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We systematically study dijet production in various processes in the small-x limit and establish an

effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target.

We find that the well-known Weizsäcker-Williams gluon distribution can be directly probed in the quark-

antiquark jet correlation in deep inelastic scattering and the dipole gluon distribution can be directly

measured in the direct photon-jet correlation in pA collisions. In the large-Nc limit, the unintegrated gluon

distributions involved in other different dijet channels in pA collisions are shown to be related to two

widely proposed ones: the Weizsäcker-Williams gluon distribution and the dipole gluon distribution.
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I. INTRODUCTION

Factorization is part of the foundations of high-energy
hadronic physics, as it provides the key ingredient for the
phenomenological studies of high-energy experiments.
Factorization theorems make the separation between
short-distance perturbative physics and long-distance non-
perturbative effects possible. Thus, cross sections mea-
sured in high-energy experiments can be factorized into
products of hard parts (short-distance physics) and parton
distributions (nonperturbative physics). In addition, an es-
sential part of factorization is the universality of the parton
distributions, among different processes.

While collinear factorization has been the most widely
used framework in phenomenological studies, and remains
a sufficiently good approximation of QCD for the most
inclusive processes in hadronic collisions, the investigation
of less inclusive observables showed the need for a
transverse-momentum dependent (TMD) factorization.
During the last decade, a large amount of work has been
devoted to establish such a framework in QCD. However,
recent progress [1–7] has shown that TMD factorization is
violated for dijet production in hadron-hadron (e.g., pp)
collisions, due to a loss of universality.

In this paper, we propose a solution to this problem in
the small-x limit: we succeeded in establishing an effective
TMD factorization for hard processes in collisions of dilute
probes off dense hadrons (or large nuclei).1 We confirm

that TMD parton distributions are not universal, but we
show that at small-x they can be constructed from several
universal individual building blocks. This is achieved by
working with an appropriate approximation of QCD in the
small-x limit of QCD, where large parton densities and
nonlinear saturation effects are crucial.
The saturation phenomena in high-energy collisions has

attracted great attention in the last two decades. At very
high energies corresponding to the low-x regime, parton
distributions reach very high densities and nonlinear ef-
fects become important in describing the dynamics of the
hadronic system [8–11]. The transition to the saturation
regime is characterized by the saturation scale, which is
interpreted as the typical transverse momentum of the
small-x partons, and is also related to the transverse color
charge density in the infinite momentum frame of the
dense target. It has been argued [10] that the high density
of gluons inside a hadron or nucleus allows for a semi-
classical treatment of the color field, leading to the color
glass condensate (CGC) effective description of the
small-x part of the hadronic/nuclear wave function which
has been widely used to systematically study saturation
physics [11].
Experimental data is still not conclusive in this matter,

but strong evidence of these effects have been found in
the deep inelastic scattering (DIS) experiments at HERA
and deuteron-gold collisions at RHIC [11]. It is expected
that saturation physics will play an important role in
explaining the results of the ongoing measurements of
single-inclusive production and two-particle correlations
in the forward region at RHIC as well as future heavy-ion
experiments at LHC. In addition, the planned Electron-
Ion Collider [12] will be able to provide ideal experimen-
tal conditions to study the low-x parton distributions and
thus test the saturation physics in both protons and large
nuclei.

1Note that this effective TMD factorization does not hold for
high-energy pp and AA collisions due to final state soft gluon
exchanges from both the projectile and the target to the hard part.
See Ref. [6] for detailed discussion. For the case of dilute
projectiles scattering on a dense target, we can always neglect
the soft gluon exchanges from the dilute projectile to the hard
part while we resum all the soft gluon exchanges attached the
dense target to the hard part since the gluon field is much
stronger in the dense target.
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In saturation physics, two different unintegrated gluon
distributions (UGDs) have been widely used in the
literature. The first gluon distribution, which is known
as the Weizsäcker-Williams (WW) gluon distribution, is
calculated from the correlator of two classical gluon
fields of relativistic hadrons (non-Abelian Weizsäcker-
Williams fields) [10,13]. The WW gluon distribution
has a clear physical interpretation as the number density
of gluons inside the hadron in light-cone gauge, but is
not used to compute cross sections. On the other hand,
the second gluon distribution, which is defined as the
Fourier transform of the color-dipole cross section [42],
does not have a clear partonic interpretation, but it is
the one appearing in most of the kt-factorized formulae
found in the literature for single-inclusive particle pro-
duction in pA collisions [11].

It was a long-standing question what is fundamentally
different between these two-gluon distributions, and
whether there is any observable sensitive to the WW
distribution [14]. The objective of this paper is to answer
these questions and show that these two-gluon distributions
are the fundamental building blocks of all the TMD gluon
distributions at small x. Eventually, this leads us to an
effective TMD-factorization for dijet production, in the
collision of a dilute probe with a dense target. We find
that, in the small momentum imbalance limit described
below, the dijet production process in DIS can provide
direct measurements of the WW gluon distribution and
the photon-jet correlations measurement in pA collisions
can access the dipole gluon distribution directly. In addi-
tion, other more complicated dijet production processes in
pA collisions will involve both of these gluon distributions
through convolution in transverse-momentum space, when
the large-Nc limit is taken.

A short summary of our study has been published in
Ref. [15]. Here we present the detailed derivations, and the
precise equivalence between the TMD and CGC ap-
proaches, in the overlapping domain of validity, i.e. to
leading power of the hard scale and in the small x limit.
In general, the TMD factorization is valid whatever x is but
is a leading-twist approach, while the CGC is applicable
only at small x but contains all the power corrections. Since
the main objective of this paper is to understand dijet
production processes theoretically, we will put the phe-
nomenological studies in a future work.

We focus on the two-particle production (or dijet pro-
duction at higher energy) in the case of a dilute system
scattering on a dense target, as illustrated in Fig. 1,

Bþ A ! H1ðk1Þ þH2ðk2Þ þ X; (1)

where A represents the dense target (we shall call it a
nucleus in the following), B stands for the dilute projectile
(such as a photon or a high-x parton in a hadron), H1 and
H2 are the final state two particles with momenta k1 and k2,

respectively. Let us denote as xB the light-cone momentum
fraction of the parton (or virtual photon) from the incoming
projectile B, and as xg � 1 the momentum fraction of the

gluon from the incoming target. We are interested in the
kinematic region where the transverse-momentum imbal-
ance between the outgoing particles is much smaller than

their individual momenta: q? ¼ j ~k1? þ ~k2?j � k1 ’ k2 ’
P? where ~P? is defined as ð ~k1? � ~k2?Þ=2. This is referred
to as the back-to-back correlation limit (the correlation
limit) in the following discussions. An important advan-
tage of taking this limit is that we can apply the power
counting method to obtain the leading order contribution of
q?=P? where the differential cross section directly de-
pends on the UGDs of the nuclei.
For each individual dijet production process, we employ

two independent approaches, namely, the TMD approach
and the CGC approach.2 The TMD approach is straightfor-
ward and clear in terms of factorization. On the other hand,
the CGC approach is commonly used in dealing with
small-x calculations. It allows us to go beyond the corre-
lation limit, which gives a deeper access to the QCD
dynamics at small x, but this is not the purpose of this
paper. In this more general situation, cross sections involve
multigluon distribution functions, as expected due to par-
ton saturation and multiple scatterings, and therefore there
is no kt-factorization. Except for the most inclusive ob-
servables (such as inclusive and semi-inclusive DIS,
single-gluon and valence quark production in pA colli-
sions), kt factorization is only a property of the linear
Balitskii-Fadin-Kuraev-Lipatov regime. However, taking
the correlation limit allows to simplify the dijet production
results of the CGC, and to obtain an effective factorization
which coincides with that found in the TMD approach.

FIG. 1. Schematic diagrams for two-particle production in a
dilute system scattering on a dense target with multiple scatter-
ing. The imbalance between the two-particle in transverse mo-
mentum can be used to probe the unintegrated gluon distribution
of the dense target.

2Our formulation of the CGC approach leads to similar inter-
mediate steps as in Ref. [16]. However, we treat the n-point
functions differently by using Wilson lines.
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The Weizsäcker-Williams gluon distribution can be de-
fined following the conventional gluon distribution [17,18]

xGð1Þðx; k?Þ ¼
Z d��d2�?

ð2�Þ3Pþ eixP
þ���ik?��?

� hPjFþið��; �?ÞLy
�L0F

þið0ÞjPi; (2)

where F�� is the gauge field strength tensor F
��
a ¼

@�A�
a � @�A

�
a � gfabcA

�
b A

�
c with fabc the antisymmetric

structure constants for SUð3Þ, and

L� ¼ P exp

�
�ig

Z 1

��
d��Aþð�; �?Þ

�

� P exp

�
�ig

Z 1

�?
d�? � A?ð�� ¼ 1; �?Þ

�

is the gauge link in the adjoint representation A� ¼ A�
a ta

with ta ¼ �ifabc. It contains a transverse gauge link at
spatial infinity which is important to make the definition
gauge invariant [19]. These gauge links have to be made
non-lightlike to regulate the light cone singularities when
gluon radiation contributions are taken into account [17].
In the above definition, we assume that the hadron is
moving along the þẑ direction. The light cone momenta

P� are defined as P� ¼ ðP0 � PzÞ= ffiffiffi
2

p
. This gluon distri-

bution can also be defined in the fundamental representa-
tion [2],

xGð1Þðx;k?Þ¼2
Z d��d�?
ð2�Þ3PþeixP

þ���ik?��?

�hPjTr½Fþið��;�?ÞU½þ�yFþið0ÞU½þ��jPi;
(3)

where the gauge link U½þ�
� ¼ Un½0;þ1; 0�

Un½þ1; ��;�?� with Un being reduced to the lightlike
Wilson line in covariant gauge. It is straightforward to see

that U½þ� represents the final state interactions according
to its future integration path to þ1.

By choosing the light cone gauge with certain boundary
condition for the gauge potential (A?ð�� ¼ 1Þ ¼ 0 for the
specific case above), we can drop out the gauge link con-
tribution in Eqs. (2) and (3) and find that this gluon
distribution has the number density interpretation. Then,
it can be calculated from the wave functions or the WW
field of the nucleus target [10,13]. Within the CGC frame-
work, this distribution can be written in terms of the
correlator of four Wilson lines as (see Section II B),

xGð1Þðx; k?Þ ¼ � 2

�S

Z d2v

ð2�Þ2
d2v0

ð2�Þ2 e
�ik?�ðv�v0Þ

� hTr½@iUðvÞ�Uyðv0Þ½@iUðv0Þ�UyðvÞixg ;
(4)

where the Wilson line Uðx?Þ is defined as
Un½�1;þ1; x?�. At small-x for a large nucleus, this

distribution can be evaluated using the McLerran-
Venugopalan model3 [10]

xGð1Þðx; k?Þ ¼ S?
�2�s

N2
c � 1

Nc

�
Z d2r?

ð2�Þ2
e�ik?�r?

r2?
ð1� e�ðr2?Q2

s Þ=4Þ; (5)

where Nc ¼ 3 is the number of colors, S? is the trans-

verse area of the target nucleus, and Q2
s ¼ g2Nc

4�

ln 1
r2?�

2

R
dx��2ðx�Þ is the gluon saturation scale [11]

with �2 the color charge density in a large nuclei. We
have cross-checked this result by directly calculating the
gluon distribution function in Eq. (2) following the similar
calculation for the quark in Ref. [19,21]. The derivation of
the WW gluon distribution from its operator definition is
provided in Appendix A 1.
The second gluon distribution, the Fourier transform of

the dipole cross section, is defined in the fundamental
representation4

xGð2Þðx;k?Þ¼2
Z d��d�?
ð2�Þ3Pþe

ixPþ���ik?��?

�hPjTr½Fþið��;�?ÞU½��yFþið0ÞU½þ��jPi;
(6)

where the gauge link U½��
� ¼ Un½0;�1; 0�

Un½�1; ��;�?� stands for initial state interactions.
Thus, the dipole gluon distribution contains both initial
and final state interactions in the definition.

U½þ� and U½�� are the gauge links which appear in the
quark distributions in the DIS and Drell-Yan process,
respectively. It is well known that there is only final state
effect in the DIS, while there is only initial state interaction
in the Drell-Yan process. In addition, in processes involv-
ing gluons and more complicated partonic structures,
more complex gauge links may appear, such as combina-

tions of U½þ� and U½�� [2]. We will see this in our
following calculations, especially in dijet production in
pA collisions.

For the second gluon distribution xGð2Þ as shown in
Eq. (6), the gauge link contribution cannot be completely
eliminated. In other words, there is no number density
interpretation for this gluon distribution. This is also be-
cause it contains both initial and final state interaction

3To obtain this result, it was assumed that the color charge
densities in the nucleus obey a Gaussian distribution with
variance �2. It was recently argued that this assumption is
inconsistent with the QCD nonlinear evolution [20], except for
two-point functions.

4The Fourier transform of the dipole cross section in the
adjoint representation is also commonly used, as it enters
single-gluon production in pA collisions [22–24]. In the
large-Nc limit, it is related to the convolution of two xGð2Þ.
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effects. Because of the gauge link in this gluon distribution
from �1 to þ1, naturally this gluon distribution can be
related to the color-dipole cross section evaluated from a
dipole of size r? scattering on the nucleus target, and has
been calculated in the CGC formalism,

xGð2Þðx; q?Þ ¼
q2?Nc

2�2�s

S?
Z d2r?

ð2�Þ2 e
�iq?�r? 1

Nc

�hTrUð0ÞUyðr?Þixg : (7)

The derivation of this dipole gluon distribution from its
operator definition is provided in Appendix A 2.

