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In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group

velocity of elementary excitations over a background field should not exceed the speed of light in the

vacuum c ¼ 1, and the unitarity principle as the requirement that the residue of the propagator should be

nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields,

also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of

the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-

loop approximation in QED at exponentially large magnetic field is analyzed, resulting in complex energy

ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear,

too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are

tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.

DOI: 10.1103/PhysRevD.83.105006 PACS numbers: 14.70.Bh, 11.55.Fv, 12.20.Ds, 41.20.Jb

I. INTRODUCTION

The effective action that is defined as the Legendre
transform of the generating functional of the Green func-
tions [1] and, in its turn, is itself a generating functional of
the (one-particle-irreducible) vertices makes a basic quan-
tity in quantum field theory. This is a c-numerical func-
tional of fields and their derivatives, a knowledge of which
is meant to supply one with the final solution to the theory.
For this reason it seems important to see how the most
fundamental principles manifest themselves as some gen-
eral properties of the effective action to be respected by
model or approximation-dependent calculations, and
whose violation might signal important inconsistencies in
the theory underlying these calculations. Such inconsisten-
cies may show themselves first of all as ghosts and tachy-
ons, that play an important role [2] in cosmological
speculations about forming the �-term and dark energy
using a scalar (Higgs) field yet to be discovered in the
coming experiments on the Large Hadronic Collider.

It is stated [1] based on a formal continual integral
representation for the propagator that, when the effec-
tive action �ð�Þ of a scalar field with mass m is consi-
dered, its second variational derivative �ðx� yj�0Þ ¼
�2�=��ðxÞ��ðyÞj�¼�0

calculated at the constant back-

ground value of this field, �ðxÞ ¼ �0, i.e. the mass opera-
tor against this background, is a nonpositive quantity,
� � 0. In other words, the effective Lagrangian is ex-
pected—to the extent that this formal property survives
perturbative or other approximate calculations—to be a
concave ¼ negatively convex function (while the effec-
tive potential is a [positively] convex function) of a con-
stant scalar field. On the other hand, the same statement
may be considered as the one directly prescribed by
the causality principle. Indeed, the spectral curve of
small excitations over the constant-field background is

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 � �ðkÞp

, where k ¼ ðk0;kÞ is the
(4-momentum) variable, Fourier-conjugate to the 4-
coordinate difference x� y. It satisfies the causal propa-
gation condition reading that its group velocity should not
exceed unity, the absolute speed limit for any signal,
j@k0=@kj ¼ jkj=k0 � 1 for any nonnegative mass squared
m2 � 0, provided, again, that � � 0.
The case under our consideration here is much less

trivial as we deal not with a massive scalar, but with a
massless vector gauge field. The results apply, first of all, to
nonlinear electrodynamics, but also to (the Abelian sector
of) non-Abelian theory. (Nonlinear electrodynamic mod-
els, the same as scalar ones, are also considered for cos-
mological purposes [3] with the advantage that instead of
the scalar field, uncertain to be physically identified, only
well a established electromagnetic field is involved.)
We are going to demonstrate that the requirement of the

causal propagation of elementary excitations over the vac-
uum occupied by a background field with a constant and
homogeneous field strength, supplemented by the require-
ments of translation, Lorentz, gauge, P and C invariances
and unitarity has a direct impact on the effective
Lagrangian. For the case—which is general for electro-
magnetic field, but special for a non-Abelian field—where
the Lagrangian depends on gauge-invariant combinations
(field strengths) F��ðzÞ ¼ @�A�ðzÞ � @�A�ðzÞ of the

background field potentials A�ðzÞ, we make sure that the
above requirements are expressed as certain inequalities to
be obeyed by the first and second derivatives of the effec-
tive Lagrangian with respect to the two field invariants
F¼ 1

4F��F��¼ 1
2ðB2�E2Þ and G ¼ 1

4F��
~F�� ¼ ðEBÞ,

where E and B are background electric and magnetic
fields, respectively, and the dual field tensor is defined as
~F�� ¼ 1

2 ����ßF�ß, where the completely antisymmetric

unit tensor is defined in such a way that �1230 ¼ 1. More
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specifically, we demonstrate that it is a convex function
with respect to the both variables F, G for any constant
value of F _ 0 and G ¼ 0. Note, the opposite sign of
convexity as compared to the scalar field mentioned above.

In Sec. II model- and approximation-independent study
is undertaken.

In Sec. II Awe recall the general diagonal representation
of the polarization operator and photon Green function in
terms of its eigenvectors and eigenvalues, obtained for
arbitrary values of the momentum k and for nonzero
constant-field invariants F, G in [4], and refer to our
previous work [5], where limitations on the location of
dispersion curves, imposed by demanding that the group
velocity of the vacuum excitations be less than or equal to
unity were established for the general case of nonvanishing
invariants F and G.

The unitarity requirement that the residue of the Green
function in the pole, corresponding to the mass shell of the
elementary excitation, be nonnegative (completeness of
the set of states with nonnegative norm), is formulated.

In Sec. II B we confine ourselves to the infrared asymp-
totic behavior k	 ! 0 of the polarization operator, in

which case its eigenvalues can be expressed in terms of
first and second derivatives of the effective Lagrangian
with respect to the field invariants F, G when these are
coordinate-independent. Massless dispersion curves are
explicitly found in terms of these derivatives for the mag-
neticlike case F> 0, G ¼ 0. The restrictions of Sec. II A,
now supplemented with the unitarity requirement, actu-
alize as a number of inequalities, to be satisfied by these
derivatives. They mean, in particular, that the effective
Lagrangian is a (positively) convex function of the field
invariants in the pointG ¼ 0. We reveal the physical sense
of the quantities subject to these inequalities as dielectric
and magnetic permeabilities responsible for polarizing
small static charges and currents of special configurations
(there is no universal linear response function able to cover
every configuration, which is typical of an anisotropic
medium, to which class the magnetized vacuum belongs).
In Sec. II C the inequalities of Sec. II B are extended
to include also the electriclike background field F< 0,
G ¼ 0, so in the end the whole axis of the variable F is
included into the result.

In Sec. II D we write the (quadratic in the photon field)
contribution of the polarization operator into the effective
Lagrangian, which is local in the infrared limit and
presents the Lagrangian for small, slow, long-wave pertur-
bations of the background field (infrared photons). This
enables us to define their energy-momentum tensor via the
Noether theorem. Once this is done, it becomes possible to
derive inequalities on the derivatives of the effective
Lagrangian based on an alternative pair of general require-
ments, namely, the weak energy condition and the domi-
nant energy condition of Hawking and Ellis [6]. These are
the requirements that the energy density be nonnegative

and that the energy-momentum flux vector be nonspace-
like. We demonstrate that within our context the dominant
energy condition is equivalent to restrictedness of the
group velocity, while the two alternative conditions to-
gether lead to a set of inequalities, to which the derivatives
of the effective Lagrangian are subjected, that do not
contradict the ones deduced in Sec. II B, but cannot be
reduced to them. This implies that the weak energy condi-
tion is weaker than the positiveness of the residue of the
photon propagator exploited in Sec. II B.
In Sec. III we test whether the properties resulting from

the general principles as derived in Sec. II are obeyed
within certain approximations and models. First we study
the Euler-Heisenberg one-loop effective Lagrangian of
quantum electrodynamics (Sec. II A) and the Lagrangian
of Born and Infeld (Sec. II B) to establish that the latter
perfectly satisfies all of the above properties. On the con-
trary, due to the lack of asymptotic freedom in QED, some
of them are violated by the Euler-Heisenberg Lagrangian at
exponentially large magnetic field of Planck scale, leading
to the appearance of ghosts, signifying the instability of the
magnetized vacuum. Superluminal excitations (tachyons)
might appear, too, but for the magnetic field exceeding its
instability threshold. It is a surprise that the positive con-
vexity property itself is not violated at any value of the
magnetic field. In Sec. II C we inspect two one-loop
Lagrangians that are known to produce spontaneous mag-
netic fields. One of them [7] relates to the Yang-Mills
theory taken against the uniform background formed by a
constant chromomagnetic field directed along a single
isotopic direction. The other [8] is a one-loop Lagrangian
of electromagnetic field in interaction with a complex
massless scalar field taken in de Sitter space. We find
that in the both cases the spontaneous magnetization of
the vacuum is due to the violation of the positivity property
of the Lagrangian convexity, prescribed by the general
principles of unitarity and causality. It is notable, however,
that in the Yang-Mills case the general properties of the
effective Lagrangian established in Sec. II other than the
convexity are well respected by the one-loop approxima-
tion, so neither ghosts, nor tachyons appear. We associate
this fact with the asymptotic freedom of the underlying
theory. In Sec. II D another Yang-Mills theory [9,10] in a
constant homogeneous background is inspected, wherein
the external field is this time supported by nonzero classi-
cal sources and hence a special quantization procedure was
used to substitute for gauge invariance.
In Sec. IV we attempt a comparative discussion of our

approach with other ways of introducing causality into
consideration. The conclusion is given in Sec. V.

II. GENERALITIES

A. Arbitrary dispersion k0 � 0, k � 0

Let LðzÞ be the nonlinear part of the effective
Lagrangian as a function of the two electromagnetic field
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invariants F andG and, generally, of other Lorentz scalars
that can be formed by the electromagnetic field tensor F	


and its space-time derivatives. The total action is Stot ¼R
LtotðzÞd4z, where LtotðzÞ ¼ �FðzÞ þ LðzÞ Once �F is

the classical Lagrangian the correspondence principle im-
plies that

��

�F

��������F¼G¼0
¼ 0; (1)

where � ¼ R
LðzÞd4z.

