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We study a noninteracting supersymmetric model in an expanding FRW spacetime. A soft supersym-

metry breaking induces a nonzero contribution to the vacuum energy density. A short distance cutoff of

the order of Planck length provides a scale for the vacuum energy density comparable with the observed

cosmological constant. Assuming the presence of a dark energy substance in addition to the vacuum

fluctuations of the field, an effective equation of state is derived in a self-consistent approach. The

effective equation of state is sensitive to the choice of the cutoff but no fine-tuning is needed.
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I. INTRODUCTION

It is generally accepted that the cosmological constant
term which was introduced ad hoc in the Einstein-Hilbert
action is actually related to the vacuum energy density of
matter fields. Observational evidence for an accelerating
expansion [1–3] implies that the vacuum energy density
dominates the total energy density today. The vacuum
energy density estimated in a simple quantum field theory
is by about 120 orders of magnitude larger than the value
required by astrophysical and cosmological observations
[4] so that extreme fine-tuning is needed in order to make a
cancellation up to 120 decimal places. Theoretically, it is
possible that the cosmological constant is precisely zero
and the acceleration of the universe expansion is attributed
to the so-called dark energy (DE), a fluid with sufficiently
negative pressure, such that its magnitude exceeds 1=3 of
the energy density. Nevertheless, even if such a substance
exists, it is extremely difficult to tune the vacuum energy to
be exactly zero. Hence, the fine-tuning problem persists
unless there exists a symmetry principle that forbids a
nonzero vacuum energy. Such a principle is indeed pro-
vided by supersymmetry [5]. In field theory with exact
supersymmetry, the contributions of fermions and bosons
to vacuum energy precisely cancel [6]. However, the
supersymmetry in the real world is not exact.

A nonzero cosmological constant implies the de Sitter
symmetry group of spacetime rather than the Poincaré
group which is the spacetime symmetry group of an exact
supersymmetry. Hence, the structure of de Sitter spacetime
automatically breaks the supersymmetry. Conversely, a
low energy supersymmetry breaking could in principle
generate a nonzero cosmological constant of an acceptable
magnitude. Unfortunately, the scale of supersymmetry
breaking required by the particle physics phenomenology
must be of the order of 1 TeVor larger implying a cosmo-
logical constant too large by about 60 orders of magnitude.
Some nonsupersymmetric models with an equal number of
boson and fermion degrees of freedom have been

constructed [7] so that all the divergent contributions to
the vacuum energy density cancel and a small finite con-
tribution can be made comparable with the observed value
of the cosmological constant.
In this paper we investigate the fate of vacuum energy

when an unbroken supersymmetric model is embedded in
spatially flat, homogeneous and isotropic spacetime. In
addition, we assume the presence of a dark energy type of
substance obeying the equation of state pDE ¼ w�DE, with
w< 0. Unlike in flat spacetime, the vacuum energy density
turns out to be nonzero depending on background metric.
Hence, the expansion is caused by a combined effect of
both DE and vacuum fluctuations of the supersymmetric
field. Solving the Friedman equations self-consistently, we
find the effective equation of state of DE. In particular,
we find the conditions for which the effective expansion
becomes of de Sitter type. The contribution of the super-
symmetric field fluctuations is found to be of the same order
of magnitude as DE and no fine-tuning is needed.
We do not claim that our model describes a realistic

scenario but it is tempting to speculate along the lines
described in an earlier paper [8] where a naive model of
supersymmetry in de Sitter spacetime has been considered.
Our working assumption is that the universe today contains
DE and no matter apart from fluctuations of a supersym-
metric vacuum as a relict of symmetry breaking in the early
universe. Since the global geometry is nonflat, the lack of
Poincaré symmetry will lift the Fermi-Bose degeneracy
and the energy density of vacuum fluctuations will be
nonzero. This type of ‘‘soft’’ supersymmetry breaking is
similar to the supersymmetry breaking at finite temperature
where the Fermi-Bose degeneracy is lifted by quantum
statistics ([9] and references therein).
The remainder of the paper is organized as follows. In

Sec. II we introduce a supersymmetric model in an ex-
panding FRW universe. The calculations and results are
presented in Sec. III. In Sec. IV we discuss the effective
equation of state of DE. Concluding remarks are given in
Sec. V. In the Appendix we review the covariant regulari-
zation schemes of the vacuum expectation value of the
energy-momentum tensor in flat spacetime.*bilic@thphys.irb.hr
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II. THE MODEL

Here we consider a noninteracting Wess-Zumino super-
symmetric model with N species and calculate the energy
density of vacuum fluctuations in de Sitter spacetime. In
general, the supersymmetric Lagrangian L for N chiral
superfields has the form [10]

L ¼ X
i

�y
i �ijD þWð�ÞjF þ H:c:; (1)

where the index i distinguishes the various left chiral
superfields �i and Wð�Þ denotes the superpotential for
which we take

Wð�Þ ¼ 1

2

X
i

mi�i�i: (2)

Eliminating auxiliary fields by equations of motion, the
Lagrangian (1) may be recast in the form

L ¼ @��
y
i @

��i �m2
i j�ij2 þ i

2
��i�

�@��i � 1

2
mi

��i�i;

(3)

where �i and �i are the complex scalar and the Majorana
spinor fields, respectively, and summation over the species
index i is understood. For simplicity, from now on we
suppress the dependence on i.

