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We investigate the circular motion of charged test particles in the gravitational field of a charged mass

described by the Reissner-Nordström spacetime. We study in detail all the spatial regions where circular

motion is allowed around either black holes or naked singularities. The effects of repulsive gravity are

discussed by finding all the circles at which a particle can have vanishing angular momentum. We show

that the geometric structure of stable accretion disks, made of only test particles moving along circular

orbits around the central body, allows us to clearly distinguish between black holes and naked

singularities.
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I. INTRODUCTION

Let us consider the background of a static gravitational
source of mass M and charge Q, described by the
Reissner–Nordström (RN) line element in standard spheri-
cal coordinates

ds2 ¼ ��

r2
dt2 þ r2

�
dr2 þ r2ðd�2 þ sin2�d�2Þ; (1)

where � ¼ ðr� rþÞðr� r�Þ and r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
are the radii of the outer and inner horizon, respectively.
Furthermore, the associated electromagnetic potential and
field are

A ¼ Q

r
dt; F ¼ dA ¼ �Q

r2
dt ^ dr; (2)

respectively.
The motion of a test particle of charge q and mass �

moving in a RN background (1) is described by the follow-
ing Lagrangian density:

L ¼ 1

2
g�� _x� _x� þ �A�x

�; (3)

where A� are the components of the electromagnetic
4-potential, the dot represents differentiation with respect
to the proper time, and the parameter � ¼ q=� is the
specific charge of the test particle. The equations of motion
of the test particle can be derived from Eq. (3) by using the
Euler-Lagrange equation. Then,

_x �r� _x� ¼ �F�
� _x�; (4)

where F�� � A�;� � A�;�.

Since the Lagrangian density (3) does not depend ex-
plicitly on the variables t and �, the following two con-
served quantities exist

pt � @L
@ _t

¼ �
�
�

r2
_tþ �Q

r

�
¼ � E

�
; (5)

p� ¼ @L

@ _�
¼ r2sin2� _� ¼ L

�
; (6)

where L and E are, respectively, the angular momentum
and energy of the particle as measured by an observer at
rest at infinity. Moreover, to study the motion of charged
test particles in the RN spacetime it is convenient to use
the fact if the initial position and the tangent vector of the
trajectory of the particle lie on a plane that contains
the center of the body, then the entire trajectory must lie
on this plane. Without loss of generality we may therefore
restrict ourselves to the study of equatorial trajectories with
� ¼ �=2.
On the equatorial plane � ¼ �=2, the motion equations

can be reduced to the form _r2 þ V2 ¼ E2=�2, which de-
scribes the motion inside an effective potential V. Then, we
define the potential

V� ¼ E�

�
¼ �Q

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L2

�2r2

��
1� 2M

r
þQ2

r2

�s
(7)

as the value of E=� that makes r into a ‘‘turning point’’
(V ¼ E=�); in other words, the value of E=� at which the
(radial) kinetic energy of the particle vanishes [1–4]. The
effective potential with positive (negative) sign corre-
sponds to the solution with

lim
r!1E

þ ¼ þ�; ð lim
r!1E

� ¼ ��Þ;

where

EþðL; �; rÞ � E�ðL; �; rÞ; (8)
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and the following relation holds:

EþðL; �; rÞ ¼ �E�ðL;��; rÞ: (9)

The behavior of the effective potential strongly depends on
the sign of �Q; in particular, in the case of �Q < 0,
negative energy states for the solution Eþ can exist (see
also [5–11]).

The problem of finding exact solutions of the motion
equations of test particles moving in a RN spacetime has
been widely studied in literature in many contexts and
ways. For a recent discussion, we mention the works
[5–11]. In particular, in a recent paper [5], the full set of
analytical solutions of the motion equations for electrically
and magnetically charged test particles is discussed in
terms of the Weierstrass (�, 	 and 
) functions. The
general structure of the geodesics was discussed and a
classification of their types was proposed. Remarkably,
analytical solutions are found in the case of a central RN
source not only with constant electric charge, but also with
constant magnetic charge. It is interesting to notice that if
either the test particle or the central body possesses both
types of charge, it turns out that the motion is no longer
confined to a plane. In the present work, we consider only
equatorial circular orbits around a central RN source with
constant electric charge. Instead of solving directly the
equations of motion, we explore the properties of the
effective potential function associated to the motion.
Thus, we discuss and propose a classification of the equa-
torial orbits in terms of the two constants of motion: the
energy E=� and the orbital angular momentum L=ð�MÞ.
In fact, we focus our attention on some peculiar features of
the circular motion and the physics around black holes and
naked singularities. In particular, we are interested in ex-
ploring the possibility of distinguishing between black
holes and naked singularities by studying the motion of
circular test particles. In this sense, the present work com-
plements and is different from previous studies [5–11].

In a previous work [12,13], we analyzed the dynamics of
the RN spacetime by studying the motion of neutral test
particles for which the effective potential turns out to
coincide with Vþ as given in Eq. (7) with � ¼ 0. We will
see that in the case of charged test particles the term �Q=r
drastically changes the behavior of the effective potential,
and leads to several possibilities which must analyzed in
the case of black holes and naked singularities. In particu-
lar, we will show that for particles moving along circular
orbits there exist stability regions whose geometric struc-
ture clearly distinguishes naked singularities from black
holes (see also [14–17]). The plan of this paper is the
following: In Sec. II , we investigate the behavior of the
effective potential and the conditions for the motion of
positive and negative charged test particles moving on
circular orbits around the central charged mass. This sec-
tion also contains a brief analysis of the Coulomb approxi-
mation of the effective potential. In Sec. III, we will

consider the black hole case while in Sec. IV, we shall
focus on the motion around naked singularities. The con-
clusions are in Sec. V.

II. CIRCULAR MOTION

The circular motion of charged test particles is governed
by the behavior of the effective potential (7). In this work,
we will mainly consider the special case of a positive
solution Vþ for the potential in order to be able to compare
our results with those obtained in the case of neutral test
particles analyzed in [12,13]. Thus, the radius of circular
orbits and the corresponding values of the energy E and
the angular momentum L are given by the extrema of
the function Vþ. Therefore, the conditions for the occur-
rence of circular orbits are:

dVþ
dr

¼ 0; Vþ ¼ Eþ

�
: (10)

When possible, to simplify the notation we will drop the
subindex ðþÞ so that, for example, V ¼ E=� will denote
the positive effective potential solution. Solving Eq. (10)
with respect to L, we find the specific angular momentum

ðL�Þ2
�2

¼ r2

2�2

�
2ðMr�Q2Þ�þ �2Q2�

�Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð4�þ �2Q2Þ

q �
; (11)

where � � r2 � 3Mrþ 2Q2, of the test particle on a
circular orbit of radius r. The corresponding energy can
be obtained by introducing the expression for the angular
momentum into Eq. (7). Then, we obtain

E�

�
¼ �Q

r
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ �2Q2 �Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð4�þ �2Q2Þpq

ffiffiffi
2

p
rj�j :

(12)

The sign in front of the square root should be chosen in
accordance with the physical situation. This point will be
clarified below by using the formalism of orthonormal
frames.
An interesting particular orbit is the one in which the

particle is located at rest as seen by an observer at infinity,
i.e., L ¼ 0. These ‘‘orbits’’ are therefore characterized by
the following conditions:

L ¼ 0;
dV

dr
¼ 0: (13)

