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Proofs of two statements are provided in this paper. First, the authors prove that the formalism of the

pseudo-Hermitian quantum mechanics allows for describing the Dirac particles motion in arbitrary

stationary gravitational fields. Second, it is proved that using the Parker weight operator and the

subsequent transition to the � representation gives the transformation of the Schrödinger equation for

the nonstationary metric, when the evolution operator becomes self-conjugate. The scalar products in the

� representation are flat, which makes possible the use of a standard apparatus for the Hermitian quantum

mechanics. Based on the results of this paper the authors draw a conclusion about solution of the problem

of uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields including those

dependent on time. The general approach is illustrated by the example of Dirac Hamiltonians for several

stationary metrics, as well as for the cosmologically flat and the open Friedmann models.
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I. INTRODUCTION

In paper [1] we considered the issue of uniqueness
and Hermiticity of Hamiltonian for a Dirac particle in a
weak stationary gravitational field. The relations for
Hamiltonians in three systems of tetrad vectors were ana-
lyzed using the example of the field described with the Kerr
solution: for the system of tetrad vectors used in papers
[2–4]; for the Killing system of tetrad vectors and for the
system of tetrad vectors in the so-called symmetric gauge. It
was shown that all the occurring Hamiltonians can be
considered using the methods of pseudo-Hermitian quan-
tum mechanics; at that the Hamiltonian in the so-called �
representation1 has the form of H�, coincident with the

Hamiltonian ~H�, occurring during the choice of the system

of tetrad vectors, used in papers [2–4]. The independence of
HamiltonianH� in the� representation on the choice of one

of the three systems of tetrad vectors, discovered in [1], does
not make it possible to claim that this independence is
preserved in the general case as well. Nevertheless, basing
on the results of the discussions in [1] we put forward a
hypothesis that the Hamiltonian H� in the � representation

does not depend on the choice of the systemof tetrad vectors
at all. The additional proof of our supposition was obtained
at the analysis of the Parker scalar product [5,6].

We discovered, that at any choice of the system of tetrad
vectors the Hamiltonian H� is expressed via the weight

operator

� ¼ �þ�; (1)

used in the Parker scalar product.

During the proving of the Hamiltonian Hermiticity and
uniqueness in paper [1] a number of constraints were used.
First, the gravitational fields were considered to be weak
and stationary. In virtue of this the paper [1] does not
suggest a conclusion that the Hamiltonian in the � repre-
sentation is unique in the case of general gravitational
fields. Second, we did not observe a connection of the
operator � with the choice of the system of tetrad vectors
used for the description of the Dirac particle dynamics.
In the present paper we eliminate these gaps. Here

the issue of uniqueness and self-conjugacy of Dirac
Hamiltonians is considered with regard to arbitrary gravi-
tational fields, including those dependent on time.

II. FORMALISM OF PSEUDO-HERMITIAN
QUANTUM MECHANICS

When we describe the formalism of the pseudo-
Hermitian quantum mechanics we follow the works [7–9].
The condition of pseudo-Hermiticity of the Hamiltonians
assumes the existence of an invertible operator � satisfying
the relationship

�H��1 ¼ Hþ: (2)

If there exists an operator � satisfying the relationship

� ¼ �þ�; (3)

then for the Hamiltonians independent on time we get a
Hamiltonian in the � representation

H � ¼ �H��1 ¼ Hþ
� ; (4)

which is self-conjugate with the spectrum of eigenvalues
coincident with the spectrum of the initial Hamiltonian H.
The wave function c for the initial Hamiltonian satisfies

the equation

*neznamov@vniief.ru
1The designations used in [1] are also used in this paper;

additional comments on the designations are given in Sec. II and
III.
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i
@c

@t
¼ Hc ; (5)

the wave function � in the � representation satisfies the
equation

i
@�

@t
¼ H�� ¼ �H��1�; (6)

� ¼ �c : (7)

The system of units ℏ ¼ c ¼ 1 is used in the expressions
(5) and (6), and in the expressions below.

The scalar product in the initial representation a priori
equals to

h’; c i� ¼
Z

d3xð’þ�c Þ: (8)

For the wave function in the � representation the scalar
product has a form standard for the Hermitian quantum
mechanics (flat scalar product):

ð�;�Þ ¼
Z

d3xð�þ�Þ: (9)

It is evident that with account for (3) and (7) the scalar
products of (8) and (9) are

h’; c i� ¼ ð�;�Þ: (10)

In paper [1] we also studied the connection of the scalar
product of (8) with the Parker scalar product proposed in
papers [5,6]. In the result we discovered that for the three
Hamiltonians of Kerr solutions with different choices of
the systems of tetrad vectors, the operator � in the expres-
sion (8) coincides with the weight operator in the Parker
scalar product (1). In Sec. IV of this paper this connection
is established in the general case for the Dirac Hamiltonian
in arbitrary stationary gravitational field with the satisfac-
tion of the pseudo-Hermiticity condition (2).

In the general case of the gravitational fields dependent
on time the condition (2) is not satisfied. However, in this
case the transition to the � representation is possible with
the obtaining of a unique and self-conjugate Hamiltonian
with the corresponding flat scalar product. These issues are
discussed in Sec. VI of this paper.

In Sec. VIII the algorithm discussed in Sec. VI and VII is
used for obtaining self-conjugate Dirac Hamiltonians for
several stationary metrics, as well as for nonstationary ones
of the cosmologically flat and open Friedmann models.

In the Conclusion the results of this work are discussed.

III. REDUCTION OF THE DIRAC EQUATION TO
THE FORM OF THE SCHRÖDINGER EQUATION

First, we recall the thread of the corresponding argument
and introduce the designations. The tetrad vectors are
determined by the relations

H�
�H�

�g�� ¼ ���; (11)

where

��� ¼ diag½�1; 1; 1; 1�: (12)

Three more systems of tetrad vectors H��, H
��, H

�
�,

can be introduced along with the system of tetrad vectors
H

�
� , which differ from H

�
� by the place of the global and

local (underlined) indices. Raising and lowering the global
indices is performed using the metric tensor g�� and the

inverse tensor g��; the local indices are raised and lowered

using the tensors ���, �
��.