Next we assume a curved background spacetime geome-
try with metric g��. Spinors in curved spacetime are con-

veniently treated using the so-called vierbein formalism.
The metric is decomposed as

g��ðxÞ ¼ �abe
a
�e

b
�; g��ðxÞ ¼ �abea

�eb
�; (4)

where the set of coefficients ea� is called the vierbein and

ea
� ¼ �abg

��eb� (5)

is the inverse of the vierbein. Obviously,

g � detg�� ¼ �ðdetea�Þ2: (6)

The action may be written as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðLB þLFÞ; (7)

where LB andLF are the boson and fermion Lagrangians,
respectively. The Lagrangian for a complex scalar field
may be expressed as the sum of the Lagrangians for two
real fields:

L B ¼ 1

2

X2
i¼1

ðg��’i
;�’

i
;� �m2’i2Þ: (8)

The fermion part is given by [11]

L F ¼ i

4
ð ��~���;� � ��;� ~�

��Þ � 1

2
m ���; (9)

where ~�� are the curved spacetime gamma matrices,

~�� ¼ ea
��a; (10)

with ordinary Dirac gamma matrices denoted by �a.

Variation of (7) with respect to �� yields the Dirac equation
in curved spacetime:

i~���;� �m� ¼ 0: (11)

The covariant derivatives of the spinor are defined as

�;� ¼ �;� � ���; (12)

�� ;� ¼ ��;� þ ����; (13)

where

�� ¼ 1
8!�

ab½�a; �b�; (14)

with the spin connection [12]

!�
ab ¼ ��bcec

�ðea�;� � ��
��e

a
�Þ: (15)

In FRW metric the vierbein is diagonal and in spatially flat
FRW spacetime takes a simple form:

ea� ¼ diagð1; a; a; aÞ; (16)

where a ¼ aðtÞ is the cosmological expansion scale.

III. CALCULATION OF THE VACUUM
ENERGY DENSITYAND PRESSURE

A spatially flat FRW metric is given by

ds2 ¼ dt2 � aðtÞ2d~x2: (17)

It is convenient to work in the conformal frame with metric

ds2 ¼ að�Þ2ðd�2 � d~x2Þ; (18)

where the proper time t of the isotropic observers, or
cosmic time, is related to the conformal time � as

dt ¼ að�Þd�: (19)

In order to calculate the energy density and pressure of
the vacuum fluctuations, we need the vacuum expectation
value of the energy-momentum tensor. The energy-
momentum tensor is derived from S as [11]

T�� ¼ �abe
b
�ffiffiffiffiffiffiffi�g

p �S

�ea
� ¼ TF

�� þ TB
��; (20)

where the boson and fermion parts are derived from the
respective scalar and spinor Lagrangians:

TB
�� ¼ X2

i¼1

@�’
i@�’

i � g��LB; (21)

TF
�� ¼ i

4
ð �c ~�ð�c ;�Þ � �c ð;� ~��Þc Þ: (22)

Owing to the assumed homogeneity and isotropy of space-
time, the calculation of the density and pressure requires
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the T0
0 component and the trace T�

�. Specifically for the

metric (18) we obtain

TB0
0 ¼

X2
i¼1

�
1

2a2
ð@�’iÞ2 þ 1

2a2
ðr’iÞ2 þ 1

2
m2’i2

�
; (23)

TB�
� ¼ X2

i¼1

�
� 1

a2
ð@�’iÞ2 þ 1

a2
ðr’iÞ2 þ 2m2’i2

�
; (24)

TF0
0 ¼ � i

4a4
ð �c�j@jc � ð@j �c Þ�jc Þ þ 1

2a3
m �c c ; (25)

TF�
� ¼ 1

2a3
m �c c : (26)

Assuming a general perfect fluid form of the vacuum
expectation value of T��,

hT��i ¼ ð�þ pÞu�u� � pg��; (27)

the energy density and pressure of the vacuum fluctuations
are given by

� ¼ u�u�hT��i; (28)

p ¼ 1
3ð�� hT�

�iÞ; (29)

where u� is the velocity of the fluid and hAi denotes the
vacuum expectation value of an operator A. In particular,
for vacuum energy we expect

hT��
� i ¼ ��g

��; (30)

in accord with Lorentz invariance. In this case we have

p� ¼ ���: (31)

With this equation of state we reproduce empty-space
Einstein’s equations with a cosmological constant equal to

� ¼ 8	G��: (32)

