;  (a) is the Casimir energy inside a cylinder of

length a. Using zeta regularization method, it is given by

EZMa) = ~ 20 @) + og ) 050, @)

where A is a normalization constant and /;(s) is the zeta
function

fr(ssa) =) > (0 + 2apTP) s,
® p=—0

which contains a sum over all w that are the eigenfrequen-
cies of the electromagnetic field inside the cylinder.
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In Sec. II, we write down the eigenmodes of the elec-
tromagnetic field in a cylinder. We then proceed to com-
pute the Casimir energy and the Casimir force in Sec. I1I. A
discussion of the asymptotic behavior of the Casimir force
in different limits is also given in Sec. III. In Sec. IV, we
consider the specific examples where /N is an n torus or an
n sphere.

In the following, we use the units where A=c=kp = 1.

II. THE EIGENMODES OF THE FIELD
INSIDE A CYLINDER

In this article, we consider spacetime M of the form
M X N, where M is the four-dimensional Minkowski
spacetime and N is an n-dimensional compact connected
manifold. Let

ds* = g,,dz"dz" = n,pdx*dxP — G, dy"dy”

be the metric on M, where 7,5 = diag(l, —1, —1, —1)
is the usual four-dimensional metric on M, and ds%v =
G ,»dy*dy® a Riemannian metric on N. x denotes collec-
tively the coordinates on M, y denotes collectively the
coordinates on N and z = (x, y). The action of the elec-
tromagnetic field is given by

1
S = 1 f\[lgleF“ dVz, 3)

where N=4+n, F,, =9d,A, —d,A, is an antisym-
metric rank two tensor and F*” = gt g"MF, . The equa-
tion of motion is

I 9

The perfectly conducting boundary condition is given
by [58]

n#(xF) =0, (5)

MVy...VN-3

and the infinitely permeable boundary condition is given
by [58]

nkF,, =0. (6)

Here n* is a unit vector normal to the boundary surface,
and . F is the dual tensor of F.

As discussed in Appendix A, we can consider the eigen-

modes of the electromagnetic field of the form

O Uydx* with Uy = 0 and 0,,U = 0O;

D) q;(y)U,(x)dx* with 6,,U =0, Ay U + m?U =0,
j=12,..., where ¢;(y) is an eigenfunction with
nonzero eigenvalue m? of the Laplace operator on
functions on N;

D) p(x)V;,(y)dy® with Ay p + ,u,?p =0,j=12,...,

where V; ,(y)dy® is a coclosed eigen-one-form
with eigenvalue sz of the Laplace operator on N
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In the following, we find the eigenmodes of the electro-
magnetic field in the cylinder [0, a] X Q X N with com-
binations of perfectly conducting or infinitely permeable
boundary conditions on the sidewall [0, a] X 9Q) X N,
the bottom x! = 0, and the top x' = a.

The eigenmodes can be divided into TE modes which
are modes with Fj;; = 0, and TM modes which are modes
with F,,, = 0 for all u, » # 0, 1. Denote by ¥ = (x?, x°).
Let ¢,(X), ¢,(%), ... be the eigenfunctions of the Laplace
operator with Dirichlet boundary conditions on (),
with eigenvalues @2, @3,..., and let (%), (%),
»(X),... be the eigenfunctions of the Laplace operator
with Neumann boundary conditions on (), with eigenval-
ues N3, RT, N3, .... (%) is the constant function with
eigenvalue X} = 0.

A. Perfectly conducting condition on the whole cylinder

When the whole cylinder is perfectly conducting (5),
one can show that the set of eigenmodes of the electro-
magnetic field is given by

Type A TE modes:

Cakx 9 (%) .
Ay, = —sm—%e “lgi(y),
kx 04 (%)
Ay = sin"— ‘é’—l(zx)e—w’q i(v), all other A, =0,
k\2
wz=<77_) TR w2, k=125 =0,1,2,....
a

The j = 0 modes are type I modes, and the j = 1 modes
are type I modes. By convention, m, = 0 and ¢y(y) = 1.

Type B TE modes: These include all the type III modes
where

A, =0,

. omkx
Aa = SIHT gol(x)e M)tvj,a(y),

k\2
wz:(l) taltud kLj=12....
a
Type A TM modes:
A():Aa :O)
2 7Tk‘x =\, —iwt
A= COSTGDl(X)e Clj(y)y
wk . mkx 0@(X) _,
A.y: _7SIHTWe lwtqj(y)’ 7:2’3’
Tk\2
a)2=<—) twl+mi, kj=012.. [=12...
a

The j = 0 modes are type I modes, and the j = 1 modes
are type II modes.
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Type B TM modes: These are type Il modes with
Al = Aa = O,

Lomkx
Ay = @} sin—— ei(X)e q;(y),

whx 0¢@)(X) _. .

A, =iw sinT We q;), vy =273
k\2

w? = (77—) tot+md kLj=12....
a

B. Infinitely permeable condition on the whole cylinder

When the whole cylinder is infinitely permeable (6), one
can show that the set of eigenmodes of the electromagnetic
field is given by

Type A TE modes:

o Tk kx agol(x) J—

A= —

2 Y% q;(y),
kx o

As = cos—— Y i:’(zx) e “q;(y), allother A, =0,
a

Tk

w2:(_) twdtml, I=12.. kj=012...
a

Type B TE modes:

A, =0,
wkx

A :COSTlpl(.X)e lwtvj,a(y);
k\2

w2:(1) +}{12+,U,§, k»l:();l’z” J:1’2’
a

Notice that the space of one-forms V on N with
oV =0 contains harmonic one-forms where
AV = 0. Let h denote the first Betti number of N —
the dimension of the vector space of harmonic one-forms
on N, which is a topological invariant. Then the set of ,u?
contains % zeros. Without loss of generality, let u?, ..., u?
be equal to zero. Then the modes with /=0 and
j=12,...,h are also TM modes. Therefore, they are
TEM modes.
Type A TM modes:

A0=Aa=0
A= NISIH ﬁl’z(X)e g ;(y),
Tk kaaz//(x) »
A.y:7COSTG—;y€ lwtqj'(y), 7=2,3,
2 Tk\2 2 2 .
w =|—|) +X;+mj, j=012..5 ki=12...
a
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Type B TM modes: These are type Il modes with
Al = Aa = 0,

o Tkx
Ag=Xx; 0057 P (X)e " q;(y)
mhx o (%) _. .