We consider the background field, which is constant in
time and space and has only one nonvanishing invariant:
F � 0,G ¼ 0 (althoughG may be involved in intermedi-
ate equations). This field is purely magnetic in a special
Lorentz frame, if F> 0, and purely electric in the opposite
case, F< 0. Such fields will be called magnetic- or elec-
triclike, respectively.

A polarization operator is responsible for small pertur-
bations above the constant-field background. In accor-
dance with the role of the effective action as the
generating functional of vertex functions, the polarization
operator is defined as the second variational derivative with
respect to the vector potentials A	

�	�ðx; yÞ ¼ �2�

�A	ðxÞ�A�ðyÞ
��������G¼0;F¼const

: (2)

The action � here is meant to be—prior to the two differ-
entiations over A	, A�—a functional containing field de-

rivatives of arbitrary order, but the fields are set constant
after the differentiations. Nevertheless, their derivatives do
contribute into the polarization operator (2) leading to its
complicated dependence on the momentum k, the variable,
Fourier conjugated to (x� y).

It follows from the translation, Lorentz, gauge, P, and
charge invariance [4,11,12] that the Fourier transform of
the tensor (2) is diagonal

�	�ðk; pÞ ¼ �ðk� pÞ�	�ðkÞ;

�	�ðkÞ ¼
X3
a¼1

ßaðkÞ[
ðaÞ
	 [ðaÞ

�

ð[ðaÞÞ2 (3)

in the following basis:

[ð1Þ
	 ¼ ðF2kÞ	k2 � k	ðkF2kÞ;

[ð2Þ
	 ¼ ð ~FkÞ	;

[ð3Þ
	 ¼ ðFkÞ	;

[ð4Þ
	 ¼ k	;

(4)

where ð ~FkÞ	 � ~F	�k�, ðFkÞ	 � F	�k�, ðF2kÞ	 � F2
	�k�,

kF2k � k	F
2
	�k�, formed by the eigenvectors of the po-

larization operator

�	�[
ðaÞ
� ¼ ßaðkÞ[ðaÞ

	 : (5)

We are working in Euclidian metrics with the results
analytically continued to Minkowski space, hence we do
not distinguish between co- and contravariant indices.

All eigenvectors are mutually orthogonal, [ðaÞ
	 [ðbÞ

	 � �ab,
and this means that the first three are 4-transversal,

[ðaÞ
	 k	 ¼ 0; correspondingly ß4 ¼ 0 as a consequence of

the 4-transversality of the polarization operator. The unit
matrix is decomposed as

�	�¼
X4
a¼1

[ðaÞ
	 [ðaÞ

�

ð[ðaÞÞ2 or �	��
k	k�

k2
¼X3

a¼1

[ðaÞ
	 [ðaÞ

�

ð[ðaÞÞ2 : (6)

The eigenvalues ßaðkÞ of the polarization operator are
scalars and depend on F and on any two of the three
momentum-containing Lorentz invariants k2 ¼ k2 � k20,

kF2k, k ~F2k, subject to one relation k ~F2k
2F � k2 ¼ kF2k

2F . The

squares of the eigenvectors are

ð[ð1ÞÞ2 ¼ �k2ðkF2kÞððkF2kÞ þ 2Fk2Þ
¼ k2k2?ð2FÞ2ðk23 � k20Þ;

ð[ð2ÞÞ2 ¼ �ðk ~F2kÞ;
ð[ð3ÞÞ2 ¼ �ðkF2kÞ:

(7)

The diagonal representation of the photon Green func-
tion as an exact solution to the Schwinger-Dyson equation
with the polarization operator (3) taken for the kernel is (up
to arbitrary longitudinal part)

D	�ðkÞ ¼
X4
a¼1

DaðkÞ[
ðaÞ
	 [ðaÞ

�

ð[ðaÞÞ2 ;

DaðkÞ ¼
� ðk2 � ßaðkÞÞ�1; a ¼ 1; 2; 3

arbitary; a ¼ 4
:

(8)

The dispersion equations that define the mass shells of the
three eigenmodes are

ßa

�
k2;

kF2k

2F
;F

�
¼ k2; a ¼ 1; 2; 3: (9)

All the equations above are valid both for magnetic- and
electriclike cases, F + 0, G ¼ 0. If, specifically, the mag-
neticlike background field F> 0, G ¼ 0 is considered, in
the special frame the field-containing invariants become

k ~F2k

2F
¼ k23 � k20;

kF2k

2F
¼ �k2?; F ¼ B2

2
; (10)

where we directed the magnetic field B along the axis 3,
and the two-dimensional vector k? is the photon momen-
tum projection onto the plane orthogonal to it. On the
contrary, if we deal with the electriclike background field
F< 0, G ¼ 0, in the special frame, where only electric
field E exists and is directed along axis 3, we have, instead
of (10), the following relations for the background-field-
and momentum-containing invariants:
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k ~F2k

2F
¼ k2?;

kF2k

2F
¼ k20 � k23; F ¼ �E2

2
; (11)

where the two-dimensional vector k? now is the photon
momentum projection onto the plane orthogonal to E. In
the both cases the dispersion equations (9) can be repre-
sented in the same form,

ßaðk2; k2?;FÞ ¼ k2; a ¼ 1; 2; 3; (12)

and their solutions have the following general structure,
provided by relativistic invariance:

k20 ¼ k23 þ faðk2?Þ; a ¼ 1; 2; 3: (13)

It is notable that the structure (13) remains valid [5]
when the second invariant is also nonzero, G � 0, this
time the direction 3 being the common direction of the
background electric and magnetic fields in the special
reference frame, where these are mutually parallel.

The causal propagation requires that the modulus of the
group velocity, calculated on each mass shell (13), be less
than or equal to the speed of light in the free vacuum c ¼ 1,

jvgrj2 ¼
�
@k0
@k3

�
2 þ

�������� @k0
@k?

��������2¼ k23
k20

þ
��������k?
k0

� f0a
��������2

¼ k23 þ k2? � ðf0aÞ2
k23 þ faðk2?Þ

� 1; (14)

where f0a ¼ dfaðk2?Þ=dk2?. This imposes the obligatory

condition on the form and location of the dispersion curves
(13), i.e. on the function faðk2?Þ, to be fulfilled within every
reasonable approximation [recall that k23 þ faðk2?Þ � 0
due to (13)],

k2?

�
dfaðk2?Þ
dk2?

�
2 � faðk2?Þ: (15)

The admissible disposition of dispersion curves was con-
sidered by us for the general case ofG � 0 in detail in [5].
We found that the massless branches of these curves
(’’photons’’), whose existence is always guaranteed by
the gauge invariance, for every polarization mode is
outside the light cone (or on it) in the momentum space,
k2 ¼ 0, whereas the massive branches all should pass
below a certain curve in the plane (k20 � k23; k

2
?), where

k3 and k? are the excitation momentum components along
and across the direction of the background magnetic and
electric fields in the special frame, where these are mu-
tually parallel. We also discussed in that reference why and
to what extent the restriction on the group velocity may be
equivalent to causality.

Now we proceed by imposing the condition, to be re-
ferred to as unitarity, that the residues of the photon propa-
gator (8) in the poles corresponding to every photon mass
shell (9) be nonnegative—the positive definiteness of the
norm of every elementary excitation of the vacuum. This
requirement implies

1� @ßaðk2; k2?;FÞ
@k2

��������k20�k23¼faðk2?Þ
� 0: (16)

In the next subsection we shall consider the consequences
of requirements (15) and (16) as these manifest themselves
in the properties of the effective Lagrangian in the infrared
limit.

B. Infrared limit: Properties of the Lagrangian
as a function of constant fields

Hitherto, wewere dealing with the elementary excitation
of arbitrary 4-momentum k	 To get the (infrared) behavior

of the polarization operator at k	 � 0 it is sufficient to have

at one’s disposal the effective Lagrangian as a function of
constant-field strengths, since their space and time deriva-
tives, if included in the Lagrangian, would supply extra
powers of the momentum k in the expression (2) for the
polarization operator. Our goal is to establish some in-
equalities imposed on the derivatives of the effective
Lagrangian L over the constant fields by the requirement
(15) that any elementary excitation of the vacuum should
not propagate with the group velocity larger than unity and
the requirement (16) that the residue of the Green function
be positive in the photon pole. To proceed beyond this limit
we had to include the space and time derivatives of the
fields into the Lagrangian. Then, utilizing the same re-
quirements (15) and (16) the results concerning the con-
vexity of the effective Lagrangian with respect to the
constant fields to be obtained below, might be, perhaps,
extended to convexities with respect to the derivative-
containing field variables.
Aiming at the infrared limit we do not include time and

space derivatives of the field strengths in the equations that
follow. Using the definition F��ðzÞ ¼ @�A�ðzÞ � @�A�ðzÞ
we find

�

�A	ðxÞ
Z

FðzÞd4z ¼
Z

F�	ðzÞ @

@z�
�4ðx� zÞd4z;

�

�A	ðxÞ
Z

GðzÞd4z ¼
Z

~F�	ðzÞ @

@z�
�4ðx� zÞd4z:

(17)

Then, for the first variational derivative of the action
one has

��

�A	ðxÞ ¼
Z �

@LðFðzÞ;GðzÞÞ
@FðzÞ F�	ðzÞ

þ @LðFðzÞ;GðzÞÞ
@GðzÞ

~F�	ðzÞ
�

@

@z�
�4ðx� zÞd4z:

(18)

By repeatedly applying Eq. (18) we get for the infrared
(IR) limit of the polarization operator in a constant external
field
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�IR
	�ðx; yÞ ¼ �2�

�A	ðxÞ�A�ðyÞ
��������F;G¼const

¼
�
@LðFðzÞ;GðzÞÞ

@FðzÞ
�

@2

@x�@x	
�h�	�

�
� @2LðFðzÞ;GðzÞÞ

@ðFðzÞÞ2
�
F�	

@

@x�

��
F��

@

@x�

�

� @2LðFðzÞ;GðzÞÞ
@ðGðzÞÞ2

�
~F�	

@

@x�

��
~F��

@

@x�

�
� @2LðFðzÞ;GðzÞÞ

@FðzÞ@GðzÞ
�

��
F�	

@

@x�

��
~F��

@

@x�

�
þ

�
~F�	

@

@x�

��
F��

@

@x�

���
F¼const

�4ðx� yÞ: (19)

The P invariance requires that the effective Lagrangian should be an even function of the pseudoscalar G. Hence the
contribution of the last term in Eq. (19)—the one in front of the square bracket—vanishes for the single-invariant fields
with G ¼ 0 under consideration.