[18]. Solving Eq. (13) for Q � 0 and � � 0, we find the
following radius

r�s �ð�2�1ÞQ2M

�2Q2�M2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Q4ð�2�1ÞðM2�Q2Þ

ð�2Q2�M2Þ2
s

: (14)
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Table I shows the explicit values of all possible radii for
different values of the ratio Q=M. A particle located at
r ¼ rs with angular momentum L ¼ 0 will have the en-
ergy (see also [18–24])

E�
s

�
� 1

Q

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

�2 � 1

s
þ �

�2�1
�2Q2�M2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðM2�Q2Þð�2�1Þ

ð�2Q2�M2Þ2
q

1
CA:

(15)

The minimum radius for a stable circular orbit occurs at
the inflection points of the effective potential function;
thus, we must solve the equation

d2V

dr2
¼ 0; (16)

for the orbit radius r, using the expression (11) for the
angular momentum L. From Eq. (10) and (16) we find that
the radius of the last stable circular orbit and the angular
momentum of this orbit are related by the following equa-
tions

ðL2 þQ2 � 1Þr6 � 6L2r5 þ 6L2ð1þQ2Þr4
� 2L2ð2L2 þ 5Q2Þr3 þ L2ð3L2 þ 3L2Q2 þ 3Q4Þ
� r2 � 6L4Q2rþ 2L4Q4 ¼ 0;

and

Q2r2 � r3 þ L2ð2Q2 � 3rþ r2Þ

þQr3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ r2ÞðQ2 � 2rþ r2Þ

r4

s
� ¼ 0; (17)

where in order to simplify the notation we introduced the
normalized quantities L ! L=ðM=�Þ, r ! r=M, and
Q ! Q=M. Equation (17) depends on the test particle
specific charge � via the function L as given in Eq. (11).
It is possible to solve Eq. (17) for the last stable circular
orbit radius as a function of the free parameter L. We find
the expression

ðL�
lscoÞ2
�2

¼ r2

2½2Q4þ3Q2rðr�2MÞ�ð2r�3MÞr2�
�½2Q2ð5M�3rÞr�3Q4�r2½6M2þðr�6MÞr�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Q2þðr�6MÞr

q
ðQ2þðr�2MÞrÞ3=2� (18)

for the angular momentum of last stable circular orbit.
Equation (18) can be substituted in Eq. (17) to find the
radius of the last stable circular orbit.

Coulomb potential approximation

Consider the case of a charged particle moving in the
Coulomb potential

UðrÞ ¼ Q

r
:

This means that we are considering the motion described
by the following effective potential

Vþ ¼ Eþ

�
¼ �Q

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

�2r2

s
; (19)

where �Q < 0. The Coulomb approximation is interesting
for our further analysis because it corresponds to the
limiting case for large values of the radial coordinate r
[cf. Equation (7)].
Circular orbits are therefore situated at r ¼ rc with

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

�2

�
L2

�2Q2
� 1

�s
and

L2

�2
� �2Q2; (20)

and in the case � ¼ 0withQ> 0, circular orbits exist in all
r > 0 for L ¼ 0. We conclude that in this approximation
circular orbits always exist with orbital radius rc and
angular momentum satisfying the condition jLj=� �
j�Qj. For the last stable circular orbit situated at r ¼ rlsco
we find

rlsco ¼ 0 with
EþðrlscoÞ

�
¼ 0 and

jLj
�

¼ j�Qj:
(21)

This means that, in the approximation of the Coulomb
potential, all the circular orbits are stable, including the
limiting case of a particle at rest on the origin of
coordinates.

TABLE I. Radii of the orbits characterized by the conditions L ¼ 0 and dV=dr ¼ 0.

0<Q<M Q ¼ M Q>M

� Radius � Radius � Radius

� >M=Q r ¼ rþs � ¼ 1 r >M �M=Q< � < 0 r ¼ r�s
� ¼ �M=Q r ¼ Q2=ð2MÞ

�1< � � �M=Q r ¼ rþs
� ¼ 0 r ¼ Q2=M

0< �<M=Q r ¼ rþs
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Furthermore, Eqs. (20) and (21) show that, in contrast
with the general RN case, for a charged particle moving in
a Coulomb potential only positive or null energy solutions
can exist. See Fig. 1 where the potential (19) is plotted as a
function of the orbital radius for different values of the
angular momentum.

III. BLACK HOLES

In the case of a black hole (M2 >Q2), the two roots V�
of the effective potential are plotted as a function of the
ratio r=M in Fig. 2 for a fixed value of the charge-to-mass

ratio of the test particle and different values of the angular
momentum L=ðM�Þ (see also [25–30]). Notice the pres-
ence of negative energy states for the positive solution
Vþ ¼ Eþ=� of the effective potential function. Negative
energy states for Vþ are possible only in the case �Q < 0.
In particular, the largest region in which the Vþ solution
has negative energy states is

Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
< r � Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2ð1� �2Þ

q
(22)

and corresponds to the limiting case of vanishing angular
momentum (L ¼ 0). For L � 0, this region becomes
smaller and decreases as L increases. For a given value

of the orbit radius, say r0, such that r0 <Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2ð1� �2Þp

, the angular momentum of the test
particle must be chosen within the interval

0<
L2

�2
< r20

�
�2Q2

r20 � 2Mr0 þQ2
� 1

�
(23)

for a region with negative energy states to exist. This
behavior is illustrated in Fig. 2.
Figure 3 shows the positive solution Vþ of the effective

potential for different values of the momentum and for
positive and negative charged particles. In particular, we
note that, at fixed Q=M for a particle with j�j< 1, in the
case �Q > 0 the stable orbit radius is larger than in the case
of attractive electromagnetic interaction, i. e., �Q < 0. In
Fig. 4, the potential Vþ of an extreme black hole is plotted
for different positive and negative values of the test particle
with charge-to-mass ratio �. In this case, it is clear that the
magnitude of the energy increases as the magnitude of the
specific charge of the particle � increases.
As mentioned in Sec. II, in the case of the positive

solution for the effective potential, the conditions for the
existence of circular orbits

_r ¼ 0; V ¼ E

�
;

dV

dr
¼ 0 (24)

lead to Eqs. (11) and (12), in which the selection of the
ð�Þ sign inside the square root should be done properly.
To clarify this point, we consider explicitly the equation of
motion for a charged particle in the gravitational field of a
RN black hole.

aðUÞ� ¼ �F�
�U

�; (25)

where aðUÞ ¼ rUU is the particle’s 4-acceleration.
Introducing the orthonormal frame

et̂ ¼ r

�1=2
@t; er̂ ¼ �1=2

r
@r;

e�̂ ¼
1

r
@�; e�̂ ¼ 1

r sin�
@�;

(26)

with dual
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FIG. 1. Effective potential for a charged test particle with
� ¼ �2 moving in a Coulomb potential with Q=M ¼ 2 for
different values of the momentum L� � L=ð�MÞ. The points
indicate the minima of the potential. In particular, for L� ¼
j�Qj=M the potential vanishes on the origin r ¼ 0 (see text).