These two-gluon distributions have been intensively
investigated in the last few years.5 In particular, it was
found that they

(i) have the same perturbative behavior. They both scale
as Q2

s=q
2
? at large transverse-momentum q? � Qs;

(ii) however, they differ dramatically at small

transverse-momentum: xGð1Þ � lnQ2
s=q

2
?, whereas

xGð2Þ � q2?.
It will be very important to test these predictions by

measuring the quark-antiquark correlation in DIS process
and direct-photon jet correlation in pA collisions, since
these processes can directly probe these two-gluon distri-
butions separately.

The second gluon distribution (xGð2Þ) depends on the
dipole cross section, which appears in various inclusive and
semi-inclusive processes. For example, the total cross sec-
tion (or the structure functions) in DIS, the single-inclusive
hadron production in DIS and pA collisions, and the
Drell-Yan lepton pair production in pA collisions, are all
depending on this dipole gluon distribution. Tremendous
phenomenological analysis have been performed to con-
strain this gluon distribution from the experimental data.

On the other hand, the first gluon distribution (xGð1Þ)
only appears in few physical processes. Thus, we do not

have much constraints on its behavior. The only knowledge
comes from model calculations (i.e., the Golec-Biernat and
Wusthoff model [25] which provides a good description of
all DIS data below x ¼ 0:01). Therefore, it is very crucial
to carry out experimental observation of the quark-
antiquark jet correlation in DIS process in the planed
Electron-Ion collider, which shall provide very important
information on this gluon distribution.
Two-particle production in pA collisions are found to

depend on both gluon distributions [15]. In Table I, we
summarize the current status for the two-gluon distribu-
tions probed in high-energy processes, where we find that
the dipole gluon distribution contributes to most of them,
such as inclusive DIS, semi-inclusive DIS (SIDIS) [26],
Drell-Yan (DY) processes, single-inclusive hadron produc-
tion in pA collisions, photon-jet correlations and dijet in
pA collisions, whereas the WW gluon distribution only
appears in the quark-antiquark dijet correlation in DIS and
dijet correlations in pA collisions. It is important to note
that our derivations for the two basic processes, where the
two distributions can be measured independently (dijet
correlations in DIS and photon-jet correlation in pA colli-
sions), are exact for finite Nc. The large-Nc limit is only
necessary for more complicated processes where it allows
us to write the new distributions as convolutions of the two
basic ones.
In the following sections, we will carry out the detailed

derivations for the two-particle correlations in these pro-
cesses. Quark-antiquark correlation in DIS process will be
calculated in Sec. II. Section III will be devoted to the
direct-photon jet correlation in pA collisions. We will
derive the formalism for dijet correlation in pA collisions
in Sec. IV. Summary and further discussions will be given
in Sec. V. In all these calculations, we will show the results
from both transverse-momentum dependent approach and
the CGC calculations and wewill demonstrate that they are
consistent in the correlation limit.

II. DIJET PRODUCTION IN DIS

Despite the nice physical interpretation, it has been
argued that the gluon distribution in Eq. (2) is not directly
related to physical observables in the CGC formalism.

However, we will show that xGð1Þ can be directly probed
through the quark-antiquark jet correlation in DIS,

�	
TA ! qðk1Þ þ �qðk2Þ þ X; (8)

where the incoming (virtual) photon carries momentum
k�	 , the target nucleus has momentum PA, and the final

TABLE I. The involvement of these two-gluon distributions in high-energy processes.

DIS and DY SIDIS hadron in pA photon-jet in pA Dijet in DIS Dijet in pA

xGð1Þ (WW) x x x x ! !
xGð2Þ (dipole) ! ! ! ! x !

5There have been an observation that these two UGDs
can be related through a mathematical formula xGð2Þ

g ðx; q?Þ /
q2?r2

q?xG
ð1Þ
g ðx; q?Þ, where xGð2Þ

g ðx; q?Þ stands for the gluon
distribution in the adjoint representation which is derived from
a dipole formed by two gluons (e.g., see Ref. [14]). However, we
believe that this relation is just a mathematical observation
without any physics derivation. In addition, we find that it
only works for MV model which assumes the local Gaussian
approximation. This mathematical relation is invalidated beyond
the local Gaussian approximation. (e.g., see Appendix A 1.)
From the above operator definition of these two UGDs, we can
see that they are two independent gluon distributions.
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state quark and antiquark with momenta k1 and k2, respec-
tively. Again, we focus on the kinematic region with the

correlation limit: q? ¼ j ~k1? þ ~k2?j � P?. The trans-
verse momenta are defined in the center of mass frame of
the virtual photon �	 and the nucleus A. The calculations
are performed for Q2 in the same order of P2

?. As we

discussed in the above, we take the leading order contri-
bution in the correlation limit: q? � P?, and neglect all
higher order corrections. We plot the typical Feynman
diagram for the process of (8) in Fig. 2, where the bubble
in the partonic part represents the hard interaction vertex
including gluon attachments to both quark and antiquark
lines. Figure 2(a) is the leading Born diagram whose con-
tributions can be associated with the hard partonic cross
section times the gluon distribution from Eq. (2) [3]. In
high-energy scattering with the nucleus target, additional
gluon attachments are important and we have to resum
these contributions in the large nuclear number limit.
Figures 1 (b,c) represent the diagrams contributing at
two-gluon exchange order, where the second gluon can
attach to either the quark line or the antiquark line. By
applying the power counting method in the correlation
limit (q? � P?), we can simplify the scattering ampli-
tudes with the Eikonal approximation [3]. For example,
Fig. 2(b) can be reduced to

g

�qþ2 þ i	
Tb�a; (9)

where q2 is the gluon momentum, Tb is the SUð3Þ color
matrix in the fundamental representation and �a represents
the rest of the partonic scattering amplitude with color
indices for the two gluons a and b. Similarly, Fig. 2(c)
can be reduced to

� g

�qþ2 þ i	
�aTb: (10)

The sum of these two diagrams will be g=ð�qþ2 þ i	Þ�
½Tb�a � �aTb�. Because of the unique color index in �a,
we find the effective vertex as,

Fig : 2ðb; cÞ � i

�qþ2 þ i	
ð�igÞð�ifbcaÞTc; (11)

which corresponds to the first order expansion of the gauge
link contribution in the gluon distribution defined in Eq. (2).

For all high order contributions, we can follow the proce-
dure outlined in Ref. [2,19] to derive the gluon distribution.
In particular, we calculate the differential cross section

contributions from the diagrams of Fig. 2, assuming
the generic coupling between the exchanged gluons
and the nucleus target. The contributions at given order
can be reproduced by the hard partonic cross section
(given below) multiplying the TMD gluon distribution
defined as Eq. (2) at the same order from the similar
diagrams. This method is particular useful to identify the
gluon distributions involved in the hard scattering pro-
cesses and will be applied throughout the following
calculations.
Of course, to build a rigorous TMD factorization theo-

rem for this process, we have to go beyond the diagrams
shown in Fig. 2, and include the real gluon radiation
contributions [17,18]. These diagrams will introduce the
large logarithms of ‘nðP2

?=q
2
?Þ, in addition to the small-x

logarithms ‘nð1=xÞ. The combination of both effects has
not yet been systematically studied in the literature. We
hope to address this issue in the future. Moreover, there
have been discussions on the power counting method to
factorize the gluon distribution from any generic Feynman
diagrams, where one has to be extra cautions about the
‘‘super-leading-power’’ contributions (see, for example,
Ref. [27]).
From our analysis, we identified the gluon distribution

involved in the quark-antiquark jet correlation in DIS
process is the first gluon distribution at small-x. We want
to emphasize that this result is also the unique consequence
of non-Abelian feature of QCD. For Abelian theory, we can
easily find that the final state interactions between the
quark and antiquark with the nucleus target cancel out
completely. Therefore, there is no final state interaction
effects in the similar QED process.

Furthermore, the gauge link U½þ� in Eq. (3) can be
viewed as the sum of all the final state interactions between
the nucleus target and the produced quark as shown

in Fig. 2(b). In the meantime, the gauge link U½þ�y in
Eq. (3) takes care of the final state interactions between the
nucleus target and the produced antiquark as illustrated in
Fig. 2(c). Therefore, following Ref. [2], it is straightfor-
ward to show that the Weizsäcker-Williams gluon distri-
bution is the relevant gluon distribution in DIS dijet since it
correctly resums all the final state interactions.

FIG. 2 (color online). Typical Feynman diagrams contributing to the quark-antiquark jet correlation in deep inelastic scattering:
(a) leading order, where the bubble represents the gluon attachments to both quark lines; (b,c) two-gluon exchange diagrams.
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A. TMD-factorization approach to
the DIS dijet production

By putting in the hard partonic cross section H�	g!q �q

and especially the correct gluon distribution, namely the
WW gluon distribution, which resums all the final state
interactions between the q �q pair and the target nucleus, we
obtain the following transverse and longitudinal differen-
tial cross sections for the quark-antiquark jet correlation in
DIS process:

d

�	
TA!q �qþX

TMD

dP :S:
¼ �ðx�	 � 1ÞxgGð1Þðxg; q?ÞH�	

Tg!q �q; (12)

d

�	
LA!q �qþX

TMD

dP :S:
¼ �ðx�	 � 1ÞxgGð1Þðxg; q?ÞH�	

Lg!q �q; (13)

where xg is the momentum fraction of hadron A carried

by the gluon and is determined by the kinematics, x�	 ¼
zq þ z �q with zq ¼ z and z �q ¼ 1� z being the momentum

fractions of the virtual photon carried by the quark and
antiquark, respectively. The phase space factor is defined
as dP :S: ¼ dy1dy2d

2P?d2q?, and y1 and y2 are rapidities
of the two outgoing particles in the lab frame. In terms of

the rapidities and the center of mass energy
ffiffiffi
s

p
, one can

find

z ¼ jk1?jey1
jk1?jey1 þ jk2?jey2 ; x�	 ¼ jk1?jey1 þ jk2?jey2ffiffiffi

s
p ;

xg ¼ jk1?je�y1 þ jk2?je�y2ffiffiffi
s

p : (14)

In addition, in the correlation limit, one has jP?j ’ jk1?j ’
jk2?j � jq?j ¼ jk1? þ k2?j. The leading order hard par-
tonic cross section reads

H�	
Tg!q �q ¼ �s�eme

2
q

ŝ2 þQ4

ðŝþQ2Þ4
�
û

t̂
þ t̂

û

�
(15)

H�	
Lg!q �q ¼ �s�eme

2
q

8ŝQ2

ðŝþQ2Þ4 (16)

with the usually defined partonic Mandelstam vari-
ables ŝ ¼ ðk1 þ k2Þ2 ¼ P2

?=ðzð1 � zÞÞ, t̂¼ðk2�k�	 Þ2¼
�ðP2

?þ	2fÞ=ð1�zÞ, and û¼ðk1�k�	 Þ2¼�ðP2
?þ	2fÞ=z

with 	2f ¼ zð1� zÞQ2 and z ¼ zq.

Finally, in the correlation limit, one obtains the differ-
ential total cross section as follows:

d
�	A!q �qX
tot

dy1dy2d
2P?d2q?

¼ �ðx�	 � 1Þ zð1� zÞ
ðP2

? þ 	2fÞ4
½ðz2 þ ð1� zÞ2ÞðP4

? þ 	4fÞ þ 8zð1� zÞP2
?	

2
f�
S?Nc�eme

2
q

4�4

�
Z

d2r?e�iq?�r? 1

r2?

�
1� exp

�
� 1

4
r2?Q

2
s

��
; (17)

where 
tot is defined as 
tot ¼ 
T þ 
L and we have substituted the CGC result for the WW gluon distribution in Eq. (5).
By taking Q2 ¼ 0, we can extend the above result to the case of dijet production in real photon scattering on nuclei. The
longitudinal contribution vanishes and the total cross section only contains the transverse part. Therefore, we obtain

d
�A!q �qX

dy1dy2d
2P?d2q?

¼ �ðx� � 1Þ S?Nc�eme
2
q

4�4P4
?

zð1� zÞ½z2 þ ð1� zÞ2�
Z

d2r?e�iq?�r? 1

r2?

�
1� exp

�
� 1

4
r2?Q

2
s

��
: (18)

For the real photon case, there will be resolved photon
contributions which should be taken care of separately
following that in the dijet production in pA collisions
discussed in Sec. IV below.

B. CGC approach to the DIS dijet production

The quark-antiquark jet cross section can also be calcu-
lated in the CGC formalism. In this setup, the photon splits
into a quark-antiquark pair which subsequently undergoes
multiple interactions with the nucleus (see Fig. 3). Previous
calculations performed under this framework [22,28,29]
have focused mainly on the total cross section or single-
inclusive gluon production, which are calculations involv-
ing a different color structure than the process we are
interested in. Here, we calculate the cross section in the
most general case and then we show how the factorization
formula is recovered in the correlation limit.

At the amplitude level the process can be divided into
two parts: the splitting wave function of the incoming

photon and the multiple scattering factor. It is convenient
to write these quantities in transverse coordinate space
since in this basis, and in the eikonal approximation, the
multiple interaction factor is diagonal. To be consistent
with previous CGC calculations in the literature, we
choose a frame that the photon is moving along the þẑ
direction whereas the nuclear target in the �ẑ direction.

x
2

x
1

x’
2

x’
1

Amplitude

v=zx
1
+(1−z)x

2 v’=zx’
1
+(1−z)x’

2

Conjugate
amplitude

FIG. 3. Typical diagrams contributing to the cross section in
the deep inelastic process.
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When we compare the results to those obtained in the last
subsection, we have to keep in mind this difference.
However, we note that the differential cross section does
not depend on the frame. For a right-moving photon with

longitudinal momentum pþ, no transverse momentum, and
virtuality Q2, the splitting wave function in transverse
coordinate space takes the form,

c T�
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
2

pþ

s �
i	fK1ð	fjrjÞ r�	

ð1Þ
?

jrj ½��þ��þð1� zÞ þ ������z�; � ¼ 1;

i	fK1ð	fjrjÞ r�	
ð2Þ
?

jrj ½������ð1� zÞ þ ��þ��þz�; � ¼ 2;
(19)

c L
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
4

pþ

s
zð1� zÞQK0ð	fjrjÞ���: (20)

where again z is the momentum fraction of the photon
carried by the quark, � is the photon polarization, � and �
are the quark and antiquark helicities, r the transverse
separation of the pair, 	2f ¼ zð1� zÞQ2, and the quarks
are assumed to be massless. The heavy quark case will be
considered in the next subsection.

