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We consider the Casimir effect of the electromagnetic field in a higher-dimensional spacetime of the

form M�N , where M is the four-dimensional Minkowski spacetime and N is an n-dimensional

compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed

cylinder is investigated. Different combinations of perfectly conducting boundary conditions and

infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that

if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled

towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary

conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where

one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates

inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature

regime and the low temperature regime are investigated for the case where the cross section of the cylinder

in M is large. It is found that if the separation between the plates is much smaller than the size of N ,

the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in

the (4þ n)-dimensional Minkowski spacetime. However, if the size of N is much smaller than the

separation between the plates, the leading term of the Casimir force is 1þ h=2 times the Casimir force on

a pair of large parallel plates in the four-dimensional Minkowski spacetime, where h is the first Betti

number of N . In the limit the manifold N vanishes, one does not obtain the Casimir force in the four-

dimensional Minkowski spacetime if h is nonzero. Therefore the data obtained from Casimir experiments

suggest that the first Betti number of the extra dimensions should be zero.

DOI: 10.1103/PhysRevD.83.105020 PACS numbers: 11.10.Kk, 03.70.+k, 04.62.+v, 11.10.Wx

I. INTRODUCTION

In 1948, Casimir proposed the existence of a force of
magnitude

F ¼ �2ℏcA
240a4

between two parallel perfectly conducting (PC) plates of
area A which are separated by a distance a due to the
vacuum fluctuations of electromagnetic field [1]. Since
1970s, Casimir effect has aroused the interest of many
researchers for its close relations with many other areas
of physics such as quantum field theory, atomic physics,
condensed matter physics, nanotechnology, astrophysics,
and mathematical physics [2]. Although the original pro-
posal of Casimir considered only the electromagnetic field,
nowadays the scope of Casimir effect includes all other
quantum fields. The Casimir effect or vacuum energy is an
vital component of quantum field theory.

Higher-dimensional spacetimes have become ubiquitous
in the theories of high energy physics especially in super-
string and supergravity theories. Different spacetimes with
extra dimensions have been proposed to solve some fun-
damental problems in physics such as the hierarchy prob-
lem and the dark energy problem. The Casimir energy

plays an important role in the studies of these extra dimen-
sional spacetimes. On the one hand, it has been investi-
gated as a candidate for the dark energy that accounts for
the accelerated expansion of the Universe [3–9]. On the
other hand, it was studied for its role in the stabilization
mechanism of extra dimensions [10–19].
In recent years, there is an increased interest in studying

the Casimir effect on objects in spacetimes with extra
dimensions [3,10,20–40]. It is desirable to investigate
how the presence of extra dimensions would change the
direction and the magnitude of the Casimir force. However,
most of these works studied the scalar fields. Only very few
works tried to address the problem on electromagnetic
fields since it is more complicated due to the presence of
gauge freedom. In some works, the simple relation be-
tween the Casimir force on a pair of large parallel plates
due to a massless scalar field and the Casimir force on a
pair of large parallel plates due to an electromagnetic field
was wrongly extended to other scenarios.
By definition, the zero temperature Casimir energy is a

divergent sum of the zero point energies of a quantum field.
There are various methods such as cutoff method and zeta
regularization method to remove the divergence and ex-
tract a physically meaningful Casimir energy. However,
these divergence removal procedures can sometimes lead
to ambiguities. In 2004, the piston configuration was in-
troduced [41] and it quickly attracted a lot of attention*LeePeng.Teo@nottingham.edu.my

PHYSICAL REVIEW D 83, 105020 (2011)

1550-7998=2011=83(10)=105020(19) 105020-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.105020


because the divergence of the Casimir energy in this con-
figuration can be unambiguously removed. The zero tem-
perature Casimir force acting on a piston due to scalar
fields or electromagnetic fields in the 4D Minkowski
spacetime was soon investigated in [42–45]. This was
then extended to rectangular piston in Minkowski space-
times of arbitrary dimensions [46,47] and to the finite
temperature effect [48]. There are also a number of works
which considered the generalized piston configurations
[49–57]. Lately, there is an interest in considering the
piston configuration in spacetimes with extra dimensions
such as the Kaluza-Klein spacetime and the Randall-
Sundrum spacetime [26,28–33,36–38]. However, as men-
tioned above, the works in this direction were restricted to
scalar fields. To the best of our knowledge, no work has
considered the electromagnetic Casimir effect on a piston
in higher-dimensional spacetimes. Although the results on
scalar fields might give some general picture about the case
of electromagnetic fields, however, it has been known that
the direction and the magnitude of the Casimir force is very
sensitive to the type of the fields, the boundary conditions,
and the geometry of the objects [2]. A careful study of the
electromagnetic Casimir effect in higher-dimensional
spacetime is essential to avoid drawing unfounded conclu-
sions from the results for scalar fields. In fact, we are going
to see from this work that the electromagnetic Casimir
effect imposes a topological condition on the extra dimen-
sions, which is something that have never been discovered
from the study of Casimir effect due to scalar fields.

The electromagnetic Casimir effect on a pair of large
parallel perfectly conducting plates in the Kaluza-Klein
spacetime with internal space S1 and in the Randall-
Sundrum spacetime have been considered in [27] and
[40], respectively. As pointed out in [40], for an electro-
magnetic field in spacetimes with extra dimensions, one
can either treat the field as a bulk field and impose the
perfectly conducting boundary conditions introduced in
[58] or one can use dimensional reduction to reduce the
electromagnetic field to a tower of massive vector fields in
the 4DMinkowski spacetime and impose the 4D perfectly
conducting conditions on the massive vector fields. These
two approaches lead to different Casimir effects. The first
approach is a genuine higher-dimensional Casimir effect,
whereas the second approach is essentially the Casimir
effect of 4D massive vector fields.

In this work, we are going to consider the bulk electro-
magnetic Casimir effect in higher-dimensional spacetimes
with arbitrary compact extra dimensions. The spacetime
M is assumed to have the form M�N , where M is the
4D Minkowski spacetime and N is a manifold of dimen-
sion n, assumed to be compact and connected. We are
interested in the Casimir effect in the spacetime M due
to the vacuum fluctuations of the electromagnetic field in a
piston system. The piston system consists of a cylinder of
length L and a piston which can move freely inside the

cylinder (See Fig. 1). The position of the piston is given by
x1 ¼ a. The cross section of the cylinder and the piston are
the same and assumes the general form ��N , where �
is a two-dimensional simply connected domain with
boundary @� a smooth curve. For the boundary conditions
on the walls of the cylinder and the piston, we impose
either the perfectly conducting boundary conditions or
the infinitely permeable boundary conditions proposed
by Ambjørn and Wolfram [58]. Since the works by
Marachevsky [44] and Kirsten and Fulling [28], there has
been a trend in considering piston with arbitrary cross
sections. Although studying a piston with rectangular cross
section is enough for drawing conclusion about the Casimir
effect on large parallel plates, it is desirable to know
whether the properties of the Casimir force would be
affected by the size and the geometry of the piston. In
fact, a number of works have shown that the geometry of
the piston has strong effect on the strength of the Casimir
force [49–51,55]. In view of the interest in studying
Casimir effect in generalized pistons [49–57], we think
that it is necessary for us to consider piston with arbitrary
cross section here.
The Casimir energy of the piston system is given by the

sum of the Casimir energy inside the left chamber, the
Casimir energy inside the right chamber and the Casimir
energy outside the cylinder. The latter does not depend on
a and therefore will not contribute to the Casimir force
acting on the piston [41]. Omitting this term, we have

E
piston
Cas ¼ E

cylinder
Cas ðaÞ þ E

cylinder
Cas ðL� aÞ; (1)

where E
cylinder
Cas ðaÞ is the Casimir energy inside a cylinder of

length a. Using zeta regularization method, it is given by

Ecylinder
Cas ðaÞ ¼ �T

2
ð� 0Tð0; aÞ þ log½�2��Tð0; aÞÞ; (2)

where � is a normalization constant and �TðsÞ is the zeta
function

�Tðs; aÞ ¼
X
!

X1
p¼�1

ð!2 þ ½2�pT�2Þ�s;

which contains a sum over all ! that are the eigenfrequen-
cies of the electromagnetic field inside the cylinder.

Right
Chamber

PistonLeft
Chamber

a L − a

FIG. 1. A piston system.
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In Sec. II, we write down the eigenmodes of the elec-
tromagnetic field in a cylinder. We then proceed to com-
pute the Casimir energy and the Casimir force in Sec. III. A
discussion of the asymptotic behavior of the Casimir force
in different limits is also given in Sec. III. In Sec. IV, we
consider the specific examples whereN is an n torus or an
n sphere.

In the following, we use the units where ℏ¼c¼kB¼1.

