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The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their

power spectra and other parameters. If these are not known a priori, they have to be measured

simultaneously from the same data used for the signal reconstruction. We formulate the general problem

of signal inference in the presence of unknown parameters within the framework of information field

theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE)

technique. As a concrete application, we address the problem of reconstructing Gaussian signals with

unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-

spectrum measurement and subsequent reconstruction, (ii) maximum-a-posteriori reconstruction with

marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing

the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-

theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or

approximated as Wiener-filter operations with assumed signal spectra derived from the data according to

the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a

perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance

below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-

called Karhune-Loève and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmol-

ogy, which therefore should also exhibit a marginal perception threshold if correctly implemented. We

present statistical performance tests and show that the PURE filter is superior to the others, especially if

the post-Wiener-filter corrections are included or in case an additional scale-independent spectral

smoothness prior can be adopted.
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I. INTRODUCTION

A. The generic sensing problem

Reception of a signal is strongly aided by prior
knowledge of the signals properties. This is especially
true in low signal to noise (S/N) situations, in which proper
knowledge can make the difference between recognition of
a signal and blindness. Our human senses like vision and
hearing are strongly enhanced by our knowledge of the
possible signals present in the data-stream entering the
human brain. The very same is true for signal reception
by artificial sensor systems, since signal knowledge per-
mits us to construct optimal filters, suppressing the noise as
far as possible while focusing on the data modes with
stronger S/N. If sufficient training data are available, or
theoretical reasoning permits us to predict signal proper-
ties, optimal filter design is possible and relatively
straightforward.

However, there are situations, where such knowledge is
not available, or is to be excluded on purpose from the
analysis, in order to have a prejudice-free signal recon-
struction. In such a situation the required parameters have
to be measured simultaneously from the same data which is
used for the signal reconstruction. Because of the interde-
pendence of reconstructed signal and parameters, the prob-
lem becomes nontrivial and in general nonlinear, even if

the original inference problem was linear for fixed parame-
ter values.
Let us provide a concrete example in cosmology. The

cosmic matter distribution and its imprinted metric fluctu-
ations on large scales can be well approximated to be a
Gaussian random field obeying statistical isotropy and
homogeneity. Knowledge of the power spectrum of these
fields permits us to construct optimal and linear reconstruc-
tion filters for data of any linear tracers like the cosmic
microwave background, the galaxy distribution (approxi-
matively), or the gravitational lensing signature. For a set
of cosmological parameters (e.g. Hubble constant, cosmic
matter content, . . .) these power spectra are known and can
be used. However, the cosmological parameters them-
selves are not precisely known, and our best knowledge
might come from the data set we are analyzing.
Furthermore, if we want to be open to nonstandard cosmo-
logical scenarios, we might not want to put any prior
assumption on the functional form of the power spectrum
into our signal reconstruction problem.
Therefore, we need signal reconstruction methods,

which are capable of dealing with uncertainties in the
parameters of the problem. Such methods would be very
useful in many situations, where prior knowledge on signal
properties are absent or should be avoided. Some loss in
fidelity compared to the case where these parameters are
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known can be expected, however, such methods can be
expected to be flexible and robust due to their generic
nature and self-tuning abilities.

For the problem of the reconstruction of the cosmic
large-scale structure, the key parameter is the cosmic
matter power spectrum. It is known in the field of signal
detection, that a statistical verification of the presence of a
signal due to an increase in the data variance is possible
well before the signal can be reconstructed itself. Thus, a
measurement of the signal power spectrum is already
possible while the S/N ratio is too low for map making,
and is therefore immediately available for filter optimiza-
tion as soon as the critical S/N-ratio is achieved.

B. Derived filters

The signal reconstruction filters derived in this work can
all be regarded as or approximated by an application of a
data-dependent Wiener-filter operator onto the data, which
results in a nonlinear transformation of the data. The
Wiener-filter construction requires the knowledge of the
signal covariance, or spectrum, the instrument response
and the noise covariance. The signal covariance has to be
extracted from the data itself, and therefore introduces a
data dependence into the filter. The five filters presented in
this work differ in the way the assumed covariance is
constructed, due to the different philosophies:

(1) MAP-spectrum filter: The maximum a posteriori
(MAP) of the spectrum given the data should be a
reasonable guess for the signal spectrum assumed in
the Wiener reconstruction.

(2) Classical map: The inference problem should be
marginalized over all possible power spectra. In
doing so, and deriving the classical filter equation
by extremizing the resulting effective posterior, a
data-dependent Wiener filter is derived, in which an
effective spectrum emerges. This spectrum differs in
general from the MAP spectrum.

(3) Joint MAP filter: Instead of marginalizing the joint
posterior of signal and spectrum and then extremiz-
ing it with respect to one of those, we can maximize
it with respect to both, leading to the joint MAP
filter.

(4) Critical filter: This filter results if one requires the
covariance of the Wiener-filter map to exhibit ex-
actly its expected variance, while taking the power
loss due to the filter operation into account. The
critical filter implements accurately the idea behind
frequently used power-spectrum estimation
schemes used in cosmology, like the Karhunen-
Loève (KL), [1–3] and Feldman-Kaiser-Peacock
(FKP), [4] estimators. In case of a Jeffreys prior
on the spectral normalization, it exhibits a marginal
perception threshold and marks the demarcation line
between filters with, as the three above, and filters
without such a threshold, as the next one.

(5) PURE filter: Our ultimate filter would implement
the Bayesian mean of the signal posterior marginal-
ized over the unknown spectral parameter. Only this
provides the optimal reconstruction algorithm in the
sense of minimizing the reconstruction error vari-
ance. This can only be done by a full field-
theoretical treatment which incorporates spectrum-
uncertainty effects correcting for imbalances of
the induced errors due to over- and underestimations
of the signal spectrum. Here, we incorporate such
a correction by virtue of an uncertainty-
renormalization calculation. The resulting
parameter-uncertainty renormalized estimation
(PURE) filter only appears to be a Wiener filter if
only an infinitesimal amount of uncertainty is
added. The renormalized-optimal spectrum as a
fixed point of this uncertainty adding operation is
different from the spectra of the other filter. If a
finite amount of uncertainty is added, the PURE
filter contains corrections terms which can not be
described exactly as Wiener filtering.

C. Previous works

The PURE approach is derived within information field
theory (IFT). This deals with the information of data on
spatially distributed quantities, and is a statistical field
theory. The connection of inference problems and statisti-
cal field theories was discovered independently by several
authors in cosmology [5–7], statistical field theory [8–10],
and quantum mechanics [11–16]. A pedagogical introduc-
tion into IFT can be found in [6].
The uncomfortable dependence of information theoreti-

cal methods on signal prior information has lead several
authors to think about methods to extract this information
at least partly from the data. For example, a smoothness
prior for the signal can be used, where an ‘‘optimal’’ value
for the smoothness controlling parameter derives from the
data themselves [8]. The optimal smoothness constraint for
a Gaussian signal is provided by its covariance, as known
from Wiener-filter theory [17]. A natural proposal is there-
fore to measure the power spectrum (or any characteristics
of the signal covariance) from the data and to use this for
Wiener filtering or other signal reconstruction methods
[18–21]. Data gaps complicate the power-spectrum mea-
surement step, but extensions of such methods to this case
exist [22]. However, a more theoretical understanding of
the inference problem and the assumptions implicitly made
by these methods would be beneficial to answer several
questions. How should the spectrum be measured opti-
mally? How can spectral prior information be incorporated
into the filter? And is the best spectral estimator really the
best choice for the spectrum assumed in the Wiener filter?
Only Bayesian approaches, which are explicitly dealing

with all relevant prior information, can answer these ques-
tions accurately. For example, it is possible to use the MAP
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approach to the problem of Wiener filtering if the overall
amplitude of the signal covariance is unknown, even on a
logarithmic scale [23]. For a white signal, where all pixels
are statistically independent, this can be generalized to the
case that all pixel amplitudes are drawn from a scale-free
distribution function [24].

In precision cosmology, the problem of inferring the
image and its power spectrum simultaneously is very
prominent in cosmic microwave studies and cosmography
of the large-scale structure. It has been addressed rigor-
ously via the Gibbs sampling scheme [25–28]. Since this
approach samples the full joint posterior of maps and
spectra, it provides the full solution to the problem.
However, the computational costs of Gibbs sampling are
high. Also obtaining analytical insights into the general
behavior of the scheme is not trivial. Computationally
cheaper and analytically simpler, or even just alternative
methods are therefore interesting and some of the algo-
rithms provided by this work are good candidates for this.

D. Structure of the work

We introduce IFTwith parameter uncertainties in Sec. II.
In Sec. III the problem of signal spectrum uncertainty is
introduced, and the four filters mentioned are derived from
MAP principles. To go beyond the MAP approximation the
generic PURE approach is developed in Sec. IV, where for
any case with fourth order interaction terms the generic
uncertainty-renormalization flow equation is provided. The
specific application of this approach is given in Sec. V,
where the PURE filter for the problem of reconstruction
without spectral knowledge is derived. The perception
thresholds of all these filters are investigated in Sec. VI,
and their fidelity in Sec. VII, where also a PURE filter with
spectral smoothness prior is presented. Finally, we con-
clude in Sec. VIII.

II. INFORMATION FIELD THEORY WITH
PARAMETER UNCERTAINTY

A. Information field theory

We briefly introduce the concepts of IFT and extend
them to the case of parameter uncertainties. A more peda-
gogical introduction, as well as more details on terminol-
ogy and notation of the framework can be found in [6]. An
information field is simply a spatially extended signal,
where a signal s is any quantity a scientist might be
interested in measuring. We treat the signal sðxÞ ¼ sx, a
function of a spatial coordinate x, as an abstract vector in

Hilbert space with the scalar product jys ¼ R
dxjðxÞsðxÞ.