2 4 6 8 10
2.0

1.5

1.0

0.5

0.0

0.5

1.0

r M

V

L 0
L 3
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L 6

L 0
L 3

L 5
L 6

FIG. 2. The effective potential as a function of r=M for
a charged particle of charge-to-mass ratio � � q=� moving
in a Reissner–Nordström black hole of charge Q and mass M.
The graphic shows the positive Eþ=� (black curves) and nega-
tive roots E�=� (gray curves) of the effective potential for
Q=M ¼ 0:5, � ¼ �2, and different values of the momentum

L� � L=ðM�Þ. The outer horizon is located at rþ �
Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �Q2
p 	 1:87M. Note the presence of negative energy

states for the positive roots.
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!t̂ ¼ �1=2

r
dt; !r̂ ¼ r

�1=2
dr;

!�̂ ¼ rd�; !�̂ ¼ r sin�d�;
(27)

the tangent to a (timelike) spatially circular orbit u� can be
expressed as

u ¼ �ð@t þ 
@�Þ ¼ �ðet̂ þ �e�̂Þ;

where � and � are normalization factors

�2 ¼ ð�gtt � 
2g��Þ�1 and �2 ¼ ð1� �2Þ�1;

which guarantees that u�u
� ¼ �1. Here 
 is the angular

velocity with respect to infinity and � is the ‘‘local proper
linear velocity’’ as measured by an observer associated
with the orthonormal frame. The angular velocity 
 is
related to the local proper linear velocity by


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gtt

g��

s
�:

Since only the radial component of the 4-velocity is non-
vanishing, Eq. (25) can be written explicitly as

0 ¼ �ð�2 � �2
gÞ þ

�g


g

�Q

r2
; (28)

where


g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr�Q2

p
r2

; �g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr�Q2

�

s
: (29)

This equation gives the values of the particle linear velocity
� ¼ ���

� , which are compatible with a given value of �Q
on a circular orbit of radius r, i. e.,

��
� ¼�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2�2

2r4
2g
� Q

r2
g�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2
g

þQ2�4�2
g

4r4
2g

vuut
vuuut ; (30)

where

�g ¼
�

�

r2 � 3Mrþ 2Q2

�
1=2

;

and

��
� ¼ ð1� ��2

� Þ�1=2: (31)

In the limiting case of a neutral particle (� ¼ 0), Eq. (28)
implies that the linear velocity of the particle is �g.

5 10 15 20
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L 5

L 10

L 3.5
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L 3.5

FIG. 3. The effective potential Vþ for a charged particle of charge-to-mass ratio, � ¼ q=�, moving in a Reissner-Nordström
spacetime of charge Q and mass M with charge-to-mass ratio Q=M ¼ 0:5 is plotted as a function of the radial coordinate r=M for
different values of the angular momentum L� � L=ðM�Þ. The outer horizon is located at rþ 	 1:87M. In the graphic on the left with
� ¼ 0:1, the effective potential for L� 	 3:5 has a minimum Vmin 	 0:954 at rmin 	 8:84M. In the graphic on the right with � ¼ �0:1,
the minimum Vmin 	 0:94 is located at rmin 	 7:13M for L� 	 3:5.
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FIG. 4. The effective potential Vþ is plotted as a function of
r=M for a charged test particle with specific charge � ¼ q=�
moving in the field of a Reissner-Nordström extreme black hole
(Q ¼ M). Here L=ðM�Þ ¼ 4, and the effective potential is
plotted for different values of �. The outer horizon is located

at rþ � Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p ¼ M. Note the presence of negative
energy states for particles with negative �.
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We introduce the limiting value of the parameter �
corresponding to a particle at rest, � ¼ 0, in Eq. (28), i. e.,

�0 ¼ �g
g
r2

Q
¼ Mr�Q2

Q
ffiffiffiffi
�

p : (32)

By introducing this quantity into Eq. (28), one gets the
following equivalent relation

�

�0
¼ �

�
1� �2

�2
g

�
; (33)

whose solution (30) can be conveniently rewritten as

��
� ¼ �g

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

q �
1=2

; (34)

where

� ¼ 1� �2
g

2

�
�

�0

�
2
: (35)

Moreover, from Eq. (33) it follows that � < 0 implies that
�2 > �2

g (because �0 is always positive for r > rþ), so that
the allowed solutions for � can exist only for r � rþ� ,
where

rþ� � 1

2

�
3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

q �
; (36)

the equality corresponding to �g ¼ 1. In this case, the

solutions of Eq. (28) are given by � ¼ ��þ
� .

For � > 0, instead, solutions can exist also for rþ<
r < rþ� . The situation strongly depends on the considered

range of values of � and is summarized below.
Equation (34) gives the following conditions for the

existence of velocities

�2 � 1þ ð�=�0Þ2 � 0; (37)

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

q
� 0: (38)

The second condition, Eq. (38), is satisfied by

r � rl � 3M

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2 � �2Q2

q
: (39)

Moreover, for Q ¼ M and � ¼ 1, it is �þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

p � 0 when M< r< ð3=2ÞM.
However, it is also possible to show that condition
Eq. (10) is satisfied for 0<Q<M and � > 0 only in the
range r � rl.

Requiring that the argument of the square root be non-
negative implies

� � �l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p
Q

: (40)

The condition (38) will be discussed later.

From the equation of motion (33) it follows that the
velocity vanishes for �=�0 ¼ 1, i. e., for [cf. Eq. (14)]

r ¼ rs

� Q2

�2Q2 �M2

�
Mð�2 � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�2 � 1ÞðM2 �Q2Þ

q �
;

(41)

which exists only for � >M=Q. We thus have that

�

�0
> 1 for r > rs; (42)

whereas

�

�0
< 1 for rþ < r < rs: (43)

On the other hand, the condition � ¼ 0 in Eq. (34) implies
that �

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

q �
�=�0¼1

¼ 0; (44)

i :e:

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p �
r¼rs

¼ 0; (45)

thus, ��
� is identically zero whereas �þ

� ¼ 2�ðrsÞ ¼ 0 only
for

� ¼ ~� � 1ffiffiffi
2

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M2 � 4Q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 � 24Q2

qr
: (46)

Finally, the lightlike condition � ¼ 1 is reached only at
r ¼ rþ� , where �g ¼ 1 ¼ �.

The behavior of charged test particles depends very
strongly on their location with respect to the special radii
rþ, rl, rþ� , and rs. In Sec. III, the behavior of these radii will
be analyzed in connection with the problem of stability of
circular orbits.
On the other hand, the particle’s 4-momentum is given

by P ¼ mU� qA. Then, the conserved quantities associ-
ated with the temporal and azimuthal Killing vectors
� ¼ @t and  ¼ @� are, respectively,

P 
 � ¼ � �Q

r
� �

ffiffiffiffi
�

p
r

¼ � E

�
; (47)

P 
  ¼ r

M
�� ¼ L

M�
; (48)

where E=� and L=� are the particle’s energy and angular
momentum per unit mass, respectively, (see also Eqs. (11)
and (12)).
Let us summarize the results.
1. Case � < 0
The solutions are the geodesic velocities � ¼ ��þ

� in
the range r � rþ� as illustrated in Fig. 5. Orbits with radius

r ¼ rþ� are lightlike. We can also compare the velocity of
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charged test particles with the geodesic velocity �g for

neutral particles. For r > rþ� , we see that �þ
� > �g always.