Thus, we find for the infrared limit of the polarization operator in the magnetic- or electriclike field in the momentum
representation, �IR

	�ðk; pÞ ¼ �ðk� pÞ�IR
	�ðkÞ,

�IR
	�ðkÞ ¼

�
dLðF; 0Þ

dF
ð�	�k

2 � k	k�Þ þ d2LðF; 0Þ
dF2

ðF	�k�ÞðF��k�Þ þ @2LðF;GÞ
@G2

��������G¼0
ð ~F	�k�Þð ~F��k�Þ

�
: (20)

Here the scalar F and the tensors F, ~F are already set to be space- and time-independent. By comparing this with (3) we
identify the eigenvalues of the polarization operator in the infrared limit as

ß1ðk2; kF2k;FÞjk!0 ¼ k2
dLðF; 0Þ

dF
;

ß2ðk2; kF2k;FÞjk!0 ¼ k2
dLðF; 0ÞÞ

dF
� ðk ~F2kÞ@

2LðF;GÞ
@G2

��������G¼0
;

ß3ðk2; kF2k;FÞjk!0 ¼ k2
dLðF; 0Þ

dF
� ðkF2kÞ d

2LðF; 0Þ
dF2

: (21)

This is the leading behavior of the polarization operator
in the magneticlike field near the zero-momentum point
k	 ¼ 0. Every eigenvalue ßa is a linear function of k

2
? and

of k20 � k23, hence ßað0; 0;FÞ ¼ 0 for every a ¼ 1; 2; 3.
This is a nondispersive approximation, since the refraction
index (squared) n2a defined for photons of each mode a on
the mass shell (13) as

n2a � jkj2
k20

¼ 1þ k2? � faðk2?Þ
k20

(22)

is frequency- and momentum-independent in the infrared
limit under consideration.

For the sake of completeness, we give the same
equations (21) also in terms of the invariant variables

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

qr
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

qr
(23)

that are, respectively, the magnetic and electric fields in the
Lorentz frame, where these are parallel. Then, with the

notation ~LðB; EÞ ¼ LðF;GÞ the coefficients in (21) are

dLðF; 0Þ
dF

¼ 1

B
d~LðB; 0Þ

dB
;

d2LðF; 0Þ
dF2

¼ 1

2F

�
d2~LðB; 0Þ

dB2
� d~LðB; 0Þ

BdB

�
;

@2LðF;GÞ
@G2

��������G¼0
¼ 1

2F

�
1

E
@~LðB; EÞ

@E

���������E¼0
þ 1

2F

1

B
d~LðB; 0Þ

dB
: (24)

At this step we turn to the special case of magneticlike
background and we shall be sticking to it until the end of
the present subsection, keeping the extension of some
results to the electriclike case F< 0 to the next Sec. II C.

The dispersion curvesfaðk2?Þ near the originmaybe found

by solving Eqs. (9) in the special frame with the right-hand
sides taken as (21) and with Eqs. (10) taken into account.
This gives the linear functions for photons of modes 2 and 3
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f2ðk2?Þ ¼ k2?

�
1� LF

1� LF þ 2FLGG

�
; (25)

f3ðk2?Þ ¼ k2?

�
1� 2FLFF

1� LF

�
; (26)

where we are using the notations LFF ¼ d2LðF;0Þ
dF2 ,

LF ¼ dLðF;0ÞÞ
dF , LGG ¼ @2LðF;GÞ

@G2 jG¼0 As for mode 1, the

dispersion equation in the present approximation has only the

trivial solution k2 ¼ 0 that makes the vector potential [ð1Þ
	

corresponding to it purely longitudinal, with no electromag-
netic field carried by the mode. This is a nonpropagating
mode in the infrared limit (it is also nonpropagating within
the one-loop approximation beyond this limit; however,
massive-positronium solutions inmode 1 do propagate [13]).

The unitarity condition (16), as applied to mode 2, gives
via the second equation in (21)

1� LF þ 2FLGG � 0: (27)

Then, from the behavior of the dispersion curve (25) and
the causality (15) it follows that

1� LF � 0 (28)

and

LGG � 0: (29)

(Recall that for the magneticlike case under consideration
one has F> 0.)

Analogously, the unitarity condition (16), as applied to
mode 3, gives via the third equation in (21) again the result
(28). (This inequality also provides the positiveness of the
norm of the nonpropagating mode 1.) Then from the
behavior of the dispersion curve (26) and the causality
(15) it follows that

1� LF � 2FLFF � 0 (30)

and

LFF � 0: (31)

Inequalities (28) and (30) together provide that all the three
residues of the photon Green’s function in the complex
plane of k2?, the same as in the complex plane of (k23 � k20),
Eq. (16), are also nonnegative

1� @ßaðk2; k2?;FÞ
@k2?

��������k2
0
�k2

3
¼faðk2?Þ

� 0; (32)

at least in the infrared limit. We do not know whether this
statement is prescribed by general principles and therefore
might be expected to hold beyond this limit.

Relations (29) and (31) indicate that the Lagrangian is a
positively (downward) convex function of F for any F> 0
and of G in the point G ¼ 0.

Relations (27), (28), and (30) indicate positiveness of
various dielectric and magnetic permittivity constants that
control electro- and magnetostatics of charges and currents
of certain configurations. Equations (21) imply that the
quantities that are subject to the inequalities (27), (28), and
(30) are expressed in terms of different infrared limits of
the polarization operator eigenvalues as

1� LF ¼ lim
k2?!0

�
1� ß2jk0¼k3¼0

k2?

�
� "trð0Þ;

1� LF ¼ lim
k2?!0

�
1� ß1jk0¼k3¼0

k2?

�
� ð	w

tr ð0ÞÞÞ�1;

1� LF ¼ lim
k2
3
!0

�
1� ß3jk0¼k?¼0

k23

�
�

�
	

pl
longð0Þ

��1
;

(33)

1� LF þ 2FLGG ¼ lim
k2
3
!0

�
1� ß2jk0¼k?¼0

k23

�
� "longð0Þ;

(34)

1� LF � 2FLFF ¼ lim
k2?!0

�
1� ß3jk0¼k3¼0

k2?

�
� ð	pl

tr ð0ÞÞ�1:

(35)

It is demonstrated in the appendix of Ref. [14] that "long
and "tr are dielectric constants responsible for polarizing
the homogeneous electric fields parallel and orthogonal to
the external magnetic field, which are produced, res-
pectively, by uniformly charged planes (sufficiently far
from them as compared with the formation length of the
polarization operator), oriented across the external mag-
netic field and parallel to it; see Eqs. (123) and (125) of
[14]. These are determined by the eigenvalue ß2, the virtual
photons of the mode 2 being carriers of electrostatic force.
The quantity	w

tr ð0Þ is the magnetic permittivity constant
responsible for attenuation of the magnetic field produced
by a constant current concentrated on a line, parallel to the
external magnetic field, sufficiently far from the current-
carrying line; see Ref. [14] Eq. (110) with	ð0Þ replaced by
	w

tr ð0Þ in it. The same quantity 	w
tr ð0Þ governs the constant

magnetic field of a plane current flowing along the external
field. This magnetic permittivity is determined by mode 1.

The other two magnetic permittivities, 	pl
longð0Þ and 	pl

tr ð0Þ
are determined by mode 3. The permittivity 	pl

tr ð0Þ is
responsible for remote attenuation of the magnetic field
produced by a constant current, homogeneously concen-
trated on a plane, parallel to the external magnetic field,
and flowing in the direction transverse to it; see Ref. [14]
Eq. (135). This magnetic field is homogeneous and parallel

to the external field. Finally, permittivity 	
pl
longð0Þ is re-

sponsible for remote attenuation of the magnetic field
produced by a constant straight current, homogeneously
concentrated on a plane, transverse to the external mag-
netic field; see Ref. [14] Eq. (138). This field is also
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homogeneous. Virtual photons of the modes 1 and 3 are
carriers of magnetostatic force.

By using the wordings ‘‘sufficiently far’’ and ‘‘remote,’’
we mean distances from the corresponding sources that
essentially exceed a characteristic length of an underlying
microscopic theory, wherein the linear response is formed.
In a material medium that may be an interatomic distance;
in perturbative QED this is the electron Compton length.