II. THE EIGENMODES OF THE FIELD
INSIDE A CYLINDER

In this article, we consider spacetime M of the form
M�N , where M is the four-dimensional Minkowski
spacetime and N is an n-dimensional compact connected
manifold. Let

ds2 ¼ g��dz
�dz� ¼ ���dx

�dx� �Gabdy
adyb

be the metric on M, where ��� ¼ diagð1;�1;�1;�1Þ
is the usual four-dimensional metric on M, and ds2N ¼
Gabdy

adyb a Riemannian metric on N . x denotes collec-
tively the coordinates on M, y denotes collectively the
coordinates on N and z ¼ ðx; yÞ. The action of the elec-
tromagnetic field is given by

S ¼ � 1

4

Z ffiffiffiffiffiffi
jgj

q
F��F

��dNz; (3)

where N ¼ 4þ n, F�� ¼ @�A� � @�A� is an antisym-

metric rank two tensor and F�� ¼ g�	g��F	�. The equa-

tion of motion is

1ffiffiffiffiffiffijgjp @

@z�
ð

ffiffiffiffiffiffi
jgj

q
F��Þ ¼ 0: (4)

The perfectly conducting boundary condition is given
by [58]

n �ð�FÞ��1...�N�3
¼ 0; (5)

and the infinitely permeable boundary condition is given
by [58]

n �F�� ¼ 0: (6)

Here n� is a unit vector normal to the boundary surface,
and �F is the dual tensor of F.

As discussed in Appendix A, we can consider the eigen-
modes of the electromagnetic field of the form

(I) U�dx
� with U0 ¼ 0 and 
MU ¼ 0;

(II) qjðyÞU�ðxÞdx� with 
MU ¼ 0, �MUþm2
jU ¼ 0,

j ¼ 1; 2; . . . , where qjðyÞ is an eigenfunction with

nonzero eigenvalue m2
j of the Laplace operator on

functions on N ;
(III) pðxÞVj;aðyÞdya with�Mpþ�2

jp¼0, j ¼ 1; 2; . . . ,

where Vj;aðyÞdya is a coclosed eigen-one-form

with eigenvalue �2
j of the Laplace operator onN .

In the following, we find the eigenmodes of the electro-
magnetic field in the cylinder ½0; a� ���N with com-
binations of perfectly conducting or infinitely permeable
boundary conditions on the sidewall ½0; a� � @��N ,
the bottom x1 ¼ 0, and the top x1 ¼ a.
The eigenmodes can be divided into TE modes which

are modes with F01 ¼ 0, and TM modes which are modes
with F�� ¼ 0 for all �, � � 0, 1. Denote by �x ¼ ðx2; x3Þ.
Let ’1ð �xÞ; ’2ð �xÞ; . . . be the eigenfunctions of the Laplace
operator with Dirichlet boundary conditions on �,
with eigenvalues $2

1; $
2
2; . . . , and let c 0ð �xÞ;c 1ð �xÞ;

c 2ð �xÞ; . . . be the eigenfunctions of the Laplace operator
with Neumann boundary conditions on �, with eigenval-
ues @2

0;@2
1;@2

2; . . . . c 0ð �xÞ is the constant function with

eigenvalue @2
0 ¼ 0.

A. Perfectly conducting condition on the whole cylinder

When the whole cylinder is perfectly conducting (5),
one can show that the set of eigenmodes of the electro-
magnetic field is given by
Type A TE modes:

A2 ¼� sin
�kx

a

@c lð �xÞ
@x3

e�i!tqjðyÞ;

A3 ¼ sin
�kx

a

@c lð �xÞ
@x2

e�i!tqjðyÞ; all other A� ¼ 0;

!2 ¼
�
�k

a

�
2 þ@2

1 þm2
j ; k; l¼ 1;2; . . . ; j¼ 0;1;2; . . . :

The j ¼ 0 modes are type I modes, and the j � 1 modes
are type II modes. By convention, m0 ¼ 0 and q0ðyÞ ¼ 1.
Type B TE modes: These include all the type III modes

where

A� ¼ 0;

Aa ¼ sin
�kx

a
’lð �xÞe�i!tVj;aðyÞ;

!2 ¼
�
�k

a

�
2 þ$2

l þ�2
j ; k; l; j ¼ 1; 2; . . . :

Type A TM modes:

A0¼Aa¼ 0;

A1¼$2
l cos

�kx

a
’lð �xÞe�i!tqjðyÞ;

A�¼��k

a
sin

�kx

a

@’lð �xÞ
@x�

e�i!tqjðyÞ; �¼ 2;3;

!2¼
�
�k

a

�
2þ$2

l þm2
j ; k;j¼ 0;1;2; . . . ; l¼ 1;2; . . . :

The j ¼ 0 modes are type I modes, and the j � 1 modes
are type II modes.
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Type B TM modes: These are type II modes with

A1 ¼ Aa ¼ 0;

A0 ¼ $2
l sin

�kx

a
’lð �xÞe�i!tqjðyÞ;

A� ¼ i! sin
�kx

a

@’lð �xÞ
@x�

e�i!tqjðyÞ; � ¼ 2; 3;

!2 ¼
�
�k

a

�
2 þ$2

l þm2
j ; k; l; j ¼ 1; 2; . . . :

B. Infinitely permeable condition on the whole cylinder

When the whole cylinder is infinitely permeable (6), one
can show that the set of eigenmodes of the electromagnetic
field is given by

Type A TE modes:

A2 ¼�cos
�kx

a

@’lð �xÞ
@x3

e�i!tqjðyÞ;

A3 ¼ cos
�kx

a

@’lð �xÞ
@x2

e�i!tqjðyÞ; all other A� ¼ 0;

!2 ¼
�
�k

a

�
2þ$2

l þm2
j ; l¼ 1;2; . . . ; k;j¼ 0;1;2; . . . :

Type B TE modes:

A�¼0;

Aa¼ cos
�kx

a
c lð �xÞe�i!tVj;aðyÞ;

!2¼
�
�k

a

�
2þ@2

l þ�2
j ; k;l¼0;1;2; . . . ; j¼1;2; . . . :

Notice that the space of one-forms V on N with

N V ¼ 0 contains harmonic one-forms where
�N V ¼ 0. Let h denote the first Betti number of N—
the dimension of the vector space of harmonic one-forms
onN , which is a topological invariant. Then the set of �2

j

contains h zeros. Without loss of generality, let �2
1; . . . ; �

2
h

be equal to zero. Then the modes with l ¼ 0 and
j ¼ 1; 2; . . . ; h are also TM modes. Therefore, they are
TEM modes.

Type A TM modes:

A0¼Aa¼0;

A1¼@2
l sin

�kx

a
c lð �xÞe�i!tqjðyÞ;

A�¼�k

a
cos

�kx

a

@c lð �xÞ
@x�

e�i!tqjðyÞ; �¼2;3;

!2¼
�
�k

a

�
2þ@2

l þm2
j ; j¼0;1;2; . . . ; k;l¼1;2; . . . :

Type B TM modes: These are type II modes with

A1¼Aa¼0;

A0¼@2
l cos

�kx

a
c lð �xÞe�i!tqjðyÞ

A�¼ i!cos
�kx

a

@c lð �xÞ
@x�

e�i!tqjðyÞ; �¼2;3;

!2¼
�
�k

a

�
2þ@2

l þm2
j ; k¼0;1;2; . . . ; l;j¼1;2; . . . :

or

A0 ¼ �k

a
cos

�kx

a
e�i!tqjðyÞ;

A1 ¼ �i! sin
�kx

a
e�i!tqjðyÞ; all other A� ¼ 0;

!2 ¼
�
�k

a

�
2 þm2

j ; k; j ¼ 1; 2; . . . :

C. Perfectly conducting condition on the sidewall and
the bottom, infinitely permeable condition on the top

When the side wall and the bottom of the cylinder are
perfectly conducting (5), and the top is infinitely permeable
(6), it is immediate to check that the eigenmodes of the
electromagnetic field are obtained by replacing the k for
the modes in Sec. II A by kþ 1

2 , where k runs from zero to

infinity.

D. Infinitely permeable condition on the sidewall and
the bottom, perfectly conducting condition on the top

When the side wall and the bottom of the cylinder are
infinitely permeable (6), and the top is perfectly conducting
(5), it is immediate to check that the eigenmodes of the
electromagnetic field are obtained by replacing the k for
the modes in Sec. II B by kþ 1

2 , where k runs from zero to

infinity.
Note that in the absence of the space N , we only have

the type ATE modes with j ¼ 0 and the type ATM modes
with j ¼ 0. The type B TE modes and type B TM modes
only exist in the presence of the space N .