It is assumed that the particle motion is described by the
Dirac equation, which in the system of units ℏ ¼ c ¼ 1 is
written as

��

�
@c

@x�
þ��c

�
�mc ¼ 0: (13)

Here m is the particle mass, c represents the four-
component ‘‘column’’ bispinor, �� are the 4� 4 Dirac
matrices, which satisfy the relation

���� þ ���� ¼ 2g��E: (14)

In (14) E represents a 4� 4 unity matrix.
A covariant derivative of bispinor r�c is in the paren-

thesis in (13):

r�c ¼ @c

@x�
þ��c : (15)

The bispinor connectivity �� is included into the con-
struction (15) for r�c ; some certain system of tetrad
vectors H�

� determined by the relation (11), should be

fixed to retrieve ��. After that the quantity �� can be
expressed via the Christoffel derivatives of the tetrad vec-
tors as follows (the Christoffel derivatives are denoted by a
semicolon):

�� ¼ � 1

4
H

"
�H�";�S

��: (16)

The expression for S�� in (16) is determined below—see
the formulas (20). The bispinor connectivity �� in the
form of (16) provides the invariance of the covariant
derivative r�c with respect to the transition from one
system of tetrad vectors to another.
In what follows, we will use Dirac matrices with local

indices �� along with Dirac matrices with global indices
��. The connection between �� and �� is determined by
the relation

�� ¼ H�
��

�: (17)

It follows from (17), (18), and (11), that

���� þ ���� ¼ 2���E: (18)
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In terms of the matrices �� the Dirac Eq. (13) can be
written as follows:

H�
��

�
�
@c

@x�
þ��c

�
�mc ¼ 0: (19)

It is convenient to choose the quantities �� so that they
have the same forms in all local frames of reference. Both
the systems �� and �� can be used for building the
complete system of 4� 4 matrices. An example of a
complete system is shown below:

E; ��; S���1

2
ð���������Þ;

�5��0�1�2�3; �5��:

(20)

Any set of Dirac matrices provides for several discrete
automorphisms. We restrict ourselves to the automorphism

�� ! �þ
� ¼ �D��D

�1: (21)

The matrix D will be called anti-Hermitizing.
The relations (13) and (5), suggest that the initial

Hamiltonian has the form:

H ¼ � im

ð�g00Þ�
0 þ i

ð�g00Þ�
0�k @

@xk
� i�0

þ i

ð�g00Þ�
0�k�k: (22)

The operator H (22) has the meaning of the evolution
operator for the Dirac particle wave function within the
chosen global reference frame.

Hereafter we will use the following relations (see, for
example, [1]):

�þ
� ¼ �0���0; �þ

� ¼ �0���0; (23)

ð��Þþ ¼ �0���0; (24)

�0�0 ¼ g00; �0�0 ¼ �E: (25)

The covariant derivatives of the Dirac matrices are zero:

r��� ¼ ��;� þ ½��; ���� ¼ 0: (26)

IV. FULFILLMENT OF THE CONDITION
OF PSEUDO-HERMITICITY

WITH PARKER WEIGHT OPERATOR

When the system of tetrad vectors and the external
gravitational field are chosen arbitrarily the Dirac
Hamiltonian is written in the form of (22). Now let us
show, in the general form, in what cases the condition of
pseudo-Hermiticity (2) is fulfilled at the use of Parker
weight operator

� ¼ ffiffiffiffiffiffiffi�g
p

�0�
0: (27)

Direct verification shows that the inverse operator ��1 has
the form

��1 ¼ 1ffiffiffiffiffiffiffi�g
p ð�g00Þ�

0�0: (28)

It is easy to get the evidence that the operator (27) is
Hermitian:

�þ ¼ ffiffiffiffiffiffiffi�g
p

�0þ�þ
0 ¼ ffiffiffiffiffiffiffi�g

p
�0�

0�0�0�0�0

¼ ffiffiffiffiffiffiffi�g
p

�0�
0 ¼ �: (29)

Now let us check the fulfillment of the condition (2) for
the Hamiltonian (22) using the operators (27) and (28).
Let us determine the difference

� � Hþ � �H��1 ¼ �1 þ�2 þ �3 þ �4; (30)

where �1, �2, �3, �4 are defined by the corresponding
summands of the Hamiltonian (22):

�1 ¼
�
� im

ð�g00Þ�
0

�þ � ffiffiffiffiffiffiffi�g
p

�0�
0

�
� im

ð�g00Þ
�

1ffiffiffiffiffiffiffi�g
p �0 1

ð�g00Þ�0 ¼ im�0�
0 1

ð�g00Þ�0 � im�0�
0 1

ð�g00Þ�0 ¼ 0;

(31)

�2 ¼
�

i

ð�g00Þ�
0�k @

@xk

�þ � ffiffiffiffiffiffiffi�g
p

�0�
0

�
i

ð�g00Þ�
0�k @

@xk

�
1ffiffiffiffiffiffiffi�g

p �0 1

ð�g00Þ�0

¼ �i�0

�
@�k

@xk

�
�0 1

ð�g00Þ�0 � i�0�
k 1

2ð�gÞ
@ð�gÞ
@xk

�0 1

ð�g00Þ�0; (32)

�3 ¼ ð�i�0Þþ � ffiffiffiffiffiffiffi�g
p

�0�
0ð�iÞ�0

1ffiffiffiffiffiffiffi�g
p �0 1

ð�g00Þ�0 ¼ i�0�
0
;0�

0 1

ð�g00Þ�0; (33)

�4 ¼
�

i

ð�g00Þ�
0�k�k

�þ � ffiffiffiffiffiffiffi�g
p

�0�
0

�
i

ð�g00Þ�
0�k�k

�
1ffiffiffiffiffiffiffi�g

p �0 1

ð�g00Þ�0 ¼ i�0�
k
;k�

0 1

ð�g00Þ�0: (34)

Substituting the derived expressions (31)–(34) for �1, �2, �3, �4 in (30) gives
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� ¼ Hþ � �H��1 ¼ i�0

"

� "

 !
���0 1

ð�g00Þ�0 þ i�0

@�0

@t
�0 1

ð�g00Þ�0 � i�0

1

2ð�gÞ�
k @ð�gÞ

@xk
�0 1

ð�g00Þ�0

¼¼ i�0

�
1

ð�g00Þ
@�0

@t
�0 � 1

2ð�gÞ
@ð�gÞ
@t

�
�0: (35)

The relation given below was used in (35) for deriving the
final expression

"
� "

� �
¼ 1

2ð�gÞ
@ð�gÞ
@x�

: (36)

The expression (35), as it follows from its deriving,
is true in the general form, since no particular supposi-
tions about the metric and the system of tetrad vectors has
been made.