In the following sections we make the calculations in
comoving coordinates. In comoving coordinates Eqs. (28)
and (29) simplify to

�vac ¼ hT0
0i; (33)

pvac ¼ 1
3hT0

0 � T�
�i: (34)

A. Scalar fields

Next we consider quantum scalar fields in a spatially flat
FRW spacetime with metric (18). Each real scalar field
operator is decomposed as

’ð�; ~xÞ ¼ X
~k

a�1ð
kð�Þei ~k ~xak þ 
kð�Þ�e�i ~k ~xayk Þ; (35)

in full analogy with the standard flat-spacetime expression
(A3) considered in the Appendix. The function 
k satisfies
the field equation


00
k þ ðm2a2 þ k2 � a00=aÞ
k ¼ 0; (36)

where the prime 0 denotes a derivative with respect to the
conformal time �. In the massless case, the exact solutions
to this equation may easily be found [11]. In particular, in
de Sitter spacetime a00=a ¼ 1=�2, and one finds positive
frequency solutions:


k ¼ 1ffiffiffiffiffiffiffiffiffi
2Vk

p e�ik�

�
1� i

k�

�
: (37)

The operators ak associated with these solutions annihilate
the adiabatic vacuum in the asymptotic past (Bunch-
Davies vacuum) [11,13].
If m � 0 solutions to (36) may be constructed by

making use of the WKB ansatz


kð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VaWkð�Þ

p e�i
R

�
aWkð�Þd�; (38)

where the function Wk is found by solving (36) iteratively
up to an arbitrary order in adiabatic expansion [12]. For our
purpose we need the solution up to the 2nd order only
which reads

Wk ¼ !k þ!ð2Þ; (39)

where

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2=a2

q
: (40)

The general expression for the second order term is [12]

!ð2Þ ¼ � 3

8

1

!k

_a2

a2
� 3

4

1

!k

€a

a
� 3

4

k2

a2!3
k

_a2

a2

þ 1

4

k2

a2!3
k

€a

a
þ 5

8

k4

a4!5
k

_a2

a2
; (41)

where the overdot denotes a derivative with respect to the
cosmic time t. Then, Eq. (39) may be written as

Wk ¼ !k � 1

2!k

�
_a2

a2
þ €a

a

�
½1þOðm2=!2

kÞ�; (42)

or, using (19), as

Wk ¼ !k � 1

!k

a00

a3
½1þOðm2=!2

kÞ�: (43)

We can calculate now the vacuum expectation value of the
0-0 component and the trace of the boson energy-
momentum tensor. Using (A6) and the commutation prop-

erties of ak and ayk , from (23) and (24) with (35) we find

hTB0
0i ¼

V

a4

Z d3k

ð2	Þ3 ðj

0
kj2 þ a2!2

kj
kj2Þ; (44)

hTB�
�i ¼ �2

V

a4

Z d3k

ð2	Þ3 ½j

0
kj2 � a2ð!2

k þm2Þj
kj2�:
(45)

Using (33) and (38) with (43) we obtain
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�B ¼ 1

a3

Z d3k

ð2	Þ3!k

�
!2

k þ
1

2

a02

a4
þ 1

2

a02

a4
m2

!2
k

þ 1

4

�
2
a02a00

a7
� a0a000

a6

�
1

!2
k

þOð!�4
k Þ

�
: (46)

The first term in square brackets is identical to the flat-
spacetime result. The second term is a quadratically diver-
gent contribution due to a nonflat geometry, the next two
terms are logarithmically divergent, and the rest is finite.
Similarly, with the help of (34) we find the boson contri-
bution to the pressure:

pB ¼ 1

a3

Z d3k

ð2	Þ3!k

�
k2

3a2
þ 1

6

�
3
a02

a4
� 2

a00

a3

�

þ 1

6

�
3
a02

a4
� a00

a3

�
m2

!2
k

þ 1

4

�
2
a02a00

a7
� a0a000

a6

�
1

!2
k

þOð!�4
k Þ

�
: (47)

B. Spinor fields

Next we proceed to quantize the fermions. The Dirac
equation in curved spacetime may be derived from (9).
Specifically for a spatially flat FRW metric, we obtain

i�0

�
@0 þ 3

2

_a

a

�
�þ i

1

a
�j@j��m� ¼ 0: (48)

Rescaling the Majorana fermion field � as

� ¼ a�3=2c ; (49)

and introducing the conformal time, we obtain for c the
usual flat-spacetime Dirac equation

i�0@�c þ i�j@jc � amc ¼ 0; (50)

with time dependent effective mass am. The quantization
of c is now straightforward [14,15]. The Majorana field c
may be decomposed as usual:

c ð�; ~xÞ ¼ X
~k;s

ðuksð�Þei ~k ~xbks þ vksð�Þe�i ~k ~xbyksÞ; (51)

where the spinor uks may be expressed as

uks ¼ 1ffiffiffiffi
V

p ði� 0k þ am�kÞ�s

~ ~k �k�s

 !
: (52)