The multiple scattering factor is expressed in terms of
Wilson lines in the fundamental representation. It can be
shown [28] that this interaction term takes the form
½Uyðx2ÞUðx1Þ � 1�ji where x1 and x2 are the transverse

positions of the quark and the antiquark, i and j are their
color indices, and the Wilson line is given in terms of the
background field by

UðxÞ ¼ P exp

�
igS

Z þ1

�1
dxþTcA�

c ðxþ; xÞ
�
: (21)

The gauge field is directly related to the color charge
density of the nucleus which will be averaged over the
nuclear wave function at the level of the cross section. The
way the color indices are contracted in the scattering factor
is due to the fact that the pair is initially in a singlet state
but no assumptions are made about the final state. The
color indices i and j will be summed over independently
also at the cross section level.
With the pieces described above, we can write down an

explicit formula for the differential cross section for dijet
production. After averaging over the photon’s polarization
and summing over the quark and antiquark helicities and
colors we obtain,

d
�	
T;LA!q �qX

d3k1d
3k2

¼ Nc�eme
2
q�ðpþ � kþ1 � kþ2 Þ

Z d2x1
ð2�Þ2

d2x01
ð2�Þ2

d2x2
ð2�Þ2

d2x02
ð2�Þ2 e

�ik1?�ðx1�x0
1
Þe�ik2?�ðx2�x0

2
Þ

� X
���

c T;L�
�� ðx1 � x2Þc T;L�	

�� ðx01 � x02Þ½1þ Sð4Þxg ðx1; x2; x02; x01Þ � Sð2Þxg ðx1; x2Þ � Sð2Þxg ðx02; x01Þ�; (22)

where the two- and four-point functions are defined as

Sð2Þxg ðx1; x2Þ ¼
1

Nc

hTrUðx1ÞUyðx2Þixg ; (23)

Sð4Þxg ðx1; x2; x02; x01Þ ¼
1

Nc

hTrUðx1ÞUyðx01ÞUðx02ÞUyðx2Þixg :
(24)

The notation h. . .ixg is used for the CGC average of the
color charges over the nuclear wave function where xg is
the smallest fraction of longitudinal momentum probed,
and is determined by the kinematics.

Notice that the transverse coordinates of the quark and
antiquark in the amplitude (unprimed coordinates) are
different from the coordinates in the complex conjugate
amplitude (primed coordinates) since the two final mo-
menta are not integrated over. This is a very important

feature of our calculation that, to our knowledge, does not
appear in previous CGC calculations of DIS in nuclei. It
allows for a different color structure and, in particular, it is

responsible for the appearance of the 4-point function Sð4Þxg

which cannot be expressed in terms of 2-point functions,
even in the large Nc limit (see Appendix B 2 for an explicit
evaluation of the medium average).
In order to compare with the TMD-factorization result

discussed in the previous section, we need to consider
the relevant kinematic region, in particular, in the correla-
tion limit of Eq. (22). For convenience, we introduce the
transverse coordinate variables: u ¼ x1 � x2 and v ¼
zx1 þ ð1� zÞx2, and similarly for the primed coor-
dinates. The respective conjugate momenta are ~P? ¼
ð1� zÞk1? � zk2? 
 P? and q?, and therefore the corre-
lation limit can be taken by assuming u and u0 are small
and then expanding the integrand with respect to these two
variables before performing the Fourier transform.
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Let us focus on the multiple scattering factor first. By
using the following identities,

Sð4Þxg ðx1; x2;v0; v0Þ ¼ Sð2Þxg ðx1; x2Þ; (25)

Sð4Þxg ðv; v; x02; x01Þ ¼ Sð2Þxg ðx02; x01Þ; (26)

it is easy to see that terms from the expansion of Sð4Þxg cancel

the other terms in (22). After applying

UyðvÞð@iUðvÞÞ ¼ �ð@iUyðvÞÞUðvÞ;

we can show that the lowest order contribution in u and u0
to the scattering factor can be written as

� uiu
0
j

1

Nc

hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞixg : (27)

Taking into account the path ordering of the Wilson lines,
we have the following formula for their derivatives:

@iUðvÞ ¼ igS
Z 1

�1
dvþU½�1; vþ;v�

� ð@iA�ðvþ; vÞÞU½vþ;1;v�; (28)

where U½a; b; x� ¼ P expfigS
R
b
a dx

þTcA�
c ðxþ; xÞg. We

notice that ð@iA�ðvþ; vÞÞ is part of the gauge invariant
field strength tensor Fi�ð ~vÞ.6 Therefore, the above corre-
lator can be written in terms of gauge invariant matrix
element,

� hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞixg
¼ g2S

Z 1

�1
dvþdv0þhTr½Fi�ð ~vÞU½þ�yFj�ð ~v0ÞU½þ��ixg :

(29)

Performing the u and u0 integration in (22) after the ex-
pansion of the multiple scattering term, we find an explicit
formula for the differential cross section in the desired
kinematic region,

d
�	
TA!q �qX

dP :S:
¼ �eme

2
q�s�ðx�	 � 1Þzð1� zÞðz2 þ ð1� zÞ2Þ P4

? þ 	4f

ðP2
? þ 	2fÞ4

ð16�3Þ

�
Z d3vd3v0

ð2�Þ6 e�iq?�ðv�v0Þ2hTr½Fi�ðvÞU½þ�yFi�ðv0ÞU½þ��ixg ; (30)

d
�	
LA!q �qX

dP :S:
¼ �eme

2
q�s�ðx�	 � 1Þz2ð1� zÞ2 8P2

?	
2
f

ðP2
? þ 	2fÞ4

ð16�3Þ

�
Z d3vd3v0

ð2�Þ6 e�iq?�ðv�v0Þ2hTr½Fi�ðvÞU½þ�yFi�ðv0ÞU½þ��ixg : (31)

These results are to be compared to the factorized results in
Eqs. (12) and (13). The hard cross section factor in (12) is
recovered by noticing that in the kinematic region we
are considering the Mandelstam variables are given by
ŝ ¼ P2

?=ðzð1� zÞÞ, t̂ ¼ �ðP2
? þ 	2fÞ=ð1� zÞ, and û ¼

�ðP2
? þ 	2fÞ=z. To recover the gluon distribution function

as written in Eq. (3), it is necessary to account for the
different normalizations used to calculate the average of

Wilson lines above. In Eq. (3), the average is calculated
with a definite momentum (and therefore translational
invariant) hadronic state jPi which is relativistically
normalized to hP0jPi ¼ ð2�Þ32Pþ�ðPþ � P0þÞ�ð2Þ
ðP? � P0

?Þ, while the average in Eqs. (30) and (31) is
taken over the CGC wave function and is normalized
such that h1ixg ¼ 1. Using translational invariance,
Eq. (3) can be written as

xGð1Þðx; k?Þ ¼ 4

hPjPi
Z d��

1 d
2�1?d��

2 d
2�2?

ð2�Þ3 eixP
þð��

1
���

2
Þ�ik?�ð�1?��2?ÞhPjTr½Fþið��

1 ; �1?ÞU½þ�yFþið��
2 ; �2?ÞU½þ��jPi:

(32)

It is easy to see that the discrepancy between
normalizations is accounted for by the replacement
hPj...jPi
hPjPi ! h. . .ixg , giving complete agreement between the
CGC approach and the factorized form in the small-x
region.

In the end of this subsection, we would like to compare
the dijet production process in DIS to the inclusive and
semi-inclusive DIS. As shown above, we derive that the
dijet production cross section in DIS is proportional to
the WW gluon distribution in the correlation limit. On

6The other part of the field strength tensor shall come from the transverse component of the Wilson lines as the gauge invariance of
QCD requires. When the Aþ ¼ 0 gauge is used, the only nonzero component of the gauge field is A� [30] and the transverse parts drop
out of the equations, giving a simpler form of the equations.
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the other hand, it is well-known that inclusive and semi-
inclusive DIS involves the dipole cross section instead
[26], which can be related to the second gluon distribution.
This might look confusing at first sight, so let us take a
closer look at Eq. (22). If one integrates over one of the
outgoing momenta, say k1, one can easily see that the
corresponding coordinates in the amplitude and conjugate
amplitude are identified (x1 ¼ x01) and, therefore, the four-
point function Sð4Þxg ðx1; x2; x02; x01Þ collapses to a two-point

function Sð2Þxg ðx2; x02Þ. As a result, The SIDIS and inclusive

DIS cross section only depend on two-point functions, thus
they only involve the dipole gluon distribution. Now we
can see the unique feature of the dijet production process in
DIS. By keeping the momenta of the quark and antiquark
unintegrated, we can keep the full color structure of the

4-point function which eventually leads to the WW gluon
distribution in the correlation limit. Therefore, measuring
the dijet production cross sections or dihadron correlations
in DIS at future experimental facilities like EIC or LHeC
would give us a first direct and unique opportunity to
probe and understand the Weizsäcker-Williams gluon
distribution.

C. Heavy quark production in DIS dijet

In order to expand our calculation and include the pos-
sibility of charm and bottom production, we now consider
the finite quark mass case. From the TMD point of view,
having massive quarks modifies the hard cross sections
while the parton distributions remain the same. The new
leading order hard partonic cross sections read

H�	
Tg!q �q ¼ �s�eme

2
qz

2ð1� zÞ2
� P4

? þ 	04f
ðP2

? þ 	02f Þ4
�
~u

~t
þ ~t

~u

�
þ 2m2

qP
2
?

zð1� zÞðP2
? þ 	02f Þ4

�
; (33)

H�	
Lg!q �q ¼ �s�eme

2
q

8Q2

ð~sþQ2Þ4
�
~s� m2

q

zð1� zÞ
�
; (34)

where ~s ¼ ðk1 þ k2Þ2 ¼ ðP2
? þm2

qÞ=ðzð1� zÞÞ, ~t ¼ ðk2 � k�	 Þ2 �m2
q ¼ �ðP2

? þ 	02f Þ=ð1� zÞ, and ~u ¼ ðk1 � k�	 Þ2 �
m2

q ¼ �ðP2
? þ 	02f Þ=z with 	02f ¼ zð1� zÞQ2 þm2

q and z ¼ zq.
In terms of the CGC approach, one needs to modify the dipole splitting wave functions as follows:

c T�
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
2

pþ

s �
i	0fK1ð	0fjrjÞ r�	

ð1Þ
?

jrj ½��þ��þð1� zÞ þ ������z� þ �����þmqK0ð	0fjrjÞ; � ¼ 1;

i	0fK1ð	0fjrjÞ r�	
ð2Þ
?

jrj ½������ð1� zÞ þ ��þ��þz� þ ��þ���mqK0ð	0fjrjÞ; � ¼ 2;
(35)

c L
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
4

pþ

s
zð1� zÞQK0ð	0fjrjÞ���: (36)

Following the same procedure, it is easy to show that again
both approaches agree in the correlation limit for heavy
quark production. By setting Q2 ¼ 0, one can get the
results for the heavy quark production in real photon-
nucleus scattering.

III. DIRECT PHOTON-JET IN pA COLLISIONS

Now let us turn our attention to the second gluon distri-
bution. In this context, the simplest process where we can
access this distribution is the direct photon-quark jet cor-
relation in pA collisions,

pA ! �ðk1Þ þ qðk2Þ þ X; (37)

where the incoming quark carries momentum p, and nu-
cleus target with momentum PA, and outgoing photon and
quark with momenta k1 and k2, respectively. The analysis
of this process follows that for the quark-antiquark jet
correlation in DIS process in the previous section.

We plot the relevant diagrams in Fig. 4(a)–4(c), again for
the leading one-gluon exchange and two-gluon exchanges.
Similarly, the two-gluon exchange contributions can be
summarized as7

Fig : 4ðb; cÞ � ðigÞ
�

i

�qþ2 þ i	
Tb�a þ i

qþ2 þ i	
�aTb

�
;

(38)

where the plus sign comes from the fact that the second
gluon attaches to the quark line in the initial and final
states. Since there is no color structure corresponding to
Eq. (38), we can only express it in the fundamental repre-
sentation. Following Ref. [2], we find that the gluon dis-
tribution in this process can be written as

7There is a misprint, which we have corrected below in the
Eq. (38), in the Eq. (11) of the short summary [15] of this paper.)

UNIVERSALITY OF UNINTEGRATED GLUON . . . PHYSICAL REVIEW D 83, 105005 (2011)

105005-9



xGð2Þðx; k?Þ ¼ 2
Z d��d�?