III. THE CASIMIR ENERGY
AND THE CASIMIR FORCE

A. The cylinder and the piston are imposed
with the same boundary conditions

When the cylinder and the piston are both perfectly
conducting, the piston divides the cylinder ½0; L� ���
N into two cylinders ½0; a� ���N and ½0; L� a� �
��N , both of them are perfectly conducting every-
where. From the results of Sec. II A, we find that the zeta
function �Tðs;aÞ is given by
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�Tðs;aÞ¼
X1

p¼�1

X1
k¼1

X1
l¼1

X1
j¼0

��
�k

a

�
2þ@2

l þm2
j þ½2�pT�2

��sþ X1
p¼�1

X1
k¼1

X1
l¼1

X1
j¼1

��
�k

a

�
2þ$2

l þ�2
j þ½2�pT�2

��s

þ X1
p¼�1

X1
k¼0

X1
l¼1

X1
j¼0

��
�k

a

�
2þ$2

l þm2
j þ½2�pT�2

��sþ X1
p¼�1

X1
k¼1

X1
l¼1

X1
j¼1

��
�k

a

�
2þ$2

l þm2
j þ½2�pT�2

��s
:

For the third term, the k ¼ 0 terms do not depend on a.
Therefore, the zeta function can be written as

�Tðs; aÞ ¼
X1

p¼�1

X
�

��;pðsÞ þ CðsÞ;

��;pðs; aÞ :¼
X1
k¼1

��
�k

a

�
2 þ �2�;p

��s
; (7)

where CðsÞ denotes a term independent of a whose value
can change from one expression to another, and

�2�;p ¼ �2� þ ð2�pTÞ2:

The set of �2� contains (PC)
(i) $2

l þm2
j , j � 0, l � 1, with multiplicity two if

j � 0 and multiplicity one if j ¼ 0,
(ii) $2

l þ�2
j , j � 1, l � 1, each with multiplicity one,

(iii) @2
l þm2

j , j � 0, l � 1, each with multiplicity one.

Notice that none of these �2� is zero.
When the cylinder and the piston are both infinitely

permeable, we have two infinitely permeable cylinders.
The results in Sec. II B show that the zeta function
�Tðs;aÞ can also be written in the form (7), where the set
of �2� contains (IP)

(i) @2
l þm2

j , j � 0, l � 1, with multiplicity two if j �

0 and multiplicity one if j ¼ 0,
(ii) @2

l þ�2
j , j � 1, l � 0, each with multiplicity one,

(iii) $2
l þm2

j , j � 0, l � 1, each with multiplicity one,

(iv) m2
j , j � 1, each with multiplicity one.

In this case, we find that there are h of the �2� that are equal
to zero, which are the �2� corresponding to the TEMmodes,
i.e., @2

0 þ�2
1; . . . ;@2

0 þ�2
h.

Using the fact that

X1
k¼1

exp

�
�t

�
�k

a

�
2
�

¼ � 1

2
þ a

2
ffiffiffiffi
�

p t�ð1=2Þ þ affiffiffiffi
�

p t�ð1=2Þ X1
k¼1

exp

�
� k2a2

t

�
;

we find that if �2�;p � 0,

��;pðs; aÞ ¼ 1

�ðsÞ
X1
k¼1

Z 1

0
ts�1 exp

�
�t

��
�k

a

�
2 þ �2�;p

��
dt

¼ C�;pðsÞ þ aD�;pðsÞ þ 2affiffiffiffi
�

p
�ðsÞ

� X1
k¼1

�
ka

��;p

�
s�ð1=2Þ

Ks�ð1=2Þð2ka��;pÞ:

Here C�;pðsÞ andD�;pðsÞ are terms independent of a. From

this, we obtain

��;pð0; aÞ ¼ C�;pð0Þ þ aD�;pð0Þ;
� 0�;pð0; aÞ ¼ C0�;pð0Þ þ aD0

�;pð0Þ

þ 2affiffiffiffi
�

p X1
k¼1

�
��;p
ka

�
1=2

K1=2ð2ka��;pÞ

¼ C0�;pð0Þ þ aD0
�;pð0Þ þ

X1
k¼1

1

k
e�2ka��;p :

On the other hand, if �2�;p ¼ 0,

��;pðsÞ ¼
�
�

a

��2s
�Rð2sÞ:

It follows that

��;pð0;aÞ ¼ �Rð0Þ ¼ � 1

2

� 0�;pð0; aÞ ¼ 2� 0Rð0Þ � 2�Rð0Þ log�a ¼ � logð2�Þ þ log
�

a

¼ � logð2aÞ:
Here �RðsÞ is the Riemann zeta function.
From (2), we find that the Casimir energy of the piston

system (1) is given by

E
piston
Cas ¼E0�T

2

X1
k¼1

X
��;p�0

1

k
e�2ka��;p þT

2

X
��;p¼0

logð�aÞ

�T

2

X1
k¼1

X
��;p�0

1

k
e�2kðL�aÞ��;p þT

2

X
��;p¼0

logð�ðL�aÞÞ;

where E0 is independent of a. It follows that the Casimir
force acting on the piston is given by

F
piston
Cas ¼ � @Episton

Cas

@a
¼ Fk

CasðaÞ � Fk
CasðL� aÞ; (8)

where
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Fk
CasðaÞ ¼ � @

@a

�
�T

2

X1
k¼1

X
��;p�0

1

k
e�2ka��;p

þ T

2

X
��;p¼0

logð�aÞ
�

¼ �T
X1
k¼1

X
��;p�0

��;pe
�2ka��;p � X

��;p¼0

T

2a

¼ �T
X

��;p�0

��;p

e2a��;p � 1
� X

��;p¼0

T

2a
: (9)

In fact, Fk
CasðaÞ is the limit of the Casimir force acting on

the piston F
piston
Cas when the cylinder becomes infinitely

long, i.e., L ! 1. Therefore, it is the Casimir force acting
between two perfectly conducting plates or two infinitely
permeable plates separated by a distance a moving inside
an infinitely long cylinder with cross section ��N .

When both the cylinder and the piston are infinitely
permeable, the last term in (9) which comes from the
TEM modes is nonzero if h, the dimension of the space
of harmonic one-forms ofN , is nonzero. In contrast to the
contribution to the force from the terms with ��;p � 0

which decays to zero exponentially fast when a ! 1,
the contribution from the terms with ��;p ¼ 0 has power

law decay which is much slower. This gives rise to a long
range Casimir force [59]. It is interesting to note that the

long range term � T
2a is a limit of �T

��;p
e2a��;p�1

when

��;p ! 0, which exhibits some kind of smooth transition.

From the expression (9), it is obvious that the Casimir
force acting between two perfectly conducting plates or
two infinitely permeable plates is always attractive and is a
monotonically decreasing function of the distance between
the plates. Therefore, it can be inferred from (8) that in a
closed cylinder of finite length, the Casimir force acting on
the piston which has the same boundary condition with the
cylinder always tends to pull the piston to the closer end.
In the following, we study the asymptotic behavior of

the Casimir force (9) at different limits. Denote by

r ¼ ffiffiffiffiffiffiffiffiffiffiffi
VðNÞn

p
a measure of the size of the manifold N and

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að�Þp

a measure of the size of the domain �.
We will investigate the behavior of the Casimir force
when the length scales a, r, and R are such that
r � a � R or a � r, R, and when aT � 1 or aT � 1.
(9) is the high temperature expansion of the Casimir

force. It shows that when aT � 1, the Casimir force is
dominated by the term

Fk
CasðaÞ � �T

X
���0

��
e2a�� � 1

� X
��¼0

T

2a
;

which is linear in T. This term is called the classical term.
The sum of the remaining terms decay exponentially.
In Appendix A 1, we show that the Casimir force (9) can

be rewritten as

Fk
CasðaÞ ¼ � X

��¼0

�
�

24a2
þ �T2

6

�
� X

���0

�
1

2�a

X1
k¼1

��
k
K1ð2ka��Þ þ 1

�

X1
k¼1

�2�K0ð2ka��Þ þ T

�

X1
p¼1

��
p

K1

�
p��
T

��

þ �2

a3
X
��

X1
k¼1

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�ka �2 þ �2�

q �
exp

�
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�k

a

�
2 þ �2�

s �
� 1

��1
:

This shows that at zero temperature, the Casimir force is given by

Fk;T¼0
Cas ðaÞ ¼ � X

��¼0

�

24a2
� X

���0

�
1

2�a

X1
k¼1

��
k
K1ð2ka��Þ þ 1

�

X1
k¼1

�2�K0ð2ka��Þ
�
:

In the case the two infinitely permeable plates are placed
inside an infinitely permeable cylinder and the first Betti
number h ofN is nonzero, the leading term of the thermal
correction is

� �h

6
T2:

Otherwise, the thermal correction goes to zero exponen-
tially fast when aT ! 0.
Next we consider the behavior of the Casimir force (9)

when the separation between the plates a is much smaller
than the size R of the domain �, i.e., a � R. In this case,
the result of Appendix C shows that the first two leading
terms of the Casimir force is given by

Fk
CasðaÞ �Að�Þ

�
�ð2þ hÞ T

8�a3
�Rð3Þ � T

8�

X1
k¼1

X
�;p�0

�22
�;p

ka
þ 2�;p

k2a2
þ 1

k3a3

�
e�2ka�;p

�

	 lð@�Þ
�
h

�T

96a2
þ T

8�

X1
k¼1

X
��;p�0

��;p

ka
K1ð2ka��;pÞ þ T

4�

X1
k¼1

X
��;p�0

�2
�;pK0ð2ka��;pÞ

�
; (10)