Here, the two-spinors �s are the helicity eigenstates which
may be chosen as

�þ ¼ 1

0

 !
; �� ¼ 0

1

 !
: (53)

The spinor vks is related to uks by charge conjugation

vks ¼ i�0�2ð �uksÞT: (54)

The norm of the spinors may be easily calculated

�u ksuks ¼ � �vksvks

¼ 1

V
ðam��k � i��0k Þðam�k þ i� 0kÞ �

1

V
k2j�kj2:

(55)

The mode functions �k satisfy the equation

� 00k þ ðm2a2 þ k2 � ima0Þ�k ¼ 0: (56)

In addition, the functions �k satisfy the condition [15]

k2j�kj2 þ ðam��k � i��0k Þðam�k þ i� 0kÞ ¼ C1: (57)

It may be easily verified that the left-hand side of this
equation is a constant of motion of Eq. (56). The constant
C1 is fixed by the normalization of the spinors and by the
initial conditions. A natural assumption is that at t ¼ 0
(� ¼ �1=H, a ¼ 1) the solution behaves as a plane wave

�k ¼ C2e
�iEkt, where Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. This gives �kð0Þ ¼

C2, � 0kð0Þ ¼ �iC2Ek, and hence C1 ¼ 2C2
2Ekðmþ EkÞ.

From (55) and (57) we obtain

�u ksuks ¼ � �vksvks ¼ 1

V
ðC1 � 2k2j�kj2Þ; (58)

which at t ¼ 0 reads

�u ksuks ¼ � �vksvks ¼ C1

m

VEk

: (59)

For C1 ¼ 1 this coincides with the standard flat-spacetime
normalization [11].
In themassless case the solutions to (56) are planewaves.

For m � 0 two methods have been used to solve (56) for a
general spatially flat FRW spacetime: (a) expanding in
negative powers of Ek and solving a recursive set of differ-
ential equations [14]; (b) using aWKBansatz similar to (38)
and the adiabatic expansion [15].
By making use of the decomposition (51) and the stan-

dard anticommuting properties of the creation and annihi-
lation operators, the vacuum expectation value of the 0-0
component (25) and of the trace (26) of the fermion
energy-momentum tensor may be written as

hTF0
0i ¼

1

2a4
X
~k;s

�vksðam� ~k ~�Þvks; (60)

hTF�
�i ¼ 1

2a4
X
~k;s

am �vksvks: (61)

Evaluating the expression under the sum and replacing the
sum with an integral as in (A6), we obtain

hTF0
0i ¼

1

a4

Z d3k

ð2	Þ3 ½ik
2ð�k��0k � ��k �

0
kÞ � am�; (62)

hTF�
�i ¼ � 1

a4

Z d3k

ð2	Þ3 amð1� 2k2j�kj2Þ: (63)
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The expressions under the integral sign in (62) and (63)
were calculated by Baacke and Patzold [14]. We quote
their results for the divergent contributions:

hTF0
0idiv ¼

1

a4

Z d3k

ð2	Þ3
�
�Ek � ða2 � 1Þm2

2Ek

þ ða2 � 1Þ2m4

8E3
k

þ a02m2

8E3
k

�
; (64)

hTF�
�idiv ¼ � 1

a4

Z d3k

ð2	Þ3
�
a2m2

Ek

� aa00m2

4E3
k

� a4m4

2E3
k

þ a2m4

2E3
k

�
: (65)

Note that the first three terms in square brackets in (64) are

identical to the first three terms in the expansion of a!k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ a2m2 �m2

q
in powers of E�2

k . Hence, we can write

�F ¼ hTF0
0i

¼ 1

a3

Z d3k

ð2	Þ3!k

�
�!2

k þ
1

8

a02

a4
m2

!2
k

þOð!�4
k Þ

�
: (66)

The first term in square brackets is precisely the flat-
spacetime vacuum energy of the fermion field. The second
term is a logarithmically divergent contribution due to the
FRW geometry and the last term is finite and vanishes in
the flat-spacetime limit a0 ! 0. Note that, as opposed to
bosons, there is no quadratic divergence of the type a02=!k.