Relations (33)–(35) mean that the inequalities (27), (28),
and (30) signify the positiveness of all the characteristic
permittivities of the magnetized vacuum, which was de-
rived above on a general basis. Besides, thanks to (33),
there exists the equality between one dielectric and two
(inverse) magnetic permittivities

"trð0Þ ¼ ð	w
tr ð0ÞÞ�1 ¼ ð	pl

longð0ÞÞ�1: (36)

The first equality here is a direct consequence of the
invariance under the Lorentz boost along the magnetic
field in the special frame (see Eq. 74 in [14]) and can
be extended to the permittivity functions as defined in
[14] by Eq. (128) and the right equation (121), "trðk2?Þ ¼ð	w

tr ðk2?ÞÞ�1.

Relations (33)–(35) together with (29) and (30) also
mean that the longitudinal dielectric constant should be
always larger than the transversal one

"longð0Þ � "trð0Þ; (37)

while the magnetic permittivities should satisfy the oppo-
site inequality

	
pl
tr ð0Þ � 	

pl
longð0Þ: (38)

C. Electriclike background field

0In this subsection we shall see how the inequalities
(27)–(31) derived in the previous subsection are extended
to the negative domain of the invariant F.

Bearing in mind Eqs. (11) we may solve again disper-
sion Eqs. (12) using Eqs. (21) to get the photon dispersion
curves in the electriclike background field in the infrared
approximation. For mode 2 this results in

k20 � k23 ¼ k2?

�
1þ 2FLGG

1� LF

�
; (39)

while for mode 3 in

k20 � k23 ¼ k2?

�
1� LF

1� LF � 2FLFF

�
(40)

[compare this with (25) and (26)]. The unitarity relation
(16) applied to mode 2 leads to the inequality (28). The
causality condition (15), when applied to (39) requires that

�
1þ 2FLGG

1� LF

�
2 �

�
1þ 2FLGG

1� LF

�
: (41)

This implies that the right-hand side of the inequality (41)
be positive and thus the both sides can be divided on it.
Then the inequality (41) becomes the inequality (27)�

1þ 2FLGG

1� LF

�
< 1: (42)

In view of (28) this means that 2FLGG < 0. Once F is
negative for the electriclike case under consideration now,
we come again to the convexity condition (29), now in the
domain of negative F. By applying the same procedure to
mode 3 we quite analogously reproduce Eqs. (30) and (31).

D. Energy-momentum conditions

Now we proceed with describing general restrictions
imposed by the physical requirement that the energy den-
sity of elementary excitations of the magneticlike back-
ground (magnetized vacuum) be nonnegative (’’weak
energy condition’’ in terms of Ref. [6])

t00 � 0 (43)

and that their energy-momentum flux density be nonspace-
like (’’dominant energy condition’’ of Ref. [6])

t20
 � 0 (44)

in order to compare the results with the conclusions of
Sec. II B.
We have to define the energy-momentum tensor t	
ðxÞ

of small perturbations of the background field by first
defining their Lagrangian. The total effective Lagrangian
Ltot ¼ �Fþ L expanded near the background constant
magnetic field contributes into the total action—in view
of the definition (2)—the following correction, quadratic in
the small perturbation a	ðxÞ above the background:

Ssqrtot ¼ 1

2

Z
a	ðxÞ

�
�
�
�	
@

2
� � @

@x	

@

@y


�
�ðx� yÞ

þ�	
ðx; yÞ
�
a
ðyÞd4xd4y: (45)

The field intensity of the perturbation will be denoted as
f	
 ¼ @	a
 � @
a	. Using the diagonal form of the po-

larization operator (3) we get in the momentum represen-
tation

Lsqr
tot ðkÞ ¼ 1

4
f2 þ 1

4

�
�ß1

k2
f2 þ ß1 � ß2

2k ~F2k
ððf ~FÞÞ2

þ ß1 � ß3
2kF2k

ððfFÞÞ2
�
: (46)

Here the notations are used: ðfFÞ	
 ¼ f	�F�
 ¼ ðFfÞ
	,
ðfFÞ ¼ ðfFÞ		 ¼ ðFfÞ, f2	
 ¼ f	�f�
, f2 ¼ f2		 ¼
�ðf	
Þ2, and we have exploited the relations f2¼
�2a	ðk2�	
�k	k
Þa
, ðfFÞ¼2ðaFkÞ. This Lagrangian
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is nonlocal, since it depends on momenta in a complicated
way; in other words, it depends highly nonlinearly on the
derivatives with respect to coordinates. It becomes local if
we restrict ourselves to the infrared limit by substituting
Eqs. (21) into it. Then the quadratic Lagrangian acquires
the very compact form

Lsqr
tot ¼ 1

4
f2ð1� LFÞ þ 1

8
ðLGGððf ~FÞÞ2 þ LFFððfFÞÞ2Þ:

(47)

This Lagrangian, quadratic in the field f	
ðxÞ, does not

contain its derivatives, F	
, ~F	
, LF, LGG, and LFF being

constants depending upon the background field alone.
It governs small-amplitude low-frequency and low-
momentum perturbations of the magnetized vacuum, free
of or created by small sources. It might be obtained also
directly by calculating the second derivative (2) of the
Lagrangian defined on constant fields [15].

Once the background is translation-invariant, there is a
conserved energy-momentum tensor t	
ðxÞ of the field f	


provided by the Noether theorem by considering variations
of this field. Applying the standard definition of the energy-
momentum tensor to the field of small perturbation a	 and

to its Lagrangian (47) we get

t	
ðxÞ ¼ � @Lsqr
tot

@ð@a�=@x
Þ
@a�
@x	

þ �	
L
sqr
tot

¼ � @a�
@x	

�
f�
ð1� LFÞ þ 1

2
ðf ~FÞLGG

~F�


þ 1

2
ðfFÞLFFF�


�
þ �	
L

sqr
tot : (48)

The Maxwell equations for small sourceless perturbations
of the magnetized vacuum are

�Lsqr
tot

�a�
¼ @

@x


@Lsqr
tot

@ð@a�=@x
Þ
¼ �@

@x


�
f�
ð1� LFÞ þ 1

2
ðf ~FÞLGG

~F�


þ 1

2
ðfFÞLFFF�


�
¼ 0: (49)

We are going to use the standard indeterminacy in the
definition of the energy-momentum tensor to let it depend
only on the field strength f	
, and not on its potential. To

this end we add the quantity (the designation ¼: below
means ‘‘equal up to full derivative’’)

@Lsqr
tot

@ð@a�=@x
Þ
@a	
@x�

¼: �a	
@

@x�

@Lsqr
tot

@ð@a�=@x
Þ
¼a	

@

@x�

�
f�
ð1�LFÞþ1

2
ðf ~FÞLGG

~F�


þ1

2
ðfFÞLFFF�


�
(50)

to (48), that disappears due to the Maxwell equations (49),
taking into account the antisymmetricity of the expression
inside the braces. Hence the energy-momentum tensor may
be equivalently written as

t	
ðxÞ
¼�f2	
ð1�LFÞ�1

2
ðf ~FÞLGGðf ~FÞ	
�1

2
ðfFÞLFFðfFÞ	


þ�	


4

�
f2ð1�LFÞþ1

2
LGGððf ~FÞÞ2þ1

2
LFFððfFÞÞ2

�
:

(51)

This tensor is traceless, t		 ¼ 0. It obeys the continuity

equation with respect to the second index
@t	


@x

¼ 0 (52)

owing to the Maxwell equations (49). Hence, the
4-momentum vector obtained by integrating t0	 over the

spatial volume d3x conserves in time.
Let us take (51), first, on the monochromatic—with

4-momentum k	—real solution of the Maxwell

equations (49) that belongs to the eigenmode 3: fð3Þ	
 ¼
k	[

ð3Þ

 � k
[

ð3Þ
	 . One has ðfð3ÞFÞ	
¼[ð3Þ

	 [ð3Þ

 �k	ðF2kÞ
,

ðfð3ÞFÞ¼�2ðkF2kÞ, ðfð3ÞÞ2	
¼�k2[ð3Þ
	 [ð3Þ


 þk	k
ðkF2kÞ,
ðfð3ÞÞ2 ¼ 2k2ðkF2kÞ, ðfð3Þ ~FÞ ¼ 0. With the substitution

f	
 ¼ fð3Þ	
 the Maxwell equation (49) is satisfied, when

[ð3Þ
� fk2ð1� LFÞ þ ðkF2kÞLFFg ¼ 0; (53)

i.e., naturally, on the dispersion curve (26) for mode 3. It is
seen that the Lagrangian (47) disappears on the mass shell

of mode 3, L
sqrð3Þ
tot ¼ 0. Then, the reduction of the energy-

momentum tensor (51) onto this mode, tð3Þ	
ðxÞ, should be
written with its �	
 part dropped,

tð3Þ	
ðxÞ ¼ ð1� LFÞðk2[ð3Þ
	 [ð3Þ


 � k	k
ðkF2kÞÞ
þ ðkF2kÞLFFð[ð3Þ

	 [ð3Þ

 � k	ðF2kÞ
Þ: (54)

Then, after omitting the common factor �ðkF2kÞ equal to
2Fk2? > 0 in a magnetic field, and to 2Fðk20 � k23Þ> 0 in

an electric field, and using the mass shell equation once
again, we get

tð3Þ	
ðxÞ ¼ ð1� LFÞk	k
 þ k	LFFðF2kÞ
: (55)