The goal of IFT is to make statements on the signal field,
which is constrained by prior knowledge and observational
data. Since we are usually dealing with a finite number of
noisy data points, a precise reconstruction of a signal field
with its infinite number of degrees of freedom is rarely
possible. Our aim is therefore to investigate the probability

function of s given the data d, the so-called posterior
PðsjdÞ. The posterior is usually constructed from the signal
prior PðsÞ and the likelihood of the data PðdjsÞ using Bayes
theorem

PðsjdÞ ¼ PðdjsÞPðsÞ
PðdÞ : (1)

The normalization constant here, the so-called evidence
PðdÞ, is given by a marginalization of the signal field

PðdÞ ¼
Z

DsPðd; sÞ; (2)

where Pðd; sÞ ¼ PðdjsÞPðsÞ is the joint probability density
function of data and signal. The phase space or path
integral

R
Ds goes over all possible signal field configu-

rations, weighted with Pðd; sÞ.
In IFT, we rewrite Bayes theorem in the language of a

statistical field theory, namely, as

PðsjdÞ ¼ e�H½s�

Z
; (3)

where the information Hamiltonian H½s� ¼ � logPðd; sÞ
and the partition function Z ¼ PðdÞ are actually only a
renaming of (the negative logarithm of) the joint probabil-
ity and evidence. This change in language, however, per-
mits us to transfer many results from statistical field theory
to tackle IFT problems.
The goal of an IFT analysis could be to calculate mo-

ments of the signal field averaged in a similar path integral
over the posterior PðsjdÞ, e.g., in order to know the mean
signal

m ¼ hsiðsjdÞ ¼
Z

DssPðsjdÞ: (4)

This mean is of special interest, since it is optimal in an
L2-error norm sense. It minimizes the expected error
variance hðs�mÞyðs�mÞiðsjdÞ among all possible m.

In practical applications, we often discretize the signal
field inNpix pixels at locations xi. Then the discretized path

integral for any signal function fðsÞ is
Z

DsfðsÞ ¼
�YNpix

i¼1

Z
dsðxiÞ

�
fðsðx1Þ; . . . ; sðxNpix

ÞÞ:

If possible, we try to avoid evaluating such very high
dimensional integrals numerically. We use the fact that
a multimodal Gaussian probability density function as
given by

G ðs; SÞ � 1

j2�Sj1=2 exp

�
� 1

2
syS�1s

�
(5)

(with jSj denoting the determined of the matrix S) can be
integrated analytically:

R
DsGðs; SÞ ¼ 1. Many functional
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integrals can be derived from this, like the moments of a
Gaussian, and path integrals of any quadratic functional of
the integrated field. Nonquadratic exponents can be ex-
panded around the multivariate Gauss integral in terms of
diagrammatic perturbation series. For further details, the
reader is referred to [6] and any standard book on field
theory.

In the simplest case of the theory, signal and noise are
independent Gaussian random variables, and the data de-
pend linearly on them. This so-called free theory can be
treated analytically and is our starting point. It has been
analyzed in depth before and leads to the so-called Wiener-
filter theory [17]. However, usually it is assumed that all
parametersp of the problem, such as instrument calibration,
or signal covariance, are known. This assumption will be
dropped in the following, and wewill see that the otherwise
trivial case gets interesting complications and the corre-
sponding free IFT is enriched by interaction terms.

B. Free theory from a Gaussian data model

We assume that the signal we want to reconstruct is a
Gaussian random field, with a probability distribution prior
to any measurement described as PðsjpÞ ¼ Gðs; SpÞ,
where Sp ¼ hssyiðsjpÞ is the signal covariance given the

parameter p, which itself might be a vector or even a field
over some space. The subscript ðsjpÞ on the brackets of the
expectation value indicate that the average should be done
over the probability distribution PðsjpÞ. Thus, the indivi-
dual elements of the signal covariance matrix read

ðSpÞxy ¼ hsðxÞsðyÞiðsjpÞ ¼
Z

DssðxÞsðyÞPðsjpÞ:

We further assume that the signal is processed by a linear
measurement device with response matrix R and additive
noise n according to:

d ¼ Rsþ n: (6)

In general, response and noise can also depend on un-
known parameters and the general theory developed here
can also be applied to that case. To focus the discussion, we
only consider here the concrete example of a parameter-
dependent signal covariance, and assume the response and
noise statistics to be known. We assume the noise to be
signal independent and Gaussian, and thus

Pðnjs; pÞ ¼ Gðn; NÞ; (7)

where N ¼ hnnyiðnÞ is the noise covariance matrix. Since

the noise is just the difference of the data to the signal
response, n ¼ d� Rs, the likelihood of the data is

Pðdjs; pÞ ¼ Pðn ¼ d� Rsjs; pÞ ¼ Gðd� Rs;NÞ: (8)

The information Hamiltonian as defined in [6] is the nega-
tive logarithm of the joint probability function of signal
and data for given and fixed parameters:

Hp½s� ¼ � logPðd; sjpÞ ¼ � log½Pðdjs; pÞPðsjpÞ�: (9)

Thus the Hamiltonian of the Gaussian theory,

HG
p ½s� ¼ 1

2
syD�1

p s� jysþHG
0;p; (10)

is only quadratic in the signal, and therefore corresponds to
a free field theory. Here

Dp ¼ ½S�1
p þM��1; with M ¼ RyN�1R; (11)

is the information propagator, which depends on the un-
known spectral parameters. The information source,

j ¼ RyN�1d; (12)

depends linearly on the data in a response-over-noise
weighted fashion. Finally,

HG
0;p ¼ 1

2
dyN�1dþ 1

2
logðj2�Spjj2�NjÞ (13)

absorbs all s-independent normalization constants. It can
not be ignored here, since it depends on p.
The key quantity, from which all relevant moments of

the signal can be estimated, is the partition function,

Zp½J� ¼
Z

Dse�Hp½s�þJys: (14)

For the free field theory the partition function is

ZG
p ½J� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�Dpj

q
exp

�
þ 1

2
ðJ þ jÞyDpðJ þ jÞ �HG

0;p

�
:

(15)

This explicit formula permits us to calculate the expecta-
tion of the signal given the data (and the parameters), in the
following called the map mp:

mp ¼ hsiðsjd;pÞ ¼ � logZG
p

�J

��������J¼0
¼ Dpj

¼ ½S�1
p þ RyN�1R��1RyN�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fp

d: (16)

The last expression shows that the map is given by the data
after applying a generalized Wiener filter, mp ¼ Fpd,

which depends on the parameter p of the signal covariance.
Similarly, the quadratic uncertainty of the signal map

can be worked out. It turns out that for a free theory it is the
propagator itself

hðs�mpÞðs�mpÞyiðsjd;pÞ ¼ hssyiðsjd;pÞ �mpm
y
p ¼ Dp:

(17)

The first identity follows from hsmy
piðsjd;pÞ ¼ hsiðsjd;pÞmy

p ¼
mpm

y
p due to the fact, that the reconstructed map mp is
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solely determined by the data, and therefore given in this
average. The second identity holds due to the identity of
the connected correlation function and the propagator,

hssyicðsjd;pÞ ¼ �2 logZG
p =�Z2jJ¼0 ¼ Dp.

C. Classical field theory

In the case of the free theory, the map, Eq. (16), would
also be obtained from a classical treatment of the
Hamiltonian by extremizing it:

�Hp½s�
�s

¼ 0: (18)

For a Hamiltonian with interaction terms the classical field
(in field-theoretical language) or MAP estimator (in signal
processing language) is a useful approximation to the
correct expectation value. The inverse Hessian in the signal
Hilbert space around this map,

�
�2Hp½s�
�s�sy

��1
; (19)

characterizes the uncertainty. For the free theory, this is the
propagator, as given by Eq. (17).

The identity of fully field-theoretical and classical re-
sults holds only for the case of a free theory. However, the
latter is often an acceptable approximation to the former,
while much easier to derive. Therefore, we will also make
use of the classical approximation in the following.

D. Parameter uncertainty and posterior

In many applications, there are parameters specifying
the likelihood and prior, and thereby the coefficients of the
Hamiltonian, which are not precisely known. These pa-
rameters, in the following denoted by the abstract vector p,
are either to be determined from the data, to be marginal-
ized over, or to be simultaneously determined with the
signal.

In such a case we have to construct the joint posterior of
the signal and the parameter given the data. This is given
according to Bayes theorem as

Pðs; pjdÞ ¼ Pðd; s; pÞ
PðdÞ ¼ Pðsjd; pÞPðdjpÞ

PðdÞ PðpÞ; (20)

where we had to introduce the parameter prior PðpÞ. The
last expression contains a Bayes factor PðdjpÞ=PðdÞ, the
ratio of the evidence of data for a specific parameter set to
that of the model at all. Thus, the joint posterior is weighted
towards model parameters for which the data provide
larger evidence in addition to any prior weighting.

The definition of the Hamiltonian for fixed parameters as
Hp½s� ¼ � logPðd; sjpÞ permits us to construct the joint

partition function

Z½J; K� �
Z

dp
Z

DsPðs; pjdÞPðdÞeJysþKyp

¼
Z

dpPðpÞeKyp
Z

DsPðdjs; pÞPðsjpÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Pðd;sjpÞ¼e�Hp½s�

eJ
ys|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Zp½J�

; (21)

which is built upon Zp½J�, the partition function of the

theory for given parameters p. The information field esti-
mators, marginalized for the unknown parameters, is then
simply given by

hsiðsjdÞ ¼ � logZ½J; K�
�J

��������J;K¼0
¼ 1

Z

Z
dpPðpÞ�Zp½J�

�J

��������J¼0

¼
Z

dpPðpÞZp

Z|fflfflffl{zfflfflffl}
PðpjdÞ

hsiðsjd;pÞ: (22)

The aim of this work is to provide schemes to calculate this
parameter-marginalized signal mean. It is not just the
signal estimator multiplied by the parameter prior PðpÞ,
but is additionally weighted by a parameter likelihood
factor PðdjpÞ ¼ Zp, so that the parameter-dependent sig-

nal means are averaged over the parameter posterior
PðpjdÞ. Therefore, parameter values which are especially
compatible with the data automatically get a larger weight,
as recognized before.