Similarly, from (65) we obtain

hTF�
�i¼ 1

a3

Z d3k

ð2	Þ3!k

�
�m2þ1

4

a00

a3
m2

!2
k

þOð!�4
k Þ

�
; (67)

and using (34) we find the fermion contribution to the
pressure

pF ¼ 1

a3

Z d3k

ð2	Þ3!k

�
� 1

3

k2

a2
þ 1

24

a02

a4
m2

!2
k

� 1

12

a00

a3
m2

!2
k

þOð!�4
k Þ

�
: (68)

C. Putting it all together

Assembling the boson and fermion contributions, the
final expressions for the vacuum energy density and pres-
sure of each chiral supermultiplet are

� ¼ �B þ �F

¼ 1

a3

Z d3k

ð2	Þ3!k

�
1

2

a02

a4
þ 5

8

a02

a4
m2

!2
k

þ 1

4

�
2
a02a00

a7
� a0a000

a6

�
1

!2
k

þOð!�4
k Þ

�
; (69)

p¼pBþpF

¼ 1

a3

Z d3k

ð2	Þ3!k

�
1

6

�
3
a02

a4
�2

a00

a3

�
þ 1

24

�
13

a02

a4
�6

a00

a3

�
m2

!2
k

þ1

4

�
2
a02a00

a7
�a0a000

a6

�
1

!2
k

þOð!�4
k Þ

�
: (70)

The dominant contributions in (69) and (70) come from the
leading terms in square brackets which diverge quadrati-
cally. Note that these quadratically divergent terms are due
to bosons; fermions only provide a cancellation of all
divergent and finite terms in the respective flat-spacetime
contributions of bosons or fermions.
To make the results finite we need to regularize the

integrals. We will use a simple 3-dim momentum cutoff
regularization (recently dubbed ‘‘brute force’’ cutoff regu-
larization [16]) which, as shown in the Appendix, may be
regarded as a covariant regularization in a preferred
Lorentz frame defined by the DE fluid.
The advantage of this approach is a clear physical mean-

ing of the regularization scheme: one discards the part of
the momentum integral over those momenta where a dif-
ferent, yet unknown physics should occur. In this scheme a
preferred Lorentz frame is invoked which is natural in a
cosmological context where a preferred reference frame
exists: the frame fixed by the cosmic microwave back-
ground or large scale matter distribution. A similar stand-
point was advocated by Maggiore [17] and Mangano [18].
Furthermore, as we have already demonstrated, a super-
symmetry provides a cancellation of all flat-spacetime
contributions irrespective of the regularization method
one uses.
We change the integration variable to the physical mo-

mentum p ¼ k=a and introduce a cutoff of the order of the
Planck mass �cut �mPl. The leading terms yield

� ¼ N

4	2

a02

a4

Z �cut

0
pdpð1þOðp�2ÞÞ

ffi N�2
cut

8	2

a02

a4
ð1þOð��2

cut ln�cutÞÞ; (71)

p ffi N�2
cut

24	2

�
3
a02

a4
� 2

a00

a3

�
ð1þOð��2

cut ln�cutÞÞ; (72)

where N is the number of chiral species. Clearly, we do not
obtain the vacuum equation of state (31) as may have been
expected as a consequence of a regularization that assumes
the existence of a preferred Lorentz frame.
In order to estimate the cutoff we first neglect back-

ground DE and assume that the total energy density � is
given by (71). If we compare the first Friedman equation
with (71) keeping the leading term on the right-hand side,
we find that our cutoff should satisfy

VACUUM FLUCTUATIONS IN A SUPERSYMMETRIC MODEL . . . PHYSICAL REVIEW D 83, 105003 (2011)

105003-5



�cut ffi
ffiffiffiffiffiffiffi
3	

N

s
mPl: (73)

It is worthwhile to note that several approaches [17,19–21]
with substantially different underlying philosophy have led
to results similar to (71). In particular, Cohen, Kaplan, and
Nelson [19] have employed a cosmological horizon radius
RH ¼ 1=H as a long distance cutoff and derived an upper
bound

� ffi �4
UV � 3

8	

m2
Pl

L2
(74)

from a holographic principle. Here, �UV and L denote the
ultraviolet and long distance cutoffs, respectively. Our
result would saturate the holographic bound (74) if we
identify a0=a2 ¼ 1=L.

The closest approach to ours is that of Maggiore [17] and
Sloth [21], who present a similar calculation of zero-point
energy using massless boson fields only. The main differ-
ence in [17] with respect to ours is that the cancellation of
the quartic contributions was done by hand on the basis of
the procedure used previously in the literature with the so-
called ADMmass. In our model, the cancellation of all (not
only quartically divergent) flat-spacetime contributions is
naturally provided by supersymmetry. Another difference
is that our results (71) and (72) are sufficiently general to
allow a self-consistent approach.

The above consideration gives only an estimate for the
cutoff. In the next section we give a self-consistent treat-
ment of the supersymmetric vacuum fluctuations in the
presence of DE.