Ay=iw0057 o7 € q;(y), v=23,
k\2
wZZ(W—) R M, k=012 Lj=12...
a
or
k kx
Ay = T cos™Z e T1g (),
. 7Tkx .
A) = —iwsin——e "“'q;(y), all other A, =0,
a
k\2
w2=(77—) +mj2-, kj=12....
a

C. Perfectly conducting condition on the sidewall and
the bottom, infinitely permeable condition on the top

When the side wall and the bottom of the cylinder are
perfectly conducting (5), and the top is infinitely permeable
(6), it is immediate to check that the eigenmodes of the
electromagnetic field are obtained by replacing the k for
the modes in Sec. IT A by k + %, where k runs from zero to
infinity.

D. Infinitely permeable condition on the sidewall and
the bottom, perfectly conducting condition on the top

When the side wall and the bottom of the cylinder are
infinitely permeable (6), and the top is perfectly conducting
(5), it is immediate to check that the eigenmodes of the
electromagnetic field are obtained by replacing the k for
the modes in Sec. II B by k + %, where k runs from zero to
infinity.

Note that in the absence of the space /N, we only have
the type A TE modes with j = 0 and the type ATM modes
with j = 0. The type B TE modes and type B TM modes
only exist in the presence of the space IN'.

III. THE CASIMIR ENERGY
AND THE CASIMIR FORCE

A. The cylinder and the piston are imposed
with the same boundary conditions

When the cylinder and the piston are both perfectly
conducting, the piston divides the cylinder [0, L] X Q X
N into two cylinders [0, a] X Q X N and [0, L — a] X
Q X N, both of them are perfectly conducting every-
where. From the results of Sec. II A, we find that the zeta
function {7(s; a) is given by
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Lissa= Y gi i([%k]z + 02+ m?+ [27TpT:|2)7S + i 3 i i([%k] + w7+l + [27TpT]2)7S

p=— [=1j=0

[ee]

—ook=11=1j=1

+ i iiZ([%k] +w7 +m? +[27TpT]2> T+ _i iii([%k] +w} +m? +[27TpT]2> ’

p=—00k=0I=1,;=0

For the third term, the kK = 0 terms do not depend on a.
Therefore, the zeta function can be written as

{T(S; Cl) = Z Z ga,p(s) + C(S),

p=—o «a

Lop(s:a) 1= i([%k]z + r%,,p)fs, (7)

k=1

where C(s) denotes a term independent of a whose value
can change from one expression to another, and

T%(‘P =72 + upT)>.
The set of 72, contains (PC)
(i) @ + mf j =0, I =1, with multiplicity two if
Jj # 0 and multiplicity one if j = 0,
(i) @w? + w2 ], j = 1,1 =1, each with multiplicity one,
(i) N2 + m? 5, J = 0,1 =1, each with multiplicity one.
Notice that none of these 72 is zero.
When the cylinder and the piston are both infinitely
permeable, we have two infinitely permeable cylinders.
The results in Sec. IIB show that the zeta function
{T(s; a) can also be written in the form (7), where the set
of 72 contains (IP)
1) N2 + m ,J =0, =1, with multiplicity two if j #
0 and mult1p11c1ty one if j =0,
(i) R? + w2 ’ j=1,1=0, each with multiplicity one,
(ii1) wl + m ,J = 0,1 =1, each with multiplicity one,
@iv) m , ] = l each with multiplicity one.

In this case, we find that there are & of the 7% that are equal
to zero, which are the 72 corresponding to the TEM modes,
i.e., N% + ,LL%,..., N% + /.L%l.

Using the fact that

> ( I:Wk]z)
Zexp -t —
k=1 a

1

= —_ + /2 4 2

a (1/2) Ka?
¢ t~ R
PN ﬁ Zex?( : )

we find that if 73, , # 0,

—ook=11=1j=1

=g & o (2T 2

= Cyp(s) +aD, ,(s) +

2a
JaT(s)
— ( ka \s—(1/2)
X Z( ) Ks_(l/z)(2ka7'a,p).
k=1

Here C, ,(s)and D, ,
this, we obtain

Lap(03a) = C, ,(0) + aD, ,(0),
Lap(0;a) = Cq ,(0) + aDy, ,(0)

(s) are terms independent of a. From

[e9]

2a T p\1/2
+ ﬁ ];( kap> Kl/z(ZkClTa,p)
il —2katy,,
k

=C, ,(0) +aD, ,(0) +

On the other hand, if 73 , = 0,

lars) = () " aut2s)
It follows that
Lap(0:0) = G(0) = =3
1p(0:0) = 244(0) — 2£(0) log™- = ~ log(2) + log—
= —log(2a).

Here (3(s) is the Riemann zeta function.
From (2), we find that the Casimir energy of the piston
system (1) is given by

piston _
Ets Z Z

a/)

T i Z 1 o 2K(L=a)7,, _,_Z Z log(A(L — a)),
2 k= ap#Ok 2701},,:0

T
—Zk Tap 4 _
aTap + 2 Ezolog(/\a)
a,p

where & is independent of a. It follows that the Casimir
force acting on the piston is given by
ist
Fpiston _ _ aEg;S(m — ij (a)
as

Cas o — FeuL—a). ®)

where
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- 1
Fgas(a) == %<_g Z Z %e_ZkaT(l,])

k=11,,7#0
+ = Z log(/\a))
Ta,p=0
S i Z T e 2katy,, — 1
S50 ° 2o2a
a,p a,p
_ _ Tap T
TTZ ZaTap —_ 1 - 20 2a ! (9)
a,p a,p