This means that, at fixed orbital radius, charged test parti-
cles acquire a larger orbital velocity compared to that of
neutral test particles in the same orbit. As it is possible to
see from Eq. (30) and also in Fig. 6, an increase in the
particle charge � < 0 corresponds to an increase in the

velocity �þ
� . As the orbital radius decreases, the velocity

increases until it reaches the limiting value �þ
� ¼ 1, which

corresponds to the velocity of a photon. This fact can be
seen also in Fig. 7, where the energy and angular momen-
tum for circular orbits are plotted in terms of the distance r.
Clearly, this graphic shows that to reach the photon orbit at
r ¼ rþ� , the particles must acquire and infinity amount of

energy and angular momentum. In Fig. 8 we analyze the
behavior of the particle’s energy and angular momentum in
terms of the specific charge �. It follows that both quanti-
ties decrease as the value of j�j decreases.
2. Case � ¼ 0
The solutions are the geodesic velocities � ¼ ��g in the

range r � rþ� . This case has been studied in detail in [12].

3. Case � > 0
Depending on the explicit values of the parameters Q

and � and the radial coordinate r, it is necessary to analyze
several subcases.
(a) � <M=Q and r � rl.

There are two different branches for both signs of
the linear velocity: � ¼ ��þ

� in the range rl � r �
rþ� , and � ¼ ���

� in the whole range r � rl. The

two branches join at r ¼ rl, where �þ
� ¼ ��

� ¼
�g

ffiffiffiffi
�

p
, as shown in Fig. 9. First, we note that in

this case for r > rþ� it always holds that ��
� < �g.

This means that, at fixed orbital radius, charged test
particles possess a smaller orbital velocity than that
of neutral test particles in the same orbit. This is in
accordance to the fact that in this case, a black hole
with �Q > 0, the attractive gravitational force is
balanced by the repulsive electromagnetic force. In
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FIG. 5. The positive solution of the linear velocity �þ
� is

plotted as a function of the radial distance r=M for the parameter
choice Q=M ¼ 0:6 and � ¼ �3 so that rþ� =M 	 2:74 and the

outer horizon is located at rþ=M ¼ 1:8. The geodesic velocity
�g is also shown (gray curve). The shaded region (r < rþ� ) is
forbidden.
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FIG. 6. The positive solution of the linear velocity �þ
�

is plotted as a function of the radial distance r=M for the
parameter choice Q=M ¼ 0:6 and different values of � ¼ �5
(black curve), � ¼ �3 (thick black curve), and � ¼ �0:5
(dashed curve). The geodesic velocity �g for � ¼ 0 is also shown

(gray curve). The choice of parameters implies that rþ� =M 	
2:74 and the outer horizon is located at rþ=M ¼ 1:8. The shaded
region is forbidden. For r > rþ� it holds that �þ

� > �g.
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FIG. 7. The energy E=� and angular momentum L� �
L=ð�MÞ of a charged particle of charge-to-mass ratio � moving
in the field of a RN black hole with charge Q and mass M are
plotted as functions of the radial distance r=M for the parameter
choice Q=M ¼ 0:6 and � ¼ �3, with rþ� =M 	 2:74 and the

outer horizon located at rþ=M ¼ 1:8. The shaded region is
forbidden.
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the region r > rþ� , the orbital velocity increases as

the radius approaches the value rþ� (see Fig. 9). The

interval rl � r � rþ� presents a much more complex

dynamical structure. First we note that, due to the
Coulomb repulsive force, charged particle orbits are
allowed in a region which is forbidden for neutral
test particles. This is an interesting result leading to
the possibility of accretion disks in which the inner-
most part forms a ring of charged particles only.
Indeed, suppose that an accretion disk around a

RN black hole is made of neutral and charged test
particles. Then, the accretion disk can exist only in
the region r � rl with a ring of charged particles in
the interval ½rl; rþ� Þ. Outside the exterior radius

of the ring ðr > rþ� Þ, the disk can be composed of

neutral and charged particles. This situation can also
be read from Fig. 10 where the energy and the
angular momentum are plotted as functions of the
radial distance r=M.

(b) M=Q< �< ~� and rl � r � rs.
Since r < rs, one has that �=�0 < 1, implying that
both solutions �þ

� and ��
� can exist. There are two

different branches for both signs: � ¼ ��þ
� in the

range rl � r � rþ� , and ��
� in the entire range rl �

r � rs. The two branches join at r ¼ rl. Note that
for increasing values of �, the radius rs decreases
and approaches rl, reaching it at � ¼ ~�, and as �
tends to infinity rs tends to the outer horizon rþ (see
Fig. 11). In particular, the interaction between the
attractive gravitational force and the Coulomb force
generates a zone rl � r � rþ� in which only charged

test particles can move along circular trajectories
while neutral particles are allowed in the region
r > rþ� (see Fig. 12). This result again could be

used to construct around black holes accretion disks
with rings made of charged particles.

(c) ~� < � < �l and rs < r < rþ� .
The solution ��

� for the linear velocity is not allowed
whereas the solution �þ

� is valid in the entire range.
In fact, the condition r > rs implies that �=�0 > 1,
and therefore �2 � 1þ ð�=�0Þ2 >�2, so that the
condition (38) for the existence of velocities is
satisfied for the plus sign only. Therefore, the solu-
tions are given by � ¼ ��þ

� in the entire range as
shown in Fig. 13. At the radius orbit r ¼ rs, the

2 4 6 8 10
0

2

4

6

8

10

r M

r

FIG. 8. The energy E=� and angular momentum L� �
L=ð�MÞ of a charged particle of charge-to-mass ratio � moving
in the field of a RN black hole with charge Q and mass M are
plotted as functions of the radial distance r=M for the parameter
choice Q=M0:6 and � ¼ �3 (solid curves), � ¼ �5 (dashed
curves), � ¼ �0:5 (dotted curves). Here rþ� =M 	 2:74 and the

outer horizon is located at rþ=M ¼ 1:8. The shaded region is
forbidden. The energy and angular momentum decrease as j�j
decreases.
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FIG. 9. The positive solution of the linear velocity ��
� is plotted as a function of the radial distance r=M in the region [1.8, 5] (left

graphic) and [2.5, 3] (right graphic). HereQ=M ¼ 0:6 and � ¼ 1:2, so that rl=M ¼ 2:68 and rþ� ¼ 2:737M. For the chosen parameters

we have that ~� ¼ 3:25 and �l ¼ 4:12. The region within the interval ½rl; rþ� � is forbidden for neutral particles.
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angular momentum and the velocity of the test
particle vanish, indicating that the particle remains
at rest with respect to static observers located at
infinity. In the region rs < r < rþ� only charged

particles can move along circular trajectories.
(d) � > �l and rs < r < rþ� .

In this case the radius rl does not exist. The solutions
are the velocities � ¼ ��þ

� in the entire range. Note
that for � ! 1 one has that rs ! rþ. Also in this
case we note that neutral particles can stay in circu-
lar orbits with a velocity �g only in the region

r > rþ� whereas charged test particles are allowed

within the interval rs < r < rþ� , as shown in Fig. 14.
Clearly, for charged and neutral test particles the
circular orbit at r ¼ rþ� corresponds to a limiting

orbit.
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FIG. 10. The energy E=� and angular momentum L� � L=ð�MÞ of a charged particle of charge-to-mass ratio � moving along
circular orbits in a Reissner–Nordström black hole of charge Q and massM are plotted in terms of the radial distance r=M in the range
[2.6, 3.8] (left graphic) [2.68, 2.74] (right graphic). Here Q=M ¼ 0:6 and � ¼ 1:2, so that rl=M ¼ 2:68 and rþ� =M ¼ 2:737. For the

chosen parameters we have that ~" ¼ 3:25 �l ¼ 4:12. The shaded region is forbidden for any particles.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
2.0

2.5

3.0

3.5

4.0

r
M

Q 0.6M

FIG. 11. Radius rs ¼ rþs (black curve) and rl ¼ rþl (gray
curve), are plotted as function of � for Q ¼ 0:6M. rþs ¼ rþl
for � ¼ ~� 	 3:25.