IV. EFFECTIVE EQUATION OF STATE

Since there is no way to precisely determine the cutoff, it
is convenient to introduce a free dimensionless cutoff
parameter � of order � & 1 such that

�cut ¼ �

ffiffiffiffiffiffiffi
3	

N

s
mPl: (75)

The factor 1=
ffiffiffiffi
N

p
is introduced to make the result indepen-

dent of the number of species. If we reinstate the cosmic
time t, Eqs. (71) and (72) become

� ¼ �
3

8	G

_a2

a2
; (76)

p ¼ �
1

8	G

�
_a2

a2
� 2

€a

a

�
: (77)

Obviously, the pressure is negative if _a2 < 2a €a. For ex-
ample, for a de Sitter expansion we find _a2 ¼ a €a and p ¼
��=3. This case was considered by Maggiore [17], who
concluded that the vacuum fluctuations cannot (at least in
his approach) be interpreted as a part of the cosmological
constant because in the second Friedman equation the

accelerating effects of pressure are canceled by those
from the density. We shall see shortly that this conclusion
is slightly altered in a self-consistent approach to the
effective equation of state.
In addition to vacuum fluctuations of matter fields, we

assume existence of DE characterized by the equation of
state pDE ¼ w�DE. The Friedman equations then take the
form

_a2

a2
¼ 8	

3
G�DE þ �

_a2

a2
; (78)

€a

a
¼ � 4	

3
Gð�DE þ 3pDEÞ � �

�
_a2

a2
� €a

a

�
: (79)

Introducing the effective equation of state

peff ¼ weff�eff ; (80)

where

�eff ¼ �DE

1� �
; (81)

weff ¼ wþ 2

3

�

1� �
; (82)

Eqs. (78) and (79) may be recast in the standard FRW form:

_a2

a2
¼ 8	

3
G�eff ; (83)

€a

a
¼ � 4	

3
Gð1þ 3weffÞ�eff : (84)

Three remarks are in order. First, it is clear from (81) why
we have chosen the cutoff parameter � less than 1. Second,
it follows from (82) that the contribution of the vacuum
fluctuations to the effective equation of state is always
positive and, hence, it goes against acceleration! The third
remark concerns the Bianchi identity which would not be
respected if the vacuum fluctuations were the only source
of gravity in Einstein’s equations. However, because of the
additional contribution to the energy-momentum tensor
coming from DE, it is not necessary to have both contri-
butions separately conserved. Since the effective pressure
and energy density satisfy Einstein’s field equations (83)
and (84), the combined energy momentum is conserved
and therefore the Bianchi identity is respected. In this way
an interaction between the vacuum fluctuations and DE is
implicitly assumed in the spirit of the two component
model of Grande, Sola, and Štefančić [22].
It is worthwhile to analyze interesting cosmological

solutions to Eqs. (83) and (84) depending on the nature
of DE given by the equation of state pDE ¼ w�DE.
(1) Consider first the case when there is no DE, i.e.,

when pDE ¼ �DE ¼ 0. In this case Eqs. (78) and
(79) admit only a trivial solution a ¼ const. Clearly,
if � ¼ 1, Eq. (78) becomes a trivial identity and
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Eq. (79) implies _a ¼ 0. If � � 1, Eqs. (78) and (79)
are satisfied if and only if _a ¼ 0. Therefore, a ¼
const is the only solution to (78) and (79) for any
choice of �. In other words, FRW spacetime cannot
be generated by vacuum fluctuations alone in an
empty background.

(2) Another interesting special case is DE represented by
a cosmological constant, i.e., for the equation of state
pDE ¼ ��DE. It follows from (82) that an acceler-
ated expansion (weff <�1=3) is achieved for any
value of the cutoff parameter in the range 0< �<
1=2. This case has also been discussed in [17,18].

(3) A more general case is obtained if we only require
accelerating expansion, i.e., if the effective equation
of state satisfiesweff <�1=3. Then Eq. (82) implies
that the range �1<w<�1=3 is compatible with
0< �< 1=2, whereas w<�1 would imply � >
1=2. In the latter case the DE equation of state
violates the dominant energy condition. The fluid
of which the equation of state violates the dominant
energy condition was dubbed phantom energy
[23,24] and has recently become a popular alterna-
tive to quintessence and cosmological constant [25].

(4) In the last example, we require that the background
be de Sitter, i.e., weff ¼ �1. In other words the
effective equation of state describes an effective
cosmological constant. From (82) we find

w ¼ � 2

3

�

1� �
� 1: (85)

Hence, this case may be realized only for a fluid
with w<�1, i.e., for the phantom energy. We see
that in a self-consistent approach, unlike in the
example discussed in [17], a de Sitter expansion
can be achieved as a result of a combined effect of
DE and vacuum fluctuations.

V. CONCLUSION

We have calculated the contribution of supersymmetric
fields to vacuum energy in spatially flat, homogeneous and
isotropic spacetime. In addition to supersymmetric fields
we have assumed existence of a substance obeying the
equation of state pDE ¼ w�DE, with w< 0. Unlike in flat
spacetime, the vacuum fluctuations turn out to be nonzero
depending on background metric. Combining effects of
both dark energy and vacuum fluctuations of the super-
symmetric field in a self-consistent way, we have found the
effective equation of state. In particular, we have found the
conditions for which the effective expansion becomes of
de Sitter type. The contribution of the supersymmetric field
fluctuations is of the same order of magnitude as DE and no
fine-tuning is needed.