L. P. TEO PHYSICAL REVIEW D 83, 105020 (2011)

105020-6



or

Fk
CasðaÞ�Að�Þ

�
�ð2þhÞ

�
�2

480a4
þ�2T4

90

�
� 3

8�2

X1
k¼1

X
��0

e2�ik�
�
�

ka

�
2
K2ð2ka�Þ� 1

4�2

X1
k¼1

X
��0

3
�

ka
K1ð2ka�Þ

� T2

2�2

X1
p¼1

X
��0

�
�

p

�
2
K2

�
p�

T

�
þ�T

2a3
X1
p¼1

X1
k¼1

X
�

k2

p
exp

�
�p

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�k

a

�
2þ2

�

s ��
	 lð@�Þ

�
h

�
�Rð3Þ
32�a3

þ �Rð3ÞT3

8�

�

þ 1

32�

X1
k¼1

X
���0

e�2ka��

�
2�2

�

ka
þ 2��

k2a2
þ 1

k3a3

�
þ T2

8�

X1
p¼1

X
���0

e�ðp��=TÞ
�
��

p2
þ T

p3

�

� �

4a3

X1
k¼1

X1
p¼1

X
��

k2K0

�
p

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�k

a

�
2þ�2

�

s ��
; (11)

where 2
�;p ¼ 2

� þ ½2�pT�2, �2
�;p ¼ �2

� þ ½2�pT�2;
Að�Þ is the area of � which is of order R2, and lð@�Þ is
the length of the boundary @� of � which is of order R.
The set of2

� containsm2
0 with multiplicity two,m2

j , j � 1,
with multiplicity three, and �2

j , j � 1, with multiplicity
one; the set of �2

� contains m2
j , j � 1, and �2

j , j � 1, each
with multiplicity one. The plus signs on the second line in
(10) and the third line in (11) are for the case where the

cylinder is perfectly conducting, and the minus signs are
for the case where the cylinder is infinitely permeable.
In the high temperature regime, i.e., aT � 1, the lead-

ing terms of the Casimir force when a � R is given by the
sum of the p ¼ 0 terms in (10). In the low temperature
regime, i.e., aT � 1, (11) shows that the leading terms of
the Casimir force is given by

Fk
CasðaÞ �Að�Þ

�
�ð2þ hÞ �2

480a4
� 3

8�2

X1
k¼1

X
��0

e2�ik�
�
�

ka

�
2
K2ð2ka�Þ � 1

4�2

X1
k¼1

X
��0

3
�

ka
K1ð2ka�Þ

�

	 lð@�Þ
�
h
�Rð3Þ
32�a3

þ 1

32�

X1
k¼1

X
���0

e�2ka��

�
2�2

�

ka
þ 2��

k2a2
þ 1

k3a3

��
� ð2þ hÞAð�Þ�

2T4

90
	 hlð@�Þ �Rð3ÞT

3

8�
:

(12)

The first two terms give the zero temperature contribution, and the last two terms give the thermal correction terms which
are of polynomial order in T. The remaining terms go to zero exponentially fast when aT ! 0.

(10) and (11) can also be used to study the leading behavior of the Casimir force when r � a � R. Since� and �� are

proportional to r�1, we find that in the limit r=a ! 0, the leading term of the Casimir force is given by

Fk
CasðaÞ �

2þ h

2
Að�Þ

�
� T

4�a3
�Rð3Þ � T

�

X1
k¼1

X1
p¼1

�
4�2p2T2

ka
þ 2�pT

k2a2
þ 1

2k3a3

�
e�4�kpaT

�
; (13)

or

Fk
CasðaÞ �

2þ h

2
Að�Þ

�
� �2

240a4
� �2T4

45
þ �T

a3
X1
p¼1

X1
k¼1

k2

p
exp

�
��kp

aT

��
: (14)

Notice that the expressions in the brackets of (13) and
(14) are the Casimir force per unit area acting on a pair of
perfectly conducting or infinitely permeable plates in the
4D Minkowski spacetime [48]. They are also equal to
twice the Casimir force per unit area acting on a pair of
Dirichlet or Neumann plates [48]. Therefore in the limit
the size of the manifold N goes to zero, one recovers the
Casimir force between a pair of infinite parallel plates in
the 4D Minkowski spacetime if and only if h ¼ 0, i.e.,

the first Betti number of N is zero. For general h, one
finds that when the size of N goes to zero, one has h
extra copies of Casimir force acting on a pair of Dirichlet
plates. Recall that h is the number of zero modes for the
Laplace operator on one-forms on N . Therefore, the
presence of extra h copies of the Casimir force on a
pair of Dirichlet plates when the size of the manifold
N goes to zero can be considered as a kind of instan-
tonic effect.
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When aT � 1, (13) shows that the leading term of the
Casimir force is

Fk
CasðaÞ � � 2þ h

2
Að�Þ T

4�a3
�Rð3Þ: (15)

When aT � 1, (14) shows that the leading term of the
Casimir force is

Fk
CasðaÞ � � 2þ h

2
Að�Þ �2

240a4
: (16)

Up to the factor ð1þ h=2Þ, these are the familiar leading
behavior of the Casimir force acting on a pair of perfectly
conducting plates in the 4D Minkowski spacetime in the
high temperature regime and in the low temperature re-
gime, respectively.
Finally, we consider the case where separation between

the plates is much smaller than the sizes of both� andN ,
i.e., a � r, R. In this case, the results of Appendix C
show that the first two leading terms of the Casimir force
is given by

Fk
CasðaÞ � ðnþ 2ÞV ðSÞ

�
�T

ðnþ 2Þ�ðnþ3
2 Þ

ð4�Þðnþ3Þ=2anþ3
�Rðnþ 3Þ � ðnþ 2ÞT

ðnþ5Þ=2

2ðn�1Þ=2
X1
k¼1

X1
p¼1

�
p

ka

�ðnþ3Þ=2
Kðnþ3Þ=2ð4�kpaTÞ

� �Tðnþ7Þ=2

2ðn�5Þ=2
X1
k¼1

X1
p¼1

pðnþ5Þ=2

ðkaÞðnþ1Þ=2 Kðnþ1Þ=2ð4�kpaTÞ
�

 nV ð@SÞ

4

�
�T

ðnþ 1Þ�ðnþ2
2 Þ

ð4�Þðnþ2Þ=2anþ2
�Rðnþ 2Þ

� ðnþ 1ÞT
ðnþ4Þ=2

2ðn�2Þ=2
X1
k¼1

X1
p¼1

�
p

ka

�ðnþ2Þ=2
Kðnþ2Þ=2ð4�kpaTÞ � �Tðnþ6Þ=2

2ðn�6Þ=2
X1
k¼1

X1
p¼1

pðnþ4Þ=2

ðkaÞn=2 Kn=2ð4�kpaTÞ
�
; (17)

or

Fk
CasðaÞ � ðnþ 2ÞV ðSÞ

�
� ðnþ 3Þ�ðnþ4

2 Þ
ð4�Þðnþ4Þ=2anþ4

�Rðnþ 4Þ � �ðnþ4
2 Þ

�ðnþ4Þ=2 �Rðnþ 4ÞTnþ4

þ �Tðnþ1Þ=2

2ðnþ1Þ=2aðnþ7Þ=2
X1
k¼1

X1
p¼1

kðnþ5Þ=2

pðnþ1Þ=2 Kðnþ1Þ=2
�
�kp

aT

��

 nV ð@SÞ

4

�
� ðnþ 2Þ�ðnþ3

2 Þ
ð4�Þðnþ3Þ=2anþ3

�Rðnþ 3Þ

� �ðnþ3
2 Þ

�ðnþ3Þ=2 �Rðnþ 3ÞTnþ3 þ �Tn=2

2n=2aðnþ6Þ=2
X1
k¼1

X1
p¼1

kðnþ4Þ=2

pn=2
Kn=2

�
�pk

aT

��
: (18)

Here S ¼ ��N is the cross section of the cylinder, @S
is the boundary of S; V ðSÞ and V ð@SÞ are, respectively,
the volumes of S and @S. The first terms in (17) and (18)
are the Casimir force acting on a pair of perfectly conduct-
ing plates in the N ¼ 4þ n-dimensional Minkowski
spacetime [48]. When aT � 1, the leading term of the
Casimir force is

Fk
CasðaÞ � �V ðSÞT ðnþ 2Þ2�ðnþ3

2 Þ
ð4�Þðnþ3Þ=2anþ3

�Rðnþ 3Þ;

and when aT � 1, the leading term of the Casimir force is

Fk
CasðaÞ � �V ðSÞ ðnþ 2Þðnþ 3Þ�ðnþ4

2 Þ
ð4�Þðnþ4Þ=2anþ4

�Rðnþ 4Þ:

In the high temperature regime, we find that the leading
term of the Casimir force is of order T=anþ3 if the sepa-
ration between the plates is much smaller than the sizes of
� and N but is of order T=a3 if the size of N is much
smaller than the separation between the plates and the
separation between the plates is much smaller than the

size of �. In the low temperature regime, we find that

the leading term of the Casimir force is of order 1=anþ4 if

the separation between the plates is much smaller than the
sizes of � and N but is of order 1=a4 if the size of N is

much smaller than the separation between the plates and
the separation between the plates is much smaller than the

size of �. Therefore, we find that the strength of the

Casimir force depends strongly on the relative magnitude
of a, r, and R.