In fact, Fl. (a) is the limit of the Casimir force acting on

the piston FES'" when the cylinder becomes infinitely

long, i.e., L — oo. Therefore, it is the Casimir force acting
between two perfectly conducting plates or two infinitely
permeable plates separated by a distance ¢ moving inside
an infinitely long cylinder with cross section ) X N
When both the cylinder and the piston are infinitely
permeable, the last term in (9) which comes from the
TEM modes is nonzero if s, the dimension of the space
of harmonic one-forms of V', is nonzero. In contrast to the
contribution to the force from the terms with 7,, # 0
which decays to zero exponentially fast when a — oo,
the contribution from the terms with 7, , = 0 has power
law decay which is much slower. This gives rise to a long
range Casimir force [59]. It is interesting to note that the
|

o =-S5 o) Sl

T4=0

322

Z “K,Qkart,) + — Z 2K,(2kart,) +
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long range term — % is a limit of — 62“::;:1
To,p — 0, which exhibits some kind of smooth transition.
From the expression (9), it is obvious that the Casimir
force acting between two perfectly conducting plates or
two infinitely permeable plates is always attractive and is a
monotonically decreasing function of the distance between
the plates. Therefore, it can be inferred from (8) that in a
closed cylinder of finite length, the Casimir force acting on
the piston which has the same boundary condition with the
cylinder always tends to pull the piston to the closer end.
In the following, we study the asymptotic behavior of
the Casimir force (9) at different limits. Denote by
r = 4JV(N) a measure of the size of the manifold N and
= 4/ A(Q)) a measure of the size of the domain ().
We will investigate the behavior of the Casimir force
when the length scales a, r, and R are such that
r<a<<Rora<r R,and when aT < 1 or aT > 1.
(9) is the high temperature expansion of the Casimir
force. It shows that when aT > 1, the Casimir force is
dominated by the term

Aya~-1¥ 5 -3 L

e Tu=0

when

which is linear in 7. This term is called the classical term.
The sum of the remaining terms decay exponentially.

In Appendix A 1, we show that the Casimir force (9) can
be rewritten as

ﬂl'ﬂ

> en(

(=

55 (BT ) )

This shows that at zero temperature, the Casimir force is given by

@) =

aa
_‘razz()m -

In the case the two infinitely permeable plates are placed
inside an infinitely permeable cylinder and the first Betti
number £ of IV is nonzero, the leading term of the thermal
correction is

h
_ _T2
6

F&(a%ﬂt(m{ o+ L a0) -

7T

+l(aQ){ o647 8772 > f”’Kl(zkafyp

=1¢,,70

2 3 (e

Z {277_ Z “K,(2kat,) + — Z 2Ky(2kar,, )}

Otherwise, the thermal correction goes to zero exponen-
tially fast when a7 — 0.

Next we consider the behavior of the Casimir force (9)
when the separation between the plates a is much smaller
than the size R of the domain (), i.e., a << R. In this case,
the result of Appendix C shows that the first two leading
terms of the Casimir force is given by

202-,32]7 + 31 %)6—2/((10'5,,7}
0 k-a k’a-

Z Y &,KoCkat, )} (10)

=1¢,,#0
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> S

2 2T
Fegl@)~ “q(m{ @+ h)(480 it 9—5) -
k=1log#

8

S PIp (SLICOREED 53

p=1oz#0 p=1lk=1 o0

_ 265
a¢,
2 S (T

L&, #

iiig w9l

k*a?

e

where o} = o+ [2mpTP, &, =&, +[2apT];
A(Q) is the area of ) which is of order R?, and /(9Q)) is
the length of the boundary d{) of Q) which is of order R.
The set of 0% contains m3 with multlpllclty two, m? =1
with multiplicity three, and ,u j=1, w1th multiplicity
one; the set of §2 contains m ,j=1,and ,LLJ j =1, each
with mu1t1p11c1ty one. The plus signs on the second line in
(10) and the third line in (11) are for the case where the

2

Flclas(a) -~ -J’ZL(Q){ (2 + h) 1304° — Z Z 27le)(<
k=105#0

3

=
G0) . 1 e (28
AT IPI et (G

+mm{

L2 1) T2
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o5\2 1 &
Oez’”k)(<—5) K2(2ka0'5)—4—z Z BK](Zka(Tﬁ)
k=105%0

§R(3)
32 ma’

ZR(3)T3 )

p 2 2
Ly | iy
T a ] UB 87

(I

cylinder is perfectly conducting, and the minus signs are
for the case where the cylinder is infinitely permeable.

In the high temperature regime, i.e., aT > 1, the lead-
ing terms of the Casimir force when a << R is given by the
sum of the p = 0 terms in (10). In the low temperature
regime, i.e., alT <K 1, (11) shows that the leading terms of
the Casimir force is given by

) Ky(2kaopg) — % Z % —K1(2kaoﬁ)}

2¢& 1
kzay2 * KBa?

w2 T4

ﬂ—e+mﬂm)%

+ hi(9Q) 5R(37)TT

(12)

The first two terms give the zero temperature contribution, and the last two terms give the thermal correction terms which
are of polynomial order in 7. The remaining terms go to zero exponentially fast when a7 — 0.
(10) and (11) can also be used to study the leading behavior of the Casimir force when r < a < R. Since o and &, are

proportional to ™!,

Fl. (a) ~ ﬂt(m{ — 4x(3) -
or
2

Notice that the expressions in the brackets of (13) and
(14) are the Casimir force per unit area acting on a pair of
perfectly conducting or infinitely permeable plates in the
4D Minkowski spacetime [48]. They are also equal to
twice the Casimir force per unit area acting on a pair of
Dirichlet or Neumann plates [48]. Therefore in the limit
the size of the manifold JN" goes to zero, one recovers the
Casimir force between a pair of infinite parallel plates in
the 4D Minkowski spacetime if and only if &7 =0, i.e.,

we find that in the limit r/a — 0, the leading term of the Casimir force is given by

Z Z(4_,”_21)2]—'2 27TpT + 1 )6—47rk]7uT} (13)
= S\ ka Ka*> 2K ’

2T 7T & & K2 wkp
5t 2 > eo(- ) Y

the first Betti number of JN is zero. For general &, one
finds that when the size of N goes to zero, one has h
extra copies of Casimir force acting on a pair of Dirichlet
plates. Recall that /4 is the number of zero modes for the
Laplace operator on one-forms on JN. Therefore, the
presence of extra h copies of the Casimir force on a
pair of Dirichlet plates when the size of the manifold
N goes to zero can be considered as a kind of instan-
tonic effect.
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When aT > 1, (13) shows that the leading term of the
Casimir force is

2+h

Flola) ~ === A(Q) 3Q® (15)

When aT < 1, (14) shows that the leading term of the
Casimir force is

2+ h 2
AQ .
2 ( )240a4

Fl (a) ~ — (16)