E. Effective marginalized Hamiltonian

If a parameter-dependent Hamiltonian Hp½s� ¼
� logPðd; sjpÞ describes the conditional probability of
the signal and data given the parameters, an effective,
parameter-marginalized Hamiltonian H½s� is defined by

e�H½s� �
Z

dpPðd; s; pÞ ¼
Z

dpPðd; sjpÞPðpÞ

¼
Z

dpe�Hp½s��Ep; (23)

with Ep ¼ � logPðpÞ the parameter-prior energy. It is

crucial, that Hp½s� obeys the correct normalization condi-

tion,
R
Dd

R
Ds expð�Hp½s�Þ ¼ 1, otherwise a hidden

prior on p may enter the calculation.
In many cases, an analytical calculation of the effective

Hamiltonian will be out of reach. Since the perturbative
field-theoretical treatment requires a polynomial represen-
tation anyway, it is often easier to obtain the coefficients of
the effective Hamiltonian separately by Taylor-Frechét
expansion around a reference field configuration t, so that
s ¼ tþ�. The Hamiltonian for � is then
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H½��¼H0� jy�þ1

2
�yD�1�

þX1
n¼3

1

n!
�ðnÞ

x1...xn�x1 �� ��xn; with

H0 ¼H½t�¼� log
Z
dpe�Hp½t��Ep;

jx ¼��H½s�
�sx

��������s¼t
¼�

�
�Hp½s�
�sx

	
ðpjd;s¼tÞ

;

D�1
xy ¼�2H½s�

�sx�sy

��������s¼t

¼
�
�2Hp½s�
�sx�sy

��Hp½s�
�sx

�Hp½s�
�sy

	
ðpjd;s¼tÞ

þ jxjy; and

�ðnÞ
x1...xn ¼

1

n!

X
��P

�nH½s�
�sðx�ð1ÞÞ � � ��sðx�ðnÞÞ

��������s¼t
: (24)

Here, h. . .iðpjd;sÞ �
R
dp . . .Pðpjd; sÞ provides expecta-

tion values with respect to the parameter p given the data d
and the signal s. Repeated coordinate indices are thought to

be integrated over. The interaction coefficients �ðnÞ
x1...xn are

symmetrized by averaging over all possible permutations
� from the space of permutations P . In general,D�1

xy needs

to be symmetrized, too, but we have left out the symmet-
rization in the above equation for convenience, since in the
cases we consider D�1

xy is already symmetric.

In case the expansion was around t ¼ 0, then

H0 ¼ � log
Z

dpe�H0;p�Ep;

j ¼ hjpiðpjd;s¼0Þ;

D�1 ¼ hD�1
p � jpj

y
piðpjd;s¼0Þ þ jjy; and

�ð3Þ ¼ h�ð3Þ
p þ 3D�1

p � jp � jpjpjpiðpjd;s¼0Þ
� 3D�1 � jþ jjj�ð4Þ

¼ h�ð4Þ
p þ 4�ð3Þ

p � jp � 3D�1
p �D�1

p

þ 6D�1
p � jpj

y
p � jpjpjpjpiðpjd;s¼0Þ � 4�ð3Þ � j

þ 3D�1 �D�1 � 6D�1 � jjy þ jjjj; . . . (25)

Here, an implicit tensor notation was used, with, e.g.,
ðjjjÞxyz � jxjyjz and we defined the symmetrized tensor

product ðA � jÞx1x2x3 � 1
3!

P
�2PAðx�ð1Þ; x�ð2ÞÞjðx�ð3ÞÞ. For

higher rank tensors, the symmetrized tensor product is
defined in an analogous way.

III. SIGNAL SPECTRUM UNCERTAINTY

A. Spectrum parametrization

Our example application of IFT with parameter uncer-
tainties is the reconstruction of a Gaussian signal with
unknown variance, which we introduce now.

The signal covariance ðSpÞxy ¼ hsx �syiðsjpÞ may exhibit

any dependence on the spatial coordinates as long as the
matrix is symmetric and positive definite. In the cosmo-
logical relevant case of translationally and rotationally
invariant signal statistics, the signal covariance is fully
characterized by its power spectrum. This means, there is
an orthonormal basis O of the signal Hilbert space which
diagonalizes Sp:

ðOSpO
yÞkq � OkxðSpÞxy �Oqy ¼ 1kqPSpðkÞ; (26)

with 1kq the identity in the transformed basis, PSpðkÞ the
power-spectrum, and using Einstein sum convention. In
case we are dealing with a signal over a d-dimensional
Cartesian space, Okx ¼ expðikxÞ is simply a Fourier trans-
formation and the Fourier space identity is 1kq ¼
ð2�Þd�ðk� qÞ, provided the scalar product in Fourier

space is adopted as ayb ¼ ð2�Þ�d
R
dkaðkÞbðkÞ.

However, since the theory should also be applicable in
curved spaces like the sphere, or even in spaces without
translational invariance, we formulate it in an abstract way
and just assume that the basis O diagonalizes the signal
covariance, which is always possible.
In general, the signal covariance Sp may also exhibit any

dependence on the unknown parameter p of the problem,
as the power spectrum in cosmology is a complicated
function of the cosmological parameters. However, in or-
der not to depend on a specific model, we model the power
spectrum as being a linear combination of a number of
positive basis functions fiðkÞ with disjunct supports (the
spectral bands) with respect to the basis Okx, so that

PSpðkÞ ¼
X
i

pifiðkÞ (27)

is positive for all k (all coefficients of p ¼ ðpiÞi are posi-
tive and the spectral bands cover the full k-space domain).
We define

ðSiÞxy ¼ �OkxfiðkÞOky (28)

and therefore have

Sp ¼ X
i

piSi: (29)

Since we also need the inverse of the covariance matrix we
further define

giðkÞ ¼
�
1=fiðkÞ fiðkÞ> 0
0 fiðkÞ ¼ 0

(30)

and the pseudoinverse of the band-variances,

S�1
i ¼ �OkxgiðkÞOky; (31)

so that

S�1
p ¼ X

i

p�1
i S�1

i ; (32)

is the inverse of Sp, as one can easily verify.
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B. Spectral prior and joint Hamiltonian

For definiteness, we assume that the individual signal-
band amplitudes pi have independent prior distributions,

PðpÞ ¼ Y
i

PðpiÞ; (33)

with the individual priors being given by inverse Gamma
distributions, which are power laws with exponential low-
amplitude cutoff at qi:

PðpiÞ ¼ 1

qi�ð�i � 1Þ
�
pi

qi

���i

exp

�
� qi
pi

�
: (34)

For �i � 1 this is an informative prior, where qi=�i

determines the preferred value. A noninformative prior
would be given by Jeffreys prior with �i ¼ 1 and qi ¼ 0.1

The joint Hamiltonian is therefore

H½s; p� ¼ HG
p ½s� þ EðpÞ (35)

with the parameter-prior energy

EðpÞ ¼ X
i



qi
pi

þ �i log

�
pi

qi

�
þ logðqi�ð�i � 1ÞÞ

�
: (36)

C. Generic filter formula

In the following, we derive five approximate filters for
this problem. It will turn out that they can all be cast into a
single set of determining equations, with different coeffi-
cients. This generic filter formula should be presented first,
before we discuss the individual approaches.

All of the derived filters can be expressed as Wiener
filters for some specific spectrum Sp� ¼ P

ip
�
i Si, with dif-

ferent spectral parameters p�. The signal map and the
spectrum assumed for its construction have to be calculated
self-consistently from

mp� ¼ Dp�j; and

p�
i ¼

1

�i þ "i

�
qi þ 1

2
Tr½ðmp�my

p� þ �iDp� ÞS�1
i �

�
; (37)

for example, by simply iterating these two equations.
Here, the filter-specific parameters are "i, �i, and

�i ¼ �i � 1þ %i=2, where %i ¼ Tr½S�1
i Si� is the number

of degrees of freedom of the ith spectral band. In order

to simplify notation, we drop the � from p�, assuming that
the context makes it clear wether we talk about the un-
known parameter p or a parameter choice p� for a specific
filter.
In order to develop a filter for our signal, we have to

decide according to which principle the signal or the power
spectrum used in the Wiener filtering is determined. In the
space of all possibilities for the signal and its power
spectrum the joined probability function Pðs; pjdÞ has to
be questioned. There are different hyperplanes in this space
along which this function can be cut, marginalized, and
maximized. The ultimate answer of the PURE approach
will come from marginalizing p and calculating the signal
mean. However, first we want to establish more traditional
signal estimators, using largely the MAP principle along
different cuts through the joint signal and spectral parame-
ter space.
In case a Jeffreys prior is adopted (qi ¼ 0 and �i ¼ 1) it

will turn out that the trivial filter mðdÞ ¼ 0 would be the
preferred solution in all cases. However, since a Jeffreys
prior is an improper prior which is convenient to represent
the class of very broad, but proper priors, we should not
hesitate to remove the trivial filter solution by hand.
Otherwise we would need to enter the discussion about
an appropriate informative prior, which we like to avoid for
simplicity. This can not be decided generically, but only for
any concrete inference problems individually.
The parameters of the filters described in Sec. I B and

derived in the next few subsections are summarized in
Fig. 1.

FIG. 1. Parameter �i and "i of the five different filters for a
Jeffreys prior in the representation of the generic filter formula
Eq. (37). The parameters of the displayed filter are derived in the
following sections: the critical filter in Sec. III D, the classical
filter in Sec. III G, the joint MAP filter in Sec. III E, the
MAP-spectrum filter in Sec. III F, and the PURE filter in
Sec. VE. The critical line between filters with and without a
perception threshold as given by Eq. (64) is also shown.

1Since this would result in an improperly normalized prior, we
understand this as �i ¼ 1þ �, qi ¼ �, and lim�!0 at the end of
the calculation. We note that this limit might not exist, or that it
provides trivial results, i.e. we will find in Sec. VA that in this
limit the signal reconstructed with the full field theory turns out
to be zero and the data is assumed to be purely made of noise.
Thus, the improper Jeffreys prior is actually inappropriate for the
full problem, although interesting.
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D. The critical filter

Our first filter can be understood without any reference
to statistical inference and is along the lines of the well
known Karhunen-Loève [1–3] and Feldman-Kaiser-
Peacock [4] estimators for power spectra. TheWiener-filter
map mp ¼ Dpj (with Dp ¼ ðS�1

p þ RyN�1RÞ�1 and j ¼
RyN�1d) of a data realization of a Gaussian random signal
with a known covariance Sp will have on average the

covariance

hmpm
y
piðd;sjpÞ ¼ Sp �Dp; (38)

as one can verify with a short calculation.2 The propagator
on the right hand side (rhs) just accounts for the power
lost in measurement and filtering. Now we assume that
our data and our Wiener-filter map are so rich or typical
that this equation also holds for our individual data real-
ization. Thus, we drop the expectation angles, apply
Tr½�S�1

i �, and get the critical filter recipe in the form
of Eq. (37) with parameters �i ¼ 1, "i ¼ 0, �i ¼ 1, and
qi ¼ 0. The last two parameters are characteristic for a
Jeffreys prior, which we obviously have assumed implic-
itly, since no prior information on the spectrum, or even
its magnitude on a logarithmic scale, has entered the
critical filter scheme.