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

r M

rs

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

r M

FIG. 12. Left graphic: The positive solution of the linear velocity � is plotted as a function of the radial distance r=M. Right graphic:
The energy E=� and angular momentum L� � L=ð�MÞ of a charged particle of charge-to-mass ratio � are plotted in terms of r=M.
The parameter choice is Q=M ¼ 0:6 and � ¼ 2:1. Then, rl=M ¼ 2:56, rþ� =M ¼ 2:737, and rs=M ¼ 3:99. Moreover, for this choice

~� ¼ 3:25 and �l ¼ 4:12. The shaded region is forbidden.
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Stability

To analyze the stability of circular orbits for charged test
particles in a RN black hole we must consider the condition
(16) which leads to the Eqs. (17) and (18). So, the stability
of circular orbits strongly depends on the sign of ð�QÞ. The
case �Q � 0 is illustrated in Fig. 15, where the radius of
the last stable circular orbit rlsco is plotted for two different
values of � as a function of Q=M. It can be seen that the
energy and angular momentum of the particles decrease as
the value of Q=M increases. These graphics also include
the radius of the outer horizon rþ and the radius rþ� which

determines the last (unstable) circular orbit of neutral
particles. In Sec. III, we found that circular orbits for
charged particles are allowed also inside the radius rþ�

for certain values of the parameters; however, since
rþ� < rlsco, we conclude that all those orbits must be

unstable. From Fig. 16 we see that for Q ¼ 0 and � ¼ 0,
the well-known result for the Schwarzschild case,
rlsco ¼ 6M, is recovered. Also in the limiting case
Q ¼ M and � ¼ 0, we recover the value of rlsco ¼ 4M
for neutral particles moving along circular orbits in an
extreme BN black hole. In general, as the value of j�j
increases, we see that the value of rlsco increases as well.
This behavior resembles the case of the radius of the last
stable orbit for neutral test particles [12,13]. Indeed, in the
case �Q < 0 the attractive Coulomb force reinforces the
attractive gravitational force so that the general structure
remains unchanged. We also can expect that an increase in
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FIG. 13. Left graphic: The positive solution of the linear velocity � is plotted as a function of the radial distance r=M. Right graphic:
The energy E=� and angular momentum L� � L=ð�MÞ of a charged particle of charge-to-mass ratio � ¼ 3:8 moving in a RN
spacetime with Q=M ¼ 0:6 are plotted in terms of the radial distance r=M. For this choice of parameters the radii are rl=M ¼ 1:98,
rs=M ¼ 2:11, and rþ� =M ¼ 2:737 whereas the charge parameters are ~� ¼ 3:25 and �l ¼ 4:12.
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FIG. 14. Left graphic: The positive solution of the linear velocity � is plotted as a function of the radial distance r=M. Right graphic:
The energy E=� and angular momentum L� � L=ð�MÞ of a charged particle of charge-to-mass ratio � ¼ 7, moving in the field of a
RN black hole withQ=M ¼ 0:6, are plotted in terms of the radial distance r=M. For this parameter choice rs=M ¼ 1:88, ~� ¼ 3:25, and
�l ¼ 4:12.
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the charge of the particle j�j produces an increase in the
velocity of the stable circular orbits. In fact, this can be
seen explicitly from Eq. (30) and Fig. 6. It then follows that
the energy and angular momentum of the charged test
particle increases as the value of j�j increases.

The case of �Q > 0 is illustrated in Figs. 17 and 18. The
situation is very different from the case of neutral particles
or charged particles with �Q < 0. Indeed, in this case the
Coulomb force is repulsive and leads to a non trivial
interaction with the attractive gravitational force, see also
[31–40]. It is necessary to analyze two different subcases.
The first subcase for � > 1 is illustrated in Fig. 17, while
the second one for 0< �< 1 is depicted in Fig. 18. We can
see that in the case 0< �< 1 the stability regions

are similar to those found in the case � < 0 (cf. Figs 15
and 18). This means that for weakly-charged test particles,
0< �< 1, it always exists a stable circular orbit and
rlsco � 4M, where the equality holds for an extreme black
hole. On the contrary, in the case � > 1, there are regions of
Q and � in which stable circular orbits cannot exist at all.
As can be seen from Fig. 17, charged particles moving
along circular orbits with radii located within the region
r < rþ� or r < rs must be unstable.
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FIG. 15. The radius of the last stable circular orbit rlsco in a RN black hole of massM and chargeQ for a particle with ratio � ¼ �0:2
(left plot) and � ¼ �1:5 (right plot). Numbers close to the point represent the energy E=� of the last stable circular orbits at that point.
Underlined numbers represent the corresponding angular momentum L=ðM�Þ. Stable orbits are possible only for r > rlsco. For
comparison we also include the curves for the radii rþ and rþ� .
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FIG. 16. The radius rlsco of the last stable circular orbit in a RN
black with charge-to-mass ratio Q=M for selected values of the
charge-to-mass ratio � of the test particle. Only the case �Q � 0
is illustrated. Stable orbits are possible only for r > rlsco.
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FIG. 17. The radius of the last stable circular orbit rlsco (solid
curve) for a charged test particle with � ¼ 7, in a RN black hole
with charge Q and mass M, is plotted as a function of the ratio

Q=M. Other curves are the outer horizon radius rþ ¼
Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �Q2
p

and the radii rþ� � ½3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2,
rs � Q2

�2Q2�M2 ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
þMð�2 � 1Þ�, rl � 3M

2 þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2 �Q2�2

p
. Shaded and dark regions are forbidden

for timelike particles. Stable orbits are possible only for r > rlsco.
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We conclude that the ring structure of the hypothetical
accretion disks around a RN black hole mentioned in
Sec. III must be unstable.

IV. NAKED SINGULARITIES

The effective potential V� given in Eq. (9) in the case of
naked singularities (M2 <Q2) is plotted in Figs. 19–22 in
terms of the radial coordinate r=M for selected values of
the ratio � and the angular momentum L=ðM�Þ of the test
particle, see also [25,41–47]. The effective potential profile
strongly depends on the sign of �Q. Moreover, the cases
with j�j � 1 and with j�j> 1 must be explored separately.
Figure 20 shows the effective potential for a particle of

charge-to-mass � in the range ½�10;�1�. The presence of
minima (stable circular orbits) in the effective potential
with negative energy states is evident. Moreover, we note
that the minimum of each potential decreases as j�j in-
creases. This fact is due to the attractive and repulsive
effects of the gravitational and electric forces [31–40].
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FIG. 18. The radius of the last stable circular orbit rlsco (solid
curve) for a charged test particle with � ¼ 0:5, in a RN black
hole with charge Q and mass M, is plotted as a function of the
ratio Q=M. Other curves are the outer horizon radius rþ and the
radius rþ� . Shaded and dark regions are forbidden for timelike

particles. Stable orbits are possible only for r > rlsco.
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FIG. 19. The effective potential for a charged particle with charge-to-mass ratio � in a RN naked singularity of chargeQ and massM
is plotted as a function of the radius r=M for fixed values of the angular momentum L� � L=ð�MÞ. Black curves represent the positive
solution Vþ while gray curves correspond to V�. The boldfaced points denote the minima of the potentials. In upper left plot, the
parameter choice is Q=M ¼ 2 and � ¼ �1:5; the upper right plot is for Q=M ¼ 2 and � ¼ �5 while the bottom plot corresponds to
the choice Q=M ¼ 1:5 and � ¼ �0:2.