ð2�Þ3Pþ eixP
þ���ik?��?hPjTr½Fþið��; �?ÞU½��yFþið0ÞU½þ��jPi; (39)

where the gauge link U½��
� ¼ Un½0;�1; 0�

Un½�1; ��;�?� resums the initial state interactions be-
tween the incoming quark and the target nucleus. On the
other hand, the gauge link U½þ� represents the final state
interactions between the outgoing quark and the target
nucleus. This gluon distribution can also be calculated in
the CGC formalism where it is found to be

xGð2Þðx; q?Þ ’
q2?Nc

2�2�s

S?Fxgðq?Þ; (40)

with the normalized unintegrated gluon distribution
Fxgðq?Þ ¼

R d2r?
ð2�Þ2 e

�iq?�r?Sð2Þxg ð0; r?Þ. Therefore, by plug-
ging in the appropriate gluon distribution, namely, the
dipole gluon distribution, which resums both the initial
and final state interactions, one can write the differential
cross section of (37) as8

d
ðpA!�qþXÞ

dP :S:
¼ X

f

xpqfðxpÞxgGð2Þðxg; q?ÞHqg!�q; (41)

where x1 is the momentum fraction of the projectile nu-
cleon carried by the quark, qfðx1Þ is the integrated quark
distribution. Because we are taking large nuclear number
limit, the intrinsic transverse momentum associated with
it can be neglected compared to that from the gluon dis-
tribution of nucleus. The hard partonic cross section is
given by

Hqg!�q ¼ �s�eme
2
q

Ncŝ
2

�
� ŝ

û
� û

ŝ

�
: (42)

Inserting Eqs. (40) and (42) in Eq. (41), one gets

d
ðpA!�qþXÞ

dP :S:
¼ X

f

xpqfðxpÞ
�eme

2
f

2�2
S?q2?F

g
xgðq2?Þ

� ½1þ ð1� zÞ2�z2ð1� zÞ
P4
?

; (43)

where we have expressed the Mandelstam variables in
terms of P? and z: ŝ ¼ ðk1 þ k2Þ2 ¼ P2

?
zð1�zÞ , û ¼

ðk1 � pÞ2 ¼ � P2
?
z and t̂ ¼ ðk2 � pÞ2 ¼ � P2

?
1�z . The mo-

mentum fraction of the incoming quark p carried by the
outgoing photon z is defined as

z ¼ jk1?jey1
jk1?jey1 þ jk2?jey2 ; (44)

where y1 and y2 are rapidities of the photon and outgoing
quark in the Lab frame.
The current running RHIC and LHC experiments shall

provide us some information on the dipole gluon distribu-
tion by measuring direct photon-quark jet correlation in pA
collisions.

CGC approach to the direct photon-jet production
in pA collisions

This process was already considered in the CGC frame-
work in [31], where the calculation was performed entirely
in momentum space. In order to compare with the result
from the previous section and illustrate why a different
distribution should be used, we will derive the correspond-
ing cross section following the same procedure as the
previous section by showing the splitting wave function
and the multiple scattering factor in transverse coordinate
space. Our result is consistent with [31].
Let us consider the partonic level process q ! q�. For a

right-moving massless quark, with initial longitudinal mo-
mentum pþ and no transverse momentum, the splitting
wave function in transverse coordinate space is given by

FIG. 4 (color online). Same as Fig. (2) for direct photon-jet correlation in pA collisions.

8Here we assume that one can employ the collinear factoriza-
tion for the integrated quark density or gluon density inside the
dilute proton at large xp, although the proof of this assumption is
omitted throughout this paper. We will leave this study for future
work.
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c �
��ðpþ; kþ1 ; rÞ ¼ 2�i

ffiffiffiffiffiffi
2

kþ1

s � r�	ð1Þ?
r2

ð������ þ ð1� zÞ��þ��þÞ; � ¼ 1
r�	ð2Þ?
r2

ð��þ��þ þ ð1� zÞ������Þ; � ¼ 2
; (45)

where again � is the photon polarization,�,� are helicities
for the incoming and outgoing quarks, and z is the mo-
mentum fraction of the incoming quark carried by the
photon. To account for the multiple scatterings in this
process we have to consider interactions both before and
after the splitting. If the transverse coordinates of the quark
and photon in the final state are b and x respectively, then

the multiple scattering factor in the amplitude takes the
form UðbÞ �Uðzxþ ð1� zÞbÞ.
After summing over final polarization, helicity and

color, and averaging over initial helicity and color, we
find the following expression for the partonic level cross
section (see Fig. 5).

d
qA!q�X

d3k1d
3k2

¼ �eme
2
q�ðpþ � kþ1 � kþ2 Þ

Z d2x

ð2�Þ2
d2x0

ð2�Þ2
d2b

ð2�Þ2
d2b0

ð2�Þ2 e
�ik1?�ðx�x0Þe�ik2?�ðb�b0Þ

� X
���

c �	
��ðx0 � b0Þc �

��ðx� bÞ½Sð2Þxg ðb; b0Þ þ Sð2Þxg ðzxþ ð1� zÞb; zx0 þ ð1� zÞb0Þ

� Sð2Þxg ðb; zx0 þ ð1� zÞb0Þ � Sð2Þxg ðzxþ ð1� zÞb; b0Þ�: (46)

Notice that the color structure is simpler than in the DIS case. There is no 4-point function and all the terms in the

multiple scattering factor can be expressed in terms of the color-dipole cross section Sð2Þxg . By changing the variables on

each of the terms of the scattering factor to u ¼ x� b and either v ¼ b or v ¼ zxþ ð1� zÞb, and similarly for the primed
coordinates, the cross section above can be written as

d
qA!q�X

d3k1d
3k2

¼ �eme
2
q�ðpþ � kþ1 � kþ2 Þ

Z d2u

ð2�Þ2
d2u0

ð2�Þ2
d2v

ð2�Þ2
d2v0

ð2�Þ2 e
�iq?�ðv�v0ÞSð2Þxg ðv; v0Þ

� X
���

c �	
��ðu0Þc �

��ðuÞ½e�iu�ð ~P?þzq?Þeiu0�ð ~P?þzq?Þ þ e�iu� ~P?eiu
0� ~P? � e�iu�ð ~P?þzq?Þeiu0� ~P?

� e�iu� ~P?eiu
0�ð ~P?þzq?Þ�; (47)

where ~P? ¼ ð1� zÞk1? � zk2? 
 P?.
From the above expression, it is easy to see that performing the u and u0 integrations reduces to taking the Fourier

transform of the splitting wave function with different values of the momentum variable for each term. Clearly, the Fourier
transform of the dipole cross section factors out giving the gluon distribution we found from the TMD-factorized form.
Using collinear approximation for the proton projectile, we find our final result for the cross section of the desired process:

d
pA!�qþX

dP :S:
¼ X

f

xpqfðxpÞ�eme
2
fNc½1þ ð1� zÞ2�z2ð1� zÞ 2q2?

~P2
?ð ~P? þ zq?Þ2

Z d2v

ð2�Þ2
d2v0

ð2�Þ2 e
�iq?�ðv�v0ÞSð2Þxg ðv; v0Þ:

(48)

This result agrees with the factorized result (41) in the correlation limit P? � q?. To make more clear the relation
between the distribution xGð2Þ in Eq. (6) and the result above, notice that the factor q2? can be brought inside the integral as
derivatives of the exponential factor with respect to v and v0. Using integration by parts and the derivation formula for
Wilson lines, it is easy to show that the cross section takes the form

d
pA!�qþX

dP :S:
¼ X

f

xpqfðxpÞ�eme
2
f½1þ ð1� zÞ2�z2ð1� zÞ 2

~P2
?ð ~P? þ zq?Þ2

16�3�S

Z d3v

ð2�Þ3

� d3v0

ð2�Þ3 e
�iq?�ðv�v0ÞhTr½Fi�ð ~vÞU½��yFi�ð ~v0ÞU½þ��i: (49)

Taking into account the same considerations about different normalizations of the averaging procedures as in the DIS case,
it is easy to see that the two expressions for xGð2Þ agree in the small-x region.
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IV. DIJET PRODUCTION IN pA COLLISIONS

Dijet production in pA collisions receive contributions
from several channels, such as qg ! qg, gg ! q �q and
gg ! gg. For convenience, we define the following com-
mon variables as in the last two sections,

z ¼ jk1?jey1
jk1?jey1 þ jk2?jey2 ; xp ¼ jk1?jey1 þ jk2?jey2ffiffiffi

s
p ;

xg ¼ jk1?je�y1 þ jk2?je�y2ffiffiffi
s

p ; (50)

where k1 and k2 are momenta, and y1 and y2 are rapidities
for the two outgoing particles, xp is the momentum fraction

of the projectile nucleon carried by the incoming parton, xg
is the momentum fraction of the target nucleus carried by
the gluon, respectively. Taking into account that the quark
distribution functions are dominant at large-x and the gluon
distribution functions are dominant at low-x, it comes as no
surprise the fact that different channels are relevant in

different kinematic regions. At RHIC energies, the low -x
region is only accessible in events where the two jets are
produced in the forward rapidity region of the projectile.
Under those conditions we have xp � 0:1 and xg � 0:1,

and therefore quark initiated processes dominate (qg ! qg
channel).
The higher energies available at LHC will allow to

explore more thoroughly the low-x regime in the target
nucleus as well as in the projectile (see e.g., in a recent
study [32]). Under these circumstances, and in particular at
central rapidities at the LHC, it is possible to have pro-
cesses with both xp and xg small where the dominant

channels are gg ! q �q and gg ! gg.
Let us first take the partonic channel qg ! qg as an

example and calculate the dijet production cross section.
Then it is straightforward to generalize the calculation to
the other partonic channels gg ! q �q and gg ! gg.

A. TMD-factorization approach

1. The qg ! qg channel

The calculations follow the previous examples.
However, there are several different Feynman graphs con-
tributing to the production of qg in the final state, as shown
in Fig. 6. In addition, they have different color structures.
Therefore, we need to compute the hard factors and the
associated initial/final state interaction phases separately.
In the end, we will sum their contributions together to
obtain the final result.
It is straightforward to obtain the hard cross section

contributions from each diagram in Fig. 6 for the
qg ! qg process, and have been calculated in Ref. [3].
We list these results in Table II with the same notations,

where hðiÞ is the partonic hard factor and CðiÞ
u is the asso-

ciated color factor. In the calculations, in order to apply the

FIG. 6. Quark-gluon scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical contributions.

b

x

b’

x’

Amplitude

v=zx+(1−z)b v’=zx’+(1−z)b’

Conjugate
amplitude

FIG. 5. Interactions before and after the splitting have to be
taken into account for both amplitude and conjugate amplitude.
Here is a typical diagram representing the third interaction term
in Eq. (46).
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eikonal approximation when multiple gluon interactions
are formulated, we have chosen the physical polarizations
for the outgoing gluon. However, the final result for the
differential cross section does not depend on this choice.

As a consistency check, we can easily reproduce the
known results for the total hard cross section by summing
all the graphs in Fig. 6 and explicitly taking Nc ¼ 3,

d
̂

dt̂
ðgq ! gqÞ ¼ g4

16�ŝ2

� X
i¼1;2;4

CðiÞ
u hðiÞ þ 2

X
i¼3;5;6

CðiÞ
u hðiÞ

�

¼ g4

16�ŝ2

�
4

9

ŝ2 þ û2

�ŝ û
þ ŝ2 þ û2

t̂2

�
: (51)

Since the graphs in Fig. 6 have different color structure, the
gluon distributions associated with those graphs have dif-
ferent gauge links according to Ref. [2]. Therefore, the
corresponding gluon distributions in coordinate space are
found as follows:

�ð1Þ
g ¼

�
Tr

�
Fð�Þ

�
1

2

Tr½U½h��
Nc

U½þ�y

þ 1

2
U½��y

�
Fð0ÞU½þ�

�	
; (52)

�ð2Þ
g ¼

�
Tr

�
Fð�Þ

�
N2

c

N2
c � 1

Tr½U½h��
Nc

U½þ�y

� 1

N2
c � 1

U½��y
�
Fð0ÞU½þ�

�	
; (53)

�ð3Þ
g ¼

�
Tr

�
Fð�ÞTr½U

½h��
Nc

U½þ�yFð0ÞU½þ�
�	

; (54)

�ð4Þ;ð5Þ;ð6Þ
g ¼ hTr½Fð�ÞU½��yFð0ÞU½þ��i; (55)

where U½h� ¼ U½þ�U½��y ¼ U½��yU½þ� emerges as a
Wilson loop. Now we are ready to combine all the channels
together. As mentioned in the introduction, the distribu-
tions above will be factorizable in terms of convolutions of
the two basic distributions from the previous sections.
Anticipating this result, we consider only the leading con-
tribution in Nc. Noting that graph (6) in Fig. 6 does not
contribute in the large-Nc limit, one can find

d
qA!qgX
TMD

d2P?d2q?dy1dy2
¼X

f

xpqðxpÞ�
2
s

ŝ2

�½F ð1Þ
qgH

ð1Þ
qg!qgþF ð2Þ

qgH
ð2Þ
qg!qg�; (56)

with

F ð1Þ
qg ¼ xGð2Þðx; q?Þ

¼ 2
Z d��d�?

ð2�Þ3Pþ eixP
þ���iq?��?

� hTr½Fð�ÞU½��yFð0ÞU½þ��i; (57)

F ð2Þ
qg ¼ 2

Z d��d�?
ð2�Þ3Pþ eixP

þ���iq?��?

�
�
Tr

�
Fð�ÞTr½U

½h��
Nc

U½þ�yFð0ÞU½þ�
�	

: (58)

In the large-Nc limit, it is straightforward to find that only
graphs (1), (2) and (3) in Fig. 6 (t and u channels together

with their cross diagrams) contribute to Hð2Þ
qg!qg and only

graphs (1), (4) and (5) (t and s channels together with their

cross diagrams) contribute to Hð1Þ
qg!qg. By using CF

2Nc
¼ 1

4 in

the large-Nc limit, one obtains

Hð1Þ
qg!qg ¼ �ðt̂2 � ŝ ûÞ2

ŝ û t̂2
� 1

2

t̂2 þ ŝ2

ŝ û
� ðt̂2 � ŝ ûÞðŝ� t̂Þ

ŝ û t̂

¼ � û2ðŝ2 þ û2Þ
2ŝ û t̂2

; (59)

Hð2Þ
qg!qg ¼ �ðt̂2 � ŝ ûÞ2

ŝ û t̂2
� 1

2

t̂2 þ û2

ŝ û
� ðt̂2 � ŝ ûÞðû� t̂Þ

ŝ û t̂

¼ � ŝ2ðŝ2 þ û2Þ
2ŝ û t̂2

: (60)

We note that although the individual diagram’s contribu-
tion to the above two hard factors depends on the polar-
ization we choose for the outgoing gluon, the final results
for the hard factors do not depend on this choice. This
means the combination of Feynman graphs according to
the relevant color structure is gauge invariant. A similar
conclusion has also been obtained for the spin-related
observables calculated in Refs. [2,3].