(n +2)T(3

WQ( n+3)—

Fg4@~vm-+mw«sﬂ—

77.T(n+7)/2 0 o

2(n=5)/2 &

p(n+5)/2
o (ka)(n+l)/2

T(+4)/2 ® o

-—(n+1)—nm Saon

1ka

or

(n + 303

ﬂdw~m+mV@ﬂirwmm7ﬁg(

7TT(n+1)/2 00
+ 2(n+1)/2a(n+7)/2 545

(n+%)
(n+3)/2 ¢r

k(n+5)/2
P(n+1)/2

n/2
(n+ 3+ L

Here S = () X N is the cross section of the cylinder, 0S5
is the boundary of S; V(S) and V(0S) are, respectively,
the volumes of S and dS. The first terms in (17) and (18)
are the Casimir force acting on a pair of perfectly conduct-
ing plates in the N =4 + n-dimensional Minkowski
spacetime [48]. When aT >> 1, the leading term of the
Casimir force is

(n + 22T (%)

ﬂdm~—V@ﬁagmﬁzﬁg

{r(n +3),

and when aT < 1, the leading term of the Casimir force is

(n+2)(n+ 3)F(%‘)
(477.)(n+4)/2an+4

Fl (a) ~ = V(S) Leln + 4).

In the high temperature regime, we find that the leading
term of the Casimir force is of order T/a"*? if the sepa-
ration between the plates is much smaller than the sizes of
Q and N but is of order T/a? if the size of N is much
smaller than the separation between the plates and the
separation between the plates is much smaller than the

n+2)——m
K(n+1)/z(47TkPaT)}

(n+2)/2
Z Z (ﬂ) K(,,+2)/2(47TkpaT) -

4) -
K(nJr])/Z(Zk]{))} F nViaS) {—

91/24(n+6)/2 et
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Up to the factor (1 + h/2), these are the familiar leading
behavior of the Casimir force acting on a pair of perfectly
conducting plates in the 4D Minkowski spacetime in the
high temperature regime and in the low temperature re-
gime, respectively.

Finally, we consider the case where separation between
the plates is much smaller than the sizes of both ) and IV,
i.e,, a < r, R. In this case, the results of Appendix C
show that the first two leading terms of the Casimir force
is given by

(n+5)/2 o

© p (n+3)/2
2n—D/2 Z 2(@) Ky43)2(4mkpaT)

(n+ DT
(4,”.)(n+2)/2an+2

”Vw&{ Zeln +2)

4
ATO+0/2 2 @ (+4)/2

—_— — 17
2(n—6)/2 a5 (ka)n/z (17

K,,/2(47rkpaT)},

res

— 2 le(n + 4T
77.(n+4)/2 {R( )

(n + 2L
(477.)(n+3)/2an+3

{r(n +3)

0 00 k(n+4)/2

wpk
K .
"/2( aT )}

size of (). In the low temperature regime, we find that
the leading term of the Casimir force is of order 1/a"** if
the separation between the plates is much smaller than the
sizes of ) and /N but is of order 1/a* if the size of N is
much smaller than the separation between the plates and
the separation between the plates is much smaller than the
size of (). Therefore, we find that the strength of the
Casimir force depends strongly on the relative magnitude
of a, r, and R.

(18)
pn/2

B. The cylinder and the piston are imposed
with different boundary conditions

If the cylinder is perfectly conducting and the piston is
infinitely permeable, the piston divides the cylinder
[0, L] X ©Q X 2V into two cylinders [0, a] X Q X N and
[0,L —a] X Q X N, both of them have perfectly con-
ducting sidewall and bottom, and infinitely permeable top.
If the cylinder is infinitely permeable and the piston is
perfectly conducting, then the two cylinders have infinitely
permeable sidewall and bottom, and perfectly conducting
top. From the results of Sec. II C and II Dwe find that the
zeta function 7(s; a) can be written as
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Lr(sia) =Y D 4, ,(s:0) + Cls),
p=—% «a
C) = < [k + )7 2 )
fa,,,(s,a) ;;)<|: a ]+ a’p) '

where the set of 72 is given by (PC) if the cylinder is
perfectly conducting and (IP) if the cylinder is infinitely
permeable.

Using the fact that

Seo(-{™)
=2\/——f —(1/2) +\/_.t ('/Z)Z( l)kexp< k2a2)

T
we find as in Sec. IIl A that if 73, # 0,

Lap(05a) = Cy ,(0) + aD, ,(0),

1)k
( 1) e—2ka7'av[,.

c,,0) +aD, 0 + S
k=1

ap(03a) =
On the other hand, if 7% , = 0,
ap(s) = @2 = () " get2s)
Therefore,

{op(05a) =0 and ), ,(0;a) = —log2.

Hence, the Casimir energy of the piston system is

00 1)k
g g, 1 D rtar,,
2550 Kk
T < _l)k 2k
— - (Lfa)Ta,
P k "
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where & is independent of a. It follows that the Casimir
force acting on the piston is given by (8), where the
Casimir force acting between a pair of parallel plates
with different boundary conditions inside the infinitely
long cylinder is

d T & (—1)*
F”, ] —_ _(_ - —2ka7'ayp)
CdS(a) da 2 kgl Tzqﬁ() k ‘

=T Z Z( l)k e 2kat,,
=174,
T
i 4“;]1
Ty . (19)

'Ta,P

Notice that contrary to the previous case where the two
plates are both infinitely permeable, at finite temperature
the force acting on a pair of plates, one perfectly conduct-
ing and one infinitely permeable, does not have a long
range term even though there are TEM modes for which
T2 )= 0.

Equation (19) shows that the Casimir force acting be-
tween one perfectly conducting plate and one infinitely
permeable plate is always repulsive and is a monotonically
decreasing function of the distance between the plates.
Therefore, in a closed cylinder with finite length, the
Casimir force acting on the piston which has different
boundary conditions always tends to push the piston to
the middle of the cylinder, which is the equilibrium
position.

In the following, we study the asymptotic behavior of
the Casimir force (19) at different limits. In the high
temperature limit a7 >> 1, the Casimir force (19) is domi-
nated by the classical term given by

ry e
2ar, +1
Ty €

The remaining terms decay exponentially. The result of
Sec. II B shows that the Casimir force (19) can also be
written as

Fiyla) ~

Fl. (a) = Z{ 7 —”—Tz}+ Z{L S (— D1 T K Gkary) + L S (- 112 K (2kar)
o rZ0l2ma (5 ko R o ‘

= 482> 6
3P EEE

Therefore the zero temperature Casimir force is given by

S 3

To=0 Tq#0

P ) =

Z( 1)k~ 17

(k+5)°

W{GXPG\/[@T + Tg) _ 1}‘1.