We have found that if we impose a UV cutoff of the
ordermPl the leading term in the energy density of vacuum
fluctuations is of the order H2m2

Pl, where H ¼ _a=a. In this

way, if we identify the expansion parameter H with the
Hubble parameter today, the model provides a phenom-
enologically acceptable value of the vacuum energy den-
sity. We have also found that a consistency with the
Friedman equations implies that a natural cutoff must be

inversely proportional to
ffiffiffiffi
N

p
. A similar natural cutoff has

been recently proposed in order to resolve the so-called
species problem of black-hole entropy [26].
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APPENDIX: COVARIANT REGULARIZATION
OF T�� IN FLAT SPACETIME

To illustrate problems related to the field theoretical
calculation of vacuum energy, we review the well-known
results for the scalar field in flat spacetime [27–29].
Consider a single noninteracting real scalar field described
by the Lagrangian

L ¼ 1
2�

��’;�’;� � 1
2m

2’2; (A1)

with the corresponding energy-momentum tensor

T�� ¼ @�’@�’� ���L: (A2)

The field operator is decomposed as

’ðt; ~xÞ ¼ X
~k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2VEk

p ðe�iEktþi ~k ~xak þ eiEkt�i ~k ~xayk Þ; (A3)

where

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
(A4)

and ak and ayk are the annihilation and creation operators,

respectively, associated with the plane wave solutions with
the standard commutation properties,

½ak; ayk0 � ¼ �~k ~k0 : (A5)

From (A1)–(A3) with (A5) and replacing the sum over
momenta by an integral in the usual way,

X
~k

¼ V
Z d3k

ð2	Þ3 ; (A6)

we find the vacuum expectation value of T��:

hT��i ¼ 1

2

Z d3k

ð2	Þ3Ek

k�k�; (A7)

where k� ¼ ðEk; ~kÞ. The right-hand side of (A7) may be

expressed in a manifestly covariant way [27]:

VACUUM FLUCTUATIONS IN A SUPERSYMMETRIC MODEL . . . PHYSICAL REVIEW D 83, 105003 (2011)

105003-7



hT��i ¼
Z d4k

ð2	Þ3 k�k��ðk
�k� �m2Þ�ðk0Þ: (A8)

The delta function under the integral restricts the integra-
tion to the hypersurface defined by

k�k� �m2 ¼ 0; k0 > 0; (A9)

with the invariant measure d3k=Ek on the hypersurface.
Performing the integral over k0 in (A8), one recovers (A7).
However, if one assumes the vacuum expectation value of
T�� to be of the form

hT��i ¼ �vacg��; (A10)

as dictated by Lorentz invariance of the vacuum, one
encounters inconsistency since different results for �vac

are obtained depending on which component of T�� one

calculates. For example, using T00, one finds

�vac ¼ hT00i ¼ 1

2

Z d3k

ð2	Þ3 Ek: (A11)

On the other hand, using the trace, one finds

�vac ¼ 1

4
T�

� ¼ m2

8

Z d3k

ð2	Þ3Ek

; (A12)

which does not agree with (A11). One must conclude that
the assumption (A10) is not compatible with (A8). The
reason for this inconsistency is that the integrals in expres-
sions (A7) and (A8) are divergent and make sense only if
they are regularized.

One way to covariantly regularize (A7) or (A8) is to
cut the hypersurface (A9) by a spacelike hyperplane de-
fined by

fðk�Þ � u�k� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þm2

p
¼ 0; (A13)

where K is an arbitrary constant of dimension of mass and
u� is a general future directed timelike unit vector, which

may be parametrized as

u0 ¼ cosh�; u1 ¼ sinh� sin� cos�;

u2 ¼ sinh� sin� sin�; u3 ¼ sinh� cos�: (A14)

Clearly, the vector u� is normal to the hypersurface f ¼
const because @f=@k� ¼ u�. In this way, one effectively

introduces a preferred Lorentz frame defined by the vector
u� as if the vacuum fluctuations are embedded in a homo-

geneous fluid moving with the velocity u�. The special

form of the constant in (A13) is chosen for convenience.
The hyperplane cuts the hypersurface (A9) at a two-

dimensional intersection defined by (A13) together with
(A9). This gives a quadratic equation the solutions of
which define a two-dimensional closed surface as a bound-
ary of the integration domain � defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þm2
p

� u�k� > 0 (A15)

together with (A9). Hence, the regularized expression for
hT��i is given by

hT��i ¼ 1

2

Z
�

d3k

ð2	Þ3Ek

k�k�; (A16)

or in a manifestly covariant form

hT��i ¼
Z d4k

ð2	Þ3 k�k��ðk
�k� �m2Þ

� �ðu�k�Þ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þm2

p
� u�k�Þ: (A17)

Using a general perfect fluid form (27), � and p are given
by the invariant expressions

� ¼ 1

2

Z
�

d3k

ð2	Þ3Ek

ðu�k�Þ2; (A18)

p ¼ 1

6

Z
�

d3k

ð2	Þ3Ek

½ðu�k�Þ2 �m2�: (A19)