The right-hand part of the relation (35) includes the time
derivatives of the metric determinant and of the Dirac
matrices �0. Therefore, if these two classes of quantities
do not depend on time, then in the case of stationary
gravitational fields the pseudo-Hermiticity condition (2)
is automatically fulfilled for the Hamiltonian (22). An
analogous statement has been proved in [1], but in this
paper this statement refers to any choice of the system of
tetrad vectors and to any stationary gravitational field
rather than to three systems of tetrad vectors and to weak
Schwarzschild and Kerr solution fields only, which were
considered in [1].

In the subsequent discussion we will need to write the
relation (35) in the system of tetrad vectors in the
Schwinger gauge (see Sec. V). At the transition to this
system the relation (35) gets changed—the matrix �0ðxÞ
should be replaced by ~�0ðxÞ according to the equality

~�0ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi�g00
p

�0. Thus,

� ¼ i
@ ln

ffiffiffiffiffiffiffi�g
p
@t

þ i
@ ln

ffiffiffiffiffiffiffiffiffiffiffi�g00
p
@t

: (37)

Note, that the condition (2) can be fulfilled in some
special cases when

1

ð�g00Þ
@�0

@t
�0 ¼ 1

2ð�gÞ
@ð�gÞ
@t

: (38)

When the pseudo-Hermiticity condition (2) is fulfilled
according to (3)–(10), the transition to the � representation
allows for obtaining the self-conjugate Hamiltonian (4)
with the flat scalar product (9) and the eigenvalue spectrum
coincident with the spectrum of initial Hamiltonian H.

Now let us show the uniqueness of the Hamiltonian H�

determined by the expression (4).

V. UNIQUENESS OF THE HAMILTONIAN H�

A. System of tetrad vectors in the Schwinger gauge

In paper [10] Schwinger derived a system of tetrad
vectors f ~H�

� ðxÞg, where the vector ~H0
� contained the

following components:

~H 0
0 � 0; ~H0

k ¼ 0: (39)

In view of the fact that this system is particularly im-
portant, now we are going to systematically describe the
procedures and the implications connected with the intro-
duction of (39).
Suppose, that in the considered four-dimensional

Riemann space with the signature ð� þþþÞ the chosen
global reference frame is fx�g, and in this system the field
of metric tensor g��ðxÞ is specified. Then we suppose that a
tangent Minkowski space, a system of tetrad vectors
fH�

� ðxÞg and a system of tetrad Dirac matrices f��g con-
stant over the whole space are introduced in each point of
the space. The global system of Dirac matrices f��ðxÞg is
connected with the system f��g via the relation (17).
In the three-dimensional subspace we introduce the

tensor

fmn � gmn � g0mg0n

g00
: (40)

Using the equalities followed from the relations g�"g
"� ¼

��
� shows that the tensor fmn is an inverse tensor to gmn in

the three-dimensional subspace, i.e. it meets the relations

gmpf
pn ¼ �n

m; detðfmnÞ � 0: (41)

In the three-dimensional space we introduce an ortho-
normal system of tetrad vectors f ~Hn

mg, such as those, which
satisfy the relations

~H m
p ðxÞ ~Hn

qðxÞ�pq � ~Hm
p ðxÞ ~Hn

pðxÞ ¼ fmnðxÞ: (42)

Now we introduce a vector ~H�
0 ¼ ð ~H0

0;
~Hk
0Þ with the

components

~H 0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
; ~Hk

0 ¼ � g0kffiffiffiffiffiffiffiffiffiffiffi�g00
p (43)

and three four-dimensional vectors ~H
�
k ðxÞ with the

components

~H 0
kðxÞ ¼ 0; ~Hm

k ðxÞ: (44)
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~Hm
k ðxÞ represents the vectors which satisfy the relations

(42). Then the system of four vectors ~H�
� ðxÞ ¼

f ~H�
0 ðxÞ; ~H�

k ðxÞg is a system of tetrad vectors in the

Schwinger gauge.
First we show that the introduced vectors compose a

system of tetrad vectors in a four-dimensional space,
i.e. meet the constitutive relations

~H �
� ðxÞ ~H�

�ðxÞ��� ¼ g��ðxÞ: (45)

Now let us write the components of (45) to prove the
above said:

� ~H0
0
~H0
0 þ ~H0

k
~H0
k ¼ g00

� ~H0
0
~Hm
0 þ ~H0

k
~Hm
k ¼ g0m

� ~Hm
0
~Hn
0 þ ~Hm

k
~Hn
k ¼ gmn:

(46)

The relations in the first and in the second lines in (46)
are obviously satisfied after the values of the components
(43) and (44), are substituted in them. After (43) is sub-
stituted into the third line of (46) we get

~H m
k
~Hn
k ¼ gmn � g0mg0n

g00
: (47)

In the right-hand part of (47) the tensor fmn introduced
above can be found. The equalities (47), as well as all the
relations (46), are fulfilled because of the vectors f ~Hn

mg
were chosen so that they satisfied the relation (42).

The method of construction makes it clear that the
systems of tetrad vectors in the Schwinger gauge are
determined with the accuracy up to local spatial rotations
in three-dimensional subspaces which do not affect the
vector ~H�

0 with the components (43). At the same time

the expression for the vector ~H0
� is unique.