~ Ki(2kar, )+~ Z( 172 Ko (2kar, )}
T =1
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Notice that the zero temperature Casimir force contains a
long range term if the plates are placed inside an infinitely
permeable cylinder and the first Betti number 2 of N is
nonzero. In this case, the leading term of the thermal
correction is also of order 77.

Using the results of Appendix C, we can also derive the
leading terms of the Casimir force when r << ¢ << R and
a < r, R. In the high temperature regime, we find that if
r < a < R, then

2+ h

Flyla) ~ 5= AQ) ng() (20)

and if a < r, R,

(n + 22T (%3)

Fl (a) ~ V(S)T Le(n +3)(1 —27m72),

(477.)(n+3)/2an+3

2D

In the low temperature regime, if r K a <K R,

)
Fl @~ 200 , 22
Lula) @) 22)
and if a < r, R,
(n+2)(n+3)I(t4) o

Fl (a)~V(S) 2 fp(n+4)(1—27173),

(47T)(n+4)/2an+4

Again we find that in the high temperature regime, the
leading term of the Casimir force is of order 7/a"*3 when
a < r, Rbutis of order T/a* when r < a < R. In the low
temperature regime, the leading term of the Casimir force
is of order 1/a"™ when a < r, R but is of order 1/a*
when r < a < R. We also find that when the size of the
manifold N goes to zero, then the Casimir force reduces
to the Casimir force in the 4D Minkowski spacetime if and
only if the first Betti number 4 of N is zero. Otherwise,
there are some extra contributions.

Since recent Casimir experiments have shown excellent
agreement between the data and the theory derived in 4D
Minkowski spacetime [60-63], our asymptotic analysis
above suggests that a physical extra dimensional spacetime
should be subjected to the topological constraint that the
first Betti number of the extra dimensions is zero.

IV. EXPLICIT EXAMPLES

In this section, we consider the specific examples where
the manifold N is an n-dimensional torus 7" or an
n-dimensional sphere $” with volume r". Assume that 7"
are n copies of S' with the same radius r,. Then the volume
of T" is r" implies that r; = r/(27). The radius of the
sphere S” with volume r" is

PHYSICAL REVIEW D 83, 105020 (2011)

_ (T
2 (277'(”“)/2) "
On 7", the spectrum {m;:j =0, 1,2, ..
operator on functions is given by

2 2
Ji T T g .
{71 > i € Z}, (23)

.} of the Laplace

1

and the spectrum {,u? j =1,2,...} of the Laplace operator
on coclosed one-forms is given by (n — 1) copies of (23)
plus one zero. h = n for T".

On S", the spectrum {mj:j =012, ..
operator on functions is given by [64]

(I+n—1)

2 ’
r

.} of the Laplace

b = 1=0,1,2...,

with multiplicities

QI+n—=1D1I+n-2)"
IN(n— 1) ’

d) =
and the spectrum {,u? j =1,2,...} of the Laplace operator
on coclosed one-forms is given by [64]

bll=l(l+n—l)+n—2, [=12,..., (24)
with multiplicities

(l+n—1DQl+n—1)(1I+n-23)
(n— 21+ 1)! ‘

dh =

h = 0 for §".

We only consider the case where the size of the domain
Q) is much larger than a and r. Then the Casimir force is
given by the first term in (10) or (11).

In Fig. 2, we show the graphs of the dimensionless
Casimir force A(%“f) r* as a function of a/r when rT = 1
for N = T2, T3, §2, and S°. From these graphs, one can
see that as a/r gets smaller, the magnitude of the Casimir
force for the same value of n agrees more, and it is larger
for larger n, in agreement with the (+T)/(a/r)"*3 or
1/(a/r)"** behavior for small a/r. It is not easy to read
from the graphs in Fig. 2 the difference between the
Casimir forces when a/r gets larger. Therefore, in Fig. 3
and Fig. 4, we show the ratio of the Casimir force when N
is T" to the Casimir force when N is §”. We plot the
graphs for ¥r7 = 0.1, 0.5, 1, and 2. The n = 2 case is shown
in Fig. 3 and the n = 3 case is shown in Fig. 4. These
graphs show that for small a/r, the ratios of the Casimir
forces for fixed n indeed approaches unity. For larger a/r,
the ratios of the Casimir forces approaches 1 + n/2, in
agreement with the fact that as a >> r, the leading term of
the Casimir force is 1 + 4/2 times the Casimir force in the
4D Minkowski spacetime. Since & = n for 7" and h = 0

105020-10
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FIG. 2 (color online). f&‘f) r* as a function of a/r for N = T2, T3, §2, S*. Here rT = 1. For the graph on the left, the two plates are
both perfectly conducting or infinitely permeable. For the graph on the right, one plate is perfectly conducting and one is infinitely

permeable.
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FIG. 3 (color online).
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The ratio of the Casimir force on 72 to the Casimir force on S as a function of a/r, for rT = 0.1, 0.5, 1, 2. For

the graph on the left, the two plates are both perfectly conducting or infinitely permeable. For the graph on the right, one plate is

perfectly conducting and one is infinitely permeable.

for §", therefore, the ratio of the Casimir force when N is
T" to the Casimir force when N is S" should approach
1+ n/2 whena>r.

V. CONCLUSION

In this article, we have investigated the electromagnetic
Casimir effect on a piston in a higher-dimensional space-
time of the form M X N, where M is the 4D Minkowski
spacetime and IV is an arbitrary compact manifold. As we
have stressed in the introduction, we consider the Casimir
effect due to the electromagnetic field, which is a physi-
cally measurable Casimir effect. One of the reasons the
Casimir effect of electromagnetic fields is a much more

difficult problem than the Casimir effect of scalar fields is
that electromagnetic fields have gauge degree of freedom.
It is crucial to choose gauges that eliminate all the gauge
freedom and which facilitate the correct counting of eigen-
modes of the electromagnetic field. This is also an impor-
tant problem from the perspective of quantum field theory.
We have discussed this issue in detail in Appendix A and
Sec. B.