The name critical filter should become clear in Sec. VI.
There, we show that at least in cases where the different
spectral parameters are independent of each other, the
different filters can be cast into two classes, with and
without such a perception threshold. The critical filter
marks the demarcation line between these phases.

The critical filter has recently been applied successfully
by [29] to reconstruct an all sky map of the galactic
Faraday depth from sparse and noisy measurements.

E. Joint MAP filter

Extremizing the joint Hamiltonian, Eq. (35), with re-
spect to p and s yields the joint MAP filter parameters
ð�i; "iÞ ¼ ð0; 1Þ. We note, that if we extremize with respect
to the log-spectral amplitudes �i ¼ logpi, the parameters
ð�i; "iÞ ¼ ð0; 0Þwould have resulted due to the effect of the
Jacobian of the prior transformation. This latter filter is
identical to the classical one derived below in Sec. III G.

F. MAP-spectrum filter

Marginalizing the joint Hamiltonian Eq. (35) over the
signal space provides the spectrum Hamiltonian

HðpÞ ¼ � logðPðd; pÞÞ ¼ � logðPðdjpÞPðpÞÞ
¼ 1

2
logj1þQpj � 1

2
jyDpjþH0

0

þX
i

�
qi
pi

þ �i log

�
pi

qi

��
; with

Dp ¼ ðS�1
p þMÞ�1; Qp ¼ SpM; and

H0
0 ¼

1

2
logjNj þ 1

2
dyNdþX

i

logðqi�ð�i � 1ÞÞ: (39)

Here we used Eq. (15) for PðdjpÞ. A data-space view on
this likelihood is given in Appendix A. Extremizing HðpÞ
with respect to pi and sorting for terms linear in it provides
the MAP-spectrum parameter ð�i; "iÞ ¼ ð1; 1Þ.
If we extremize with respect to the parameters �i ¼

logpi, we get ð�i; "iÞ ¼ ð1; 0Þ, the parameters of the critical
filter. Thus, the critical filter can be regarded as the one
resulting from a MAP-spectrum estimation on a logarith-
mic scale. Note that MAP estimators are sensitive to the
coordinate system in which parameters are expressed.

G. Classical map estimator

The effective, parameter-marginalized signal
Hamiltonian (Eq. (23)) can be calculated analytically3:

H½s� ¼ 1

2
syMs� jysþX

i

�i log

�
qi þ 1

2
syS�1

i s

�

þH0; with

H0 ¼ 1

2
dyN�1dþ 1

2
logðj2�NjÞ

� log

�Y
i

�ð�iÞq�i�1
i

�ð�i � 1Þj2�Sij1=2
�
: (40)

The classical mapping equation results from extremiz-
ing this Hamiltonian and is provided by Eq. (37) for
ð�i; "iÞ ¼ ð0; 0Þ. This can be regarded as a poor man’s
critical filter, since only the power in the map is used to
determine the signal covariance, and no correction for the
power lost in the filtering is applied. In the case of a single
independent data and signal point, the effective
Hamiltonian is a one-dimensional function in signal space
and is shown in Fig. 2.

IV. UNCERTAINTY-RENORMALIZATION FLOW

A. General remarks

Although the MAP methods often provide acceptable
signal estimators, they are not optimal in anL2-error norm
sense. In the case of a skewed posterior, such reconstruc-
tions are suboptimal. Our goal is to calculate moments of
the signal field averaged over the effective posterior, as e.g.

2Using the abbreviation M ¼ RyN�1R we write

hmpm
y
piðd;sjpÞ ¼ Dphjjyiðd;sjpÞDp ¼ DpR

yN�1ðRSpR þ NÞ�
N�1RDp ¼ DpðMSpM þ MÞDp ¼ DpMð1 þ SpMÞð1 þ
SpMÞ�1Sp ¼ DpMSp ¼ Spð1 þ MSpÞ�1ð1 þ MSp � 1Þ ¼
Sp � Dp:.

3The term jSij has to be read as the determinant within the
nonzero subspace of Si.
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hsiðsjdÞ given by Eq. (22), since those optimize theL2-error.

For this we might construct the effective Hamiltonian
exactly or in terms of a Taylor expansion as in Eqs. (24)
and (25).

Such an expansion of the effective Hamiltonian around a
reference field is expected to work best when the parameter
prior is well localized around a specific value. The effec-
tive Hamiltonian will then be close to the original,
parameter-dependent one for this parameter value. In
case the original theory was free, the effective theory will
have only small interaction terms. Diagrammatic expan-
sions can then be conducted and truncated at low order.

Unfortunately, in many practical applications, the un-
certainties of the parameters are substantial, and not de-
scribed by a well localized prior. In this case it might be
possible to construct the effective Hamiltonian by repeat-
edly adding smaller portions of parameter uncertainty, with
each uncertainty dose so small that the resulting
Hamiltonian has only weak interactions, which can be
reabsorbed into renormalized, effective-propagator and
data-source terms. The accumulated uncertainty can
thereby become large and equal to the required amount
of entropy for the unknown parameter of the theory. In the
following we will explain the basics of this uncertainty-
renormalization flow.

B. Parameter uncertainty renormalization

A broad prior for a parameter pmay be decomposed into
a number N of narrow and mutually independent priors for
some auxiliary variables �j (with j 2 f1; . . . ; Ng):

PðpÞ ¼
�YN
j¼1

Z
d�jPð�jÞ

�
�

�
p� XN

j¼0

�j

�
: (41)

We have chosen here the parameter to be the sum of the
auxiliary variables for definiteness and simplicity, but other
relations can be worked out in a similar way or be mapped
onto this case. Also, the mutual independence of the aux-
iliary variable is mostly a technical convenience and not a
strict requirement. Note that we have included a starting
parameter value of �0 into the sum. Since it would be
convenient to identify this with the prior expectation value
hpiðpÞ throughout the full renormalization procedure we

require

h�jið�jÞ ¼ �j0p0; (42)

with p0 ¼ hpiðpÞ. We further introduce the lth parameter

residual as rl ¼ �0 þ
P

N
j¼lþ1 �j, so that r0 ¼

P
N
j¼0 �j ¼ p

and rN ¼ �0 ¼ p0. The effective Hamiltonian can now be
expressed as

e�H½s� ¼
Z

dpPðpÞe�Hp½s�

¼
Z

dp

�YN
j¼1

Z
d�jPð�jÞ

�
�

�
p� XN

j¼0

�j

�
e�Hp½s�

¼
�YN
j¼1

Z
d�jPð�jÞ

�
e�Hr0½s�

¼
�YN
j¼2

Z
d�jPð�jÞ

�Z
d�1Pð�1Þe�H�1þr1½s�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�e
�H

ð1Þ
r1

½s�

¼
�YN
j¼3

Z
d�jPð�jÞ

�Z
d�2Pð�2Þe�Hð1Þ

�2þr2
½s�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�e

�H
ð2Þ
r2

½s�

¼ . . .

¼
Z

d�NPð�NÞe�HðN�1Þ
�Nþp0

½s� ¼ e�HðNÞ
rN¼p0

½s�; (43)

whereHðNÞ
p0

½s� ¼ H½s�. This means that a series of effective
Hamiltonians with increasing accumulated parameter un-
certainty is defined, and an uncertainty adding operator:

HðnÞ
rn � Hðnþ1Þ

rnþ1
� � log

Z
d�nþ1Pð�nþ1Þe�HðnÞ

rnþ1þ�nþ1 :

(44)

Note that Hð0Þ
r0 ¼ Hp¼r0 and HðNÞ

rN ¼ H. This uncertainty

renormalization can be done using Eq. (24) if it is not
possible to do it analytically. To each Hamiltonian a

-4

-3

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4  5

H
d
[s

]

s

d = 0
d = 1
d = 2
d = 3

FIG. 2. The effective signal Hamiltonian, Eq. (40), without the
normalization constantH0 in the case of a Jeffreys prior and for a
single, independent signal s ¼ si and data point d ¼ di. The
parameters are Rij ¼ Nij ¼ �ij and Sij ¼ pi�ij. The different

curves show the Hamiltonian for representative data values. The
triangle symbols mark the results of the inverse response
estimator mir ¼ R�1d on the corresponding curves. The large
open and small filled circles mark the renormalized and classical
map estimator results, respectively. The existence of a classical
perception threshold can be seen: for �2< d< 2, the classical
map is exactly zero since no nontrivial stationary point of
the Hamiltonian exists. The thin dotted line shows the renormal-
ized Hamiltonian for the case d ¼ 3, as provided by
1
2 ðs�mpÞyD�1

p ðs�mpÞ.
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timelike variable t can be assigned, which measures the
amount of uncertainty accumulated so far. A suitable vari-
able is the accumulated uncertainty dispersion,

tn ¼
Xn
j¼1

�2
�j ¼

Xn
j¼1

ðh�2j ið�jÞ � h�ji2ð�jÞÞ ¼
Xn
j¼1

h�2j ið�jÞ; (45)

where we used Eq. (42). In case all auxiliary variables have
the same prior, we find tn ¼ nt1 ¼ n

N hðp� p0Þ2iðpÞ.
At each time step a renormalization of the Hamiltonian

can be done, in which it is cast back into the structure it had
before, e.g. in our example of reconstruction with unknown
power spectrum the free Hamiltonian of Eq. (10), just with
modified coefficients (propagator, source and interaction
terms).