The system of tetrad vectors in the Schwinger represen-
tation can be used for building global Dirac matrices. If we
designate the Dirac matrices corresponding to f ~H�

� ðxÞg via
f~��ðxÞg, then according to the general relation (17) we get

~��ðxÞ ¼ ~H�
�ðxÞ��: (48)

Using the relations (43) and (44), we get from (48) the
following:

~�0ðxÞ ¼ ~H0
�ðxÞ�� ¼ ~H0

0ðxÞ�0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
�0;

~�kðxÞ ¼ ~Hk
0ðxÞ�0 þ ~Hk

mðxÞ�m: (49)

The upper line implies that the matrix ~�0ðxÞ coincides with
�0 with accuracy up to the multiplier. This feature distin-
guishes the system of tetrad vectors in the Schwinger
gauge among the other systems.

Note that when the system of tetrad vectors in the
Schwinger gauge is built not all vectors included into the
system f ~H�

� ðxÞg are defined unambiguously. The relations

(43) define the vector ~H�
0 ¼ ð ~H0

0; ~H
k
0Þ unambiguously.

As for the vectors f ~Hn
mg, the relations (42) define them

with accuracy up to the spatial rotations in the space with
the metric tensor gmn and inverse metric tensor fmn. Since
these rotations do not affect the vector ~H�

0 , the generators

of spatial rotations commutate with ~�0, and, hence, are the
combinations of the matrices �2�3, �3�1, �1�2.

B. Connection between the arbitrary system of tetrad
vectors fH�

�ðxÞg and the system of tetrad vectors
in the Schwinger gauge f ~H�

�ðxÞg
Two arbitrary systems of tetrad vectors in one and the

same space are mutually connected by the Lorentz trans-
formation. In our case the connection between systems
fH�

� ðxÞg and f ~H�
� ðxÞg is written as

~H
�
� ðxÞ ¼ �

�
�ðxÞH�

� ðxÞ: (50)

The quantities �
�
�ðxÞ, included into (50), satisfy the

relations

�
�
� ðxÞ��

�ðxÞ��� ¼ ���

�
�
� ðxÞ��

�ðxÞ��� ¼ ���:
(51)

Now we perform the Lorentz transformation of the tetrad
vectors fH�

� ðxÞg so that they coincided with f ~H�
� ðxÞg,

i.e. perform transformation of (50). At the transformation
(50) the Dirac matrices ��ðxÞ and �� are transformed
under the following rule:

~��ðxÞ ¼ LðxÞ��ðxÞL�1ðxÞ; (52)

�� ¼ ½LðxÞ��L�1ðxÞ���
�ðxÞ: (53)

The matrices L, L�1 in (52) and (53) are defined from the
condition of invariance of the Dirac matrices �� during the
transformations (53), i.e. from the condition

LðxÞ��L�1ðxÞ ¼ ���
�
�ðxÞ: (54)

Since we are performing a Lorentz transformation, so that
the system fH�

� ðxÞg coincides with the system f ~H�
� ðxÞg,

then the quantities �
�
�ðxÞ in (54) should be assumed to

equal to the corresponding quantities in (50). Note that in
our case the matrices L and L�1 satisfy the relation

LðxÞ�0ðxÞL�1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
�0; (55)

which follows from the equalities (49) and (52).
The connection between the Hamiltonians (22) of the

Schrödinger equation in an arbitrary gravitational field
with the system of tetrad vectors fH�

� ðxÞg and f ~H�
� ðxÞg

according to (49)–(53) is written in a standard form as
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~H ¼ LHL�1 þ i
@L

@t
L�1: (56)

For stationary gravitational fields the Hamiltonian H and
the matrix L do not depend on time, so the Hamiltonian in
the Schwinger gauge is written as

~H ¼ LHL�1: (57)

Now we provide the explicit form of the matrix LðxÞ,
satisfying the relation (55).

It is known that the Lorentz transformations can be
unambiguously represented in the form of a product or
boost transformation (Hermitian factor) by spatial rotation
(unitary factor), either vice versa in the form of a product of
the spatial rotation (unitary factor) or by the boost trans-
formation (Hermitian factor). This type is unambiguously
factorized. Let us employ such factorization; we substitute
(17), (48), and (52) for ~�0ðxÞ. In the result it turns out that
the matrix LðxÞ is written in the following form:

LðxÞ ¼ R � exp
8><
>:	2 �

ð ~H�
0 H

�
0S��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~H"
0H0"Þ2 � 1

q
9>=
>;

¼ R

8><
>:ch	2þ

ð ~H�
0 H

�
0S��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~H"
0H0"Þ2 � 1

q � sh 	
2

9>=
>;: (58)

Here R represents the spatial rotation matrix, commutating
with the matrix �0. Another factor in (58) represents the
hyperbolic rotation transformation (i.e. the boost) about the
angle 	, determined from the relation

th
	

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~H"

0H0"Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~H"

0H0"Þ � 1
q

vuuut : (59)

The relation

�0ðxÞ ¼ L�1ðxÞ~�0ðxÞLðxÞ (60)

with account for (49) is written as

�0ðxÞ ¼
8><
>:ch 	2�

ð ~H�
0 H

�
0S��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~H"
0H0"Þ2 � 1

q � sh 	
2

9>=
>;

ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
� �0ðxÞ

� exp

8><
>:	2 �

ð ~H�
0 H

�
0S��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~H"
0H0"Þ2 � 1

q
9>=
>;: (61)

The relation (61) implies that LðxÞ is a matrix transforming

�0ðxÞ into ffiffiffiffiffiffiffiffiffiffiffi�g00
p

�0:

L�0L�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
�0: (62)

C. Sense of the operator � at the use
of the Parker weight operator

Substituting (27) into (62) with account for such prop-
erties of the matrices L as

L�1 ¼ ��0L
þ�0; Lþ ¼ ��0L

�1�0; (63)

gives

� ¼ ffiffiffiffiffiffiffi�g
p

�0�
0 ¼ ffiffiffiffiffiffiffi�g

p ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
Lþ � L: (64)

The unitary matrix R, included into the matrix L accord-
ing to (58), is reduced in the product Lþ � L and does not
affect the quantity �.
We can see that the operator � can be written in the

form (1), i.e. as

� ¼ �þ�: (65)