Although we referred to the magneticlike background
above in this subsection, all the equations written in it up
to now remain, as a matter of fact, valid also for the
electriclike case. In the rest of this subsection we actually
specialize to the magnetized vacuum, although the con-
clusions may be readily extended to cover the electrified
vacuum, as well. When F> 0, in the special frame
ðF2kÞ0;3 ¼ 0, ðF2kÞ1;2 ¼ �2Fk1;2 It is convenient to write

the energy-momentum density vector in components
(counted as 0, 1, 2, 3 downward)
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tð3Þ0
 ¼ k0

k0ð1� LFÞ
k1ð1� LF � 2FLFFÞ
k2ð1� LF � 2FLFFÞ

k3ð1� LFÞ

0
BBB@

1
CCCA




: (56)

The spatial part of this vector density is parallel to the

group velocity vð3Þgr ¼ ðdk0=dkÞ calculated on the mode-3-
mass-shell as defined by the dispersion law (13) and (26)

tð3Þ0i ¼ ðvð3Þ
gr Þik0ð1� LÞ: (57)

The positive definiteness of the energy density (43) results
again in the requirement that the inequality (28) be satis-
fied. The causality in the form of the dominant energy
condition (44) makes us expect that vector (56) should be
nonspacelike. Now, from (56) with the use of the disper-
sion law (26) this condition becomes

tð3Þ20;	 ¼ k20fðk23 � k20Þð1� LFÞ2 þ k2?ð1� LF � 2FLFFÞ2g
¼ �2FLFFk

2
0k

2
?ð1� LF � 2FLFFÞ � 0: (58)

Owing to relation (57), this is exactly equivalent to the
requirement (14) that the group velocity of mode 3 photons
should not exceed the speed of light in the vacuum.

The same operations, performed over the energy-
momentum tensor (51) taken on mode 2, result (after
omitting the positive factor �k ~F2k) in an expression for

the energy-momentum tensor tð2Þ	
 that is obtained from (55)
by the duality transformation F ! ~F, LFF ! LGG. When

F> 0, in the special frame ðF2kÞ1;2 ¼ 0. ðF2kÞ0;3 ¼
2Fk0;3, so

tð2Þ0
 ¼ k0

k0ð1� LF þ 2FLGGÞ
k1ð1� LFÞ
k2ð1� LF

k3ð1� LF þ 2FLGGÞ

0
BBB@

1
CCCA




: (59)

The positivity of the energy density tð2Þ00 leads to the

inequality (27). The group velocity of mode 2 is again
parallel to the momentum density 3-vector

tð2Þ0i ¼ ðvð2Þ
gr Þik0ð1� LF þ 2FLGGÞ: (60)

The causality in the form of the dominant energy condition
(44) leads from (59) with the use of the dispersion law
(25) to

tð2Þ20	 ¼ �2FLGGk
2
0ðk20 � k23Þð1� LF þ 2FLGGÞ � 0:

(61)

Owing to relation (60), this is exactly equivalent to the
requirement (14) that the group velocity of mode 2 photons
should not exceed the speed of light in the vacuum. Bearing
in mind that Eq. (27) is already established, Eq. (29)
follows from (61).

To resume, we were able to reproduce in this subsection
the requirements (27)–(29) but the remaining requirements
(30) and (31) do not follow from (58), although the latter

does not contradict them. Since, as it was explained, the
form of the causality conditions (44) used in this subsec-
tion is equivalent to the group velocity restriction (14), we
think that our analysis has indicated that the energy-density
nonnegativity (43) condition is somewhat weaker than the
unitarity condition in the form (16).
The fulfillment of (58) and (61) is guaranteed by the

inequalities (27), (29), and (30) established in Sec. II B.
However, the inverse statement would be wrong: the in-
equalities (58) and (61), derived in the present subsection
do not yet lead to (27), (29), and (30). This may indicate
that the two conditions (16) (unitarity as the positivity of
the residue) and (14) (causality as the boundedness of the
group velocity), used to derive the limitations (27)–(30) of
Sec. II B, are together more restrictive than the two prin-
ciples (43) (energy positiveness) and (44) (causality as
nonspacelikeness of the energy-momentum density),
although the latter provide the fact that when solving the
Cauchy problem initial data have no influence on what
occurs outside their light cone. (This is proved in [6] within
general relativity context.)

III. TESTING CERTAIN LAGRANGIANS

A. Euler-Heisenberg effective Lagrangian

In the one-loop approximation of QED the quantities
involved can be calculated either using the Euler-

Heisenberg effective Lagrangian L ¼ Lð1Þ [16], when the
infrared limit is concerned or, alternatively, the one-loop
polarization operator calculated in [4] for off-shell pho-
tons—within and beyond this limit. In the infrared limit the
photon-momentum-independent coefficients in (21) within
one loop are the following functions of the dimensionless
magnetic field b ¼ eB=m2, where e and m are the electron
charge and mass:

L ð1Þ
F ¼ �

2�

Z 1

0

dt

t
exp

�
� t

b

��� cotht

t
þ 1

sinh2t
þ 2

3

�
;

(62)

2FLð1Þ
GG ¼ �

3�

Z 1

0

dt

t

� exp

�
� t

b

���3 cotht

2t
þ 3

2sinh2t
þ t cotht

�
;

(63)

2FLð1Þ
FF¼

�

2�

Z 1

0

dt

t
exp

�
� t

b

��
cotht

t
�2tcotht

sinh2t
þ 1

sinh2t

�
:

(64)

Here � ¼ e2=4� ¼ 1=137 is the fine-structure constant.
(We refer to the Heaviside-Lorentz system of units with
c ¼ ℏ ¼ 1). Equation (62) turns to zero as F� b2, since
the divergent linear in the F part of the one-loop diagram
was absorbed in the course of renormalization into Lcl.
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It can be verified that the general relations (27)–(31) or-
dained by unitarity (16) and causality (15) to the infrared
limit are obeyed by the one-loop approximation within the
vast range of the magnetic field values. (We are not con-
sidering in the present context the electriclike case, since
the [one-loop] Euler-Heisenberg Lagrangian suffers the
known instability under spontaneous production of
electron-positron pairs.) However, due to the known lack
of asymptotic freedom in QED [17], some of the general
relations are violated for exponentially strong fields of
Planck scale. One can establish the asymptotic behavior of
(62)–(64) in the limit b ¼ eB=m2 ! 1

Lð1Þ
F ’ �

3�
ðlnb� 1:79Þ;

2FLð1Þ
GG ’ �

3�
ðb� 1:90Þ;

2FLð1Þ
FF ’ �

3�
:

(65)

One can see then that the convexity properties (29) and
(31) and hence the inequalities (37) and (38) are left intact
under arbitrarily strong magnetic field within one loop. So
is the inequality (27), thanks to the linearly growing [18]

term in Lð1Þ
GG. On the contrary, Eq. (30) is violated for

b > bcr1 ¼ expf0:79þ 3�=�g, and Eq. (28) for b > bcr2 ¼
expf1:79þ 3�=�g> bcr1 .

Let us inspect consequences of these violations. First
note that the inequality (15) requires that faðk2?Þ � 0,
hence no branch of any dispersion curve may get into the
region k20 � k23 < 0. If it might, the photon energy k0 would
have an imaginary part within the momentum interval 0<
k23 <�faðk2?Þ, corresponding to the vacuum excitation

exponentially growing in time. This sort of ghost would
signal the instability of the magnetized vacuum. Inequality
(15) further requires that

df1=2a ðk2?Þ
dk?

� 1; or f1=2a ðk2?Þ � constþ k?: (66)

All the dispersion curves (25) and (26) in the infrared
approximation we are dealing with correspond to zero-
mass vacuum excitations k0jk3¼k?¼0 ¼ 0—photons, since

fð0Þ ¼ 0. Therefore const ¼ 0.
Consider, first, mode 2. We mentioned that relation (27),

which is the positive-norm condition for this mode, is
fulfilled for any large b. When b < bcr2 , also the dispersion

curve goes outside the light cone,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k33

q
� k?, as it is

prescribed by Eq. (66) with const ¼ 0. However, the
bracket in (25) becomes negative for b > bcr2 , and
mode 2 becomes a complex energy ghost.

Now comes mode 3. The positive norm condition for it,
[relation (28)], is fulfilled, when b < bcr2 . However, within
the range bcr1 < b< bcr2 the bracket in (26) is negative, and

mode 3 is a complex energy ghost. For b > bcr2 the disper-
sion curve (26) for mode 3 photon gets inside the light

cone,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k33

q
� k?, in contradiction with Eq. (66) and

thus becomes a superluminal excitation, tachyon, with real
energy and negative norm. Note that these superluminal
excitations, peculiar to mode 3, can hardly appear in
reality, since the background field becomes unstable before
it can reach, when growing, the necessary critical value
b ¼ bcr2 . An instability of the magnetized vacuum with
respect to production of a constant field is associated
with the imaginary energy at zero momentum. The ele-
mentary excitation with this property appears in mode 3 at
a smaller threshold value, bcr3 , than in mode 2, bcr2 . The
instability associated with mode 2 ghosts may lead to
gaining the constant field with G � 0, since the (pseudo)

vector potential [ð2Þ
	 (4) carries an electric field component,

parallel to the background magnetic field, whereas in [ð3Þ
	

this component is perpendicular to B.
The borders of stability of the magnetic field found here

by analyzing the one-loop approximation are characterized
by the large exponential expf1=�g. It is much larger than
the border found earlier [19] as the value where the mass
defect of the bound electron-positron pair completely com-
pensates the 2m energy gap between the electron and
positron, which is of the order of expf1= ffiffiffiffi