DANIELA PUGLIESE, HERNANDO QUEVEDO, AND REMO RUFFINI PHYSICAL REVIEW D 83, 104052 (2011)

104052-12



In Fig. 21 the effective potential is plotted for negative and
positive values of the charge-to-mass ratio �. We see that
for a fixed value of the radial coordinate and the angular
momentum of the particle, the value of the potential V
increases as the value of � increases. In Fig. 22 we plot the
effective potential for a fixedQ=M as function of the radial
coordinate and the angular momentum for two different
cases, � ¼ 0:1 and � ¼ �0:1. We can see that in the first
case the presence of a repulsive Coulomb force reduces the
value of the radius of the last stable circular orbit for a fixed
angular momentum. We note the existence of stable
‘‘circular’’ orbits with L ¼ 0 at which the particle is at
rest with respect to static observers located at infinity.
Negative energy states are possible only in the case

�Q < 0. The region in which the solution Vþ has negative
energy states is

0< r <Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2ð1� �2Þ

q
for � � �1; (49)

and

0< r < rþl for 0 � L < Lq; � � �1; (50)

r�l < r < rþl for 0 � L < Lq;

�1< � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

Q2

s
;

(51)

where

Lq

�
� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Q2

r2 � 2MrþQ2
� 1

s
: (52)

In general, for a particle in circular motion with radius r0
and charge-to-mass ratio �, around a RN naked singularity
with charge Q and mass M, the corresponding angular
momentum must be chosen as
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FIG. 20. The effective potential of a RN naked singularity with
Q=M ¼ 2 for a particle with charge-to-mass ratio � in the range
½�10;�1� and angular momentum L=ðM�Þ ¼ 4.
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FIG. 21. The effective potential of a RN naked singularity with
Q=M ¼ 3=2 for a particle with charge-to-mass ratio � in the
range ½�2;þ2� and angular momentum L=ðM�Þ ¼ 4.
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FIG. 22. The effective potential Vþ of a RN naked singularity with Q=M ¼ 3=2 for a charged particle is plotted for different values
of the angular momentum L� � L=ðM�Þ. The left plot corresponds to the ratio � ¼ 0:1 while the right one is for � ¼ �0:1. For
� ¼ 0:1 there is a minimum, Vmin 	 0:81, at rmin 	 2:52M for L� ¼ 0, and a minimum, Vmin 	 0:96, at rmin 	 29M for L� ¼ 5. For
� ¼ �0:1 the minimum, Vmin 	 0:67, is located at rmin 	 2:02M for L� ¼ 0, and at rmin 	 20:8M with Vmin 	 0:97 for L� ¼ 5.
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L2

�2
< r20

�
�2Q2

r20 � 2Mr0 þQ2
� 1

�
; (53)

in order for negative energy states to exist.
The conditions for circular motion around a RN naked

singularity are determined by Eq. (10) which can be used to
find the energy and angular momentum of the test particle.
Indeed, Eqs. (11) and (12) define the angular momentum
L� and the energy E�, respectively, in terms of r=M,
Q=M, and �. The explicit dependence of these parameters
makes it necessary to investigate several intervals of val-
ues. To this end, it is useful to introduce the following
notation

r�l � 3M

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2 �Q2�2

q
; (54)

~�� � 1ffiffiffi
2

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M2 � 4Q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 � 24Q2

qr
; (55)

and

~~�� � 1ffiffiffi
2

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2 � 2Q2 �M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

qr
: (56)

We note that

lim
�!0

r�s ¼ r� ¼ Q2

M
; (57)

which corresponds to the classical radius of a massM with
charge Q, see for example [48,49], and

lim
�!0

r�l ¼ r�� ¼ 3M

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

q
; (58)

which represents the limiting radius at which neutral par-
ticles can be in circular motion around a RN naked singu-
larity [12].

The behavior of the charge parameters defined above is
depicted in Fig. 23 in terms of the ratio Q=M > 1. It
follows from Fig. 23 that it is necessary to consider the
following intervals:

Q=M 2 ð1; 5=ð2 ffiffiffi
6

p Þ�; (59)

Q=M 2 ð5=ð2 ffiffiffi
6

p Þ; ð3 ffiffiffi
6

p Þ=7�; (60)

Q=M 2 ðð3 ffiffiffi
6

p Þ=7;
ffiffiffiffiffiffiffiffi
9=8

p
�; (61)

Q=M 2 ½
ffiffiffiffiffiffiffiffi
9=8

p
;1Þ: (62)

Our approach consists in analyzing the conditions for the
existence of circular orbits by using the expressions for the
angular momentum, Eq. (11), and the energy, Eq. (12), of
the particle together with the expressions for the velocity
obtained in Sec. III. We consider separately the case � > 0
in Secs. IVA and IVB, and � < 0 in Secs. IVC and IVD.

In the Appendix, we present equivalent results by using the
alternative method of the proper linear velocity of test
particles in an orthonormal frame as formulated in Sec. III.

A. Case � > 1

For � > 0, the condition (33) implies in general that
r > r� � Q2=M. Imposing this constraint on Eqs. (11) and
(12), we obtain the following results for timelike orbits. For

� > 1 and M<Q<
ffiffiffiffiffiffiffiffi
9=8

p
M circular orbits exist with

angular momentum L ¼ Lþ in the interval r�� < r < rþ� ,
while forQ � ffiffiffiffiffiffiffiffi

9=8
p

M no circular orbits exist (see Fig. 24).
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FIG. 23. The charge parameters �l (black solid curve), ~��
(gray solid curve), ~�þ (dashed curve), ~~�� (dotted curve), and
~~�þ (dotdashed curve) as functions of the charge-to-mass ratio of
the RN naked singularity. The special lines Q=M ¼ 5=ð2 ffiffiffi

6
p Þ 	

1:02,Q=M ¼ 3
ffiffiffi
6

p
=7 	 1:05, andQ=M ¼ ffiffiffiffiffiffiffiffi

9=8
p 	 1:06 are also

plotted.

1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

r M

FIG. 24. The case � > 1. The energy (black curve) and angular
momentum (gray curve) for a test particle with charge-to-mass
ratio � ¼ 2 in a RN naked singularity with Q ¼ 1:06M. Circular
orbits exist in the interval r�� < r < rþ� , where r�� ¼ 1:04196M

and rþ� ¼ 1:95804M.
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Clearly, the energy and angular momentum of circular
orbits diverge as r approaches the limiting orbits at r�� .
This means that charged test particles located in the region
r�� < r < rþ� need to acquire an infinite amount of energy

to reach the orbits at r�� . The energy of the states is always
positive. A hypothetical accretion disk would consist in
this case of a charged ring of inner radius r�� and outer

radius rþ� , surrounded by a disk of neutral particles. The

boundary r ¼ rþ� in this case would be a lightlike

hypersurface.
Since for �Q > 0 the Coulomb interaction is repulsive,

the situation characterized by the values for Q � ffiffiffiffiffiffiffiffi
9=8

p
M

and � > 1 corresponds to a repulsive electromagnetic ef-
fect that cannot be balanced by the attractive gravitational

interaction. We note that the case Q � ffiffiffiffiffiffiffiffi
9=8

p
M and � > 1

could be associated to the realistic configuration of a
positive ion or a positron in the background of a RN naked
singularity.