At that the operator � is proportional to the Lorentz trans-

formation of L, which transforms �0ðxÞ into
ffiffiffiffiffiffiffiffiffiffiffi�g00

p
�0

according to (62):

� ¼ ð�gÞ1=4ð�g00Þ1=4 � L: (66)

In case of using the system of tetrad vectors in the
Schwinger gauge the operator �, defined by the relation
(66), turns out to be equaling

~� ¼ ð�gÞ1=4ð�g00Þ1=4 � E: (67)

D. Uniqueness of the Hamiltonian H� in the case
of stationary gravitational fields

According to (4) and (66), the Hamiltonian in the �
representation can be written in the form

H � ¼ �H��1 ¼ ~�LHL�1 ~��1: (68)

Now let us chose the matrix LðxÞ to have �0ðxÞ !ffiffiffiffiffiffiffiffiffiffiffi�g00
p

�0 (see (60) and (62)). Then, according to (57)
LHL�1 ¼ ~H and the expression (68) equals

H � ¼ ~� ~H ~��1 ¼ ~H�: (69)

Any system of tetrad vectors, after such operations, will
be obtained one and the same from a self-conjugate
Hamiltonian (69) in the � representation. It proves the
uniqueness of the Hamiltonian (69). This result confirms
the results of paper [1], in which three systems of tetrad
vectors after transition to the � representation has been
obtained as one and the same self-conjugate Hamiltonian

coincident with the Hamiltonian ~H� for the system of

tetrad vectors in the Schwinger gauge.
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VI. SELF-CONJUGACYAND UNIQUENESS
OF THE DIRAC HAMILTONIANS IN THE

TIME-DEPENDENT GRAVITATIONAL FIELDS

Time-dependent gravitational fields do not satisfy the
conditions of pseudo-Hermiticity of the Hamiltonians (2)
and (35).

However, the transition from the initial representation of
the Dirac Hamiltonian H to the � representation allows
for obtaining the self-conjugate and unique Hamiltonian
H� ¼ Hþ

� with the corresponding flat scalar product

ð�;�Þ, in the general case of the time-dependent gravita-
tional field.

In fact, in the general case the Hamiltonian H in the
Eq. (5) depends on time:

i
@c

@t
¼ HðtÞc : (70)

In this case the wave function � in the � representation
satisfies the equation

i
@�

@t
¼ H�� ¼

�
�H��1 þ i

@�

@t
ð��1Þ

�
�; (71)

where we still have

� ¼ �c : (72)

Now let us show the uniqueness of the Hamiltonian H�

in the Eq. (71). Using (66) and (67), gives

H � ¼ �H��1 þ i
@�

@t
��1

¼ ~�

�
LHL�1 þ i

@L

@t
L�1

�
~��1 þ i

@~�

@t
~��1: (73)

We choose the transformation LðxÞ so that �0ðxÞ !ffiffiffiffiffiffiffiffiffiffiffi�g00
p

�0 (see (60)–(62)). Then according to (56) we have

LHL�1 þ i
@L

@t
L�1 ¼ ~H; (74)

H � ¼ ~� ~H ~��1 þ i
@~�

@t
~��1: (75)

For any system of tetrad vectors, after the specified opera-
tions we will have one and the same Hamiltonian H� (75),

what proves its uniqueness.
Now let us prove that the Hamiltonian H� in (74) is self-

conjugate (H� ¼ Hþ
� ):

Hþ
� ¼

�
~� ~H ~��1 þ i

@~�

@t
ð~��1Þ

�þ

¼ ð~��1Þþ ~Hþð~�Þþ � ð~��1Þþi @~�
þ

@t
: (76)

For the system of tetrad vectors in the Schwinger gauge the
relation (35) becomes equal:

~Hþ ¼ ~� ~H ~��1 þ ~�;

~� ¼ ð�gÞ1=2ð�g00Þ1=2; ~� ¼ ð�gÞ1=4ð�g00Þ1=4;
~�0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
�0;

~� ¼ i
1

2

�
1

ð�g00Þ
@ð�g00Þ

@t
þ 1

ð�gÞ
@ð�gÞ
@t

�
¼ 2i

@~�

@t
~��1:

(77)

Then expression (76) equals

Hþ
� ¼ ~� ~H ~��1 þ i

@~�

@t
~��1 ¼ H�: (78)

The scalar product in the � representation is still flat and
equals the initial h’; c i� ¼ ð�;�Þ.

VII. ALGORITHM FOR FINDING THE
HAMILTONIAN IN THE � REPRESENTATION

Basing on the results of this work we can formulate the
rules of finding the Hamiltonian in the � representation for
the Dirac particle in arbitrary gravitational field. The
a priori information which we consider to be known is
the information about the metric tensor g��ðxÞ, Christoffel
symbols



��

� �
, local metric tensor ��� and local Dirac

matrices f��g. The specified rules consist of the following:
(1) For the gravitational field described by the metric

g��ðxÞ, it is necessary to find a system of tetrad

vectors f ~H�
�ðxÞg, satisfying the Schwinger gauge.

Note that in this gauge the components of the tetrad
vectors ~H0

0 and ~Hk
0 are connected with the compo-

nents of the tensor g��ðxÞ by the following relations:

~H 0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
; ~Hk

0 ¼ � g0kffiffiffiffiffiffiffiffiffiffiffi�g00
p : (79)

The components ~H0
k are identically zero:

~H 0
k ¼ 0: (80)

For finding ~Hn
m we introduce a tensor fmn with the

components

fmn ¼ gmn � g0mg0n

g00
: (81)

The tensor fmn satisfies the conditions

fmngnk ¼ �m
k : (82)

Any three of three-dimensional vectors satisfying
the relations written below will suit for the role of
the quantities ~Hn

m:
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~Hm
k
~Hn
k ¼ fmn: (83)

(2) The general expression of the Hamiltonian ~H is
written as

~H ¼ � im

ð�g00Þ ~�
0 þ i

ð�g00Þ ~�
0 ~�k @

@xk

� i ~�0 þ i

ð�g00Þ ~�
0 ~�k ~�k: (84)