In our example, the recast Hamiltonian is free, which
implies that we are constructing a Gaussian approximation
of the parameter-marginalized signal posterior to be used
for inference. It is shown in [30] that the chosen Gaussian
seems to be optimal in an information theoretical and
thermodynamical sense. It maximizes the cross informa-
tion with the correct effective posterior.

A renormalization flow can further be established by
letting the individual time steps of size t1 become infini-
tesimally small, however, their number N infinitely large,
while keeping the total added uncertainty constant,
t ¼ Nt1. The result are the renormalization flow equations
for the coefficients of the Hamiltonian. The actual form of
these equations depends on the Hamiltonian and is much
simpler if the Hamiltonian has less interactions.

Therefore, even a free Hamiltonian as in Eq. (10) should

be further simplified by suppressing the linear term jyps as
far as possible. This is done for the value of p ¼ p0, which
is our starting point in parameter space, by changing to
a new field variable � ¼ s�m0 with m0 � D0j0,
D0 � Dp0

, and j0 � jp0
. The Hamiltonian reads now

H0
p½�� ¼ 1

2
�yD�1

p �� j0yp �þH0
0;p; with

� ¼ s�m0;

j0p ¼ jp �D�1
p m0 ¼ jp �D�1

p D0j0; and

H0
0;p ¼ H0;p þ 1

2
my

0D
�1
p m0 � jypm0 (46)

and is especially simple for p ¼ p0, since then j00 ¼ 0.
Now, the effective Hamiltonian is calculated and expanded
according to the recipe in Sec. II E for a parameter prior
well localized on p ¼ p0. The localization of the prior is
typically characterized by a small parameter �t ¼ �2

�,
which also appears as a prefactor of the various coefficients
of the effective Hamiltonian.

C. Fourth order interactions

In order to perform the renormalization step, the recast-
ing of the uncertainty marginalized Hamiltonian in
Eq. (44) into its original form, let us be a bit more specific

about the effective Hamiltonian for definiteness. By virtue
of our foresight on the calculations in Sec. VAwe assume
that up to linear order in �t the effective Hamiltonian is
given by

H0½�� ¼ H0
0 þ�ð1Þy�þ 1

2
�yðD�1

0 þ�ð2ÞÞ�

þ 1

3!
�ð3Þ½�;�;�� þ 1

4!
�ð4Þ½�;�;�;��

þOð�t2Þ; (47)

with �ð1Þ, �ð2Þ, �ð3Þ, and �ð4Þ being of order Oð�tÞ. Here,
Eq. (24) or (25) might have been used.
The corrections can be expected to be small of Oð�tÞ,

since our originally free Hamiltonian, Eq. (46), should be
recovered in the limit of vanishing parameter uncertainty,
�t ! 0. All higher order interaction terms are of higher
order in �t and therefore ignored in the following. For our
later convenience we introduce

	ðnÞ ¼ lim
�t!0

�ðnÞ

�t
: (48)

Now, we can renormalize by absorbing all diagrams of
order Oð�tÞ into renormalized propagator and source
terms, in order to obtain a free Hamiltonian. Since j0 in
Eq. (46) is already of order �t and only the three- and four-
leg vertices have contributions of order Oð�tÞ, only
uncertainty-loop corrections have to be taken into account.
We can therefore define the renormalized data-source ver-
tex of the effective �-theory,

which takes the dominant uncertainty-loop correction into
account. We dropped the subscript at D0 and use the
Feynman rules provided in [6]. The renormalized propa-
gator up to linear order in �t is

The inverse renormalized propagator up to first order is

D�1
# ¼ D�1 þ�ð2Þ þ 1

2
�ð4Þ½�; D; ��: (51)

These coefficients now define a renormalized effective

Hamiltonian, H0
#½�� ¼ 1

2�
yD�1

# �� jy#�þH#0, which

belongs to a free theory, and is similar to H0½��, in that
it has the same mean and uncertainty dispersion by
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construction. Higher order uncertainty correlations differ
certainly, due to the approximation of the renormalization
step. In contrast to the original Hamiltonian Hp0

½s� in

Eq. (10), which was also free, the renormalized
Hamiltonian has some amount of parameter-uncertainty
corrections included.

Now, the original field s ¼ m0 þ� can be restored,
leading to a free Hamiltonian with

Dtþ�t ¼ D#; and jtþ�t ¼ j# þD�1
# mt; (52)

where the subscript tþ �t indicates that the parameter
uncertainty is increased by �t from its original value of t.
Since �t can be made arbitrarily small, a system of differ-
ential equations can be derived,

dDt

dt
¼ lim

�t!0

Dtþ�t �Dt

�t

¼ �Dt	
ð2ÞDt � 1

2
Dt	

ð4Þ½�; Dt; ��Dt; and

djt
dt

¼ lim
�t!0

jtþ�t � jt
�t

¼ �	ð1Þ þ 	ð2ÞDtjt � 1

2
	ð3Þ½�; Dt�

þ 1

2
	ð4Þ½�; Dt; Dtjt�; (53)

which form the uncertainty-renormalization flow equa-
tions. The pseudotime t measures the accumulated disper-
sion of the resulting prior probability. These equations can
be transformed into the more compact form

dD�1
t

dt
¼ 	ð2Þ þ 1

2
	ð4Þ½�; Dt; ��; and

dmt

dt
¼ �Dt	

ð1Þ � 1

2
Dt	

ð3Þ½�; Dt�;
(54)

where mt ¼ Dtjt.
The renormalization equations so far are evolution equa-

tions for operators. If they should become ordinary partial
differential equations, e.g. in our case in terms of spectral
parameters, some sort of closure is required. This should
ensure that the renormalized Hamiltonian gets its original
structure, so that it is clear which terms are affected by the
parameter-uncertainty adding operation. Ideally, the
change in the Hamiltonian can be mapped onto changes
of effective parameter values.

After the repeated adding of small amounts of parameter
uncertainty, the resulting effective parameter prior distri-
bution can be expected to be a Gaussian, due to the central
limit theorem of statistics,

PðpÞ ¼ Gðp� p0; tÞ: (55)

V. SIGNAL RECONSTRUCTION WITH PURE

A. Log-normal spectral prior

Now wewant to apply the PURE scheme to our example
problem from Sec. III of how to reconstruct a Gaussian
signal with unknown covariance.
First, we have to express our spectral prior in a way that

we can apply the PURE method developed in the previous
section. For this we need some additive auxiliary random
variables into which we can decompose our (unknown)
spectral amplitudes. These variables should each have an
unbiased distribution with zero mean according to Eq. (42).
For the moment, we concentrate on a single spectral
parameter pi and change to the parameter variable �i ¼
logpi, which can be split up into additive auxiliary varia-
bles: �i ¼

P
j�ij. For convenience we assume pij ¼ e�ij to

be distributed according to Eq. (34), with properly chosen
parameters �ij, and qij, as detailed in Appendix B. There,

it is shown that

Pð�iÞ ! Gð�i; tiÞ (56)

for the limit of an infinite number of auxiliary parameters,
with a finite total uncertainty dispersion of ti ¼ h�2i ið�iÞ �
h�ii2ð�iÞ, as expected from the central limit theorem of

statistics. The resulting statistics for pi ¼ e�i is therefore
log-normal. If we take the limit ti ! 1 we obtain a
Jeffreys prior, which is flat on a logarithmic scale, and
which conveniently permits us to compare the PURE filter
to the others.

B. Uncertainty renormalization

In the following, we assume that all spectral coefficients
receive uncertainty with the same infinitesimal rate, so that
the prior distributions in Eq. (34) are all the same and
narrowly centered on pi ¼ 1, which implies �ti ¼
1=ð�i � 1Þ ¼ �t and qi ¼ �i � 3=2 ¼ �t�1 � 1=2 (see
Appendix B).
Expanding the Hamiltonian in Eq. (40) around the ref-

erence map m ¼ Dj recovers the original free
Hamiltonian, shifted to � ¼ s�m, and perturbed by

some additional interaction terms �ðnÞ ¼ �t	ðnÞ þOð�t2Þ
with

	ð1Þ ¼ X
i

1

2
ð%i þ 1� p�1myS�1

i mÞS�1
i p�1

i m;

	ð2Þ ¼ X
i

1

2
ð%i þ 1� p�1

i myS�1
i mÞS�1

i p�1
i

� S�1
i mmyS�1

i p�2
i ;

	ð3Þ ¼ 	ð4Þ½�; �; �; m�;
	ð4Þ ¼ �3

X
i

p�2
i S�1

i � S�1
i ; and

	ðnÞ ¼ 0 for n > 4: (57)
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Here we have reinserted pi in order to have variables which
capture the evolution of the renormalization flow dynam-
ics. The renormalization flow equations are given by in-
serting the latter terms into two independent equations out
of Eqs. (53)–(55):

dD�1

dt
¼ X

i



1

2
ðð1þ %iÞpi � Tr½Bi�ÞS�1

i � S�1
i Bi

�
p�2
i ;

dj

dt
¼ �X

i

p�2
i ðmyS�1

i mÞS�1
i m; with

Bi ¼ ðmmy þDÞS�1
i and m ¼ Dj: (58)

This system of integro-differential equation represents the
most accurate form of the PURE filter for this application.
It is, however, in general quite expensive to implement
numerically, since it requires us to follow the evolution of
matrices.

C. Projection onto spectral parametrization

To simplify the PURE filter equations, we want to
recast the system into the original from, which assumes
D�1 ¼ ðS�1

p þMÞ with S�1 ¼ P
ip

�1
i S�1

i . Thus evolution

equations for the pis are needed. Since d
dt D

�1 ¼P
iS

�1
i

d
dt p

�1
i þ d

dtM contains the parameter evolution one

has to specify how to split the evolution equation of the
inverse propagator.