Since one has ŝ ¼ P2
?

zð1�zÞ , û ¼ � P2
?
z and t̂ ¼ � P2

?
1�z in the

correlation limit, Eq. (56) leads to the following cross
section for qg dijet production in pA collisions:

d
pA!qgX
TMD

d2P?d2q?dy1dy2
¼X

f

xpqfðxpÞ �2
s

2P4
?
½1þð1�zÞ2�

�ð1�zÞ½ð1�zÞ2xGð2Þðx;q?ÞþF ð2Þ
qg�;
(61)

TABLE II. The color and hard factors for the qg ! qg scattering channels in Fig. 6, where CF ¼ ðN2
c � 1Þ=2Nc.

(1) (2) (3) (4) (5) (6)

h � 4ðt̂2�ŝ ûÞ2
t̂2 ŝ û

� 2ðû2þt̂2Þ
ŝ û

2ðt̂2�ŝ ûÞðû�t̂Þ
ŝ t̂ û

� 2ðŝ2þt̂2Þ
ŝ û � 2ðt̂2�ŝ ûÞðŝ�t̂Þ

ŝ t̂ û
2t̂2

ŝ û

Cu
1
2

CF

2Nc
� 1

4
CF

2Nc

1
4 � 1

4N2
c
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where xpqfðxpÞ is the integrated quark distribution for the

proton projectile.

2. The gg ! q �q channel

Following the same procedure illustrated in the
qg ! qg channel, we can calculate the dijet production
cross section from the gg ! q �q channel. First of all, we
compute the color factors and hard factors for each graph
in Fig. 7 and list them in Table III. Then, we plug in the
appropriate gluon distributions9 as found in Ref. [2].

�ð1Þ;ð2Þ
g ¼

�
Tr

�
Fð�Þ

�
Tr½U½h��

Nc

U½��y
�
Fð0ÞU½þ�

�	
; (62)

�ð3Þ
g ¼ �NchTr½Fð�ÞU½h��Tr½Fð0ÞU½h�y�i; (63)

�ð4Þ;ð5Þ;ð6Þ
g ¼

�
Tr½Fð�ÞU½��yFð0ÞU½þ��Tr½U

½h��
Nc

	

� 1

Nc

hTr½Fð�ÞU½h��Tr½Fð0ÞU½h�y�i: (64)

Combining all the channels in the large Nc limit, we can
find

d
gA!q �qX
TMD

d2P?d2q?dy1dy2
¼ X

f

xpgðxpÞ�
2
s

ŝ2
½F ð1Þ

ggH
ð1Þ
gg!q �q

þF ð2Þ
ggH

ð2Þ
gg!q �q�; (65)

with

F ð1Þ
gg ¼ 2

Z d��d�?
ð2�Þ3Pþ eixP

þ���iq?��?

�
�
Tr

�
Fð�ÞTr½U

½h��
Nc

U½��yFð0ÞU½þ�
�	

; (66)

F ð2Þ
gg ¼ 2

Z d��d�?
ð2�Þ3Pþ eixP

þ���iq?��?
1

Nc

�hTr½Fð�ÞU½h�y�Tr½Fð0ÞU½h��i; (67)

and

Hð1Þ
gg!q �q ¼ 1

4Nc

2ðt̂2 þ û2Þ2
ŝ2û t̂

; (68)

Hð2Þ
gg!q �q ¼

1

4Nc

4ðt̂2 þ û2Þ
ŝ2

; (69)

where xpgðxpÞ is the integrated gluon distribution in the

proton projectile.

3. The gg ! gg channel

Similarly, the color factors and hard factors for all the
graphs plotted in Fig. 8 have been calculated and listed in
Table IV. Combining these factors with the corresponding
gluon distributions, taking into account the appropriate
gauge links [2], we arrive at

FIG. 7. gg ! q �q scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical contributions.

TABLE III. The color and hard factors for the gg ! q �q scat-
tering channels in Fig. 7.

(1) (2) (3) (4) (5) (6)

h 2ð3t̂2þû2Þû
ðt̂þûÞ2 t̂

2ðt̂2þ3û2Þt̂
ðt̂þûÞ2û

2ðt̂�ûÞ2
ðt̂þûÞ2

4t̂ û
ðt̂þûÞ2 � 4t̂ û

ðt̂þûÞ2
4t̂ û

ðt̂þûÞ2
Cu

1
4Nc

1
4Nc

� 1
4NcðN2

c�1Þ
Nc

2ðN2
c�1Þ

Nc

4ðN2
c�1Þ � Nc

4ðN2
c�1Þ

9We have simplified these gluon distributions by using
large-Nc limit and the fact that they are real in the CGC
formalism.
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�ð1Þ;ð2Þ
g ¼ 1

2

�
Tr½Fð�ÞU½þ�yFð0ÞU½þ��Tr½U

½h��
Nc

Tr½U½h��
Nc

	
þ
�
Tr½Fð�ÞU½��yFð0ÞU½þ��Tr½U

½h��
Nc

	
; (70)

�ð3Þ
g ¼

�
Tr½Fð�ÞU½þ�yFð0ÞU½þ��Tr½U

½h��
Nc

Tr½U½h��
Nc

	
þ 1

Nc

hTr½Fð�ÞU½h��Tr½Fð0ÞU½h�y�
	
; (71)

�ð4Þ;ð5Þ;ð6Þ
g ¼

�
Tr½Fð�ÞU½��yFð0ÞU½þ��Tr½U

½h��
Nc

	
� 1

Nc

hTr½Fð�ÞU½h��Tr½Fð0ÞU½h�y�i: (72)

Summing over all the channels in the large-Nc limit, we can obtain

d
gA!ggX
TMD

d2P?d2q?dy1dy2
¼ X

f

xpgðxpÞ�
2
s

ŝ2
½F ð1Þ

ggH
ð1Þ
gg!gg þF ð2Þ

ggH
ð2Þ
gg!gg þF ð3Þ

ggH
ð3Þ
gg!gg�; (73)

where F ð1;2Þ
gg have been defined in Eqs. (66) and (67) and F ð3Þ

gg is defined as

F ð3Þ
gg ¼ 2

Z d��d�?
ð2�Þ3Pþ eixP

þ���iq?��?
�
Tr½Fð�ÞU½þ�yFð0ÞU½þ��Tr½U

½h��
Nc

Tr½U½h��
Nc

	
: (74)

The hard factors are found as

Hð1Þ
gg!gg ¼ 2ðt̂2 þ û2Þðŝ2 � t̂ ûÞ2

û2t̂2ŝ2
; Hð2Þ

gg!gg ¼ 4ðŝ2 � t̂ ûÞ2
û t̂ ŝ2

; Hð3Þ
gg!gg ¼ 2ðŝ2 � t̂ ûÞ2

û2 t̂2
: (75)

Using the mean field approximation [7], we can simplify the gluon distributions and find the total dijet production cross
section which includes the qg ! qg, gg ! q �q and gg ! gg channels as follows:

d
ðpA!DijetþXÞ

dP :S:
¼ X

q

x1qðx1Þ�
2
s

ŝ2
½F ð1Þ

qgH
ð1Þ
qg!qg þF ð2Þ

qgH
ð2Þ
qg!qg� þ x1gðx1Þ�

2
s

ŝ2

�
F ð1Þ

gg

�
Hð1Þ

gg!q �q þ
1

2
Hð1Þ

gg!gg

�

þF ð2Þ
gg

�
Hð2Þ

gg!q �q þ
1

2
Hð2Þ

gg!gg

�
þ 1

2
F ð3Þ

ggH
ð3Þ
gg!gg

�
; (76)

FIG. 8. gg ! gg scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical contributions.
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where again qðx1Þ and gðx1Þ are integrated quark and gluon distributions from the projectile nucleon. We have included a
statistical factor of 12 in Eq. (76) for the gg ! gg channel due to the identical final state. The various gluon distributions of
nucleus A are defined as

F ð1Þ
qg ¼ xGð2Þðx; q?Þ; F ð2Þ

qg ¼
Z

xGð1Þðq1Þ � Fðq2Þ; F ð1Þ
gg ¼

Z
xGð2Þðq1Þ � Fðq2Þ;

F ð2Þ
gg ¼ �

Z q1? � q2?
q21?

xGð2Þðq1Þ � Fðq2Þ; F ð3Þ
gg ¼

Z
xGð1Þðq1Þ � Fðq2Þ � Fðq3Þ;

(77)

where � represents the convolution in momentum
space:

R� ¼ R
d2q1d

2q2�
ð2Þðq? � q1 � q2Þ. These ex-

pressions follow directly from Eqs. (57), (58), (66), (67),
and (74) and the assumption that in the large-Nc limit the
expectation values involved in these equations can be
factored as products of expectation values of the traces
within. Clearly, this process depends on both UGDs in a
complicated way, and the naive TMD-factorization does
not hold.

B. CGC Calculations

1. q ! qg

This process is studied in detail in Refs. [33,34], and in
particular Ref. [34] is close to the approach we have
followed in this paper, where an explicit formula analogous
to the ones cited here for DIS and photon emission is given.
We take as starting point Eq. (24) in Ref. [34], which in our
notation takes the form (see Fig. 9)

d
qA!qgX

d3k1d
3k2

¼ �SCF�ðpþ � kþ1 � kþ2 Þ
Z d2x

ð2�Þ2
d2x0

ð2�Þ2
d2b

ð2�Þ2
d2b0

ð2�Þ2 e
�ik1?�ðx�x0Þe�ik2?�ðb�b0Þ

� X
���

c �	
��ðx0 � b0Þc �

��ðx� bÞ½Sð6Þxg ðb; x; b0; x0Þ � Sð3Þxg ðb; x; zx0 þ ð1� zÞb0Þ

� Sð3Þxg ðzxþ ð1� zÞb; x0; b0Þ þ Sð2Þxg ðzxþ ð1� zÞb; zx0 þ ð1� zÞb0Þ�: (78)

where

Sð6Þxg ðb; x; b0; x0Þ ¼
1

CFNc

hTrðUðbÞUyðb0ÞTdTcÞ

� ½WðxÞWyðx0Þ�cdixg ; (79)

Sð3Þxg ðb; x; v0Þ ¼ 1

CFNc

hTrðUðbÞTdUyðv0ÞTcÞWcdðxÞixg ;
(80)

and WðxÞ is a Wilson line in the adjoint representation. In
the correlators above, Wilson lines in the fundamental

representation appear when considering the multiple inter-
action of a quark with the nucleus and Wilson lines in the
adjoint representation appear when considering multiple
interactions of a gluon with the nucleus. Clearly, the Sð6Þxg

term represents the case where interactions occur after the
splitting both in the amplitude and in the conjugate ampli-
tude, the Sð3Þxg terms represent the interference terms, and
the Sð2Þxg term represent interactions before the splitting
only.
This formula for the cross section has the same struc-

ture as Eqs. (22) and (47). The splitting wave function is

TABLE IV. The color and hard factors for the gg ! gg scat-
tering channels in Fig. 8.

h Cu

(1) 2ðŝ4þ4ŝ3 t̂þ11ŝ2 t̂2þ10ŝt̂3þ4t̂4Þ
ðŝþt̂Þ2 ŝ2

N2
c

N2
c�1

(2) 2ð2ŝ6þ6ŝ5 t̂þ14ŝ4 t̂2þ20ŝ3 t̂3þ21ŝ2 t̂4þ14ŝt̂5þ4t̂6Þ
ðŝþt̂Þ2 ŝ2 t̂2

N2
c

N2
c�1

(3) � ð2ŝ4þ5ŝ3 t̂þ10ŝ2 t̂2þ10ŝt̂3þ4t̂4Þðŝþ2t̂Þ
ðŝþt̂Þ2 ŝ2 t̂

N2
c

2ðN2
c�1Þ

(4) 2ðŝ4þŝ3 t̂þ5ŝ2 t̂2þ6ŝt̂3þ2t̂4Þ
ðŝþt̂Þ2 ŝ2

N2
c

N2
c�1

(5) 2ŝ5þŝ4 t̂�ŝ3 t̂2�10ŝ2 t̂3�12ŝt̂4�4t̂5

ðŝþt̂Þ2 ŝ2 t̂
N2

c

2ðN2
c�1Þ

(6) ðŝ3þ10ŝ2 t̂þ12ŝt̂2þ4t̂3Þt
ðŝþt̂Þ2 ŝ2 � N2

c

2ðN2
c�1Þ

b

x

b’

x’

Amplitude

v=zx+(1−z)b v’=zx’+(1−z)b’

Conjugate
amplitude

FIG. 9. Interactions before and after the splitting have to be
taken into account for both amplitude and conjugate amplitude.
After the splitting, the nucleus interacts coherently with the
quark-gluon system. Here is a typical diagram representing the
second interaction term in Eq. (78).
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the same as in the photon emission case (Eq. (45)).
The only difference in the emission vertex is a color
matrix which is included as part of the multiple scatter-
ing factor (therefore confining the color algebra to just

the multiple scattering factor). Using Fierz identities, the
terms appearing in the multiple scattering factor above
can be written in terms of fundamental Wilson lines
only as

Sð6Þxg ðb; x; b0; x0Þ ¼
1

2CFNc

�
TrðUðbÞUyðb0ÞUðx0ÞUyðxÞÞTrUðxÞUyðx0Þ � 1

Nc

TrUðbÞUyðb0Þ
	
xg

; (81)

Sð3Þxg ðb; x; v0Þ ¼ 1

2CFNc

�
TrUðbÞUyðxÞTrUðxÞUyðv0Þ � 1

Nc

TrUðbÞUyðv0Þ
	
xg

: (82)

Some of the correlators appearing in the expressions above
are familiar or have been calculated in the literature before.
The 4-point function in Sð3Þxg is different from the one
appearing in the DIS case but it has been studied and
calculated in a model with Gaussian distribution of sources
in [35]. The 6-point function appearing in Sð6Þxg presents a
more difficult challenge even with only four independent
coordinates. In order to deal with this difficulty, it is
convenient to address the problem in the large-Nc limit
where correlators of products of traces are evaluated as

product of correlators of traces. Specifically, for the corre-
lators above we get

Sð6Þxg ðb; x; b0; x0Þ ’
1

N2
c

hTrUðbÞUyðb0ÞUðx0ÞUyðxÞixg
�hTrUðxÞUyðx0Þixg ; (83)

¼ Sð4Þxg ðb; x; b0; x0ÞSð2Þxg ðx; x0Þ; (84)

Sð3Þxg ðb; x; v0Þ ’ 1

N2
c

hTrUðbÞUyðxÞixghTrUðxÞUyðv0Þixg ; (85)

¼ Sð2Þxg ðb; xÞSð2Þxg ðx; v0Þ: (86)

Note that in the large-Nc limit, the 6-point function is related to the 4-point function that appeared in the
DIS dijet case. In Appendix B 2, we point out that the result of [34] for the 6-point function misses the inelastic part of Sð4Þxg .