Here

~�� ¼ ~H�
��

�; (85)

~� � ¼ � 1

4
~H
"
� ~H�";�

~S��: (86)

(3) According to (75)

H � ¼ ~� ~H ~��1 þ i~�
@~��1

@t
; (87)

where the operator ~� is determined by the relation

~� ¼ ð�gÞ1=4ð�g00Þ1=4: (88)

The expressions (87) and (88), define the operator
H�, which is the searched Hermitian Hamiltonian in

the � representation. So,

H�¼� im

ð�g00Þ ~�
0þ i

ð�g00Þ ~�
0 ~�k @

@xk
�i ~�0

þ i

ð�g00Þ ~�
0 ~�k ~�k� i

4ð�g00Þ ~�
0 ~�k

�
@lnð�gÞ

@xk

þ@lnð�g00Þ
@xk

�
þ i

4

�
@lnð�gÞ

@t
þ@lnð�g00Þ

@t

�
:

(89)

The rules specified above are applied further on for
finding Hamiltonians in the � representation for several
stationary and nonstationary metrics.

VIII. OPERATORS OF THE HAMILTONIAN IN
THE � REPRESENTATION FOR SOME METRICS

A. Metric used in the works [3,4]

Now let us consider the issue of constructing a
Hamiltonian H� of the stationary metric in the following

form:

ds2 ¼ �V2dt2 þW2ðdx2 þ dy2 þ dz2Þ; (90)

where V andW are the functions of spatial coordinates. We
will use the system of tetrad vectors in the Schwinger
gauge:

~H 0
0 ¼

1

V
; ~H0

k ¼ 0; ~Hk
0 ¼ 0; ~Hk

m ¼ 1

W
�k
m:

(91)

The wave function c evolution is determined according to
the Schrödinger equation:

i
@c

@t
¼ Ĥc ; (92)

where Ĥ represents an operator of Hamiltonian (initial
Hamiltonian). The explicit expression for the initial

Hamiltonian Ĥ according to [3] has the following form:

~H ¼ imV�0 � i
V

W
�0�

k @

@xk
� i

2
� V;k

W
� �0�

k

� i
VW;k

W2
� �0�

k: (93)

In the considered case

ffiffiffiffiffiffiffi�g
p ¼ VW3;

ffiffiffiffiffiffiffiffiffiffiffi
�g00

q
¼ 1

V
; (94)

therefore

~� ¼ ð�gÞ1=4ð�g00Þ1=4 ¼ W3=2: (95)

In the � representation the self-conjugate Hamiltonian
H� is

H � ¼ ~� ~H ~��1

¼ imV�0 � i

2

�
�0�

k @

@xk
V

W
þ V

W
�0�

k @

@xk

�
: (96)

The expression (96) was obtained without a supposition
about the weakness of the gravitational field and it coin-
cides with the self-conjugate Hamiltonian in paper [3].

B. Schwarzschild Metric in isotropic coordinates

The Schwarzschild metric is obtained from the metric
(90) when writing the Schwarzschild solution in isotropic
coordinates. In our discussion we omit the procedure of the
corresponding coordinate transformation and show the
results: for the transition of the function V andW to iso-
tropic coordinates a choice should be made according to
the formulas (see, e.g., [3,11]):

V ¼ ð1� M
2RÞ

ð1þ M
2RÞ

; W ¼
�
1þ M

2R

�
2
: (97)

It follows from the expressions (96) and (97) that the form
of the Hamiltonian in the � representation is

H� ¼ im
ð1� M

2RÞ
ð1þ M

2RÞ
�0 � i

ð1� M
2RÞ

ð1þ M
2RÞ3

�0�
k @

@xk

� i
ð1� M

4RÞ
ð1þ M

2RÞ4
MRk

R3
� �0�

k: (98)
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In the case of weak fields the expression (98) in the
lower order of approximation becomes equal to

H� ¼ im�0

�
1�M

R

�
� i

�
1� 2

M

R

�
�0�

k @

@xk

� i
MRk

R3
� �0�

k: (99)

This expression coincides with that given in [1] (formula
(58)). If necessary the exact expression (98) for the
Hamiltonian can be expanded over the degrees of the small
parameter down to any infinitesimal order.

C. Schwarzschild metric in the coordinates ðt; r; �; ’Þ
In this section we will write the Schwarzschild metric in

the coordinates

ðx0; x1; x2; x3Þ � ðt; r; 	; ’Þ: (100)

In these coordinates we have

ds2 ¼ �
�
1� 2M

r

�
dt2 þ dr2

ð1� 2M
r Þ

þ r2ðd	2 þ sin2	d’2Þ:
(101)

For the metric determined by the quarter of the interval
(101) we have

g ¼ �r4 � sin2	; (102)

~�¼ð�gÞ1=4ð�g00Þ1=4¼ðr4 �sin2	Þ1=4
ð1� 2M

r Þ1=4
;

~�
@~��1

@r
¼�1

r
þ M

2r2
� 1

ð1� 2M
r Þ

; ~�
@~��1

@	
¼�1

2

cos	

sin	
:

(103)

Now we define the tetrad vectors in the Schwinger
gauge. Their nonzero components are

~H0
0 ¼

1ffiffiffi
f

p ~Hk
0 ¼ 0; ~H0

k ¼ 0; ~H1
1 ¼

ffiffiffi
f

p
; ~H2

2 ¼
1

r
~H3
3 ¼

1

r � sin	 ;

~H00 ¼ � ffiffiffi
f

p
; ~H0k ¼ 0; ~Hk0 ¼ 0; ~H11 ¼ 1ffiffiffi

f
p ; ~H22 ¼ r ~H33 ¼ r � sin	;

~H00 ¼ � 1ffiffiffi
f

p ; ~H0k ¼ 0; ~Hk0 ¼ 0; ~H11 ¼ ffiffiffi
f

p
; ~H22 ¼ 1

r
; ~H33 ¼ 1

r � sin	 ;
~H
0
0 ¼

ffiffiffi
f

p
;

~H
0
k ¼ 0; ~H

k
0 ¼ 0; ~H

1
1 ¼

1ffiffiffi
f

p ; ~H
2
2 ¼ r; ~H

3
3 ¼ r � sin	: (104)