A natural way is to require all terms of the rhs of Eq. (58),
which are parallel to the inverse signal covariance bands, to
contribute to their evolution, and the ones which are or-
thogonal, to contribute to the evolution ofM. The part of a
matrix A parallel to Si is obtained by the projector

P iA � 1

%i

Tr½ASi�S�1
i (59)

and the orthogonal part by ð1� P iÞA. Splitting the evolu-
tion equation this way yields

dpi

dt
¼ 
ipi; or

d�i
dt

¼ 
i; and

dM

dt
¼ X

i

p�2
i S�1

i

�
1

%i

Tr½Bi� � Bi

�
; with


i ¼
�
1

2
þ 1

%i

�
Tr½Bi�p�1

i � 1þ %i

2
: (60)

With this, the fastest evolution is assigned to the signal
strength, whereas the inverse noise term evolves on much
longer time scales for %i � 1. Actually,M evolves only in
directions orthogonal to all Si, since

d

dt
ðP iMÞ ¼ 0; (61)

meaning that the power within the spectral bands ofM gets
only reshuffled, but is conserved. This implies that the

evolution of M interferes very little with the spectral evo-
lution, since all changes toM happen in directionswhich are
projected out forSp. The reverse is not true, sinceM couples

to the value of p. For an accurate reconstruction the evolu-
tion of M needs to be followed, since it determines D and
therebym ¼ Dj. However, we focus now only on the signal
spectrum evolution and ignore the slow and perpendicular
M evolution.
The evolution equation for p and j have to be solved

simultaneously as a function of t up to the spectral uncer-
tainty tmax ¼ hðlogp� logp0Þ2iðpÞ of the original problem.

This version of the PURE filter for spectrally uncertain
Gaussian random signals with a log-normal spectral prior
is projected onto our spectral parametrization, but not yet
onto our generic filter formula.

D. Jeffreys prior

Let us see if there is a stationary asymptotic for the limit
of infinite spectral uncertainty. The resulting filter for
t ! 1 (which implies a Jeffreys prior) seems to be trivial,
since j ! 0 and therefore mp ! 0 in this limit.

This can actually be understood intuitively. On the loga-
rithmic scale �i ¼ logpi a Jeffreys prior becomes flat in �i.
Thus an arbitrary negative �i (and therefore infinitesimally
small pi) is as probable a priori as an arbitrary large �i (and
therefore basically infinite large pi). However, the like-
lihood PðdjpÞ ¼ R

DsPðd; sjpÞ discriminates clearly

between those cases.
For p 	 0 we expect s 	 0, which means that the data

must be purely noise, which has a low, but finite likelihood.
This likelihood does not decrease significantly if � ! �1
and p and s become exactly zero, since the amount of noise
stays constant. It has to be identical to the data in this case.
However, for pi ! þ1, while the data stays finite,

either the more and more unlikely case of a low signal
realization for an increasing variance must have happened,
or the more and more unlikely case of a noise canceling the
large amplitude signal must have happened.
Thus, the a priori as probable case �i ! þ1 is heavily

penalized by the likelihood with respect to the case
�i ! �1. Since the PURE filter aims to estimate the
mean signal averaged over all �i, this imbalance of the
likelihood factor lets the regime �i ! �1 dominate this
average leading to hsiðsjdÞ ¼ 0.

E. Projection onto generic filter formula

We can artificially remove the trivial solution of the
PURE filter in the case of a Jeffreys prior by imposing
dj=dt ¼ 0 instead of Eq. (58). This should be understood
as looking for a stationary point of the p-evolution alone.
Thus, we are asking for the unique spectrum, which taken
as a sharp prior would remain unchanged if a small amount
of spectral uncertainty is added. This fixed point is given by

i ¼ 0 and therefore
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pi ¼
1þ 2

%i

%i þ 1
Tr½Bi�: (62)

Although we have derived this filter only for a Jeffreys
prior, it is quite plausible to assume that the general
spectrum formula, Eq. (37), with ð�i; "iÞ ¼ ð1;�0:5=ð1þ
2=%iÞÞ also holds for ð�i; qiÞ � ð1; 0Þ. We leave a formal
proof of this for future work. In this form the PURE filter
for a Jeffreys prior is projected into the ��-plane of the
representation Eq. (37) for the MAP filters, which is dis-
played in Fig. 1.

VI. PERCEPTION THRESHOLD

A. Critical perception

In the case of a Jeffreys prior (qi ¼ 0, �i ¼ 1, and
t ¼ 1), the spectral coefficients pi used by some of our
filters are only nonzero for spectral bands with a data
variance above some threshold. Bands with lower band
power are fully suppressed in the reconstructed map, since
the Wiener filter removes completely any fluctuations in
bands for which the assumed signal covariance is zero.
Thus, a perception threshold appears for filters within a
certain critical line in the �"-plane, which we calculate in
the following.

Filters without a perception threshold have to exhibit
pi > 0, even when the data has no power at all. Thus, we
investigate the extreme case d ¼ 0 by inserting mp ¼ 0

into Eq. (37) and find after some algebra

1þ 2"i
%i

¼ �i

1

%i

Trðð1þQpÞ�1IiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

; (63)

with Ii ¼ S�1
i Si the unit matrix restricted to the ith band.

Since the marked expression on the rhs is one only for
vanishing p, we find the critical line to be given by

�crit
i ¼ 1þ 2"i

%i

: (64)

Filters with �i > �crit
i do not exhibit a perception threshold,

since even for d ¼ 0 all pi > 0. Filters with �i < �crit
i

exhibit a perception threshold. We note that a non-
Jeffreys prior with �i > 1 but still qi ¼ 0 can also be
included into this classification scheme, by just adding
�i � 1 to "i. Filters with qi > 0 obviously do not exhibit
a perception threshold, since even in the limit of vanishing
data and vanishing propagator Eq. (37) has the positive
solution pi ¼ qi=ð�i þ "iÞ.

The point ð�i; "iÞ ¼ ð1; 0Þ lies on top of the critical line,
as can be seen in Fig. 1, and therefore the term critical filter
seems to be appropriate for it.

B. Translation invariant data model

Here, we calculate the perception thresholds of our
filters in the case of a translationally invariant data model.

Although a general criterion for the position of the thresh-
old in data space can easily be worked out, it is more
instructive to investigate a simplified case. We assume
the signal and noise to live in the same spatial space, and
their covariances to be fully characterized by power spectra
in Fourier space,

Sðk; qÞ ¼ ð2�Þn�ðk� qÞPSðkÞ;
Nðk; qÞ ¼ ð2�Þn�ðk� qÞPNðkÞ;

(65)

with PsðkÞ ¼ hjsðkÞj2i=V, and PNðkÞ ¼ hjnðkÞj2i=V, where
V is the observed volume. We define spectral bands with
band spectra PSiðkÞ, so that PSðkÞ ¼ P

ipiPSiðkÞ. We as-

sume further that the signal processing can be completely
described by a convolution with an instrumental beam,

dðxÞ ¼
Z

dyRðx� yÞsðyÞ þ nðxÞ; (66)

where the response-convolution kernel has a Fourier power
spectrum PRðkÞ ¼ jRðkÞj2 (no factor 1=V).
In this case D can be fully described by a power spec-

trum,

Dðk; qÞ ¼ ð2�Þn�ðk� qÞPDðkÞ; (67)

with PDðkÞ ¼ ðP�1
S ðkÞ þ PRðkÞP�1

N ðkÞÞ�1 and all spectral

bands decouple.

C. Approximative treatment

The generic filter equations, Eqs. (37), now separate into
independent equations for the individual pi. Let us look
first at the trace terms in this equation, which now read

Tr½mpm
y
pS�1

i � ¼ V
Z
i

dk

ð2�Þn
PdðkÞp2

i PQi
ðkÞ

PNðkÞð1þ piPQi
ðkÞÞ2 ;

Tr½DpS
�1
i � ¼ V

Z
i

dk

ð2�Þn
pi

1þ piPQi
ðkÞ : (68)

We define the data power PdðkÞ ¼ jdðkÞj2=V and the
i-band fidelity power PQi

ðkÞ ¼ ðPSiPR=PNÞðkÞ. We further

use the approximation V
R
i dk=ð2�ÞnfðkÞ 	 %ifðkiÞ,

which assumes that fðkÞ, a combination of spectra, does
not vary significantly over the narrow spectral band i. This
permits us to write the generic filter formula, Eq. (37),
which determines the filter band coefficients pi as an
algebraic and dimensionless expression:

x ¼ 1þ y

y2
½ðty� uÞð1þ yÞ � �y�: (69)

Here, we have dropped the index i and defined the
noise-normalized data power x ¼ PdðkiÞ=PNðkiÞ and the
measurement fidelity y ¼ piPQi

ðkiÞ. The numerical coef-

ficients are
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t ¼ 2

%i

ð�i þ "iÞ ¼ 1þ 2

%i

ð�i � 1þ "iÞ;

u ¼ 2

%i

qiPQi
ðkiÞ; and � ¼ �i: (70)

In the case of a Jeffreys prior, these simplify to u ¼ 0 and
t ¼ 1þ 2"i=%i and the recast generic filter formula
Eq. (69) has the following solutions

y ¼ 0; and

y ¼ x� x0
2t

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x� x0
2t

�
2 � 1þ �

t

s
; with

x0 ¼ 2t� � ¼ 2þ 4"i=%i � �i: (71)

Although there might be up to three simultaneous real
solutions for a given x, always the largest value should
be taken. This is in line with our decision to ignore the
trivial solution and the expectation that the assumed spec-
tral amplitude y should increase with increasing data power
x, and not decrease as the lower branch of the square root
does. The largest solution is nonzero only if

x � xth ¼
�
0 x0 < 1;

x0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt� �Þp

x0 � 1:
(72)

The assumed dimensionless signal power y is shown in
Fig. 3 as a function of the dimensionless data variance x.
Asymptotically, for x � x0, we have a linear increase of
assumed signal strength and data variance yðxÞ ¼ x� x0.
The critical filter is special in that this relation holds
exactly for the full region x � xth ¼ x0. All of the MAP
estimators in this work have xth > x0 and exhibit a jump

from y ¼ 0 to y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �=t

p
at x ¼ xth, followed by an

approach to the linear asymptotic. The threshold ap-
proaches xth ! 1 from above for %i ! 1 for the

MAP-spectrum filter, however, it is always xth ¼ 4 for
the classical filter, independent of the spectral bin size %i.
The PURE filter as given in Sec. VE is the only one of

our sample, which has no perception threshold since yðxÞ is
positive for all x. Even in case the data exhibits negligible
variance x  1, the filter still uses a non-negligible spec-
tral amplitude, since yð0Þ 	 1=ð%i þ 1Þ. This might be
surprising, since the implied assumption of a significant
signal variance is obviously not supported by the data.
However, the renormalized filter aims for an optimal re-
construction, and not for an accurate power-spectrum mea-
surement, and letting some fraction of some data band with
apparently low noise realization pass (remember x  1)
does not spoil this.
The combination of signal measurement and filtering

can be regarded as a single response operator R0, with
R0s ¼ hmiðdjsÞ ¼ FpRs ¼ DMs, which decomposes into

separate pass-through factors for the individual bands,
R0
i ¼ PDðkiÞPRðkiÞP�1

N ðkiÞ ¼ y=ð1þ yÞ. This is also
shown in Fig. 3.