�
p g

B. Born-Infeld Lagrangian

The situation is quite different for the Born-Infeld elec-
trodynamics with its Lagrangian

Ltot ¼ LBI ¼ a2
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2F

a2
�G2

a4

s �
(67)

viewed upon as final, not subject to further quantization.
Here a is an arbitrarily large parameter with the dimen-
sionality of mass squared. The correspondence principle
(1) is respected by Eq. (67). It does not contain field
derivatives, hence all the infrared limits encountered in
this paper should be understood as exact values, for in-
stance, going to the limit is unnecessary in (33)–(35). The
Lagrangian (67) was derived long ago [20] based on very
general geometrical principles of reparametrization invari-
ance, and besides it attracted much attention in recent
decades thanks to the fact that it appears responsible for
the electromagnetic sector of a string theory [21] and thus
is expected not to suffer from the lack of asymptotic free-
dom. For this reason our statement to follow, that all the
fundamental requirements established in Sec. II are obeyed
in the Born-Infeld electrodynamics (67), is instructive. We
assume again that there is the constant and homogeneous
magneticlike external background and set G ¼ 0 after
differentiation. Then, we get from (67)
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1� LBI
F

¼
�
1þ 2F

a2

��ð1=2Þ � 0;

LBI
FF

¼ a�2

�
1þ 2F

a2

��ð3=2Þ � 0;

LBI
GG

¼ a�2

�
1þ 2F

a2

��ð1=2Þ � 0;

1� LBI
F
þ 2FLBI

GG
¼

�
1þ 2F

a2

�
1=2 � 0;

1� LBI
F
� 2FLBI

FF
¼

�
1þ 2F

a2

��ð3=2Þ � 0;

(68)

where LBI ¼ LBI þ 2F. Thus, relations (27)–(31) are all
satisfied, hence there are neither ghosts nor tachyons. The
mode 1 remains nonpropagating. As for modes 2 and 3,
their dispersion curves coincide, since f2ðk2?Þ ¼ f3ðk2?Þ in
(25) and (26) due Eqs. (68). This reflects the known
absence of birefringence in the Born-Infeld electrodynam-
ics [22]. Still, beyond the mass shell one has ß2 � ß3,
consequently the corresponding permeabilities (33)–(35)
are different. The same as in the one-loop QED, in the limit
of large external field there is a linearly growing contribu-
tion in ß2, so mode 2 dominates, the dielectric permeability
(34) behaving like the middle equation in (65)

"BIlongð0Þ ’ 2FLBI
GG

’ B

a
; (69)

with the identification a ¼ ð3�=�ÞB0, where B0 ¼
m2=e ¼ 4:4� 1014 Gauss is the characteristic field
strength in QED. As a matter of fact, however, it is
believed that a should be of the Planck scale a ’ m2

Pl=e ¼
5:8� 1044B0

If we include the electriclike case we shall see that
Eqs. (68) are all fulfilled within the interval �ða2=2Þ<
F<1, at the border of which the Lagrangian (68) be-
comes imaginary (recall that G ¼ 0.)

C. Lagrangians giving rise to spontaneous
magnetic field

In this subsection we consider, as counterexamples, two
effective Lagrangians that lead to nonzero magnetic field
as the minimum energy point and are thus conventionally
interpreted as spontaneously producing a constant homo-
geneous magnetic field Bsp. In both of these cases below,

one of which relating to a non-Abelian gauge theory, the
fundamental properties of the Lagrangian established in
Sec. II B are violated in and around the point B ¼ Bsp.

1. Batalin-Matinian-Savvidy Lagrangian

These authors calculated [7]—with the one-loop accu-
racy and using Schwinger’s proper-time method—the ef-
fective Lagrangian in the Yang-Mills theory as a function
of two time- and space-independent field invariants.

The intensity tensor Ga
	
 ¼ @Aa

	 � @Aa

 � g�abcAb

	A
c



is subject to the sourceless equation

rab

 Gb


	 ¼ 0; (70)

with the standard covariant derivative rab
	 ¼ �ab@	 þ

gAab
	 , Aab ¼ �acbAc

	. Here the superscript a is responsible

for the isotopic degree of freedom, the subscript 	 ¼ ði; 0Þ
runs the space-time components, g is the coupling con-
stant, and �abc are the structural constants of SU(2). The
simplest solution of Eq. (70) is the covariant constant field
that satisfies the equation

rab
� Gb


	 ¼ 0: (71)

It follows from (71) that the intensity tensor factorizes as
Ga

	
 ¼ F	
n
a, i.e. it is directed in the isotopic space along

a permanent direction of the constant (chosen as unit)
isotopic vector na, F	
 being a constant tensor, carrying

the chromomagnetic and chromoelectric background
fields. In a special gauge the vector potential may be
chosen as Aa

	 ¼ A	n
a ¼ �ð1=2ÞF	
x
n

a. It is seen that

the present case is mostly close to quantum electrodynam-
ics, the calculations can be made in a gauge-independent
way and the result for the effective Lagrangian depends
on the background Abelian field via the field invariants F
and G defined in terms of the tensor F	
 in the same way

as in QED.
The polarization operator responsible for propagation of

small non-Abelian fields (gluons) against the background
considered is, generally, defined by an equation similar
to (2),

�ab
	�ðx; yÞ ¼ �2�

�Aa
	ðxÞ�Ab

�ðyÞ
��������G¼0;F¼const;Aa

	¼A	n
a
: (72)

Then the polarization operator (2) is the projection of (72)
to the only isotopic direction

�	�ðx; yÞ ¼ nanb�ab
	�ðx; yÞ: (73)

This quantity governs the propagation of small perturba-
tions of the background field polarized in the isotopic space
parallel to that field (call them chromophotons). The po-
larization operator (73) possesses all the properties ex-
ploited in Sec. II, hence it makes sense to inspect
whether the Batalin-Matinian-Savvidy Lagrangian obeys
the properties (27)–(31) relating to propagation of long-
wave low-frequency chromophotons.
The total Lagrangian is again L ¼ �Fþ L, where �F

is the tree Lagrangian on the covariantly constant fields
under consideration. After renormalization the one-loop
result of Ref. [7] for the real part of the effective
Lagrangian L can be represented as
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LðF;G2Þ ¼ ~LðB; EÞ ¼ 1

8�2

Z 1

0

ds

s

�
g2BE

sinhðgBsÞ sinðgEsÞ �
1

s2
þ g2ðB2 � E2Þ

6

�
e�	2s

þ 1

4�2

Z 1

0

ds

s
g2
�
EB

�
sinðgBsÞ
sinhðgEsÞ �

sinðgEsÞ
sinhðgBsÞ

�
þ E2 �B2

�
e�	2s; (74)

where the invariant combinations B and E are defined by
(23) and coincide with the chromomagnetic and chromo-
electric fields in a special Lorentz frame, respectively. The
normalization condition, obeyed by (74), contrary to (1),
was imposed in a nonzero point

dLðF; 0Þ
�F

�������� ffiffiffiffiffi
2F

p
¼	2

� 1

B
d~LðB; 0Þ

dB

��������B¼	2
¼ 0: (75)

The equality here is the first line of (24). The integral
in (74) is convergent in the ultraviolet (s ’ 0) and the
infrared (s ’ 1) regions of the proper-time integration
variable s.

When G ¼ 0 and F> 0, one has E ¼ 0 and B ¼ ffiffiffiffiffiffiffi
2F

p
,

L ðF; 0Þ ¼ ~LðB; 0Þ ¼ 1

8�2

Z 1

0

ds

s

�
gB

s sinhðgBsÞ �
1

s2
þ g2B2

6

�
e�	2s þ 1

4�2

Z 1

0

ds

s
g2
�
B
sinðgBsÞ

gs
�B2

�
e�	2s: (76)

The asymptotic behavior of (74) and of (76) at F ! 1 are
the same as at 	2 ! 0, since (74) is a function of the ratio
	2=B. Equation (76) behaves as

L ðF; 0Þ≍� 11

48�2
g2F ln

�
2g2F

	4

�
: (77)

Correspondingly, in the leading order

LF ¼ � 11

48�2
g2 ln

�
2g2F

	4

�
; 2FLFF ¼ � 11g2

24�2
:

(78)

It follows from (74) with the use of (24) that

2FLGG ¼ 1

E

�
@~LðB; EÞ

@E

���������E¼0
þ 1

B
d~LðB; 0Þ

dB

¼ g2

4�2

Z 1

0

dt

t

��t sint

3
þ sinht� t cosht

2tsinh2t
þ sint

t
þ cost� 11

6

t

sinht

�
exp

�
� 	2

gB
t

�
; (79)

where t ¼ gBs. The integral of the first term in the bracket
is readily calculated to be equal to �1 in the limit
ð	2=gBÞ ¼ 0, whereas the rest of it converges—even
without the infrared regularization—to a constant calcu-
lated numerically. The convergence of (79) in the limit of
infinite magnetic field, unlike the QED expression (63), is
the formal reason why the linearly growing contribution to
the dielectric permeability of the magnetized vacuum,
found responsible for the formation of a stringlike
Coulomb potential in QED [23], is absent from chromo-
magnetized vacuum. Finally, in the above limit, we get

2FLGG ¼ � g2

4�2

�
1

3
þ 1:5 . . .

�
¼ � 11g2

24�2
: (80)

Contrary to (65), the contribution, linear in the magnetic
field, is not present here.