Here f � 1� 2M
r . The nonzero Christoffel symbols are

0
01

� �
¼ r0

2r2ð1� r0
r Þ
;

1
00

� �
¼ r0

2r2
ð1� r0

r
Þ;

1
11

� �
¼� r0

2r2ð1� r0
r Þ
;

1
22

� �
¼�r

�
1� r0

r

�
;

1
33

� �
¼�r � sin2	 � ð1� r0

r
Þ; 2

12

� �
¼ 1

r
;

2
33

� �
¼� sin	cos	;

3
13

� �
¼ 1

r
;

3
23

� �
¼� cos	

sin	
:

(105)

Using the formula (16) we define the quantities ~�0,
~�k:

~�0 ¼ M

2r2
� �0�1

~�1 ¼ 0

~�2 ¼ � 1

2

ffiffiffi
f

p � �1�2

~�3 ¼ � 1

2
cos	 � �2�3 þ 1

2

ffiffiffi
f

p
sin	 � �3�1: (106)

Now we substitute (104) into the expression (84) for ~H:

~H ¼ im
ffiffiffi
f

p
�0 � i

ffiffiffi
f

p
�0

�
�
�1

ffiffiffi
f

p @

@r
þ �2

1

r

@

@	
þ �3

1

r � sin	
@

@’

�
� i ~�0

� i
ffiffiffi
f

p
�0

�
�1

ffiffiffi
f

p
~�1 þ �2

1

r
~�2 þ �3

1

r � sin	
~�3

�
:

(107)

After using the formula (106) we have

~H ¼ im
ffiffiffi
f

p
�0 � i

ffiffiffi
f

p
�0

�
�
�1

ffiffiffi
f

p @

@r
þ �2

1

r

@

@	
þ �3

1

r � sin	
@

@’

�

� i
M

2r2
� �0�1 � if

r
�0�1 � i

ffiffiffi
f

p
cos	

2r � sin	 �0�2: (108)

We substitute (108) and (103) into the formula (87):

H� ¼ im
ffiffiffi
f

p
�0 � i

ffiffiffi
f

p
�0

�
�1

ffiffiffi
f

p @

@r
þ �2

1

r

@

@	

þ �3

1

r � sin	
@

@’

�
� i

2

@f

@r
� �0�1: (109)
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The expression (109) is an operator of the Hamiltonian in
the � representation. It is easy to see that this operator is
Hermitian (H� ¼ Hþ

� ).
Note that the expressions (109) and (98) are equivalent

to each other, only one and the same Hamiltonian is written
in different reference frames.

D. Friedmann models

Now let us consider the Schrödinger equation in the case
when the space is homogeneous and isotropic, and hence, it
is described by some solution of the Friedmann model.
We restrict ourselves by two elementary solutions – the
cosmologically flat and the open Friedmann models [12].

1. Cosmologically flat Friedmann model

The nonstationary metric which corresponds to the cos-
mologically flat Friedmann solution is determined by the
relation

ds2 ¼ �dt2 þ b2ðtÞ½dx2 þ dy2 þ dz2�: (110)

The Christoffel symbols corresponding to (110), are

0
00

� �
¼ 0;

0
0k

� �
¼ 0;

0
mn

� �
¼ b _bgmn;

k
00

� �
¼ 0;

m
0n

� �
¼

_b

b
�m
n ;

k
mn

� �
¼ 0:

(111)

The tetrad vectors ~H
�
� in the Schwinger gauge are deter-

mined according to the relation (11) and by using the
expression (110):

~H 0� ¼ ð�1; 0; 0; 0Þ; ~H1� ¼ ð0; b; 0; 0Þ;
~H2� ¼ ð0; 0; b; 0Þ; ~H3� ¼ ð0; 0; 0; bÞ;
~H�
0 ¼ ð1; 0; 0; 0Þ; ~H�

1 ¼
�
0;
1

b
; 0; 0

�
;

~H�
2 ¼ ð0; 0; 1

b
; 0Þ; ~H�

3 ¼
�
0; 0; 0;

1

b

�
:

(112)

Calculating the component �� using (110)–(112) gives

~� 0 ¼ 0 ~�k ¼ 1

2

_b

b
� S0k: (113)

Now we substitute the expressions (113) for the compo-

nents ~�� into the Hamiltonian and get

~H ¼ im~�0 � i~�0 ~�
k @

@xk
� 3i

2

_b

b
: (114)

Since in this case

~� 0 ¼ �0; ~�k ¼ 1

b
�k ¼ 1

b
�k: (115)

The Hamiltonian (114) can be written in the following
form:

~H ¼ im�0 � i

b
�0�k

@

@xk
� 3i

2

_b

b
: (116)

Then we will get the Hamiltonian of the considered
system in the � representation. The Parker weight opera-
tion and the operator ~� are

~� ¼ ffiffiffiffiffiffiffi�g
p

�0 ~�
0 ¼ b3; ~� ¼ b3=2: (117)

Then

H� ¼ ~� ~H ~��1 þ i
@~�

@t
ð~��1Þ

¼ im�0 � i

bðtÞ�0�k

@

@xk
¼ Hþ

� : (118)

According to the result of Sec. VI after the transition
to the � representation the initially non-Hermitian
Hamiltonian (114) is transformed into a self-conjugate
Hamiltonian (118) with the corresponding flat scalar
product.
In a quasistationary approximation for the cosmological

time t the operator of the Dirac particle energy in the �
representation is

E ¼
ffiffiffiffiffiffiffi
H2

�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

b2ðtÞ

s
: (119)

In the expression (119) pk ¼ �i @
@xk

represents the compo-

nents of the Dirac particle momentum.