In Sec. III, we compute the Casimir force acting on the
piston for different combinations of perfectly conducting
boundary conditions and infinitely permeable boundary
conditions on the cylinder and on the piston. It is shown
that if the cylinder and the piston have the same boundary
conditions, then the Casimir force always tends to pull the
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ratio of Casimir forces

FIG. 4 (color online).
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2.5

ratio of Casimir forces

The ratio of the Casimir force on 7° to the Casimir force on S as a function of a/r, for rT = 0.1, 0.5, 1, 2. For

the graph on the left, the two plates are both perfectly conducting or infinitely permeable. For the graph on the right, one plate is

perfectly conducting and one is infinitely permeable.

piston to the closer end of the cylinder. However, if the
cylinder and the piston have different boundary conditions,
the Casimir force always tends to push the piston to the
equilibrium position in the middle of the cylinder. We find
that the geometry of the piston does not affect the direction
of the Casimir force, although it does affect the magnitude.
On the other hand, it is also discovered that if the cylinder
is closed and infinitely permeable, then the Casimir force
has a long range term if the first Betti number /4 of N
which counts the dimension of harmonic one-forms on N
is nonzero.

The asymptotic behavior of the Casimir force acting on a
pair of parallel plates which are obtained by taking one end
of the cylinder to infinity is discussed. We consider the
high temperature asymptotic behavior and the low tem-
perature asymptotic behavior for different relative magni-
tude of a—the separation between the plates, r—the size
of N, and R—the size of the cross-section of the cylinder
in M. It is shown that if ¢ < r, R, then the leading term of
the Casimir force is the Casimir force between two large
parallel plates in the (4 + n)-dimensional Minkowski
spacetime, which is of order 1/ a"™* in the low temperature
regime and of order T/a"*3 in the high temperature re-
gime. On the other hand, if r < a <K R, then the leading
term of the Casimir force is 1 + /2 times the Casimir
force between two large parallel plates in the four-
dimensional Minkowski spacetime. In particular, this
shows that if the size r of N reduces to zero, one will
obtain the Casimir force in the four-dimensional
Minkowski spacetime if and only if %, the number of
zero modes of the Laplace operator on one-forms on N,
is zero. This poses a topological condition on the extra
dimensions. Such a constraint has not been observed in the
study of the Casimir effect due to scalar fields.

For future works, it would be interesting to investigate
the electromagnetic Casimir effect in other higher-
dimensional spacetime models such as brane models.
Besides, it would also be interesting to consider general-
ized pistons such as in the works [49-51,55,57].
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APPENDIX A: GAUGE FIXING OF
THE ELECTROMAGNETIC FIELD

In this section, we will discuss the gauge fixing of the
electromagnetic field in the spacetime M = M X N.
Using the language of differential geometry [65,66], the
electromagnetic field F,,dz*dz” is an exterior two-form
on M and A,dz* is an exterior one-form on M.
Moreover, F,,dz#dz" = d(A,dz").

Given an exterior k-form ¢ = ¢, , dz#' ... dz", the
dual (N — k)-form =i = (x¢), ,  dz"...dz""* is
given by

1
(*w)vlu.v,\,,k = E |g|8V1.4,VN,k/,L1..,,u,k lﬂ”“""’”, (Al)
where &, . is a totally antisymmetric rank-N tensor,

which is equal to one if and only if w, ..., uy is an even
permutation of (0, 1,2,..., N — 1). Using the * operator
and the exterior differentiation d, one can define the co-
differential operator & by
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d¢p = (—DNE Vs g,

which maps a k-form ¢ to a k — I-form. More explicitly,

(3¢)#1 M1 _\/t P V(J—¢VMI Mk 1)

The Laplacian operator A mapping k-forms to k-forms is
then defined as

A=4dé+ dd

Using these notations, the equation of motion (4) is equiva-
lent to

OF = 6dA = 0. (A2)

The action (3) is invariant under the gauge transformation
A — A + dd¢ for any function ¢ on M. To fix the gauge,
notice that for any one-form A, it is always possible to find
a function ¢ satisfying

Ap = 6dp = —06A (A3)
This implies that we can impose the Lorentz gauge
1
=—9 \“g|A” = 0. (A4)
Vel ©
The equation of motion (A2) is then equivalent to
AA =0, (AS5)

i.e., A*dz* is a harmonic one-form on M. However, (A3)
only defines ¢ up to those solutions satisfying A¢ = 0. In
the following, we are going to show that we can use this
remaining gauge freedom to impose stronger gauge
conditions.

Notice that /|g] = +/G. Therefore,

1
8A = 9,A% + —09,(~JGAY).

VG

We want to show that we can impose the gauges

1
\/—Eaa(JEA ) = 0.

Any one-form on M X N can be written as linear combi-
nations of one-forms of the form:

9,A% =0, (A6)

A, (x, y)dz# = q(y)U,(x)dx* + p(x)V,(y)dy?, (A7)

where p(x) and ¢(y) are nonzero, but U,(x)dx* or
V,(y)dy“® can be zero. For such a one-form,

1
—0,(GAY) = pS AV,
\/5( )=pdn

1
——3,(NGAY) = g8, U+ pd AV,

VG

aaAa == Q6MU,
(A8)
S A =0,A% +
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where 8 5, 8,7, and 8 5 are the & operators on M, M, and
N, respectively. In the following, similar conventions will
be used for other operators. Equation (A8) implies that
o mA = 0if and only if
SuUK) _ 3aV()

p(x) q(y)

This happens if and only if there exists a constant ¢ so that

ouU = cp, SV = —cq. (A9)
If ¢ = 0, then we are done. Otherwise, since
F = dg\/lA = quU + quU + deV + pdNV,
the equation of motion gives
—dyponV + péadnV
—cpdyqg + pédndnV

Comparing the components, we have
AaqU + gAy U =0, AypV + pAxV =0.

Therefore, there must exist constants A; and A, such that

="M =),

q U
Ayp ApV (A11)
—=——= ).

p \%

From (A9) and the fact that 2, = 0, we find that
—chyp =cAyp = cdydyp = SydydyU
= Oy (dy &y + Sydy)U = 8y, A, U
= =10y U= —cAyp.
This implies that A, = A,. Let A = A; = A,. If A = 0,
then AV =0 implies that § 4V = 0. Hence cq = 0.