We see from (78) and (80) that the general conditions
(28), (27), and (30), derived in Sec. II for the dielectric and
magnetic permeabilities, are obeyed, while the convexity
properties (29) and (31) are not. So, the chromomagnetized

vacuum is free, within the one-loop approximation, of
superluminal excitations and ghosts, characteristic of the
Euler-Hiesenberg approximation in QED, as described in
Sec. III A above. On the contrary, the wrong convexity
LFF < 0 results in the fact that the effective potential

Veff ¼ �L has its minimum at a nonvanishing value of
the magnetic field [24]. Bearing in mind that any constant
magnetic field satisfies exact equation of motion without
sources due to gauge invariance, it is concluded that the
nonzero magnetic field is produced spontaneously. (As
distinct to the scalar Higgs case, the equation for potential
minimum is not an equation of motion for the gauge field.)
However, the shift to the minimum point does not result in
improving the wrong convexity sign. The matter is that
there is an instability of the magnetic field reflected in
appearance of imaginary part of the effective Lagrangian
(already for the magneticlike case under consideration) due
to contribution of unstable gluon mode in a magnetic field
[25] into the spectral decomposition of the effective action.
(The presence of the imaginary part not seen in [7] may be
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reproduced [9,26] also in calculations following
Schwinger’s proper time technique). This instability is
known to be resolved by going out of the sector of cova-
riantly constant fields.

2. Kawati-Kokado Lagrangian

The Lagrangian of the named authors [8] is remarkable
in that it proclaims spontaneous production of the magnetic
field as large as 1045–1047 G in the course of inflation. The
model includes interaction between an electromagnetic
and a complex massless scalar fields considered in
de Sitter space-time. When there is no direct coupling
between the scalar field and the de Sitter metric field, the
Lagrangian, calculated as a function of a constant magnetic
field, which satisfies sourceless equations of motion, is

L ¼ � 1

2
B2 � e2B2

192�2

�
ln
e2B2

2
þ �

�
þH2 ln2

8�2
jeBj; (81)

where H is the Hubble constant incorporated in the
de Sitter metric,  is a parameter taken to adjust
the dimension, and � is a certain numerical parameter.
The convexity of the Lagrangian (81) with respect to the
variable F ¼ �B2=2 is upward in the region F> 0, in
other words condition (31) is violated throughout the mag-
neticlike domain of F. As a consequence, the effective
potential, which is the Lagrangian taken with the opposite
sign, has a minimum at B ¼ Bsp with

Bsp ¼ eH2

8�2
: (82)

[The small quantity (e2=192�2) was neglected.] The value
of the spontaneous magnetic field listed above is obtained
in [8] taking the typical values for the Hubble constant,
H � 1015–1017 Gev, in (82). Its existence is completely
due to the violation of the general principles, reflected in
Eq. (31). Note that, as distinct from the Higgs mechanism,
the wrong convexity of the Lagrangian is not improved
after the shift to the value (82). The other general require-
ment, Eq. (28), is violated for B< Bsp. Unlike the QED

case of Sec. III A, this violation occurs at small values of
the magnetic field. [We cannot check conditions (27) and
(29), since calculations with the second field-invariant G
kept different from zero are not available.]

D. Yang-Mills field with external source

The one-loop effective Lagrangian as a function of the
background Yang-Mills (gluon) field that has a nonvanish-
ing classical source Ja	 was calculated in [9,10] within a

special quantization procedure needed to substitute for the
gauge invariance violated by that source. In this approach
the vanishing of the covariant derivative rac

k JckðtÞ, required
by the gauge invariance, is achieved by treating this
derivative as the secondary constraint. Correspondingly,
under quantization, the functional delta function

�ðrac
k JckðxÞÞ appears in the functional integral over the

gluon field to restrict, in the course of integration, their
values involved in this covariant derivative.
Let there be a constant background (classical) SU(2)

Yang-Mills potential that in a special Lorentz frame and
in a special gauge has the form

Aa
i ¼ ðA2=3Þ1=2�a

i ; Aa
0 ¼ 0; (83)

where �a
i is the Kronecker symbol and A2 ¼ Aa

	A
a
	. Here

the superscript a is responsible for the isotopic degree of
freedom, while the subscript 	 ¼ ði; 0Þ marks the space-
time components. The field intensity tensor of the constant
potential (83) is Ga

	
 ¼ g�abcAb
	A

c

, where g is the self-

coupling constant, and �abc are the SU(2) fully antisym-
metric unit tensor. The Yang-Mills equation is

rab

 Gb


	 ¼ � 2

3
g2A2Aa

	; (84)

with the standard covariant derivative rab
	 ¼�ab@	þ

gAab
	 , Aab

	 ¼ �acbAc
	. We see that the constant field (83)

requires the nonvanishing spacelike current

Ja	 ¼ 2

3
g2A2Aa

	 (85)

to be supported with. The classical field (83) obviously
satisfies the current-conservation condition rac

k JckðxÞ ¼ 0.
In what follows we use the notation for the field in-
variant F ¼ ð1=4ÞGa

	
G
a
	
. The normalization condition

d4 ReL=dA4jGð0Þ ¼ �4g2r is imposed in an arbitrary normal-

ization pointGa
	
¼Ga

ð0Þ	
 to fix the renormalized coupling

constant g. HereL ¼ �Fþ L is the full andL the effective
Lagrangian, the tree Lagrangian being �F. According to
Ref. [10] the calculation within one-gluon-one-ghost loop
gives for the real part of the latter (F � F0)

ReL ¼ �F
25g2

16�2
þ 3g2

16�2
F ln

F

F0

: (86)

(The principle of correspondence realizes differently
from QED: radiative corrections contribute also into the
part, linear in F, since the normalization point F0 is not
zero.)
It is seen that the Lagrangian is a convex function of F,

LFF ¼ ð3g2=16�2FÞ> 0, throughout the whole magnet-

iclike domain of validity F � F0, unlike the Matinian-
Savvidy and Kawati-Kokado Lagrangians considered in
Secs. III C and III D. Consequently, no constant magnetic
field is spontaneously produced. However, the presence of
nonzero imaginary part of the Lagrangian of Ref. [10],
ImL ¼ �ð12:15g2=6�2ÞF, makes the theory unstable
under creation of gluonic tachyons. Unlike the case of
Sec. III C, their spectra turn to zero in the zero-momentum
point (see [10] for details), which explains why no constant
field is gained in the present case. As for condition (28), it
is violated for F> F expð22þ 16�2=3g2Þ. Therefore the
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effective Lagrangian in the theory of Ref. [10] is closer to
that of Euler-Heisenberg in what concerns its causal-
unitarity properties: condition (31) is fulfilled for arbi-
trarily large magnetic field, while condition (28) is violated
in the domain of exponentially large fields, which signifies
the lack of asymptotic freedom in both theories. [We
cannot check conditions (27) and (29), because calcula-
tions with the second field-invariant kept different from
zero are not available.]

IV. DISCUSSION

In the present paper, for establishing obligatory proper-
ties of the effective Lagrangian we exploited two general
principles—unitarity and causality—taken in the special
form of the requirements of nonnegativity of the residue
(16) and of boundedness of the group velocity (14). We feel
it necessary to confront this action with other approaches.

Usually, consequences of causality and unitarity are
discussed referring to holomorphic properties of the polar-
ization operator (or of the dielectric permittivity tensor)
that follow from the retardation of the linear response
and are expressed—after being supplemented by certain
postulates concerning the high-frequency asymptotic con-
ditions—as the Kramers-Kronig (once-subtracted) disper-
sion relations. Although the general proof of an analog of
the Kramers-Kronig relation in a background field is lack-
ing from the literature, for the magnetized vacuum the
holomorphity of the polarization operator eigenvalues ßa
in a cut complex plane of the variable (k20 � k23) was

established within the one-loop approximation [11,12],
the probability of electron-positron pair creation by a
photon making the cut discontinuity. Nevertheless, as we
could see in Sec. III A, this approximation includes the
appearance of negative-norm ghosts and tachyons in con-
tradiction with causality and unitarity. Thus, the knowl-
edge of the holomorphic properties is not enough to be sure
that the causality and unitarity requirements have been
exploited at full.

More specifically the causality is approached by refer-
ring to what is called ‘‘causal propagation.’’ Here the
Hadamard’s method [27] of characteristic surface (the
wave front), across which the first derivative of the prop-
agating solution may undergo a discontinuity, is used. The
propagation is causal if the normal vector to the character-
istic surface is time- or lightlike. Once the coefficients in
the differential equation responsible for the wave propaga-
tion are restricted in such a way as to meet this require-
ment, the wave front propagates exactly with the speed of
light c ¼ 1 [28] and should be equal to the phase velocity
taken at infinite value of the frequency according to the
Leontovich theorem [29]. (Note, however, that the infinite-
frequency limit cannot be covered by any finite-order
differential equation; on the contrary, when considering the
general case of nonpolynomial dispersion the Schwinger-
Dyson set of equations should be taken seriously as