B. The cylinder and the piston are imposed
with different boundary conditions

If the cylinder is perfectly conducting and the piston is
infinitely permeable, the piston divides the cylinder

½0; L� ���N into two cylinders ½0; a� ���N and

½0; L� a� ���N , both of them have perfectly con-
ducting sidewall and bottom, and infinitely permeable top.

If the cylinder is infinitely permeable and the piston is
perfectly conducting, then the two cylinders have infinitely

permeable sidewall and bottom, and perfectly conducting

top. From the results of Sec. II C and II Dwe find that the
zeta function �Tðs; aÞ can be written as
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�Tðs; aÞ ¼
X1

p¼�1

X
�

��;pðs; aÞ þ CðsÞ;

��;pðs; aÞ ¼
X1
k¼0

��
�ðkþ 1

2Þ
a

�
2 þ �2�;p

��s
;

where the set of �2� is given by (PC) if the cylinder is
perfectly conducting and (IP) if the cylinder is infinitely
permeable.

Using the fact that

X1
k¼0

exp

�
�t

�
�ðkþ 1

2Þ
a

�
2
�

¼ a

2
ffiffiffiffi
�

p t�ð1=2Þ þ affiffiffiffi
�

p t�ð1=2Þ X1
k¼1

ð�1Þk exp
�
� k2a2

t

�
;

we find as in Sec. III A that if �2�;p � 0,

��;pð0;aÞ ¼ C�;pð0Þ þ aD�;pð0Þ;

� 0�;pð0;aÞ ¼ C0�;pð0Þ þ aD0
�;pð0Þ þ

X1
k¼1

ð�1Þk
k

e�2ka��;p :

On the other hand, if �2�;p ¼ 0,

��;pðsÞ ¼ ð22s � 1Þ
�
�

a

��2s
�Rð2sÞ:

Therefore,

��;pð0; aÞ ¼ 0 and � 0�;pð0; aÞ ¼ � log2:

Hence, the Casimir energy of the piston system is

E
piston
Cas ¼ E0 � T

2

X1
k¼1

X
��;p�0

ð�1Þk
k

e�2ka��;p

� T

2

X1
k¼1

X
��;p�0

ð�1Þk
k

e�2kðL�aÞ��;p ;

where E0 is independent of a. It follows that the Casimir
force acting on the piston is given by (8), where the
Casimir force acting between a pair of parallel plates
with different boundary conditions inside the infinitely
long cylinder is

Fk
CasðaÞ ¼ � @

@a

�
�T

2

X1
k¼1

X
��;p�0

ð�1Þk
k

e�2ka��;p

�

¼ �T
X1
k¼1

X
��;p

ð�1Þk��;pe�2ka��;p

¼ T
X
��;p

��;p

e2a��;p þ 1
: (19)

Notice that contrary to the previous case where the two
plates are both infinitely permeable, at finite temperature
the force acting on a pair of plates, one perfectly conduct-
ing and one infinitely permeable, does not have a long
range term even though there are TEM modes for which
�2�;p ¼ 0.

Equation (19) shows that the Casimir force acting be-
tween one perfectly conducting plate and one infinitely
permeable plate is always repulsive and is a monotonically
decreasing function of the distance between the plates.
Therefore, in a closed cylinder with finite length, the
Casimir force acting on the piston which has different
boundary conditions always tends to push the piston to
the middle of the cylinder, which is the equilibrium
position.
In the following, we study the asymptotic behavior of

the Casimir force (19) at different limits. In the high
temperature limit aT � 1, the Casimir force (19) is domi-
nated by the classical term given by

Fk
CasðaÞ � T

X
��

��;p

e2a�� þ 1
:

The remaining terms decay exponentially. The result of
Sec. II B shows that the Casimir force (19) can also be
written as

Fk
CasðaÞ ¼

X
��¼0

�
�

48a2
� �T2

6

�
þ X

���0

�
1

2�a

X1
k¼1

ð�1Þk�1 ��
k
K1ð2ka��Þ þ 1

�

X1
k¼1

ð�1Þk�1�2�K0ð2ka��Þ

� T

�

X1
p¼1

��
p

K1

�
p��
T

��
þ �2

a3
X
��

X1
k¼0

ðkþ 1
2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½�ðkþ1
2Þ

a �2 þ �2�

q �
exp

�
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ðkþ 1

2Þ
a

�
2 þ �2�

s �
� 1

��1
:

Therefore the zero temperature Casimir force is given by

Fk;T¼0
Cas ðaÞ ¼ X

��¼0

�

48a2
þ X

���0

�
1

2�a

X1
k¼1

ð�1Þk�1 ��
k
K1ð2ka��Þ þ 1

�

X1
k¼1

ð�1Þk�1�2�K0ð2ka��Þ
�
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Notice that the zero temperature Casimir force contains a
long range term if the plates are placed inside an infinitely
permeable cylinder and the first Betti number h of N is
nonzero. In this case, the leading term of the thermal
correction is also of order T2.

Using the results of Appendix C, we can also derive the
leading terms of the Casimir force when r � a � R and
a � r, R. In the high temperature regime, we find that if
r � a � R, then

Fk
CasðaÞ �

2þ h

2
Að�Þ 3T

16�a3
�Rð3Þ; (20)

and if a � r, R,

Fk
CasðaÞ �V ðSÞT ðnþ 2Þ2�ðnþ3

2 Þ
ð4�Þðnþ3Þ=2anþ3

�Rðnþ 3Þð1� 2�n�2Þ:
(21)

In the low temperature regime, if r � a � R,

Fk
CasðaÞ �

2þ h

2
Að�Þ 7�2

1920a4
; (22)

and if a � r, R,

Fk
CasðaÞ�V ðSÞðnþ2Þðnþ3Þ�ðnþ4

2 Þ
ð4�Þðnþ4Þ=2anþ4

�Rðnþ4Þð1�2�n�3Þ:

Again we find that in the high temperature regime, the
leading term of the Casimir force is of order T=anþ3 when
a � r,R but is of order T=a3 when r � a � R. In the low
temperature regime, the leading term of the Casimir force
is of order 1=anþ4 when a � r, R but is of order 1=a4

when r � a � R. We also find that when the size of the
manifold N goes to zero, then the Casimir force reduces
to the Casimir force in the 4DMinkowski spacetime if and
only if the first Betti number h of N is zero. Otherwise,
there are some extra contributions.

Since recent Casimir experiments have shown excellent
agreement between the data and the theory derived in 4D
Minkowski spacetime [60–63], our asymptotic analysis
above suggests that a physical extra dimensional spacetime
should be subjected to the topological constraint that the
first Betti number of the extra dimensions is zero.

IV. EXPLICIT EXAMPLES

In this section, we consider the specific examples where
the manifold N is an n-dimensional torus Tn or an
n-dimensional sphere Sn with volume rn. Assume that Tn

are n copies of S1 with the same radius r1. Then the volume
of Tn is rn implies that r1 ¼ r=ð2�Þ. The radius of the
sphere Sn with volume rn is

r2 ¼
�

�ðnþ1
2 Þ

2�ðnþ1Þ=2

�
1=n

r:

On Tn, the spectrum fmj:j ¼ 0; 1; 2; . . .g of the Laplace
operator on functions is given by

�
j21 þ . . .þ j2n

r21
:j1; . . . ; jn 2 Z

�
; (23)

and the spectrum f�2
j :j ¼ 1; 2; . . .g of the Laplace operator

on coclosed one-forms is given by (n� 1) copies of (23)
plus one zero. h ¼ n for Tn.
On Sn, the spectrum fmj:j ¼ 0; 1; 2; . . .g of the Laplace

operator on functions is given by [64]

b0l ¼
lðlþ n� 1Þ

r21
; l ¼ 0; 1; 2; . . . ;

with multiplicities

d0l ¼
ð2lþ n� 1Þðlþ n� 2Þ!

l!ðn� 1Þ! ;

and the spectrum f�2
j :j ¼ 1; 2; . . .g of the Laplace operator

on coclosed one-forms is given by [64]

b1l ¼ lðlþ n� 1Þ þ n� 2; l ¼ 1; 2; . . . ; (24)

with multiplicities

d1l ¼
lðlþ n� 1Þð2lþ n� 1Þðlþ n� 3Þ!