B. Case 0 < � < 1

It turns out that in this case it is necessary to consider
separately each of the four different regions for the ratio
Q=M that follow from Fig. 23. Moreover, in each region of
Q=M it is also necessary to consider the value of � for each
of the zones determined by the charge parameters �l, ~��,
and ~~��, as shown in Fig. 23. We analyzed all the resulting
cases in detail and found the values of the energy and
angular momentum of charged test particles in all the
intervals where circular motion is allowed. We summarize
the results as follows.
There is always a minimum radius rmin at which circular

motion is allowed. We found that either rmin ¼ rþs or
rmin ¼ r�� . Usually, at the radius rþs the test particle ac-

quires a zero angular momentum so that a static observer at
infinity would consider the particle as being at rest.
Furthermore, at the radius r�� the energy of the test particle

diverges, indicating that the hypersurface r ¼ r�� is
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FIG. 25. Case: M<Q � 5=ð2 ffiffiffi
6

p ÞM and ~�þ < � � �l. Parameter choice: Q ¼ 1:01M and � ¼ 0:902. Then �l ¼ 0:907,
~�þ ¼ 0:8963, rþs ¼ 1:44942M, r�� ¼ 1:04196M, rþ� ¼ 1:95804M, r�l ¼ 1:45192M, and rþl ¼ 1:548077M. Circular orbits exist

with angular momentum L ¼ Lþ (gray curves) and energy E ¼ Eþ (black curves) in r�� < r < rþs (upper left plot); L ¼ L� in

rþs � r < r�l (upper right plot) and rþl � r < rþ� (bottom left plot); L ¼ L� in r � rþ� (bottom right plot).
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lightlike. In the simplest case, circular orbits are allowed in
the infinite interval ½rmin;1Þ so that, at any given radius
greater than rmin, it is always possible to have a charged
test particle moving on a circular trajectory. Sometimes,
inside the infinite interval ½rmin;1Þ, there exists a lightlike
hypersurface situated at rþ� > rmin.

Another possible structure is that of a finite region filled
with charged particles within the spatial interval (rmin ¼
r�� , rmax ¼ rþ� ). This region is usually surrounded by an

empty finite region in which no motion is allowed. Outside
the empty region, we find a zone of allowed circular
motion in which either only neutral particles or neutral
and charged particles can exist in circular motion. Clearly,
this spatial configuration formed by two separated regions
in which circular motion is allowed, could be used to build
with test particles an accretion disk of disconnected rings.
A particular example of this case is illustrated in Fig. 25.

C. Case � <�1

The contribution of the electromagnetic interaction in
this case is always attractive. Hence, the only repulsive
force to balance the attractive effects of the gravitational
and Coulomb interactions can be generated only by the RN
naked singularity. This case therefore can be compared
with the neutral test particle motion as studied in [12,13].
Then, it is convenient, as in the case of a neutral test

particle, to consider the two regions Q>
ffiffiffiffiffiffiffiffi
9=8

p
M and

M<Q � ffiffiffiffiffiffiffiffi
9=8

p
M separately.

For � <�1 and for Q>
ffiffiffiffiffiffiffiffi
9=8

p
M circular orbits with

L ¼ Lþ always exist for r > 0 (in fact, however, one has to
consider also the limit r > r� for the existence of timelike
trajectories). This case is illustrated in Fig. 26 where the
presence of orbits with negative energy states is evident.

ForM<Q � ffiffiffiffiffiffiffiffi
9=8

p
M circular orbits exist with L ¼ Lþ

in 0< r < r�� and r > rþ� (see Fig. 27). We note that for

neutral test particles in the region M<Q � ffiffiffiffiffiffiffiffi
9=8

p
M, (sta-

ble) circular orbits are possible for r > r� ¼ Q2=M. At
r ¼ r�, the angular momentum of the particle vanishes
[12]. On the contrary, charged test particles with � <�1
can move along circular orbits also in the region ð0; r��.
The value of the energy on circular orbits increases as r
approaches r ¼ 0. However, the angular momentum, as
seen by an observer located at infinity, decreases as the

radius of the orbit decreases. In the region M<Q �ffiffiffiffiffiffiffiffi
9=8

p
M, two limiting orbits appear at r�� , as in the neutral

particle case [12].

D. Case �1 < � < 0

For this range of the ratio �, it is also convenient to

analyze separately the two cases Q>
ffiffiffiffiffiffiffiffi
9=8

p
M and M<

Q � ffiffiffiffiffiffiffiffi
9=8

p
M. In each case, it is necessary to analyze the

explicit value of � with respect to the ratio M=Q. Several
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FIG. 26. Case: � <�1 and Q>
ffiffiffiffiffiffiffiffi
9=8

p
M. Parameter choice:

Q ¼ 2M and � ¼ �2. Circular orbits exist with angular mo-
mentum L ¼ Lþ (gray curve) and energy E ¼ Eþ (black curve).
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FIG. 27. Case: � <�1 and M<Q � ffiffiffiffiffiffiffiffi
9=8

p
M. Parameter choice: Q ¼ 1:01M and � ¼ �2. Then, r�� ¼ 1:04196M and

rþ� ¼ 1:95804M. Circular orbits exist with angular momentum L ¼ Lþ (gray curve) and energy E ¼ Eþ (black curve) in

0< r < r�� and r > rþ� .
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cases arise in which we must find the regions where
circular motion is allowed and the value of the angular
momentum and energy of the rotating charged test
particles.

We summarize the results in the following manner.
There are two different configurations for the regions in
which circular motion of charged test particles is allowed.

The first one arises in the caseQ>
ffiffiffiffiffiffiffiffi
9=8

p
M, and consists in

a continuous region that extends from a minimum radius
rmin to infinity, in principle. The explicit value of the
minimum radius depends on the value of � and can be
either r�s , rþs , or rmin ¼ Q2=ð2MÞ. In general, we find that
particles standing on the minimum radius are characterized
by L ¼ 0, i. e., they are static with respect to a nonrotating
observer located at infinity.

The second configuration appears for M<Q �ffiffiffiffiffiffiffiffi
9=8

p
M. It also extends from rmin to infinity, but inside it

there is a forbidden region delimited by the radii r�� and rþ� .
The configuration is therefore composed of two discon-
nected regions. At the minimum radius, test particles are
characterized by L ¼ 0. On the boundaries (r�� ) of the

interior forbidden region only photons can stand on circu-
lar orbits. A particular example of this case is presented in
Fig. 28.