integro-differential equations). Certain conditions obtained
in this way that should be obeyed by the ‘‘structural
function H,’’ the knowing of which is equivalent to the
effective Lagrangian, may be found among numerous re-
lations in a scrupulous study of Jerzy Plebański. It seems,
however, that inequalities (9.176) derived in his lectures
[22], relating to the general case F � 0, G � 0, and the
subsequent formulas, relating to the null-field subcase,
F ¼ G ¼ 0, need to be supplemented by consequences
of some requirements intended to substitute for unitarity or
positiveness of the energy, not exploited in [22], before/in
order that a comparison with our conclusions might be-
come possible. In the case of nontrivial dispersion, how-
ever, a coincidence is not even to be expected. The point is
that the requirement that the wave front should not propa-
gate faster than light is only a necessary, but not yet
sufficient condition of the causal propagation: other signals
should not be faster than light, either. It is widely recog-
nized [30] that the group velocity is the speed of the wave
packet at least where no anomalous dispersion is present,
in which case the group velocity loses its interpretation as
the wave packet speed and may exceed unity. An extension
of the group velocity into the domain of anomalous dis-
persion that keeps it below the speed of light is also
possible [5]. In Ref. [5] we also argued why the excess
of the group velocity over the speed of light encountered in
some problems with a violation of the Lorentz invariance
should be viewed as a serious discrepancy with the rela-
tivity principle, understood in this case as equivalence of a
given reference frame, in which an external agent like a
background field is also present, with another inertial
frame, in which there is the same external agent, but
Lorentz-boosted from the initial frame.
This is why we treat the group velocity criterion as the

causality criterion in the present paper as well as in [5].
Previously the appeal to the group velocity has shown its
fruitfulness in establishing the phenomenon of canalization
of the photon energy along the external magnetic field
[11,31] and the capture of gamma-quanta by a strong
nonhomogeneous magnetic field of a pulsar [13,32]. As
for the violation of the group velocity criterion for expo-
nentially strong magnetic field discovered for the one-loop
approximation in Sec. III, we admitted that the necessary
value of the magnetic field cannot be achieved, because the
magnetic field becomes unstable already at smaller values.
Therefore, a magnetic field higher than that, for which the
photon may become superluminal, is to be ruled out like
people used to rule out a perfectly elastic body, although in
the latter case no mechanism that would ban its formation
is considered.
On the other hand, the fulfillment of the dominant

energy condition (DEC) (44) implies that the causality is
reassured, because when solving the Cauchy problem ini-
tial data have no influence on what occurs outside their
light cone. (This is proved in [6] within general relativity
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context.) We saw in Sec. II D that the group-velocity
criterion is equivalent to DEC in what concerns the con-
sequences for the effective Lagrangian as a function of
constant magneticlike background field, although the im-
plementation of DEC and the weak energy condition (43)
to the problem of elementary excitations over the magne-
tized vacuum undertaken in Sec. II C has indicated, how-
ever, as we already discussed in that subsection, that these
two conditions together lead to somewhat weaker conclu-
sions than the ones that followed in Sec. III B from impos-
ing the conditions of unitarity in the form (16) and
causality in the form (14).

V. CONCLUSION

We have argued why the restrictedness of the group
velocity of a wave packet propagation below the speed of
light in the vacuum should be accepted as a necessary
condition of causality, complementary to other criteria
referred to in the literature, the Kramers-Kronig relations
and the speed of the abrupt wave front included. We
established that when taken together with the unitarity
condition in the form of positivity of the Green function
residue in the photon pole, the application of this condition
results in a number of inequalities to be obeyed, irrespec-
tive of any approximation, by the effective Lagrangian
responsible for an Abelian (sector of) gauge theory, quan-
tum electrodynamics in first place. These inequalities con-
cern derivatives of the effective Lagrangian with respect to
field invariants. They imply a convexity property (29) and
(31) of the effective Lagrangian as a function of the invar-
iants and the positivity (27), (28), and (30) of certain
combinations of these derivatives that have the direct

physical sense of dielectric and magnetic permittivities of
the vacuumwith a constant homogeneous magnetic field as
an anisotropic medium. We defined the energy-momentum
tensor of small-amplitude, small 4-momentum excitations
over the magnetic background to see that the timelikeness
of the energy-momentum flux is equivalent to the group-
velocity criterion, while the positivity of the energy density
is a somewhat weaker requirement than the unitarity in the
form used by us.
The properties established allow one to judge whether

special approximation- or model-depending calculations of
the effective Lagrangian, which serves a final result of any
theory, comply with the most fundamental physical prin-
ciples. We showed that only the Born-Infeld Lagrangian
makes a perfect model in this sense, whereas the Euler-
Heisenberg Lagrangian contains in itself a violation of
causality that manifests itself in the appearance of super-
luminal excitations (tachyons) in the region of very strong
magnetic fields. We identified, however, the mechanism
that makes achievement of so strong fields impossible by
noting that the external field becomes unstable before it
may reach the ‘‘noncausal’’ critical value. We considered
also two field-theoretical models, known to cause sponta-
neous vacuum magnetization, to show that their effective
Lagrangians obtained within the one-loop approximation
have wrong convexity properties.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for
Basic Research (Project No. 11-02-00685-a), as well as by
the Israel Science Foundation of the Israel Academy of
Sciences and Humanities.

[1] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 2001).

[2] Irina Ya. Aref’eva, AIP Conf. Proc. 957, 297 (2007).
[3] M. Novello, S. E. Perez Bergliaffa, and J. Salim, Phys.

Rev. D 69, 127301 (2004).
[4] I. A. Batalin and A. E. Shabad, Zh. Eksp. Teor. Fiz. 60, 894

(1971) [Sov. Phys. JETP 33, 483 (1971)].
[5] A. E. Shabad and V.V. Usov, Phys. Rev. D 81, 125008

(2010).
[6] S.W. Hawking and G. F. R. Ellis, The Large Scale

Structure of Space-Time (Cambridge University Press,
Cambridge, England, 1973).

[7] I. A. Batalin, S. G. Matinian, and G.K. Savvidy, Yad. Fiz.
26, 408 (1977).

[8] S. Kawati and A. Kokado, Phys. Rev. D 39, 3612 (1989).
[9] A. Cabo and A. E. Shabad, in Polarization Effects in

External Gauge Fields, edited by V. L. Ginzburg,
Proceedings of the P. N. Lebedev Physics Institute
Vol. 192 (Nauka, Moscow, 1988), p. 151, in Russian.

[10] A. Cabo and A. E. Shabad, Acta Phys. Pol. B 17, 591
(1986); in Group-Theoretical Methods in Physics, edited

by M.A. Markov, Proceedings of the Second 1982

Zvenigorod Seminar Vol. 2 (Harwood, Academic, Chur,

Switzerland, 1987), p. 153.
[11] A. E. Shabad, Ann. Phys. (N.Y.) 90, 166 (1975).
[12] A. E. Shabad, Polarization of the Vacuum and a

Quantum Relativistic Gas in an External Field

(Nova, New York, 1991); see also in Polarization Effects

in External Gauge Fields, edited by V. L. Ginzburg,

Proceedings of the P. N. Lebedev Physics Institute

Vol. 192 (Nauka, Moscow, 1988), p. 5, in

Russian.
[13] A. E. Shabad and V.V. Usov, Astrophys. Space Sci. 117,

309 (1985); 128, 377 (1986).
[14] A. E. Shabad and V.V. Usov, arXiv:0911.0640.
[15] The Lagrangian equivalent to Eq. (47) was previously

derived in A. Di Piazza and G. Calucci, Phys. Rev. D

66, 123006 (2002); see also A. Di Piazza, K. Z.

EFFECTIVE LAGRANGIAN IN NONLINEAR . . . PHYSICAL REVIEW D 83, 105006 (2011)

105006-15

http://dx.doi.org/10.1063/1.2823785
http://dx.doi.org/10.1103/PhysRevD.69.127301
http://dx.doi.org/10.1103/PhysRevD.69.127301
http://dx.doi.org/10.1103/PhysRevD.81.125008
http://dx.doi.org/10.1103/PhysRevD.81.125008
http://dx.doi.org/10.1103/PhysRevD.39.3612
http://dx.doi.org/10.1016/0003-4916(75)90144-X
http://dx.doi.org/10.1007/BF00650157
http://dx.doi.org/10.1007/BF00650157
http://dx.doi.org/10.1007/BF00644586
http://arXiv.org/abs/0911.0640
http://dx.doi.org/10.1103/PhysRevD.66.123006
http://dx.doi.org/10.1103/PhysRevD.66.123006


Hatsagortsyan, and C.H. Keitel, Phys. Rev. D 72, 085005
(2005).

[16] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936);
V. Weiskopf, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 14,
6 (1936); J. Schwinger, Phys. Rev. 82, 664 (1951);
V. B. Berestetsky, E.M. Lifshits, and L. P. Pitayevsky,
Quantum Electrodynamics (Pergamon, New York,
1982).

[17] It is associated with logarithmically growing term in the
Euler-Heisenberg Lagrangian as discussed by V. I. Ritus,
Zh. Eksp. Teor. Fiz. 69, 1517 (1975) [Sov. Phys. JETP 42,
774 (1975)]; Zh. Eksp. Teor. Fiz.73, 807 (1977) [Sov.
Phys. JETP46, 423 (1977)].

[18] The presence of the linear term in the polarization operator
was established in V.V. Skobelev, Izv. Vyssh. Uchebn.
Zaved., Fiz. 10, 142 (1975); D. B. Melrose and R. J.
Stoneham, Nuovo Cimento A 32, 435 (1976); A. E.
Shabad, Sov. Phys. Lebedev Inst. Rep. 3, 13 (1976); see
also [12] and J. S. Heyl and L. Hernquist, J. Phys. A 30,
6485 (1997).

[19] A. E. Shabad and V.V. Usov, Phys. Rev. Lett. 96, 180401
(2006); , Phys. Rev. D 73, 125021 (2006).

[20] M. Born and L. Infeld, Proc. R. Soc. A 144, 425
(1934).

[21] E. S. Fradkin and A.A. Tseytlin, Phys. Lett. 163B, 123
(1985).
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