To enforce the correlation limit we follow the procedure used in the DIS case. From the structure of the terms in the
multiple scattering factor, we can see that the same kind of cancellations will occur and the final result will be the sum of

the lowest order nonvanishing terms from the expansion of Sð6Þxg . Moreover, since there is no linear term in the expansion of

Sð4Þxg , the lowest nonvanishing terms come separately from the Sð4Þxg factor and the Sð2Þxg in the same fashion as in the previous

calculations for DIS and photon emission. With the previous considerations in mind, it is easy to see that the final result
takes the form

d
pA!qgX

d2q?d2P?dy1dy2
¼ X

f

xpqfðxpÞ16�3 �
2
S

P4
?
ð1� zÞ½1þ ð1� zÞ2�

Z d3v

ð2�Þ3
d3v0

ð2�Þ3 e
�iq?�ðv�v0Þ½ð1� zÞ2

�hTr½Fi�ð ~vÞU½��yFi�ð ~v0ÞU½þ��ixg þ
1

Nc

hTrUðvÞUyðv0ÞixghTr½Fi�ð ~vÞU½þ�yFi�ð ~v0ÞU½þ��ixg�:
(87)

Taking into account the difference between the normal-
izations, it is straightforward to see that the result above
agrees with the factorized formula (61).

In order to bring some insight to the relation between
the processes considered so far, and how the different
distributions come in for this particular channel, it is
useful to consider the graphical representation of the
large-Nc limit used to factorize the correlators of
Wilson lines. In the large-Nc limit, a gluon line can be

effectively considered as a quark-antiquark pair.
Forgetting about the multiple interactions for the mo-
ment, and focusing primarily in the color flow of the
process, we see that in the large-Nc limit the process
takes the form depicted in Fig. 10. The system splits into
two separate pieces, a quark line in the lower part of the
diagram which resembles the photon emission process,
and a loop in the upper part of the diagram which has
the same color structure as the DIS dijet case.
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Interactions involving both parts of the process are
Nc-suppressed, so it comes as no surprise that the final
result can be written as two separate pieces each involv-
ing the respective distributions found for DIS and photon
emission.

The fact that one of the terms in the final result involves
only one of the distributions while the other involves a
convolution of two factors can also be understood
in a simple way from the previous considerations. The

enforcement of the correlation limit is schematically the
same as singling out one hard scattering in the process and
then taking u ¼ u0 ¼ 0 for the rest of the interactions.
When the hard scattering occurs on the lower part of
the diagram in Fig. 10, the quark-antiquark pair in the
upper part does not interact by color transparency

(Sð4Þxg ðb; b; b0; b0Þ ¼ 1) and therefore there is no trace of it

in the first term of the factorized expression. When the hard
scattering occurs in the upper part of the diagram in
Fig. 10, the quark in the lower part still interacts with the
nucleus (and exchanges transverse momentum) and there-
fore has to be included in the form of a dipole cross section.

2. g ! q �q

Following the same strategy from previous sections, we
start with the partonic level formula for the cross section
built from the splitting wave function and the multiple
scattering factor. In this particular case it takes the follow-
ing form:

d
gA!q �qX

d3k1d
3k2

¼ �S�ðpþ � kþ1 � kþ2 Þ
1

2

Z d2x1
ð2�Þ2

d2x01
ð2�Þ2

d2x2
ð2�Þ2

d2x02
ð2�Þ2 e

�ik1?�ðx1�x0
1
Þe�ik2?�ðx2�x0

2
Þ

� X
���

c T�
��ðx1 � x2Þc T�	

�� ðx01 � x02Þ½Cxgðx1; x2; x01; x02Þ þ SAxgðzx1 þ ð1� zÞx2; zx01 þ ð1� zÞx02Þ

� Sð3Þxg ðx1; zx01 þ ð1� zÞx02; x2Þ � Sð3Þxg ðx02; zx1 þ ð1� zÞx2; x01Þ�; (88)

where Sð3Þxg is given by (82) and

Cxgðx1; x2; x01; x02Þ

¼ 1

CFNc

hTrðUyðx2ÞTcUðx1ÞUyðx01ÞTcUðx02ÞÞixg ; (89)

SAxgðv; v0Þ ¼ 1

N2
c � 1

hTrWðvÞWyðv0Þi; (90)

and the splitting wave function is the same as in the DIS
case with Q2 ¼ 0. Notice this cross section is down by a
factor ofNc as compared to the q ! qg case. This is due to
the averaging over the incoming particle which amounts
for a factor of 1

N2
c�1

for gluons instead of the factor of 1
Nc

for
quarks.

All the correlators above have been previously studied in
the literature and explicit expressions for a Gaussian dis-
tribution of charges have been found. The only new ingre-
dient that has not been considered in previous sections is
Cxg which was thoroughly studied in [36]. Following the

procedure from the previous section, let us express the
correlators defined above in terms of fundamental Wilson
lines only by means of Fierz identities.

Cxgðx1; x2; x01; x02Þ

¼ 1

2CFNc

�
TrUðx1ÞUyðx01ÞTrUðx02ÞUyðx2Þ

� 1

Nc

TrUðx1ÞUyðx01ÞUðx02ÞUyðx2Þ
	
xg

; (91)

SAxgðv; v0Þ ¼ 1

N2
c � 1

hTrUðvÞUyðv0ÞTrUðv0ÞUyðvÞ � 1ixg :
(92)

We take the large-Nc limit in order to be able to compare
with the results from the previous section and relate the
cross section to the gluon distributions defined before.
Under this approximation, the correlators above can be
expressed entirely in terms of 2-point functions.

Cxgðx1; x2; x01; x02Þ ’ Sð2Þxg ðx1; x01ÞSð2Þxg ðx02; x2Þ; (93)

SAxgðv; v0Þ ’ Sð2Þxg ðv; v0ÞSð2Þxg ðv0; vÞ: (94)

b

x

b’

x’

v=zx+(1−z)b v’=zx’+(1−z)b’

FIG. 10. Graphical representation of the splitting q ! qg in
the large-Nc limit, in the amplitude and the conjugate amplitude.
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This way of factorizing the correlators and the fact that the
4-point function is absent suggests that this process is
related to the distribution given by the Fourier transform
of the dipole cross section only. With this consideration in

mind, we Fourier transform all the Sð2Þxg factors and perform

the usual change of variables u ¼ x1 � x2 and v ¼ zx1 þ
ð1� zÞx2 (and similarly for the primed coordinates) and
obtain

d
gA!q �qX

d3k1d
3k2

¼ �S�ðpþ � kþ1 � kþ2 Þ
1

2

Z d2u

ð2�Þ2
d2u0

ð2�Þ2
d2v

ð2�Þ2
d2v0

ð2�Þ2 d
2q1d

2q2Fxgðq1ÞFxgðq2Þe�iðq?�q1�q2Þ�ðv�v0Þe�i ~P?�ðu�u0Þ

� X
���

c �	
��ðu0Þc �

��ðuÞ½eiðð1�zÞq2�zq1Þ�ðu�u0Þ � eiðð1�zÞq2�zq1Þ�u � e�iðð1�zÞq2�zq1Þ�u0 þ 1�: (95)

As in the photon emission case, the u and u0 integrations
reduce to calculate the Fourier transform of the splitting
wave function with different momentum variables for each
of the terms. The v and v0 integrations give a �-function

relating the momentum variables of the two distributions
and a factor of the total transverse area. As in previous
cases, we use collinear factorization for the incoming
parton from the proton projectile and obtain

d
pA!q �qX

dP :S:
¼ xpgfðxpÞ�S½z2 þ ð1� zÞ2�zð1� zÞ S?

ð2�Þ2
Z

d2q1d
2q2�

ð2Þðq? � q1 � q2ÞFxgðq1ÞFxgðq2Þ

� ðzq1 � ð1� zÞq2Þ2
~P2
?ð ~P? þ zq1 � ð1� zÞq2Þ2

: (96)

In the correlation limit, the denominator of the last fraction
above becomes just P4

?. From this expression, it is clear
that the distributions involved will be written as a convo-
lution of two factors involving the Fourier transform of the
dipole cross section. To notice how this equation above
agrees with the factorized form in (65), expand the nu-
merator and write the momentum factors as derivatives
with respect to transverse coordinates of the dipole cross
sections inside the definition of Fxg as was explained for
the case of photon emission. There is a subtlety concerning
the relative signs of the different terms when this identi-
fication is made. In order to find a complete agreement
between the formula above and the factorized formula
from the TMD formalism, it is necessary to write the two
Fxg factors as Fourier transforms of Wilson loops in oppo-
site directions (one of them in terms of U½h� and the other
in terms of U½h�y). Because of this, q1 and q2 enter with
opposite signs when expressed as derivatives of the Wilson
loops. This sign is not visible in the terms with q21 or q

2
2 but

it changes the sign of the cross term, giving complete
agreement with the factorized expression.

As done for the previous channel, let us consider the
graphical representation of this channel in the large-Nc

limit in Fig. 11. After replacing the gluon line with a
quark-antiquark pair, we are left with two independent
fermion lines which scatter separately with the nucleus.
Each of them resembles the photon emission case and
therefore we expect, even before performing the calcula-
tion, to obtain a convolution of two Fourier transforms of
the dipole cross section. In the correlation limit, the two
terms in (65) have a simple explanation in terms of a hard

scattering. The first term accounts for the cases where the
hard scattering involves only one of the two quark lines,
while the second term is an interference term when the
large momentum transfer involves the two participants.
This channel had already been considered in [36] where,

due to the choice of gauge, the separation of the amplitude
in terms of splitting function and multiple scattering terms
is not visible. It is possible to show our expressions above
are consistent with their results when expressed in the same
set of coordinates and momentum variables.

3. g ! gg

In order to study the partonic process g ! gg, we need
to derive the splitting function first. It can be written in
momentum space as

x
2

x
1

x’
2

x’
1v=zx

1
+(1−z)x

2 v’=zx’
1
+(1−z)x’

2

x
2

x
1

x’
2

x’
1v=zx

1
+(1−z)x

2 v’=zx’
1
+(1−z)x’

2

FIG. 11. Above: graphical representation of the splitting in the
amplitude and conjugate amplitude. Below: splitting in the
large-Nc limit.
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�g!ggðz; p?Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pþkþ1 k

þ
2

q Vg!gg

k�1 þ k�2 � p� ; (97)

where Vg!gg is just the three-gluon vertex with the cou-

pling and color factor factorized out. This can be written as

Vg!gg ¼ 	�a	
�
b 	

�
c ½g��ðpa � pbÞ� þ g��ðpb � pcÞ�

þ g��ðpc � paÞ��: (98)

Here, 	
�
i represents the polarization vector for gluon i with

four momentum pi. It is straightforward to find that

X
spin

jVg!ggj2 ¼
8p2

?
zð1� zÞ

�
z

1� z
þ 1� z

z
þ zð1� zÞ

�
:

(99)

After summing over all polarizations, the squared split-
ting function in transverse coordinate space reads

X
�	

g!ggðz; u0Þ�g!ggðz; uÞ

¼ ð2�Þ2 4

pþ

�
z

1� z
þ 1� z

z
þ zð1� zÞ

�
u0 � u
u02u2

: (100)

Now, let us turn our attention to the multiple scattering
terms. Since all the particles involved in the process are
gluons, all terms contain only Wilson lines in the adjoint
representation. In the following, we give the explicit forms
of the scattering terms with their respective large-Nc ex-
pressions in terms of fundamental Wilson lines:

hfade½Wðx1ÞWyðx01Þ�db½Wðx2ÞWyðx02Þ�ecfabcixg ’ hTrUyðx1ÞUðx01ÞixghTrUðx2ÞUyðx02Þixg hTrUðx1ÞUyðx01ÞUðx02ÞUyðx2Þixg ;
(101)

hfadeWdbðx1ÞWecðx2ÞffbcWfaðv0Þixg ’ hTrUyðx1ÞUðv0ÞixghTrUðx2ÞUyðv0Þixg � hTrUðx1ÞUyðx2Þixg ; (102)

hfadeWdbðx01ÞWecðx02ÞffbcWfaðvÞixg ’ hTrUyðvÞUðx01ÞixghTrUðvÞUyðx02Þixg � hTrUðx02ÞUyðx01Þixg ; (103)

NchTrWðvÞWyðv0Þixg ’ NchTrUyðvÞUðv0ÞixghTrUðvÞUyðv0Þixg : (104)

The correlation limit is applied by following the procedure developed in the DIS case and reproduced in the q ! qg
channel. By inspection of the multiple scattering terms above, it is easy to see that the same kind of cancellations occur for
this channel. Since the lowest order terms left after the various cancellations come from the first of the scattering terms, it is
easy to see that the final result will involve combinations of one WW distribution and two Fourier transforms of the dipole
cross section. After some algebra, we arrive at

d
pA!ggX

dP :S:
¼ xpgðxpÞ64�3 �

2
S

P4
?
zð1� zÞ

�
1� z

z
þ z

1� z
þ zð1� zÞ

�Z d3v

ð2�Þ3
d3v0

ð2�Þ3 e
�iq?�ðv�v0Þ

�
�
ðz2 þ ð1� zÞ2Þ 1

Nc

hTrUðvÞUyðv0ÞixghTr½Fi�ð ~vÞU½þ�yFi�ð ~v0ÞU½���ixg

þ 1

Nc

hTrUðvÞUyðv0Þixg
1

Nc

hTrUðv0ÞUyðvÞixghTr½Fi�ð ~vÞU½þ�yFi�ð ~v0ÞU½þ��ixg

þ 2zð1� zÞ 1

Nc

hTrFi�ð ~vÞUðvÞUyðv0ÞixghTrFi�ð ~v0ÞUðv0ÞUyðvÞixg
�
; (105)

which is straightforward to compare to the factorized ex-
pression in (73).