D. Consequences for cosmological practice

The critical filter estimates the power spectrum of a
Wiener map, which is (iteratively) filtered with this very
same spectrum (until convergence), while correcting the
spectra for an estimate of the filtered-out power during
each iteration. Similar procedures are widely used in cos-
mology under the names Karhunen-Loève [1–3] and
Feldman-Kaiser-Peacock [4] estimators to measure power
spectra of galaxy catalogs. As the critical filter, these
should therefore also exhibit a perception threshold for
spectral modes with a data variance not significantly ex-
ceeding the noise variance. Therefore, one would expect
that cosmological spectra obtained by these estimators
should exhibit modes with zero power. However, in appli-
cations of these schemes in the cosmological literature, the
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FIG. 3. Left: Used spectral power y of the filters as a function of x, the data power in noise power units. A spectral bandwidth of
%i ¼ 8 was assumed. Right: The same for the signal pass through R0
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iterations of filtering and spectral measurements are usu-
ally not repeated until convergence.4 Thus the knowledge
system keeps some memory of the initial power-spectrum
choice, which can be regarded as a hidden prior regulariz-
ing the spectrum and preventing the perception threshold
that a correctly implemented KL or FKP estimator would
exhibit (see also [3] for a discussion on this).

VII. COMPARISON OF THE MAP-MAKING
ALGORITHMS

A. The test case

We want to examine the filter performances with an
instructive test case. In case the spectral uncertainty is
small, all filters in this work can be expected to provide
comparable results since they Wiener filter the data with
basically the prior spectrum with small differences. Thus,
in order to see the differences in performance more clearly,
we again adopt a Jeffreys prior for our spectral parameters
(�i ¼ 1 and qi ¼ 0; for numerical reasons qi ¼ 0:01). A
spectrum, which naturally implements this distribution is
the famous 1=f-spectrum, which has equal power per
decade in frequency space. To have a finite zero mode
and signal variance, we adopt

PSðkÞ ¼ P0ð1þ ðk=k0Þ2Þ�ð1=2Þ; (73)

with P0 ¼ 5 and k0 ¼ 2. We further assume some white
noise with PNðkÞ ¼ �2

n ¼ 0:1.
In case the response would be constant or a convolution,

the spectral inference problems would be separable in
Fourier space, as we have shown in the last section. In
order to have a more complex problem, with coupling
between the different unknown spectral parameters, we
introduce a nonhomogeneous observational signal re-
sponse R over the 257 pixels of our signal space, as
displayed in Fig. 4 together with a test data set. We split
the Fourier space in 64 disjunct spectral bands, with �i ¼ 4
for all but the lowest band, which has �0 ¼ 5, since it also
contains the zero mode. Since we are dealing with a real-
number signal in a discrete space, we have to take care of
the negative frequency spectrum being identical to the
positive ones, and therefore our bands are split into iden-
tical positive and negative parts, except the zero-band,
which is continuous.

The signal reconstructions of the five filters are also
shown in Fig. 4, and the used spectra in Fig. 5. The spectra
are roughly ordered the way we expect them to be follow-
ing our perception threshold analysis in Sec. VI. However,
there is the surprising modification that even the renormal-
ized filter seems to suffer from a slight perception thresh-

old, since many of the higher k-vector bands with lower
signal to noise ratio are nearly free of power. A more
informative prior for the power distribution would cure
this, but this would limit the generality of our filter. So
we should look for other yet unexploited prior information.

B. Spectral smoothness regularization

The 1=f signal spectrum adopted in our example is a
member of the large class of smooth spectra, which do not
exhibit spectral lines, jumps and edges. Spectral smooth-
ness information can easily be incorporated into the frame-
work. Since we do not want to specify a specific
smoothness length scale, we require the double logarithmic
derivative of the spectrum to be of limited variance. This
can be done by introducing an additional prior energy for
nonsmoothness

Ereg ¼ 1

2�2
P

Z
d logk

�
d logPSðkÞ
d logk

�
2

	 1

4�2
P

X
i

ki þ ki�1

ki � ki�1

ð�i � �i�1Þ2 � 1

2
�yT�: (74)

Here we have (re-)introduced the logarithm of the power-
spectrum parameters �i ¼ logpi, have discretized the in-
tegral and derivatives, and collected all coefficients in a
matrix T. The quadratic form in � in the last line shows that
this is actually a log-normal prior contribution, which can
be combined with the log-normal prior appearing in the
renormalization calculation. Instead of repeating that cal-
culation with now interdependent parameters, we just use
our physical intuition to obtain the regularized filter equa-
tion for the filter spectrum, and leave any proof or improve-
ment for future work.
The unregularized evolution equation for �, Eq. (60),

can just be equipped with a regularizing force�dEreg=d�:

d�

dt
¼ 
ð�Þ � T�: (75)

The regularized Jeffreys prior case is then given by the fix
point specified by 
ð�Þ ¼ T� and reached asymptotically
for t ! 1. The matrix T couples the neighboring bands
together and thereby produces much smoother filter spectra
without the gaps the other filter spectra exhibit, as can be
seen in Fig. 5, where the regularized filter spectrum for
�P ¼ 2 is shown.

C. Full PURE filter

Spectral smoothness can not always be assumed, and
therefore we should also think of other ways to improve the
filter fidelity. One way is to be more precise in the PURE
filter derivation. The largest approximation made was
probably the neglection of the dj=dt term, which for
infinite spectral uncertainty, t ! 1, leads to a trivial solu-
tion of m ¼ 0. If we want to include this term, we can
therefore only apply it for a finite amount of uncertainty,

4Some random examples: Tegmark et al. [3], Percival et al.
[31] as well as Feldman et al. [4] use a fixed and constant
spectrum in the optimal data weighting step of the KL and FKP
schemes, and do not iterate at all.
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say up to t ¼ 1. This implies that the initial starting point
of the spectral renormalization flow would influence our
result. In the case of a concrete application, this might be
very desirable, since there, a good initial guess for the
spectrum might be available.

In our more abstract discussion here, we want to avoid
such choices, also in order to be sure not to have included
too much spectral prior knowledge into the filter prevent-
ing a fair comparison to the others. Therefore, we start the
renormalisation flow including the dj=dt term with the
fixed point spectrum of the approximated PURE filter
(without this term) and stop it at t ¼ 1. This way we
have both, independence of any prior spectrum and inclu-
sion of non-Wiener corrections. The resulting filter seems

to be partly cured from too generous predictions in regions
without data while the results in better determined regions
are practically unchanged, as can be seen in Fig. 4.
This can be understood in the following way. We have

roughly dj=dt / �S�1m, since myS�1
i m 	 %i for most

modes. If there is power at a poorly observed location in
the mapm on a level comparable to the well observed ones,
j evolves in both regions with similar speed. However, the
effect of this evolution to the map m ¼ Dj is larger
in regions with larger uncertainties, since D is larger there.
Thus, any power spilled into observational gaps is removed
faster than power in well observed regions. The full
PURE filter seems to be aware of the lower certainty of
the former.
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FIG. 4 (color online). First panel: Test data points according to d ¼ Rsþ n and signal-response Rs in a setting with periodic
boundary conditions. Second panel: Signal realization s and the reconstructions as labeled in the fourth panel. The four MAP
reconstructions (joined MAP, MAP spectrum, classical, and critical filter) are shown with the same line since they are very similar.
Also the reconstruction using the exact spectrum is displayed. Third panel: The same as above, just enlarged and with the signal
subtracted to highlight the difference in the reconstruction errors. Fourth panel: Response R and line key for the panels above. Fifth
panel: Error variance hðsx �mxÞ2iðd;sÞ of the filters from 700 signal and data realizations in logarithmic units to show the average

fidelity of the individual filters. The order of the line keys reflects roughly the order of the average error of the different methods. The
color/grey-scale areas (in online/printed version) should only help to guide the eye.
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D. Statistical comparison

A statistical assessment of the different filters is also
shown in Fig. 4. There it is apparent that the filters derived
from MAP principles are worse than the PURE filter, with
only the critical filter being comparable in performance.
The underestimation of the power spectra due to the per-
ception threshold obviously reduces the fidelity of those
filters.

The spectral smoothness regularized, renormalized filter
clearly outperforms the unregularized ones, probably due
to the lack of spectral gaps. Its performance is comparable
to that of the Wiener filter using the correct signal power
spectrum PSðkÞ. The error variance for the latter filter is
also displayed in Fig. 4 in comparison to its theoretical
value given by the Wiener variance Dxx (see Eq. (17)).
Finally, also the full PURE filter as described in the last

section is shown. Its fidelity is comparable to the spectrally
regularized one, without any spectral smoothness assump-
tions having to be made. Of course, such assumptions
could also be included into this filter.

VIII. CONCLUSIONS

We showed how to deal with parameter uncertainties in
information field theory by introducing an effective
Hamiltonian over the joint space of the signal field and
the parameters. In order to go beyond a classical, or
maximum-a-posteriori treatment of the problem we pre-
sented an uncertainty-renormalization scheme, in which
the parameter uncertainty is successively fed into the
knowledge system. The resulting parameter-uncertainty
renormalized estimation, PURE, can be used to tackle
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FIG. 5 (color online). Signal and noise spectra in comparison to the assumed spectra of the five filters for the data sets displayed in
Fig. 4 in double logarithmic units. k-vectors in units of the Nyquist wave vector of kNy 	 256�. The filter spectra for the individual

data sets of Fig. 4 are shown in the top panel, the average filter spectra for the 700 signal and data realizations also shown in Fig. 4 are
displayed in the bottom panel. The presence of perception thresholds in many of the presented filters is clearly visible by the many
missing frequencies in the top panel and also as the general down trend of the average spectra close to the crossing of signal and noise
spectra. The order of the line keys reflects the order of the average spectral amplitudes of the different filters at k ¼ 0:3.
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many signal inference problems including calibration
uncertainties.