ðn� 2Þ!ðlþ 1Þ! :

h ¼ 0 for Sn.
We only consider the case where the size of the domain

� is much larger than a and r. Then the Casimir force is
given by the first term in (10) or (11).
In Fig. 2, we show the graphs of the dimensionless

Casimir force
Fk
Cas

Að�Þ r
4 as a function of a=r when rT ¼ 1

for N ¼ T2, T3, S2, and S3. From these graphs, one can
see that as a=r gets smaller, the magnitude of the Casimir
force for the same value of n agrees more, and it is larger
for larger n, in agreement with the ðrTÞ=ða=rÞnþ3 or
1=ða=rÞnþ4 behavior for small a=r. It is not easy to read
from the graphs in Fig. 2 the difference between the
Casimir forces when a=r gets larger. Therefore, in Fig. 3
and Fig. 4, we show the ratio of the Casimir force whenN
is Tn to the Casimir force when N is Sn. We plot the
graphs for rT ¼ 0:1, 0.5, 1, and 2. The n ¼ 2 case is shown
in Fig. 3 and the n ¼ 3 case is shown in Fig. 4. These
graphs show that for small a=r, the ratios of the Casimir
forces for fixed n indeed approaches unity. For larger a=r,
the ratios of the Casimir forces approaches 1þ n=2, in
agreement with the fact that as a � r, the leading term of
the Casimir force is 1þ h=2 times the Casimir force in the
4D Minkowski spacetime. Since h ¼ n for Tn and h ¼ 0
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for Sn, therefore, the ratio of the Casimir force whenN is
Tn to the Casimir force when N is Sn should approach
1þ n=2 when a � r.

V. CONCLUSION

In this article, we have investigated the electromagnetic
Casimir effect on a piston in a higher-dimensional space-
time of the form M�N , where M is the 4D Minkowski
spacetime andN is an arbitrary compact manifold. As we
have stressed in the introduction, we consider the Casimir
effect due to the electromagnetic field, which is a physi-
cally measurable Casimir effect. One of the reasons the
Casimir effect of electromagnetic fields is a much more

difficult problem than the Casimir effect of scalar fields is
that electromagnetic fields have gauge degree of freedom.
It is crucial to choose gauges that eliminate all the gauge
freedom and which facilitate the correct counting of eigen-
modes of the electromagnetic field. This is also an impor-
tant problem from the perspective of quantum field theory.
We have discussed this issue in detail in Appendix A and
Sec. B.
In Sec. III, we compute the Casimir force acting on the

piston for different combinations of perfectly conducting
boundary conditions and infinitely permeable boundary
conditions on the cylinder and on the piston. It is shown
that if the cylinder and the piston have the same boundary
conditions, then the Casimir force always tends to pull the
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piston to the closer end of the cylinder. However, if the
cylinder and the piston have different boundary conditions,
the Casimir force always tends to push the piston to the
equilibrium position in the middle of the cylinder. We find
that the geometry of the piston does not affect the direction
of the Casimir force, although it does affect the magnitude.
On the other hand, it is also discovered that if the cylinder
is closed and infinitely permeable, then the Casimir force
has a long range term if the first Betti number h of N
which counts the dimension of harmonic one-forms onN
is nonzero.

The asymptotic behavior of the Casimir force acting on a
pair of parallel plates which are obtained by taking one end
of the cylinder to infinity is discussed. We consider the
high temperature asymptotic behavior and the low tem-
perature asymptotic behavior for different relative magni-
tude of a—the separation between the plates, r—the size
of N , and R—the size of the cross-section of the cylinder
inM. It is shown that if a � r, R, then the leading term of
the Casimir force is the Casimir force between two large
parallel plates in the (4þ n)-dimensional Minkowski
spacetime, which is of order 1=anþ4 in the low temperature
regime and of order T=anþ3 in the high temperature re-
gime. On the other hand, if r � a � R, then the leading
term of the Casimir force is 1þ h=2 times the Casimir
force between two large parallel plates in the four-
dimensional Minkowski spacetime. In particular, this
shows that if the size r of N reduces to zero, one will
obtain the Casimir force in the four-dimensional
Minkowski spacetime if and only if h, the number of
zero modes of the Laplace operator on one-forms on N ,
is zero. This poses a topological condition on the extra
dimensions. Such a constraint has not been observed in the
study of the Casimir effect due to scalar fields.

For future works, it would be interesting to investigate
the electromagnetic Casimir effect in other higher-
dimensional spacetime models such as brane models.
Besides, it would also be interesting to consider general-
ized pistons such as in the works [49–51,55,57].
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APPENDIX A: GAUGE FIXING OF
THE ELECTROMAGNETIC FIELD

In this section, we will discuss the gauge fixing of the
electromagnetic field in the spacetime M ¼ M�N .
Using the language of differential geometry [65,66], the
electromagnetic field F��dz

�dz� is an exterior two-form

on M and A�dz
� is an exterior one-form on M.

Moreover, F��dz
�dz� ¼ dðA�dz

�Þ.
Given an exterior k-form c ¼ c �1...�k

dz�1 . . . dz�k , the

dual (N � k)-form �c ¼ ð�c Þ�1...�N�k
dz�1 . . . dz�N�k is

given by

ð�c Þ�1...�N�k
¼ 1

k!

ffiffiffiffiffiffi
jgj

q
"�1...�N�k�1...�k

c �1...�k ; (A1)

where "�1...�N
is a totally antisymmetric rank-N tensor,

which is equal to one if and only if �1; . . . ; �N is an even
permutation of ð0; 1; 2; . . . ; N � 1Þ. Using the � operator
and the exterior differentiation d, one can define the co-
differential operator 
 by
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the graph on the left, the two plates are both perfectly conducting or infinitely permeable. For the graph on the right, one plate is
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c ¼ ð�1ÞNðk�1Þ � d � c ;

which maps a k-form c to a k� 1-form. More explicitly,

ð
c Þ�1...�k�1 ¼ 1ffiffiffiffiffiffijgjp @

@z�
ð

ffiffiffiffiffiffi
jgj

q
c ��1...�k�1Þ:

The Laplacian operator � mapping k-forms to k-forms is
then defined as

� ¼ d
þ 
d:

Using these notations, the equation of motion (4) is equiva-
lent to


F ¼ 
dA ¼ 0: (A2)

The action (3) is invariant under the gauge transformation
A � Aþ d� for any function � on M. To fix the gauge,
notice that for any one-form A, it is always possible to find
a function � satisfying

�� ¼ 
d� ¼ �
A: (A3)

This implies that we can impose the Lorentz gauge


A ¼ 1ffiffiffiffiffiffijgjp @�

ffiffiffiffiffiffi
jgj

q
A� ¼ 0: (A4)

The equation of motion (A2) is then equivalent to

�A ¼ 0; (A5)

i.e., A�dz� is a harmonic one-form on M. However, (A3)
only defines � up to those solutions satisfying �� ¼ 0. In
the following, we are going to show that we can use this
remaining gauge freedom to impose stronger gauge
conditions.

Notice that
ffiffiffiffiffiffijgjp ¼ ffiffiffiffi

G
p

. Therefore,


A ¼ @�A
� þ 1ffiffiffiffi

G
p @að

ffiffiffiffi
G

p
AaÞ:

We want to show that we can impose the gauges

@�A
� ¼ 0;

1ffiffiffiffi
G

p @að
ffiffiffiffi
G

p
AaÞ ¼ 0: (A6)

Any one-form on M�N can be written as linear combi-
nations of one-forms of the form:

A�ðx; yÞdz� ¼ qðyÞU�ðxÞdx� þ pðxÞVaðyÞdya; (A7)

where pðxÞ and qðyÞ are nonzero, but U�ðxÞdx� or
VaðyÞdya can be zero. For such a one-form,

@�A
�¼q
MU;

1ffiffiffiffi
G

p @að
ffiffiffiffi
G

p
AaÞ¼p
N V;


MA¼@�A
�þ 1ffiffiffiffi

G
p @að

ffiffiffiffi
G

p
AaÞ¼q
MUþp
N V;

(A8)

where 
M, 
M, and 
N are the 
 operators onM,M, and
N , respectively. In the following, similar conventions will
be used for other operators. Equation (A8) implies that

MA ¼ 0 if and only if


MUðxÞ
pðxÞ ¼ �
N VðyÞ

qðyÞ :

This happens if and only if there exists a constant c so that


MU ¼ cp; 
N V ¼ �cq: (A9)

If c ¼ 0, then we are done. Otherwise, since

F ¼ dMA ¼ dN qUþ qdMUþ dMpV þ pdN V;

the equation of motion gives

0 ¼ 
MF

¼ �N qU� 
MUdN qþ q
MdMUþ �MpV

� dMp
N V þ p
N dN V

¼ �N qUþ q
MdMUþ cqdMpþ �MpV

� cpdN qþ p
N dN V

¼ �N qUþ q�MUþ�MpV þ p�N V: (A10)

Comparing the components, we have

�N qUþ q�MU ¼ 0; �MpV þ p�N V ¼ 0:

Therefore, there must exist constants �1 and �2 such that

�N q

q
¼ ��MU

U
¼ �1;

��Mp

p
¼ �N V

V
¼ �2:

(A11)

From (A9) and the fact that 
2
M ¼ 0, we find that

� c�2p ¼ c�Mp ¼ c
MdMp ¼ 
MdM
MU

¼ 
MðdM
M þ 
MdMÞU ¼ 
M�MU

¼ ��1
MU ¼ �c�1p:

This implies that �1 ¼ �2. Let � ¼ �1 ¼ �2. If � ¼ 0,
then �N V ¼ 0 implies that 
N V ¼ 0. Hence cq ¼ 0.
This is a contradiction since we assume that c � 0 and
q � 0. Therefore � � 0. Consider the function

� ¼ c

�
pq:

It is easy to verify that �� ¼ 0. Therefore one can use the
remaining gauge freedom to transform A to A0, where

A0 ¼ Aþ d� ¼ qU0 þ pV 0

¼ q

�
Uþ c

�
dMp

�
þ p

�
V þ c

�
dN q

�
:
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It follows that


MU
0 ¼ 
M

�
Uþ c

�
dMp

�
¼ 
MUþ c

�

MdMp ¼ 0;


N V0 ¼ 
N

�
V þ c

�
dN q

�
¼ 
N V þ c

�

N dN q ¼ 0;

which show that A0 has the desired property (A6). As a
conclusion, it is possible to impose the gauges (A6) which
are equivalent to 
MU ¼ 0, 
N V ¼ 0 if A has the form
(A7). After fixing these gauges, one can show that sinceN
is assumed to be compact and connected, one only has the
gauge freedom of adding to A the differential of a function
’ðxÞ satisfying �M’ ¼ 0. The gauge condition 
N V ¼ 0
can be considered as a generalization of the almost axial
gauge used in [67] when N ¼ S1.