This structure could have been anticipated by looking at
the graphical representation of this process in the large-Nc

limit shown in Fig. 12. In terms of the hard scattering
picture used in previous sections, the structure of the ex-
pression above is consistent with previous results. The first
and third term look exactly the same as the two terms in the
g ! q �q case, and they correspond to the case in which the
hard scattering does not involve the inner loop in Fig. 12.
The second term corresponds to the case where the hard
scattering occurs in the inner loop. It has the same structure

as one of the terms found in the q ! qg case with an
additional convolution associated to the extra quark line
in the top of the diagram.

x
1 x’

1v=zx
1
+(1−z)x

2 v’=zx’
1
+(1−z)x’

2

x
2

x’
2

FIG. 12. Graphical representation of the splitting g ! gg in
the large-Nc limit, in the amplitude and the conjugate amplitude.
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V. CONCLUSION

In this paper, we have studied and established an effec-
tive kt-factorization for dijet production at small-x in
dilute-dense collisions. Although kt-dependent parton dis-
tributions are different in different processes, they can be
calculated and related to each other. We found that there
are two fundamental unintegrated gluon distributions,

namely, xGð1Þ and xGð2Þ, at small x. Although other differ-
ent gluon distributions appear in many different dijet pro-
duction processes, one can compute them and find that they
are related to these two fundamental gluon distributions in
the large Nc limit. In terms of the CGC framework, this
means that the two- and four-point functions are enough to
compute any dijet cross section, in the small momentum
imbalance limit. In addition, there is similar conclusion for
the quark distributions at small x [7]. By doing so, we can
restore the predictive power of the theory.

Therefore, as part of the conclusion, we would like to
summarize the empirical rules in the large-Nc limit10 in
this effective kt-factorization for dilute-dense system as
follows:

(i) The cross section can be still separated into the
products of the hard parts and parton distributions;

(ii) The hard factors should be calculated separately for
each individual graph since the parton distribution
associated with each graph may be different;

(iii) By replacing gluons into double lines, transform
the Feynman graphs of the hard part into large Nc

planar graphs. The planar graphs show that there
are only two building blocks, namely, quark lines
and color singlet quark loops, in any graphs (see
e.g., Figs. 10–12);

(iv) Quark lines always have interactions with the dense

target which contribute xGð2Þ or Fxgðq?Þ to the

gluon distribution. However, the color singlet quark
loop may or may not interact with the dense target
due to its peculiar color structure. If the quark loop

participates the interaction, it contributes xGð1Þ to
the gluon distribution.

(v) If there are multiple objects involved in the soft
interaction, the resulting gluon distribution can be
written in terms of convolutions of all contributions
in momentum space. For quark distributions in the
dense target, there are similar rules which can be
found in Ref. [7].

Using the above rules and calculating the coefficients of
gluon distributions as illustrated in Ref. [2], it is then

straightforward to write down cross sections in terms of
products of hard parts and parton distributions as illustrated
in the context of this paper.
There have been ambiguities regarding the unintegrated

gluon distributions for more than a decade. In this paper,
we resolve this decade-long puzzle through explicit opera-
tor definitions and propose measurements in physical pro-
cesses which probe the distributions directly. In particular,
we find that quark-antiquark correlation in DIS collisions
can probe the Weizsäcker-Williams gluon distribution for-
mulated in CGC many years ago.
It is well known that in the color-dipole approach, the

cross sections of inclusive DIS and SIDIS [26] at small-x
are proportional to the dipole cross section. Since the
dipole cross section can be written as Fourier transform
of the normalized gluon distribution Fxðq2?Þ, we can study

the unintegrated gluon distribution xGð2Þ of nuclei through
inclusive DIS and SIDIS at EIC. Moreover, using DIS
dijet (dihadron) processes at EIC in the correlation limit,
we can directly probe the Weizsäcker-Williams gluon

distribution xGð1Þ which is the distribution that actually
counts the number of gluons in the nuclear wave function.
This would give us the golden opportunity to access the
saturated WW gluon distribution which has been studied
for many years.
Recently, both STAR and PHENIX Collaborations

have published experimental results on dihadron correla-
tions in dAu collisions, where a strong back-to-back
decorrelation of the two hadrons was found in the for-
ward rapidity region of the deuteron [37]. These results
have stimulated a number of theoretical calculations in
the CGC formalism, where different assumptions have
been made in the formulations [38,39], though not the
correlation limit we had to use in the present study. In
particular, the numerical evaluation in Ref. [34,38] only
contains the first term in the qg channel in Eq. (B22).
The second term, as well as other missing terms due to
the use of a Gaussian approximation [20], are equally
important and should be taken into account to interpret
the STAR data. In addition, we also present the first CGC
calculations on the g ! q �q and g ! gg channels in pA
collisions. Although these channels are subdominant in
the forward dijet productions, they are important in the
central rapidity region.
At RHIC and LHC, by measuring the direct photon-jet

correlation in pA collisions, one can gain direct infor-
mation about the dipole unintegrated gluon distribution

xGð2Þ. Furthermore, by investigating the dijet (quark-
gluon or gluon-gluon jet) production in the correlation
limit, one can test the universality of gluon distributions,
and begin to see the convolutions of these two uninte-
grated gluon distributions. Using dijet production with
more general kinematics, one can even probe deeper the
small-x QCD dynamics, as multigluon distributions be-
come crucial.

10Note that one does not need to take the large Nc limit in the
calculation of xGð1Þ and xGð2Þ in DIS dijet and photon-jet in pA
collisions, respectively. However, the large Nc limit is essential
in order to eliminate other nonuniversal distributions or corre-
lators in other different dijet channels, i.e., qg ! qg, gg ! q �q
and gg ! gg in pA collisions.
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APPENDIX A: DERIVATION OF TWO-GLUON
DISTRIBUTIONS

1. The Weizsäcker-Williams gluon distribution

Let us focus on the Weizsäcker-Williams gluon distri-

bution xGð1Þðx; q?Þ first. Here, we provide a derivation of
this gluon distribution from its operator definition, together
with the gauge links for a large nucleus, by using the
McLerran-Venugopalan model. According to its definition

xGð1Þðx; q?Þ ¼ 2
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ

� hTr½Fð�ÞU½þ�yFð0ÞU½þ��i; (A1)

with U½þ� ¼ Un½0;þ1; 0�Un½þ1; ��;�?�. The defini-
tion above is gauge invariant. However, in order to simplify
the calculation, we have chosen to use covariant gauge.
Thus, it is then easy to write it as

xGð1Þðx; q?Þ ¼ 2
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ

� hTr½Un½þ1; ��;�?�Fð�ÞUny½þ1; ��;�?�Uny½0;þ1; 0�Fð0ÞUn½0;þ1; 0��i

¼
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ � h½Wny½þ1; ��;�?�abFað�ÞWny½0;þ1; 0�cbFcð0Þ�i; (A2)

where Wny½þ1; ��;�?�ab now is in the adjoint represen-
tation. Following Belitsky et al [19], we can insert a
complete set of one particle intermediate states. Notice
that for the quark distribution at small-x, we need to have
two particle intermediate states due to the antiquark spec-
tator. Therefore, the gluon distribution reads

xGð1Þðx; q?Þ ¼
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ
Z d4P0

ð2�Þ4
�ð2�Þ�ðP02 �m2ÞAy

a ð0ÞAað�Þ;
(A3)

where we introduced the amplitude

A bð�Þ � hP0jWny½þ1; ��;�?�abFað�ÞjPi: (A4)

This amplitude then takes the form

Aað�Þ ¼
Z d4k

ð2�Þ4 e
i��kþþi�?k?

� ð2�Þ4�ð4Þðkþ P0 � PÞAaðkÞ: (A5)

By plugging in everything into the definition, we find

xGð1Þðx; q?Þ ¼ 2

ð2�Þ3ð2PþÞ2 A
y
a ðx; q?ÞAaðx; q?Þ:

(A6)

Let us define ~Aaðx�; R?Þ as the Fourier transform of
Aaðx; q?Þ. Like what we have done for the quark distri-
butions [7], we can compute the diagrammatic contribu-
tions to ~Aaðx�; R?Þ order by order and resum it in
coordinate space which gives

~Aaðx�; R?Þ ¼ Wbaðx�; R?ÞFþi
b ðR?Þ

¼ �
Z

d2x?bðx�; x?ÞWbaðx�; R?Þ
� rR?GðR? � x?Þ; (A7)

where

Wðx�; R?Þ ¼ T exp

�
�ig

Z þ1

x�
dz�

�
Z

d2z?Gðx? � z?Þcðz�; z?Þtc
�
; (A8)

with tc being the adjoint color matrix. Eventually, one
should be able to write
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xGð1Þðx; q?Þ ¼ 1

4�3

Z
dz�

Z
d2R?

Z
dz0�

Z
d2R0

?e
iq?�ðR?�R0

?ÞþixPþðx��x0�Þ ~Ay
a ðz�; R?Þ ~Aaðz0�; R0

?Þ: (A9)

In arriving to the expression above, we have put in a normalization factor of 2Pþ which comes from hPj � � � jPi. In the
following, we need to average the above expression with a Gaussian distribution of color charges as proposed in CGC.
Therefore,

xGð1Þðx; q?Þ ¼ 1

4�3

Z
d2R?

Z
d2R0

?e
iq?�ðR?�R0

?ÞþixPþðz��z0�Þ
Z þ1

�1
dz�d2z?

Z þ1

�1
dz0�d2z0?hbðz�; z?Þ

�Wbaðz�; R?Þcðz0�; z0?ÞWy
caðz0�; R0

?ÞirR?GðR? � z?ÞrR0
?
GðR0

? � z0?Þ: (A10)

Assuming a Gaussian distribution of sources, it is easy to prove that

hbðz�; z?ÞWbaðz�; R?Þcðz0�; z0?ÞWy
caðz0�; R0

?Þi ¼ hbðz�; z?Þcðz0�; z0?ÞihWbaðz�; R?ÞWy
caðz0�; R0

?Þi (A11)

¼ �bc�ðz� � z0�Þ�2ðz�; z? � z0?ÞhWbaðz�; R?ÞWy
caðz0�; R0

?Þi; (A12)

by using the fact that tcab ¼ �ifabc (Note that fabc is antisymmetric. See [40] for more details). Therefore, we have

xGð1Þðx; q?Þ ¼ g2

4�3

Z
d2R?

Z
d2R0

?e
iq?�ðR?�R0

?Þ
Z þ1

�1
dz�d2z?d2z0?�

2ðz�; z? � z0?Þ
� TrhWðz�; R?ÞWyðz�; R0

?ÞirR?GðR? � z?ÞrR0
?
GðR0

? � z0?Þ: (A13)

The different factors in the integral above can all be written in terms of a single function when a Gaussian distribution of
sources is used. Let

�ðR? � R0
?Þ ¼ g4

Z
d2z?d2z0?dz��

2ðz�; z? � z0?Þ ½GðR? � z?Þ �GðR0
? � z?Þ�½Gðz0? � R?Þ �Gðz0? � R0

?Þ�:
(A14)

In terms of �, Eq. (A13) takes the form

xGð1Þðx; q?Þ ¼ S?
16�4�s

N2
c � 1

Nc

Z
d2r?eiq?�r?

r2�ðr?Þ
�ðr?Þ

�
1� exp

�
�Nc

2
�ðr?Þ

��
: (A15)

In particular, for the McLerran-Venugopalan model, the function � can be evaluated explicitly giving the well-known
result

xGð1Þðx; q?Þ ¼ S?
4�4�s

N2
c � 1

Nc

Z
d2r?eiq?�r?

1

r2?

�
1� exp

�
� 1

4
r2?Q

2
s

��
; (A16)

where Q2
s is the gluon saturation scale.