In comoving frame (� ¼ 0), the integration domain �
becomes a ball of radius K and we obtain

� ¼ hT00i ¼ 1

2

Z
k<K

d3k

ð2	Þ3 Ek; (A20)

p ¼ hTiii ¼ 1

6

Z
k<K

d3k

ð2	Þ3Ek

k2: (A21)

Hence, the described covariant regularization is equivalent
to a simple 3-dim momentum cutoff procedure. The inte-
gration yields

� ¼ K4

16	2
þm2K2

16	2
� 1

64	2
ln
K2

m2
þ 	 	 	 ; (A22)

p ¼ 1

3

K4

16	2
� 1

3

m2K2

16	2
þ 1

64	2
ln
K2

m2
þ 	 	 	 ; (A23)

where the ellipses denote the finite terms.
This result reveals two problems. The first one concerns

the fine-tuning. Assuming that the ordinary field theory is
valid up to the scale of quantum gravity, i.e. the Planck
scale, the leading term in (A22) yields

� 
 m4
Pl

16	2

 1073 GeV4; (A24)

compared with the observed value

�cr 
 10�47 GeV4: (A25)

This huge discrepancy may be easily rectified in flat space-
time simply by subtracting all divergent contributions and
redefining the vacuum to have its energy exactly zero.
However, as soon as we demand that vacuum energy or
cosmological constant is nonzero, the calculations should
be repeated in curved spacetime (e.g. de Sitter spacetime)
and a simple subtraction of vacuum energy by fiat cannot
be done.
If, in addition to the vacuum fluctuations of the field, one

assumes that there exists an independent cosmological
constant term �, as a result one would find an effective
vacuum energy
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�eff ¼ �þ ��: (A26)

In order to reproduce the observed value, one needs a
cancellation of the two terms on the right-hand side up to
120 decimal places! The problem is actually much more
severe as there are many contributions to vacuum energy
from different fields with different interactions and all
these contributions must somehow cancel to give the ob-
served vacuum energy density.

The second problem is related to the equation of state.
Obviously, Eqs. (A22) and (A23) do not reproduce the
expected vacuum energy equation of state (31), as required
by Lorentz invariance. Instead we find p ¼ �=3 for the
quartic term, p ¼ ��=3 for the quadratic term, and only
the logarithmic term satisfies (31). This violation of
Lorentz invariance is not surprising since the adopted
covariant regularization procedure assumes existence of a
preferred Lorentz frame.

In principle, it is possible to regularize the energy-
momentum tensor by imposing (30) and ignoring the men-
tioned inconsistency of the derived covariant expression
(A7). Then, using the manifestly covariant form (A8) of the
energy-momentum tensor, one can calculate the compo-
nents using covariant regularization schemes which do not
invoke a preferred Lorentz frame. For example, the

dimensional regularization with the MS prescription gives
[28]

�dim ¼ �pdim ¼ � m4

64	2

�
ln
K2

m2
þ 3

2

�
; (A27)

and one would conclude that a covariant regularization
removes the Lorentz violating quartic and quadratic diver-
gences and retains only the logarithmically divergent term
which agrees with the logarithmic term of the 3-dim cutoff
procedure in (A22) and (A23). However, in the Pauli
Villars regularization, one finds [27]

�PV¼�pPV

¼ 1

64	2

�
�1

2
K4þ2m2K2�m4

�
ln
K2

m2
þ3

2

��
; (A28)

so in this covariant procedure the quartic and quadratic
divergences are present with coefficients different from
those of the 3-dim cutoff procedure. Again, the logarith-
mic term agrees with that of (A22) and (A23). Both
dimensional and Pauli Villars regularizations have an
unpleasant property that the leading term contribution
yields � < 0. This property is unphysical since � �
hT0

0i should be positive for the scalar field as follows

from (23). Ossola and Sirlin have argued [27] that the
quartic term in (A28) may be removed by demanding
strict scale invariance in the limit m ! 0 or by invoking
the Feynman regulator.
Two other Lorentz invariant regularization schemes

were considered by Andrianov et al. [29]: �-function regu-
larization and the UV cutoff regularization of the large
wave-number field modes. It was concluded that the for-
mer method is not adequate in treating the cosmological
constant problem as it redirects the problem from the UV
to the IR region. The latter method with a suitable choice of
the large wave-number cutoff reproduces the Pauli Villars
regularization result (A28). With the choice advocated in
[29], one can get rid of the quartic term but then the
coefficient of the quadratic term changes.
We see from the above analysis that a covariant regu-

larization is ambiguous although in all mentioned cova-
riant methods the logarithmic term comes with the same
coefficient as in the 3-dim cutoff procedure. With the
exception of the dimensional regularization where the
power low divergences are absent by definition, the qua-
dratic term is always present with a coefficient that
depends on the regularization method.
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