Before ending this section, we would like to remark that
for general A ¼ qUþ pV satisfying 
MU ¼ 0 and

N V ¼ 0, the equation of motion (A10) still implies
(A11), but in general �1 � �2. Therefore, we can sepa-
rately consider one-forms A of the form qU, with


MU ¼ 0; �MU ¼ ��1U; �N q ¼ �1q;

and of the form pV with


N V ¼ 0; �Mp ¼ ��2p; �N V ¼ �2V:

When �1 ¼ 0, q is a constant and therefore we can further
impose the gauge condition U0 ¼ 0 on U.

APPENDIX B: ALTERNATIVE EXPRESSIONS
FOR THE CASIMIR FORCE

1. The plates have the same boundary conditions

As shown in Sec. III A, the Casimir force acting between
two plates with the same boundary conditions is the sum
over all �� of the following expression:

� T
X1

p¼�1

��;p

e2a��;p � 1
:

This expression can be written as

T

2

@

@a

X1
p¼�1

X1
k¼1

1

k
e�2ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ½2�pT�2

p
¼ T

2
ffiffiffiffi
�

p @

@a

�
a
Z 1

0
t�ð1=2Þ X1

p¼�1

X1
k¼1

exp

�
�tk2a2 � �2� þ ½2�pT�2

t

�
dt

�

¼ 1

4�

@

@a

�
a
Z 1

0

X1
p¼�1

X1
k¼1

exp

�
�tk2a2 � tp2

4T2
� �2�

t

�
dt

�

¼ 1

4�

@

@a

�
a
Z 1

0

X1
k¼1

exp

�
�tk2a2 � �2�

t

�
dt� a

Z 1

0

X1
p¼1

exp

�
� tp2

4T2
� �2�

t

�
dt

þ 2
ffiffiffiffi
�

p Z 1

0
t�ð1=2Þ X1

p¼1

X10

k¼0

exp

�
� tp2

4T2
� 1

t

��
�k

a

�
2 þ �2�

��
dt

�
:

If �2� � 0, this is equal to

1

4�

@

@a

�
2
X1
k¼1

��
k
K1ð2ka��Þ � 4aT

X1
p¼1

��
p

K1

�
p��
T

�
þ 4�T

X1
p¼1

X1
k¼1

1

p
exp

�
�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�ka �2 þ �2�

q
T

��

¼ � 1

2�a

X1
k¼1

��
k
K1ð2ka��Þ � 1

�

X1
k¼1

�2�K0ð2ka��Þ � T

�

X1
p¼1

��
p

K1

�
p��
T

�

þ �2

a3
X1
k¼1

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�ka �2 þ �2�

q 1

expð1T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�ka �2 þ �2�

q
Þ � 1

:

But if �2� ¼ 0, it is equal to

1

4�

@

@a

�
�2

6a
� 2�2

3
aT2 þ 4�T

X1
p¼1

X1
k¼1

1

p
exp

�
��kp

aT

��
¼ � �

24a2
� �T2

6
þ �

a2
X1
k¼1

k

expð�kaTÞ � 1
:

2. The plates have different boundary conditions

As shown in Sec. III B, the Casimir force acting between two plates with different boundary conditions is the sum over
all �� of the following expression:
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T
X1

p¼�1

��;p

e2a��;p þ 1
¼ T

2

@

@a

X1
p¼�1

X1
k¼1

ð�1Þk
k

e�2ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ½2�pT�2

p
:

As in Appendix A 1, one can show that if �2� � 0, this expression is equal to

� 1

2�a

X1
k¼1

ð�1Þk ��
k
K1ð2ka��Þ � 1

�

X1
k¼1

ð�1Þk�2�K0ð2ka��Þ � T

�

X1
p¼1

��
p

K1

�
p��
T

�

þ �2

a3
X1
k¼0

ðkþ 1
2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½�ðkþ1
2Þ

a �2 þ �2�

q �
exp

�
1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ðkþ 1

2Þ
a

�
2 þ �2�

s �
� 1

��1
;

and if �2� ¼ 0, it is equal to

�

48a2
� �T2

6
þ �

a2
X1
k¼0

kþ 1
2

expð�ðkþ1
2Þ

aT Þ � 1
:

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF THE CASIMIR FORCE

To find the asymptotic behavior of the Casimir force
when r � a � R and a � r, R, let us define the global
heat kernels

K�;DðtÞ¼
X1
l¼1

e�t$2
l ; K�;NðtÞ¼

X1
l¼0

e�t@2
l ;

KN ;0ðtÞ¼
X1
j¼0

e�tm2
j ; KN ;1ðtÞ¼

X1
j¼1

e�tm2
j þX1

j¼1

e�t�2
j :

K�;DðtÞ is the heat kernel of the Laplace operator with

Dirichlet boundary conditions on functions on �. K�;NðtÞ
is the heat kernel of the Laplace operator with Neumann
boundary conditions on functions on�.KN ;0ðtÞ is the heat
kernel of the Laplace operator on functions on N . For
KN ;1ðtÞ, notice that given a one-form V which is an

eigenvector of the Laplace operator with eigenvalue m2 �
0, if it is not coclosed, i.e., if 
N V � 0, then 
N V is a
nonzero function on N . Moreover,

�N ð
N VÞ ¼ ð
N dN þ dN 
N Þ
N V ¼ 
N dN 
N V

¼ 
N ðdN 
N þ 
N dN ÞV ¼ 
N�N V

¼ m2
N V:

Namely, 
N V is an eigenfunction of the Laplace operator
with eigenvalue m2. Conversely, if q is an eigenfunction of

the Laplace operator with eigenvalue m2 � 0, then dq is a
one-form, and

�N ðdN qÞ ¼ ðdN 
N þ 
N dN ÞdN q ¼ dN 
N dN q

¼ dN ð
N dN þ dN 
N Þq ¼ dN ð�N qÞ
¼ m2dN q:

Namely, dN q is an eigen-one-form of the Laplace operator
with eigenvalue m2. Therefore the union of m2

j , j � 1, and

�2
j , j � 1, is the set of all eigenvalues of the Laplace

operator on one-forms on N . Hence, KN ;1ðtÞ is the heat

kernel of the Laplace operator on one-forms on N .
It is well known [68–70] that as t ! 0þ, the heat kernels

KðtÞ have asymptotic expansions of the form

KðtÞ �X1
i¼0

cit
ði�dÞ=2 ¼ c0t

�ðd=2Þ þ c1t
�ðd�1Þ=2 þ . . . ;

where d is the dimension of the manifold. More specifi-
cally,

K�;DðtÞ ¼ Að�Þ
4�

t�1 � lð@�Þ
8

ffiffiffiffi
�

p t�ð1=2Þ þOð1Þ;

K�;NðtÞ ¼ Að�Þ
4�

t�1 þ lð@�Þ
8

ffiffiffiffi
�

p t�ð1=2Þ þOð1Þ;

KN ;0ðtÞ ¼ V ðN Þ
ð4�Þn=2 t

�ðn=2Þ þOðt1�ðn=2ÞÞ;

KN ;1ðtÞ ¼ n
V ðN Þ
ð4�Þn=2 t

�ðn=2Þ þOðt1�ðn=2ÞÞ:

HereAð�Þ is the area of�, lð@�Þ is the arc length of @�,
and V ðN Þ is the volume of N .
As is shown in Appendix A 1 and B 2 the Casimir force

acting on a pair of parallel plates is given by

Fk
CasðaÞ ¼

T

2
ffiffiffiffi
�

p @

@a

�
a
Z 1

0
t�ð1=2Þ X1

p¼�1

X1
k¼1

e2�ik� exp

�
�tk2a2 � ½2�pT�2

t

�X
��

exp

�
� �2�

t

�
dt

�
; (C1)

or
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Fk
CasðaÞ ¼

1

4�

@

@a

�
a
Z 1

0

X1
k¼1

e2�ik� expð�tk2a2ÞX
��

exp

�
� �2�

t

�
dt� a

Z 1

0

X1
p¼1

exp

�
� tp2

4T2

�X
��

exp

�
� �2�

t

�
dt

þ 2
ffiffiffiffi
�

p Z 1

0
t�ð1=2Þ X1

p¼1

X1
k¼0

exp

�
� tp2

4T2
� 1

t

�
�ðkþ �Þ

a

�
2
�X
��

exp

�
� �2�

t

�
dt

�
; (C2)

where � ¼ 1 if the two plates have the same boundary condition, and � ¼ 1=2 if the two plates have different boundary
conditions.