2. The dipole gluon distribution

According to its definition,

xGð2Þðx; q?Þ ¼ 2
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ hTr½Fð�ÞU½��yFð0ÞU½þ��i; (A17)

with U½þ� ¼ Un½0;þ1; 0�Un½þ1; ��;�?� and U½�� ¼ Un½0;�1; 0�Un½�1; ��;�?�. Here, we have chosen the co-
variant gauge to do the calculation. Thus, one gets
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xGð2Þðx; q?Þ ¼ 2
Z d��d2�?e�iq?��?�ixPþ��

ð2�Þ3Pþ hTr½Un½þ1; ��;�?�Fð�ÞUny½�1; ��;�?�
�Uny½0;�1; 0�Fð0ÞUn½0;þ1; 0��i: (A18)

By inserting the intermediate state and replacing the
hPj � � � jPi by the ensemble average h� � �i, we get

xGð2Þðx; q?Þ ¼ 1

2�3
hTr½Byðx; q?ÞBðx; q?Þ�i; (A19)

with

B ð�Þ � hP0jUn½þ1; ��;�?�Fð�ÞUny½�1; ��;�?�jPi
(A20)

and

B ð�Þ¼
Z d4k

ð2�Þ4e
i��kþþi�?k?ð2�Þ4�ð4ÞðkþP0 �PÞBðkÞ:

(A21)

In CGC, we can find that, in covariant gauge, the
only nontrivial field strength is Fþi

a ðx?Þ ¼
�@i

R
d2y?Gðx? � y?Þaðx�; y?Þ. Therefore, if we write

B ðqÞ ¼
Z

dx�d2R?eiR?q? ~Bðx�; R?Þ (A22)

¼
Z

dx�d2R?eiR?q?Un½þ1; x�;R?�
� FðR?ÞUny½�1; x�;R?�;

(A23)

we can easily see thatBðqÞ / @iUny½�1;þ1;R?�. In the
above derivation, we have to assume that eix

�kþ ’ 1. This
can be justified by noting that x� is integrated from �L to
þL with L being the longitudinal width of the nucleus. For
small kþ ¼ xPþ with small x, we have kþL � 1.
Eventually, one gets

xGð2Þðx; q?Þ ¼ Nc

2�3

Z
d2R?

Z
d2R0

?e
iq?�ðR?�R0

?Þ
rR? � rR0

?
g2

1

Nc

Tr½hUðR?ÞUyðR0
?Þi� ¼

q2?Nc

2�2�s

S?F
g
xgðq2?Þ (A24)

with

Fg
xgðq2?Þ ¼

Z d2r?
ð2�Þ2 e

iq?�r? 1

Nc

TrhUðr?ÞUyð0Þi ’ 1

�Q2
sq

exp

�
� q2?

Q2
sq

�
; (A25)

where Q2
sq ¼ �2

s

2� ln 1
r2?�

2 and �2
s ¼ g2

2 CF

R
dx��2ðx�Þ.

Here, the saturation scale Q2
sq is obtained from the funda-

mental representation and it is usually called quark satura-
tion momentum.

APPENDIX B: EVALUATIONS OF CORRELATORS

Here in this section, we summarize the evaluation of the
correlators in CGC used above in the main context of the
paper.

1. The evaluation of two-point functions and hTrU½h�i
First of all, as derived in Ref. [41], for an arbitrary single

Wilson line (start at a� and end at b�), one can get

hUða�; b�jx?Þi ¼ exp

�
�g4CF

2

Z b�

a�
dz��2ðz�Þ

�
Z

d2z?G2ðx? � z?Þ
�
: (B1)

Using this result, it is easy to derive that

hUða�; b�jx?ÞUðb�; c�jx?Þi ¼ hUða�; c�jx?Þi: (B2)

The derivation is based on time ordering of z� and pairing
of two adjacent operators.
Furthermore, for two infinite Wilson lines of different

transverse position, one gets

hUðx?ÞUyðy?Þi ¼ exp

�
�g4CF

2

Z þ1

�1
dz��2ðz�Þ

Z
d2z?ðGðx? � z?Þ �Gðy? � z?ÞÞ2

�
;

’ exp

�
� g4CF

16�
ðx? � y?Þ2 ln 1

�2ðx? � y?Þ2
Z þ1

�1
dz��2ðz�Þ

�
; (B3)
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where 1=� stands for the cutoff in the integral. Thus,
usually one writes hUðx?ÞUyðy?Þi ’ exp½� Q2

s ðx?�y?Þ2
4 �

with Q2
s ¼ g4CF

4� ln 1
�2ðx?�y?Þ2

Rþ1
�1 dz��2ðz�Þ.

Now we are ready to evaluate hTrU½h�i and show that it
is the same as the correlator of two infinite Wilson lines.
According to the definition, one can easily find that

hTrU½h�i ¼ hTr½Uð0;þ1j0?ÞUðþ1; ��j�?Þ
�Uð��;�1j�?ÞUð�1; 0j0?Þ�i (B4)

¼ hTr½Uð0?ÞUyð�?Þ�i; (B5)

where we have used Eq. (B2). Therefore, one can easily

relate 1
Nc
hTrU½h�i to Fxðq2?Þ through Fourier transform.

2. Evaluation of the 4-point function with
a Gaussian distribution of sources

The derivation presented here follows closely the
method presented in [36] and used also in [35] where other
4-point functions have been calculated. For the sake of
completeness and to make the presentation self-contained,
we will briefly review how to calculate the 4-point function

Sð4Þxg ðx1; x2; x02; x01Þ ¼ 1
Nc
hTrUðx1ÞUyðx01ÞUðx02ÞUyðx2Þixg for

a Gaussian distribution of charges. Details of the general
procedure are given in [36].

The nuclear average of a function of the gauge field is
defined by

hf½A�ixg
¼
Z
Dexp

�
�
Z
d2xd2ydzþ

cðzþ;xÞcðzþ;yÞ
2�2

xgðzþÞ
�
f½A�;

(B6)

where the color charge  and the gauge field are related by

�r2
?A

�
c ðzþ; xÞ ¼ gScðzþ; xÞ; (B7)

and �2
xgðzþÞ is the density of color charges at a given zþ.

This Gaussian distribution allows us to express any corre-
lator in terms of the elementary correlator of two color
charges

hcðzþ; xÞdðz0þ; yÞixg
¼ �cd�ðzþ � z0þÞ�ð2Þðx� yÞ�2

xgðzþÞ: (B8)

In order to do this, the Wilson lines must be expanded in
terms of gS and then apply Wick’s theorem. The Wilson
lines are naturally expanded in terms of the gauge field and
not the color charge density, therefore it is useful to express
the elementary correlator (B8) in terms of the gauge field.

g2ShA�
c ðzþ; xÞA�

d ðz0þ; yÞixg ¼ �cd�ðzþ � z0þÞ�2
xgðzþÞLxy;

(B9)

with L given in terms of the two-dimensional massless
propagator G0,

Lxy ¼ g4S

Z
d2zG0ðx� zÞG0ðy� zÞ;

G0ðxÞ ¼
Z d2k

ð2�Þ2
eik�x

k2
: (B10)

This correlation between two fields has the color struc-
ture of a gluon link. This, together with the locality of the
correlator in the zþ variable, allows for a graphical repre-
sentation of each of the terms of the expansion of the
Wilson lines. For the particular color structure of the
4-point function, we are interested in diagrams which
look like the left-hand side of Fig. 13. One kind of con-
tribution from these diagrams that is easy to evaluate is the
contribution from links with both ends attached to the same
line. For a Wilson line at a transverse coordinate x this kind
of link gives a factor of�CF�

2Lxx=2, it has a color singlet
structure and therefore factors out in the evaluation of any
specific diagram. When multiple insertions of these par-
ticular links are taken into account they can be resummed
into the factor

T ¼ e
�ðCF=2Þ�2ðLx1x1

þLx2x2
þLx0

1
x0
1
þLx0

2
x0
2
Þ
; (B11)

where the contributions from the four Wilson lines in-
volved in the correlator have been included. After factoring
out the so-called tadpole contributions, we are left with
diagrams in which all gluon links connect different Wilson
lines. The strategy to evaluate these diagrams is to include
the proper L factors for each of the gluon links and to
resolve the color structure by means of the Fierz identity

FIG. 13. Graphical representation of the terms in the series expansion of the 4-point function.
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Ta
ijT

a
kl ¼ 1

2�il�jk � 1
2Nc

�ij�kl. The resummation then is not

a trivial task since each diagram will end up being written
as a linear combination of the two topologies shown in the
right-hand side of Fig. 13. As shown in [36], this difficulty
can be overcome by grouping diagrams according to the
number of gluon links and then using an inductive proce-
dure to find the value of the nth term in the series. By

explicitly resolving the nth link and using the notation in
Fig. 13, we have

an
bn

� �
¼ �2

xgðzþn ÞM
an�1

bn�1

� �
; (B12)

where the matrix M is given by all the different ways in
which the nth link can be attached,

M ¼ CFðLx1x2 þ Lx0
2
x0
1
Þ þ 1

2Nc
Fðx1; x2; x02; x01Þ � 1

2Fðx1; x01; x02; x2Þ
� 1

2Fðx1; x2; x02; x01Þ CFðLx1x
0
1
þ Lx0

2
x2Þ þ 1

2Nc
Fðx1; x01; x02; x2Þ

 !
; (B13)

with Fðx1; x2; x02; x01Þ ¼ Lx1x
0
2
� Lx1x

0
1
þ Lx2x

0
1
� Lx2x

0
2
. It is

easy to solve this recursion relation taking into account the
initial condition a0 ¼ 1, b0 ¼ 0. Formally, the solution
reads

an
bn

� �
¼
�Yn
i¼1

�2
xgðzþi Þ

�
Mn 1

0

� �
: (B14)

In order to find an explicit solution, we have to find the
eigenvalues �� and eigenvectors of M. The solution then
takes the form

an
bn

� �
¼
�Yn
i¼1

�2
xgðzþi Þ

�
aþ�nþ þ a��n�
bþ�nþ þ b��n�

� �
; (B15)

with

�� ¼
�
Nc

4
� 1

2Nc

�
ðLx1x2 þ Lx0

2
x0
1
Þ þ Nc

4
ðLx1x

0
1
þ Lx0

2
x2Þ

þ 1

Nc

Fðx1; x2; x02; x01Þ �
Nc

4

ffiffiffiffi
�

p
; (B16)

a� ¼
ffiffiffiffi
�

p � Fðx1; x02; x2; x01Þ
2
ffiffiffiffi
�

p ;

b� ¼ Fðx1; x2; x02; x01Þ
Nc

ffiffiffiffi
�

p ;

(B17)

� ¼ F2ðx1; x02; x2; x01Þ

þ 4

N2
c

Fðx1; x2; x02; x01ÞFðx1; x01; x02; x2Þ: (B18)

With this result, we can now easily resum the contribu-
tion from all the diagrams. The 4-point function is then
given by

Sð4Þxg ðx1;x2;x02;x01Þ

¼ T

Nc

X1
n¼0

Z
zþ
1
<���<zþn

½Ncanðzþ1 ;...;zþn ÞþN2
cbnðzþ1 ;...;zþn Þ�:

(B19)

When written in terms of the eigenvalues above, this ex-
pression can be resummed into

Sð4Þxg ðx1; x2; x02; x01Þ ¼
T

Nc

½Ncðaþe�2�þ þ a�e�
2��Þ

þ N2
cðbþe�2�þ þ b�e�

2��Þ�: (B20)

Using the explicit values shown above, this expression
takes the form

Sð4Þxg ðx1; x2; x02; x01Þ ¼ e�ðCF=2Þ½�ðx1�x2Þþ�ðx0
2
�x0

1
Þ�
�� ffiffiffiffi

�
p þ Fðx1; x02; x2; x01Þ

2
ffiffiffiffi
�

p � Fðx1; x2; x02; x01Þffiffiffiffi
�

p
�
eðNc=4Þ�2

ffiffiffi
�

p

þ
� ffiffiffiffi

�
p � Fðx1; x02; x2; x01Þ

2
ffiffiffiffi
�

p þ Fðx1; x2; x02; x01Þffiffiffiffi
�

p
�
e�ðNc=4Þ�2

ffiffiffi
�

p �

� e�ðNc=4Þ�2Fðx1;x02;x2;x01Þþð1=2NcÞ�2Fðx1;x2;x02;x01Þ; (B21)

with �ðx� yÞ ¼ �2ðLxx þ Lyy � 2LxyÞ.
Taking the large-Nc limit of this result, we find a much simpler expression,

Sð4Þxg ðx1; x2; x02; x01Þ ’ e�ðCF=2Þ½�ðx1�x2Þþ�ðx0
2
�x0

1
Þ� � Fðx1; x2; x02; x01Þ

Fðx1; x02; x2; x01Þ
ðe�ðCF=2Þ½�ðx1�x2Þþ�ðx0

2
�x0

1
Þ� � e�ðCF=2Þ½�ðx1�x0

1
Þþ�ðx0

2
�x2Þ�Þ:
(B22)
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Note that even this large-Nc result can not be expressed as
a product of 2-point functions. The two terms appearing
above have a simple interpretation in terms of multiple
scatterings that allows us to label the first term as the elastic
part and the second term as the inelastic part (see [33],
where the same scattering factor appears in the context of
two-gluon production). Taking into account that the
Gaussian distribution of sources is equivalent to the two-
gluon exchange approximation with independent scattering
centers, it is easy to see that the first term is what you would
expect if only interactions that do not break up nucleons in

the nucleus were allowed. In that scenario, the quark-
antiquark pair is always on a singlet state and the interaction
factor can be written as the product of the interaction term
for a dipole in the amplitude times an interaction term for
the dipole in the conjugate amplitude. The inelastic part
takes into account all the interactions where at least one of
the nucleons is broken apart, in which case the quark-
antiquark pair goes from a singlet state to an octet state.
In the large-Nc limit, transitions from the octet state to the
singlet state are suppressed and therefore the pair remains in
the octet state for the rest of the interactionwith the nucleus.
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