This is a contradiction since we assume that ¢ # 0 and
q # 0. Therefore A # 0. Consider the function

_c
)‘PQ-

It is easy to verify that A¢p = 0. Therefore one can use the
remaining gauge freedom to transform A to A/, where

A'=A+dd=qU + pV’

Cc C
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It follows that

which show that A’ has the desired property (A6). As a
conclusion, it is possible to impose the gauges (A6) which
are equivalent to 6,,U =0, 6V = 0 if A has the form
(A7). After fixing these gauges, one can show that since N
is assumed to be compact and connected, one only has the
gauge freedom of adding to A the differential of a function
o(x) satisfying A,;¢ = 0. The gauge condition 6 oV = 0
can be considered as a generalization of the almost axial
gauge used in [67] when N = S'.

Before ending this section, we would like to remark that
for general A = qU + pV satisfying 6,,U =0 and
o'V =0, the equation of motion (A10) still implies
(A11), but in general A; # A,. Therefore, we can sepa-
rately consider one-forms A of the form qU, with

PHYSICAL REVIEW D 83, 105020 (2011)

SyU =0, AyU=—\U, Axng = Mg,
and of the form pV with

oV =0, Ayp = —Ap, ApnV =MV,
When A; = 0, ¢ is a constant and therefore we can further

impose the gauge condition Uy = 0 on U.

APPENDIX B: ALTERNATIVE EXPRESSIONS
FOR THE CASIMIR FORCE

1. The plates have the same boundary conditions

As shown in Sec. IIT A, the Casimir force acting between
two plates with the same boundary conditions is the sum
over all 7, of the following expression:

This expression can be written as

o o 0 0o 2 2
T3 >y 1 ayZimrr = T i{a] LI YD exp(_,kzaz - M)dt}
20a &= 5 k 27 da 0 e S t
1 9 o X [ p T2
=—— —tk*a* — —“)dt}
47 da {a .[0 p;z_oo kZl exp( ar?* ¢
1 9 0 & 2 0 & tp? 1
=—— —tk*a* — “)dt— f (————“)dt
41 da {a ,/;) k; exp( t “ 0 le xp AT>  t
o tp* 1 ([7kT?
+2 (/2 (— - —([— + 2))dt}.
J7 . Z expl — 372 2\ 72

If 72 # 0, this is equal to

N

T

)ramr 3 3 e(-
2o

)

1 9 e o PTa
— 12 — 2k — 4aT 2K
4 aa{ 1; k Ki(2kar,) “ z 1( T
1 &7,
=5 k; - Ki(2kat,) = — k; %K (2kat,) —
7 & K 1
fe A

But if 72 = 0, it is equal to

77.2

6a

ad

- aal

Eaa

2
- TwaT2 + 47T

T
2442

_mkp
aT

ZZ

= exp(”

)--

)—1

2. The plates have different boundary conditions

As shown in Sec. III B, the Casimir force acting between two plates with different boundary conditions is the sum over

all 7, of the following expression:
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Ty § oo(1)](—21M/ 27pTE
TZ S za—_zz i

As in Appendix A 1, one can show that if 72 # 0, this expression is equal to

3 (~ 12 Ko(2kar,) -

=]|~]

PR

’)

I & Ty 1
2— Z )kTKl(zkaTa) - ; P

77' d (k + 142 1
Yo Z =l

a k=0 7T(k+2):|2 g 2 T

and if 72, = 0, it is equal to

ol k+1

T
2 6 2 T
48a 6 Zoexp )

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF THE CASIMIR FORCE

To find the asymptotic behavior of the Casimir force
when r < a < R and a < r, R, let us define the global
heat kernels

(o] o0
_ 2 N2
Kop()=> e, Kon()=D e ™,
=1 =0

00 0 .
KN,O(t):Zeilm%, K‘N’l(t)ZZeﬂm?—i-Zefmfz‘,
j=0 =

j=1

K¢ p(1) is the heat kernel of the Laplace operator with
Dirichlet boundary conditions on functions on €. K¢ (1)
is the heat kernel of the Laplace operator with Neumann
boundary conditions on functions on €. K o(?) is the heat
kernel of the Laplace operator on functions on JN. For
K 1(2), notice that given a one-form V which is an
eigenvector of the Laplace operator with eigenvalue m? #
0, if it is not coclosed, i.e., if 4V # 0, then o4V is a
nonzero function on N'. Moreover,

AnBnV)=Bndn +dnOn)ONV = dndndnV

= mZSNV

Namely, § 5V is an eigenfunction of the Laplace operator
with eigenvalue m?. Conversely, if ¢ is an eigenfunction of

T 9 o o . [27pTT? 72
I — 1/2 2mik 2,2 _ _'a
Fe,(a) = /7 i {a[o /2 E E e Xexp( tk*a . ) E exp( ; )dt},

p=—0 k=1

or

T

a

the Laplace operator with eigenvalue m? # 0, then dq is a
one-form, and

An(dng) = (dndn + dndp)dng = dnSadag

=dn(Ondn +dnba)g = dn(Ang)
= m?d nrq.

Namely, d 5rq is an eigen one-form of the Laplace operator
w1th eigenvalue m>. Therefore the union of m ,j=1,and
w3 5 J =1, is the set of all eigenvalues of the Laplace
operator on one-forms on 2N'. Hence, K 5 () is the heat
kernel of the Laplace operator on one-forms on /N

It is well known [68—70] that as t — 0, the heat kernels
K() have asymptotic expansions of the form

K@)~ ¢ 7/2 = ¢~ @2 4 ¢ (@=D/2 4
i=0

where d is the dimension of the manifold. More specifi-
cally,

Ko p(t) = ”2:(3) = l;(j/%) =172+ 0(1),
Ko (1) = j;(f) 4 lé‘;%) ~1/2 + o(1),
VN ) (/2 4 o'~ (n/z))
 @mn
K.’Nl(t) =n (4 (;]\[) —(n/2) + 0([17(n/2))'

Here A () is the area of (), /() is the arc length of 9(),
and V(N) is the volume of .