2. Open Friedmann model

Let us consider the case of the open Friedmann model in
the coordinates

ðx0; x1; x2; x3Þ ¼ ðt; �; 	; ’Þ:
For this model the nonstationary metric has the form

ds2 ¼ �dt2 þ a2ðtÞðd�2 þ sh2�½d	2 þ sin2	d’2�Þ:
(120)

The nonzero Christoffel symbols corresponding to the
metric (120) have the form

0
00

� �
¼ 0;

0
0k

� �
¼ 0;

0
mn

� �
¼ a _agmn;

k
00

� �
¼ 0;

m
0n

� �
¼ _a

a
�m
n ;

1
22

� �
¼�sh� � ch�;

1
33

� �
¼�sh� � ch� � sin2	; 2

12

� �
¼ ch�

sh�
;

3
13

� �
¼ ch�

sh�
;

2
33

� �
¼�sin	cos	;

3
23

� �
¼ ctg	:

(121)

The nonzero components of the tetrad vectors ~H
�
� in the

Schwinger gauge are
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~H0
0 ¼ 1; ~H1

1 ¼
1

a
; ~H2

2 ¼
1

a � sh� ;

~H3
3 ¼

1

a � sh� � sin	 ;
~H00 ¼ �1; ~H11 ¼ a;

~H22 ¼ a � sh�; ~H33 ¼ a � sh� � sin	: (122)

The operator ~� is

~� ¼ ð�gÞ1=4ð�g00Þ1=4 ¼ ða6sh4�sin2	Þ1=4: (123)

The quantities ~� @~��1

@xk
, required for finding the Hamiltonian

in the � representation, are

~�
@~��1

@�
¼�cth�; ~�

@~��1

@	
¼�1

2
ctg	; ~�

@~��1

@’
¼0:

(124)

Calculation of the components of ~�� using the expres-
sion (122) and (121) shows that

~�0¼0;

~�1¼ _a

2
��0�1;

~�2¼ _a

2
sh� ��0�2�1

2
ch� �S12;

~�3¼ _a

2
sh�sin	 ��0�3þ1

2
ch� �sin	 �S31�1

2
cos	 �S23:

(125)

Calculation of the Hamiltonian ~H gives

~H ¼ im�0 � i�0�1

1

a

@

@�
� i�0�2

1

a � sh�
@

@	

� i�0�3

1

a � sh� � sin	
@

@’
� i

a
cth� � �0�1

� i

2a

ctg	

sh�
� �0�2 � i

3

2

_a

a
: (126)

Now we calculate the operator H�, using (89), (123), and

(124). We have

H � ¼ im�0 � i�0�1

1

a

@

@�
� i�0�2

1

a � sh�
@

@	

� i�0�3

1

a � sh� � sin	
@

@’
: (127)

The quantity H�, determined by the relation (127), is a

Hamiltonian in the � representation for the Dirac particles
in the open Friedmann model. After transition to the �
representation the initially non-Hermitian Hamiltonian
(126) is transformed into a self-conjugate Hamiltonian
(127) with the corresponding flat scalar product.

In a quasistationary approximation for the cosmological
time t the operator of the Dirac particle energy in the �
representation is

E ¼
ffiffiffiffiffiffiffi
H2

�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

�

a2ðtÞ

s
: (128)

Here p� ¼ �i @
@� .

Denote

aðtÞsh� ¼ aðtÞ
a0

a0sh� ¼ bðtÞa0sh� ¼ bðtÞr; (129)

where bðt0Þ ¼ 1. The zero indices correspond to the
present time ðt � t0Þ.
If at the present time the radius of the Universe spatial

curvature tends to infinity ða0 ! 1Þ, then
r � a0�: (130)

In this case the Hamiltonian (127) becomes equal to

H � ¼ im�0 � i�0�1

1

bðtÞ
@

@r
� i�0�2

1

bðtÞr
@

@	

� i�0�3

1

bðtÞr sin	
@

@’

¼ im�0 � i�0�k

1

bðtÞ ðrkÞsph: (131)

In the expression (131) the quantity ðrkÞsph represents

the gradient components in the spherical reference frame.
Apparently, in the Cartesian frame of reference the
Hamiltonian (131) coincides with the Hamiltonian (118)
for the cosmologically flat Friedmann model.
The physical implication of the Hamiltonians (118) and

(131), for the Dirac particles in the expanding Universe
will be presented in our next work. The major results are as
follows:
(1) The Hamiltonians (118) and (131), do not result in

an additional cosmological shift of the atomic spec-
tral lines when the interaction with electromagnetic
field is taken into account. It is consistent with the
modern cosmological model, �CDM (‘‘concord-
ance model’’).

(2) The Universe expansion results in the cosmological
change of the interaction forces of elementary
particles.

IX. CONCLUSIONS

The results of the present work allow us to draw a
conclusion that the problem of uniqueness and self-
conjugacy of the Dirac Hamiltonians in arbitrary gravita-
tional fields, both stationary and time-dependent, is solved.
The unique properties of the Parker weight operator � ¼ffiffiffiffiffiffiffi�g

p
�0�

0 ¼ �þ� allow for obtaining, in the � represen-

tation, uniquely self-conjugate Hamiltonians of Dirac
particles in arbitrary gravitational fields.
This conclusion is true both for the case of fulfillment in

the pseudo-Hermiticity condition (2), when the initial
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Hamiltonian is Hermitian with respect to the Parker
scalar product (stationary gravitational fields) and in the
case of violation of the condition (2), when the initial
Hamiltonian is non-Hermitian with respect to the Parker
scalar product (nonstationary gravitational fields). In the
latter case the transition of the system of tetrad vectors
in the Schwinger gauge is required for obtaining self-
conjugate Hamiltonians of Dirac particles.

The scalar products in the � representation are flat,
which allows using a conventional apparatus of the
Hermitian quantum mechanics. Evidently the observed
physical quantities in the initial representations should be

properly transformed at the transition to the � representa-
tion (O ! �O��1).
Basing on the presented discussion, the rules (the gen-

eral algorithm) for finding the Hamiltonian in the �
representation, which are applicable for any kind of gravi-
tational field, are formulated in Sec. VII. The general
approach is demonstrated by deriving the equations for
the Dirac Hamiltonian for the stationary metric considered
in paper [3], the stationary Schwarzschild solution in iso-
tropic coordinates and in the coordinates ðt; r; 	; ’Þ, as
well as for nonstationary cosmologically flat and open
Friedmann models.
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