It seems that the PURE provides a Gaussian approxima-
tion to the full posterior probability function, which has
maximal cross information with it, as thermodynamic con-
siderations in [30] have shown.

To demonstrate the advantage of PURE with a concrete
example, we investigated the general problem of inferring
a Gaussian signal with unknown spectrum from noisy data,
which follows from a linear, but inhomogeneous data
model. Following the parameter uncertainty renormaliza-
tion and various classical approaches, four classical and
one renormalized filter were derived. All filters can be
regarded as Wiener-filter operations with assumed signal
spectra to be calculated from the data by a single recipe,
Eq. (37), with just differences in two of its numerical
coefficients.

The computational complexity of all those filters is
therefore very similar and should not be a reason to prefer
one over the other. Their signal fidelity, however, differs
significantly. In case a noninformative Jeffreys prior is
adopted for the spectral amplitudes, all classical filters
suffer from a perception threshold. Spectral bands, which
do not show more data power than the threshold, are
completely filtered out. Three out of the four classical
filters investigated have a perception threshold which re-
quires data variance significantly above the noise level.
The fourth one, the critical filter, lives on the critical line
between filters with and without a perception threshold in
our space of filter parameters. The critical filter tries to
match the correct spectrum on a logarithmic power scale.
Its perception starts therefore for modes with a variance
just above the noise level, as soon the data indicates some
potential signal power. It has recently been applied suc-
cessfully to the reconstruction of an all sky map of the
galactic Faraday depth [29].

The critical filter coresponds in general to the Karhunen-
Loève method [1–3], and for an infinite window function to
the FKP method [4] frequently used in cosmology to
estimate power spectra of galaxy catalogs. It seems that
the perception threshold of this method is often ‘‘cured’’ in
applications by a truncation of the full iterative scheme.
This implies the presence of a hidden spectrum prior in
such estimates.

The PURE filter precepts also for spectral bands, which
by chance exhibit less power than expected for the noise
alone. This might appear as being too generous—the signal
spectrum adopted by this filter is typically larger than the
correct and therefore optimal, but unknown one. However,
the PURE filter exhibits the largest fidelity of our filter
sample, even slightly better than that of the critical filter.
The reason lies in the asymmetric fidelity loss for under-
and overestimating the true signal spectrum. Spectrum
underestimation is much worse than overestimation in
terms of signal reconstruction accuracy. The renormalized

filter knows about this and adds a safety margin to any
spectral band. This margin is inversely proportional to the
number of data degrees of freedom informing about the
signal spectrum in this band. Thus, in the limit of a large
number of data points determining the band spectrum the
renormalized filter approaches the critical one, but always
from the perception threshold free side.
Although the classical filter resulted from maximizing

the exact effective, parameter-marginalized Hamiltonian
(Eq. (40)), it performs much worse than the critical and
PURE filters. Thus, this is an example where the MAP
principle, or equivalently a tree-level IFT calculation, pro-
vides a poorly performing algorithm, and uncertainty-loop
corrections as explicitly included in the PURE filter or
even the critical filter are essential.
The PURE filter, as well as the others, can be further

improved by adding any additional spectral information.
One way is to use informative priors on the spectral be-
havior, which instantaneously cure the perception thresh-
old problem. However, even in case no information on the
location of the spectrum is available, information about its
smoothness as a function of the Fourier space coordinate
may be exploited. We show that the performance of the
PURE filter with spectral smoothness prior approaches that
of the optimal Wiener filter for a known signal power
spectrum.
Since the computational complexity of the renormalized

filter is identical to the critical one already used in cosmol-
ogy, there exists no reason not to use it for Wiener filtering
of signals with unknown spectra. One only has to keep in
mind that the internally used spectrum of the filter is not the
best estimate of the signal spectrum, but an overestimate.
The critical spectrum provides such an estimate, using the
posterior maximum for the logarithm of the spectral
amplitudes.
The full PURE filter, which contains non-Wiener-filter

corrections and requires the more expensive evaluation
of the renormalization flow equation, performs best
among all spectrally unregularized filters. Spectral
smoothness information can also be incorporated into it
if available.
To conclude, the PURE scheme to construct optimized

filters presented in this work is very general and should
also be applicable to the problems of inference with un-
certainties in the instrument response, the typical calibra-
tion problem, and for measurements without known noise
level. A better understanding of the implications and
assumptions of the commonly used process of self-
calibration should be feasible, and possibly also improve-
ments thereof. The pseudotime parameter appearing in the
renormalization flow, the amount of uncertainty or parame-
ter dispersion fed into the knowledge system, may be
connected under certain circumstances to real physical
time. For measurement devices with drifting calibration
or noise parameters, and also for signals with a slow, but
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unknown time evolution of their signal spectra, the
parameter uncertainty-renormalization equation offers a
natural possibility to model this. Once the amount of
uncertainty dispersion per physical time is fixed, the equa-
tion permits us to continuously update the unknown pa-
rameters by combining past and novel information in an
optimal, and controlled way. The PURE approach may
thereby make contributions to the technologically impor-
tant field of optimal control and time dependent instrument
calibration.
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APPENDIX A: SIGNAL COVARIANCE
LIKELIHOOD

In order to find the posterior of the signal covariance, we
have to calculate PðpÞZp=Z. We show below that the

evidence Zp½0� for any parameter p of the free

Hamiltonian, given by Eq. (15), is

Zp ¼ PðdjpÞ ¼ Gðd; RSpRy þ NÞ: (A1)

This formula can also intuitively be read as the data
likelihood given p, since it compares the power in the
data to their expected fluctuation levels hddyiðd;sjpÞ ¼
RSpR

y þ N. It can therefore be used for a Bayesian esti-

mate of any model parameter of the free theory, not only
for spectral parameters as in this work.

Proofs for Eq. (A1) can be found in [32,33]. However,
these proofs rely on either on the very special assumption
of R being invertible [33] or on a Taylor expansion of the
logarithm of a marix [32], which has actually a limited
convergence radius and therefore is not sufficient for a
general proof. A proof without such limitations goes as
follows: First, we concentrate only on the dependence of
PðdjpÞ on the data d,

Zp ¼ PðdjpÞ ¼
Z

DsPðd; sjpÞ

/
Z

Ds exp

�
� 1

2
ðsyS�1

p sþ ðd� RsÞyN�1ðd� RsÞÞ
�

/ exp

�
� 1

2
ðdyðN�1 � N�1RDpR

yN�1ÞdÞ
�

/ exp

�
� 1

2
dyðRSpRy þ NÞ�1d

�
/ Gðd; RSpRy þ NÞ:

Here, we used Dp ¼ ðS�1
p þMÞ�1 with M ¼ RyN�1R.

The second to last step relied on RSpR
y þ N being the

inverse of N�1 � N�1RDpR
yN�1:

ðRSpRy þ NÞðN�1 � N�1RDpR
yN�1Þ

¼ RðSp � SpMDp �DpÞRyN�1 þ 1

¼ RðSp � SpðD�1
p � S�1

p ÞDp �DpÞRyN�1 þ 1 ¼ 1:

Second, we have to show that Zp has the same normaliza-

tion the Gaussian in Eq. (A1) has. This is most easily
seen by

Z
DdZp ¼

Z
Dd

Z
DsPðd; sjpÞ

¼
Z

DsPðsjpÞ
Z

DdPðdjsÞ

¼
Z

DsGðs; SpÞ
Z

DnGðn;NÞ ¼ 1;

where in the last line we replaced the data-space integra-
tion variable d by a linear shift with the noise variable
n ¼ d� Rs and used the fact that Gaussians are normal-
ized to unity. Thus, Eq. (A1) is proven.

APPENDIX B: DERIVATION OF THE
GAUSSIAN PRIOR

Here we show how the different auxiliary variables �ij
combine into a normal distribution for �i ¼

P
j�ij, as was

assumed in Sec. VA. We drop in the following the index i,
which labels the signal bands. Since we assume e�j to be
distributed according to Eq. (34), we have

Pð�jÞ ¼
exp½�ð�� 1Þð�j � logqÞ � qe��j�

�½�� 1� : (B1)

The nonbias condition, Eq. (42), translates into

h�jið�jÞ ¼ logq� c 0ð�� 1Þ ¼ 0; (B2)

with c nðzÞ being the Polygamma function. This condition

fixes qð�Þ ¼ ec 0ð��1Þ, which for large values of �, and
thereby for well localized auxiliary parameters, is asymp-
totically q ¼ �� 3

2 . The dispersion of the auxiliary vari-

ables is

�t ¼ h�2j ið�jÞ ¼ c 1ð�� 1Þ; (B3)

which asymptotically is �t ¼ 1=ð�� 1Þ for large �.
Now, we can work out the total prior resulting from the

combination ofN ¼ t=�t auxiliary variables, where t is the
uncertainty level of the prior, and �t that of the individual
variables:
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Pð�Þ ¼
�YN
j¼1

Z
d�jPð�jÞ

�
�

�
�� XN

j¼1

�j

�
¼

Z dk

2�

�YN
j¼1

Z
d�jPð�jÞ

�
e
�ikð��PN

j¼1
�jÞ

¼
Z dk

2�

�Z d�jq
�t�1

exp½�ð�t�1 � ikÞ�j � qe��j�
�½�t�1�

�
N � e�ik�

¼
Z dk

2�

�
�½�t�1 � ik�

�½�t�1� qik
�
N
e�ik�

¼
Z dk

2�
exp



�ik�þ N log

�
�½�t�1 � ik�

�½�t�1�
�
� ikNc 0ð�� 1Þ

�

¼
Z dk

2�
exp



�ik�� t

2
k2 þOð�tkÞk2

�
! Gð�; tÞ for �t ! 0; (B4)

as also expected from the central limit theorem of statistics. Thus, the resulting distribution for the pi parameter is log-
normal.
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