As is shown in Appendix A 1 and B 2 the Casimir force
acting on a pair of parallel plates is given by

(ChH

Ta
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I 2miky 2.2 a © o 1p? s
Fp . (a) = 4_ a E e exp(—rk*a?) E exp| ——|dt — a . pEZIexp i TEH exp{ ——~ dt
1 ((k + x)\2 72
(/2 2 _la
+ 2«/77[ 1~/ E E exp( i t( p ) )TE exp( t)dt}, (C2)

p=1k=0

where y = 1 if the two plates have the same boundary condition, and y = 1/2 if the two plates have different boundary
conditions.
When the cylinder is perfectly conducting, the set of 72 is given by (PC). Therefore,

Zexp( —) = 2K p(t~ l)z exp( ’2) + Ko p(t™h) i exp(— M712> + (Koqn(™hH) —1) i exp(— mTJZ)

=0 j=1 j=0

A S ) () )

(i i) el 7)

J’Z\(Q)tz (g) 1(0Q) 1/22 ( ) (C3)

The set of ag contains m0 with multlphclty two, m , j = 1 with multiplicity three, and ,u Jj = 1 with multiplicity one.
The set of &7 contains m? = 1 and w2, »i=1 each with multiplicity one. On the other hand, when the cylinder is
infinitely permeable the set of 7% is given by (IP), which gives

Zexp( _) = 2(Kqn(t™h) — ])Z exp( 3) + Kon(t™") i eXP(_MT?)

J=0 j=1

+ K p(t~ )Zexp( ) Zexp( )

ﬂ( ), J( Uﬁ) 1(0Q) 1/22 ( ) (C4)
1

Notice that the leading terms of (C3) and (C4) are the same and is given by

J,Z;(Q) tz exp( O;B) (CS5)

But the subleading terms

1(39) l/zz ( fQ) (C6)

t

have opposite signs. Substituting (C5) into (C1), we find that when a < R, the leading term of the Casimir force is
given by

TAQ) 0 [VT2+h o 2™ - st (T B V2
Fola) = N a{— P + 2akzl Z#Oe X(W) K3/2(2ka0'/3,p)}
TAQ) 2+ h & 2™ Tﬂl(Q) it 208y | 20 1
— miky P + B.p + ) 72karrﬁ,,, C7
S > 3 (e e @

where 0'%7,, p = 0',8 + [27pT]?. The first term in (C7) comes from those terms with o= 0 and p = 0. The sum

2%

27'rlk,\/
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is equal to {x(s) if y = 1 and is equal to (2! — 1){x(s) if y = 1/2. (C7) gives the leading behavior of the Casimir force
when ¢ < R and aT > 1. If aT < 1, substituting (C3) into (C2) gives

Fola) = ﬁ(%) aa {(2 )(% i ‘32;]‘)( B 877:;"45;) + 2a i Z zmk’((ZB) K)(2kaog) — 8aT*? Z Z ( p )

k=1 k=105#0 p=10g#0

X K2<PT/3) 212 [7T? i iozp—(s/z)q:@]z . 0%)3/41(3/2(“/[@] 0'%,)}

0 27le 2T 00
= -2+ h)ﬂ(Q)( . Z k4X 95 ) _ 3.7\(29) z Z 2mk)(<k ) K,(2kao )

87 5 0570
ﬂ(ﬂ) > ik 0"3 Q)T2 > 0-,3 pO'B
— e*™kx _Z K, (2kaog) — ———5— ( ) ( )
4772 kZl 0'%0 ka l p Z1 o‘%ﬂ r
TAT & & < (k+ x)’ ( pJ[w(k + x)]z 2)
+ I T exp( - 2L TR 4 02, C8
2a3 le 1;) o~ p P\7r a B €8)

For the subleading term F,(a), substitute (C6) into (C1) and (C2), respectively. Similar computations show that

Tz(aQ) h & e?mikx
e 2T

a

+2 Z P fy L "CK, (2kaé, ) +4 Z DY g Ko(2kaé, p)}

k=1¢,,#0 k=1¢,,#0

Fila) ==

with &2, = & + [2mpTP, or

ho(1 & e2mikx & . &, 2, |
= =100 (= 3 S + 413 T3 Y i —2ka§< L )
Fila) (o ){3277 (a3 P e fR(3)) 327 &= ; ;toe ¢ ka k2a2 ka3
g & T T — m(k + x)
23 S e (G ) 5 3 Senrn( [T < 6))
87 p=1£,70 PP 4a’ k=0 p=1¢, T a 7

where the plus sign is for perfectly conducting cylinder and the minus sign is for infinitely permeable cylinder.
To find the asymptotic behavior when a < r, R, we use the fact that

2 0 2 0 2
Zexp<— %) 2433 exp(—%) 2 exp(— %) = 2Kn0(7") + Koy (t71) ~ (n +2) 24/(?:2 "/
B j=1 j=1

AT mhy & 1 V(N)

2 _J i) = =1y n/2
%exp( t) Z < t)+j_ziexp< t) K (t71) n(4 T
Therefore,
72 VS, _ V@es) |,
%exp(— 7) ~(n+ Z)Wt( +2)/2 = nWt( +1)/2 (C9)

where the minus sign is for perfectly conducting cylinder, the plus sign is for infinitely permeable cylinder, S = ) X N is
the cross section of the cylinder, and V(S) = A(Q) X V(N) is its volume. Substituting (C9) into (C1) and (C2), we
find that the first two leading terms of the Casimir force when a << r, R are given by
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Tn+9/2 & @ (n+3)/2
7 (n—1)/2 Z Z eka)(( ) K(n+3/2)(47TkPaT)

7TT(n+7)/2 ) pnts)/2
2mik
o(n=5)/2 Z Z X T (ka)"* D72 K(n+1)/2(477kpaT)},
k=1 p=
nV(aS) (n+ DI(R) & &2mikx T2 2 & p (D)2
8i(a) = 4 { )+ D 2gn T2 L 2 —+ Doesn Z Z e X(ka) Kwr2)2(47kpaT)
7TT("+6)/2 ® p(n+4)/2
— 2mik
2(n=6)/2 Z Z em X (ka )n/2 n/2(477kpaT)}
k=1p=1
or

(1]

(3]

o) = (n + 2>V<s>{—

7TT(n+1)/2 0
2(n+1)/2a(n+7)/2 &<

= VES) [+ I
O :

(Y & e T
(477.)(n+4)/20n+4 = kT4 - 7T(n+4)/2 gR(n + 4)T
S (e + "2 mp(k + x)
W w2\ 7
eZm'k,\/ (n+3 \
— +3
477)(71+3)/2an+3 kn+3 an+3)/2 {r(n +3)T"
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