When the cylinder is perfectly conducting, the set of �2� is given by (PC). Therefore,

X
��

exp

�
� �2�

t

�
¼ 2K�;Dðt�1ÞX1

j¼0

0
exp

�
�m2

j

t

�
þ K�;Dðt�1ÞX1

j¼1

exp

�
��2

j

t

�
þ ðK�;Nðt�1Þ � 1ÞX1

j¼0

exp

�
�m2

j

t

�

� 2

�
Að�Þ
4�

t� lð@�Þ
8

ffiffiffiffi
�

p t1=2
�X1
j¼0

0
exp

�
�m2

j

t

�
þ

�
Að�Þ
4�

t� lð@�Þ
8

ffiffiffiffi
�

p t1=2
�X1
j¼1

exp

�
��2

j

t

�

þ
�
Að�Þ
4�

tþ lð@�Þ
8

ffiffiffiffi
�

p t1=2
�X1
j¼0

exp

�
�m2

j

t

�

¼ Að�Þ
4�

t
X
�

exp

�
�2

�

t

�
� lð@�Þ

8
ffiffiffiffi
�

p t1=2
X
�

exp

�
��2

�

t

�
: (C3)

The set of 2
� contains m2

0 with multiplicity two, m2
j , j � 1 with multiplicity three, and �2

j , j � 1 with multiplicity one.
The set of �2

� contains m2
j , j � 1, and �2

j , j � 1, each with multiplicity one. On the other hand, when the cylinder is
infinitely permeable, the set of �2� is given by (IP), which gives

X
��

exp

�
� �2�

t

�
¼ 2ðK�;Nðt�1Þ � 1ÞX1

j¼0

0
exp

�
�m2

j

t

�
þ K�;Nðt�1ÞX1

j¼1

exp

�
��2

j

t

�

þ K�;Dðt�1ÞX1
j¼0

exp

�
�m2

j

t

�
þ X1

j¼1

exp

�
�m2

j

t

�

�Að�Þ
4�

t
X
�

exp

�
�2

�

t

�
þ lð@�Þ

8
ffiffiffiffi
�

p t1=2
X
�

exp

�
��2

�

t

�
: (C4)

Notice that the leading terms of (C3) and (C4) are the same and is given by

Að�Þ
4�

t
X
�

exp

�
�2

�

t

�
: (C5)

But the subleading terms


 lð@�Þ
8

ffiffiffiffi
�

p t1=2
X
�

exp

�
��2

�

t

�
(C6)

have opposite signs. Substituting (C5) into (C1), we find that when a � R, the leading term of the Casimir force is
given by

F 0ðaÞ ¼ TAð�Þ
8�3=2

@

@a

� ffiffiffiffi
�

p
2

2þ h

a2
X1
k¼1

e2�ik�

k3
þ 2a

X1
k¼1

X
�;p�0

e2�ik�
�
�;p

ka

�
3=2

K3=2ð2ka�;pÞ
�

¼ �TAð�Þ
8�

2þ h

a3
X1
k¼1

e2�ik�

k3
� TAð�Þ

8�

X1
k¼1

X
�;p�0

e2�ik�
�22

�;p

ka
þ 2�;p

k2a2
þ 1

k3a3

�
e�2ka�;p ; (C7)

where 2
�;p ¼ 2

� þ ½2�pT�2. The first term in (C7) comes from those terms with 2
� ¼ 0 and p ¼ 0. The sum

X1
k¼1

e2�ik�

ks

L. P. TEO PHYSICAL REVIEW D 83, 105020 (2011)

105020-16



is equal to �RðsÞ if � ¼ 1 and is equal to ð21�s � 1Þ�RðsÞ if � ¼ 1=2. (C7) gives the leading behavior of the Casimir force
when a � R and aT � 1. If aT � 1, substituting (C3) into (C2) gives

F 0ðaÞ ¼ Að�Þ
16�2

@

@a

�
ð2þ hÞ

�
1

a3
X1
k¼1

e2�ik�

k4
� 8�4T4a

45

�
þ 2a

X1
k¼1

X
��0

e2�ik�
�
�

ka

�
2
K2ð2ka�Þ � 8aT2

X1
p¼1

X
��0

�
�

p

�
2

� K2

�
p�

T

�
þ 27=2

ffiffiffiffi
�

p
T3=2

X1
p¼1

X1
k¼0

X
�

p�ð3=2Þ
��

�ðkþ �Þ
a

�
2 þ 2

�

�
3=4

K3=2

�
p

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ðkþ �Þ

a

�
2 þ 2

�

s ��

¼ �ð2þ hÞAð�Þ
�

3

16�2a4
X1
k¼1

e2�ik�

k4
þ �2T4

90

�
� 3Að�Þ

8�2

X1
k¼1

X
��0

e2�ik�
�
�

ka

�
2
K2ð2ka�Þ

�Að�Þ
4�2

X1
k¼1

X
��0

e2�ik�
3

�

ka
K1ð2ka�Þ �Að�ÞT2

2�2

X1
p¼1

X
��0

�
�

p

�
2
K2

�
p�

T

�

þ �Að�ÞT
2a3

X1
p¼1

X1
k¼0

X
�

ðkþ �Þ2
p

exp

�
�p

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ðkþ �Þ

a

�
2 þ 2

�

s �
: (C8)

For the subleading term F 1ðaÞ, substitute (C6) into (C1) and (C2), respectively. Similar computations show that

F 1ðaÞ ¼ 	Tlð@�Þ
16�

�
h

a2
X1
k¼1

e2�ik�

k2
þ 2

X1
k¼1

X
��;p�0

e2�ik�
��;p

ka
K1ð2ka��;pÞ þ 4

X1
k¼1

X
��;p�0

e2�ik��2
�;pK0ð2ka��;pÞ

�
;

with �2
�;p ¼ �2

� þ ½2�pT�2, or

F 1ðaÞ ¼ 	lð@�Þ
�

h

32�

�
1

a3

X1
k¼1

e2�ik�

k3
þ 4T3�Rð3Þ

�
þ 1

32�

X1
k¼1

X
���0

e2�ik�e�2ka��

�
2�2

�

ka
þ 2��

k2a2
þ 1

k3a3

�

þ T2

8�

X1
p¼1

X
���0

e�ðp��=TÞ
�
��

p2
þ T

p3

�
� �

4a3
X1
k¼0

X1
p¼1

X
��

ðkþ �Þ2K0

�
p

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ðkþ �Þ

a

�
2 þ �2

�

s ��
;

where the plus sign is for perfectly conducting cylinder and the minus sign is for infinitely permeable cylinder.
To find the asymptotic behavior when a � r, R, we use the fact that

X
�

exp

�
�2

�

t

�
¼ 2þ 3

X1
j¼1

exp

�
�m2

j

t

�
þ X1

j¼1

exp

�
��2

j

t

�
¼ 2KN ;0ðt�1Þ þ KN ;1ðt�1Þ � ðnþ 2ÞV ðN Þ

ð4�Þn=2 t
n=2

X
�

exp

�
��2

�

t

�
¼ X1

j¼1

exp

�
�m2

j

t

�
þ X1

j¼1

exp

�
��2

j

t

�
¼ KN ;1ðt�1Þ � n

V ðN Þ
ð4�Þn=2 t

n=2:

Therefore, X
�

exp

�
� �2�

t

�
� ðnþ 2Þ V ðSÞ

ð4�Þðnþ2Þ=2 t
ðnþ2Þ=2 
 n

V ð@SÞ
4ð4�Þðnþ1Þ=2 t

ðnþ1Þ=2; (C9)

where the minus sign is for perfectly conducting cylinder, the plus sign is for infinitely permeable cylinder, S ¼ ��N is
the cross section of the cylinder, and V ðSÞ ¼ Að�Þ �V ðN Þ is its volume. Substituting (C9) into (C1) and (C2), we
find that the first two leading terms of the Casimir force when a � r, R are given by
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F 0ðaÞ ¼ ðnþ 2ÞV ðSÞ
�
�T

ðnþ 2Þ�ðnþ3
2 Þ

ð4�Þðnþ3Þ=2anþ3
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� ðnþ 2ÞT

ðnþ5Þ=2

2ðn�1Þ=2
X1
k¼1

X1
p¼1

e2�ik�
�
p

ka

�ðnþ3Þ=2
K nþ3=2ð Þð4�kpaTÞ

� �Tðnþ7Þ=2

2ðn�5Þ=2
X1
k¼1

X1
p¼1

e2�ik�
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or
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