E. Stability

To explore the stability properties of the circular motion
of charged test particles in a RN naked singularity, it is
necessary to investigate the Eq. (16) or, equivalently,
Eqs. (17) and (18), considering the different values for �
and Q=M > 1. We can distinguish two different cases,
j�j> 1 and 0< j�j< 1. Let us consider the case j�j> 1.
In particular, as it was shown in Sec. IVA, for � > 1 and

M<Q<
ffiffiffiffiffiffiffiffi
9=8

p
M circular orbits exist with L ¼ Lþ in the

interval r�� < r < rþ� whereas no circular orbits exist for

� > 1 and Q>
ffiffiffiffiffiffiffiffi
9=8

p
M. For this particular case, a numeri-

cal analysis of condition (16) leads to the conclusion that
a circular orbit is stable only if its radius r0 satisfies
the condition r0 > rlsco, where rlsco is depicted in Fig. 29.
We see that in general, the radius of the last stable circular
orbit is located inside the interval ðr�� ; rþ� Þ. It then follows

that the only stable region is determined by the interval
rlsco < r < rþ� .
Consider now the case � <�1. The numerical inves-

tigation of the condition (16) for the last stable circular
orbit shows that in this case, there are two solutions r�lsco
such that r�lsco � rþlsco, where the equality is valid for
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FIG. 28. Case: M<Q � ffiffiffiffiffiffiffiffi
9=8

p
M and �M=Q< � < 0. Parameter choice: Q ¼ 1:05M and � ¼ �0:2. Then r�� ¼ 1:28787M,

rþ� ¼ 1:71213M, and r�s ¼ 1:03487M. Circular orbits exist with angular momentum L ¼ Lþ (gray curve) and energy E ¼ Eþ

(black curve) in r�s < r < r�� (left plot) and in r > rþ� (right plot). For r ¼ r�s , L ¼ 0.
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FIG. 29. The radius of the last stable circular orbit rlsco (gray
curve) of a charged particle with ratio � ¼ þ7 in a RN naked
singularity with ratio Q=M 2 ½1; 1:2�. The radii r� ¼ Q2=M and

r ¼ r�� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p �=2 are also plotted. Circular or-

bits exist only in the interval 1<Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
. The shaded

region is forbidden for timelike particles. Stable orbits are
located in the region r > rlsco.
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Q=M 	 1:72. Moreover, for Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
we obtain that

r�lsco ¼ r�� ¼ rþ� . This situation is illustrated in Fig. 30.

Stable orbits corresponds to points located outside the
region delimited by the curves r ¼ rþlsco, r ¼ r�lsco, and
the axis Q=M ¼ 1. On the other hand, we found in

Sec. IVC that for � <�1 and 1<Q=M � ffiffiffiffiffiffiffiffi
9=8

p
circular

orbits exist in the interval 0< r < r�� and r > rþ� . It then
follows that the region of stability corresponds in this case
to two disconnected zones determined by 0< r < r�� and

r > rþlsco. Moreover, we established in Sec. IVC that for

� <�1 and
ffiffiffiffiffiffiffiffi
9=8

p
<Q=M, circular orbits always exist for

r > 0. Consequently, in the interval
ffiffiffiffiffiffiffiffi
9=8

p
<Q=M & 1:72,

the stable circular orbits are located in the two discon-
nected regions defined by 0< r < r�lsco and r > rþlsco.
Finally, for Q=M * 1:72 all the circular orbits are stable
(see Fig. 30).
The case 0< j�j< 1 is much more complex, and

needs to be described for different subcases following the
classification of orbital regions traced in Sec. IVB for the
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FIG. 30. The radius of the last stable circular orbit r�lsco (black curves) of a charged particle with ratio � ¼ �7 in a RN naked
singularity with ratio Q=M 2 ½1; 1:8�. The radii r�, and r�� are also plotted for comparison. In the shaded region no circular orbits can

exist. Stable circular orbits are situated outside the region with boundaries rþlsco, r
�
lsco, and the vertical axis Q=M ¼ 1.
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FIG. 31. The radius of the last stable circular orbit r�lsco (black
and grey curves) of a charged particle with ratio � ¼ 0:5 in a RN

naked singularity with ratio Q=M 2 ½1; 1:1�. Also plotted: r�� �
½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2�8Q2Þp �=2, rþs � Q2

�2Q2�M2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�2�1ÞðM2�Q2Þp �

Mð�2�1Þ�, r�l � 3M
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2 �Q2�2

p
, and r� ¼

Q2=M. Regions of stability are: for Q>
ffiffiffiffiffiffiffiffi
9=8

p
M in r > rs, for

ð3 ffiffiffi
6

p
=7ÞM<Q<

ffiffiffiffiffiffiffiffi
9=8

p
M exist stable orbits in r�� < r, for

ð5=ð2 ffiffiffi
6

p ÞÞM<Q< ð3 ffiffiffi
6

p
=7ÞM exist stable orbits in r�� < r.

For M<Q< ð5=ð2 ffiffiffi
6

p ÞÞM stable orbits are located in r > rþlsco.

1.00 1.05 1.10 1.15 1.20
0

1

2

3

4

5

Q M

r
M

0.5

rlsco

rlsco

rsr
rs

r

FIG. 32. The radius of the last stable circular orbit r�lsco
(black and grey curves) of a charged particle with ratio
� ¼ �0:5 in a RN naked singularity with ratio Q=M 2
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9M2 � 8Q2 �Q2�2

p
, and r� ¼ Q2=M. Shaded regions are for-

bidden. Regions of stability are: for Q> ð ffiffiffiffiffiffiffiffi
9=8

p ÞM stable circu-
lar orbits exist in rþs < r < r�lsco, and r > rþlsco. For

M<Q< ð ffiffiffiffiffiffiffiffi
9=8

p ÞM stable circular orbits exist in rþs < r < r�� ,
and r > rþ� .
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case 0< �< 1, and in Sec. IVD for the case �1< �< 0.
The results for the specific ratio � ¼ 0:5 are given in
Fig. 31 and for � ¼ �0:5 in Fig. 32. In general, we find
that the results are similar to those obtained for the case
� <�1. Indeed, the zone of stability consists of either one
connected region or two disconnected regions. The explicit
value of the radii that determine the boundaries of the
stability regions depend on the particular values of the
ratio Q=M.

V. CONCLUSIONS

In this work, we explored the motion of charged test
particles along circular orbits in the spacetime described by
the Reissner-Nordström (RN) metric. We performed a very
detailed discussion of all the regions of the spacetime
where circular orbits are allowed, using as parameters the
charge-to-mass ratio Q=M of the source of gravity and the
charge-to-mass ratio � ¼ q=� of the test particle.
Depending on the value of Q=M, two major cases must
be considered: The black hole case, jQ=Mj � 1, and the
naked singularity case, jQ=Mj> 1. Moreover, we found
out that the two cases j�j � 1 and j�j> 1 must also be
investigated separately. Whereas the investigation of the
motion of charged test particles with j�j> 1 can be carried
out in a relatively simple manner, the case with j�j � 1 is
much more complex, because it is necessary to consider
various subcases which depend on the explicit value of � in
this interval.

To perform the analysis of circular motion of charged
test particles in this gravitational field, we use two different
methods. The first one consists in using constants of mo-
tion to reduce the equations of motion to a single first-order
differential equation for a particle moving in an effective
potential. The properties of this effective potential are then
used to find the conditions under which circular motion is
possible. The second approach uses a local orthonormal
frame to introduce a ‘‘local proper linear velocity’’ for the
test particle. The conditions for this velocity to be timelike
are then used to determine the regions of space where
circular orbits are allowed. The results of both methods
are equivalent and, in fact, for the sake of simplicity it is
sometimes convenient to use a combination of both ap-
proaches. In this work, we analyzed in detail the conditions
for the existence of circular orbits and found all the solu-
tions for all the regions of space in the case of black holes
and naked singularities.

To formulate the main results of this work in a plausible
manner, let us suppose that an accretion disk around a RN
gravitational source can be made of test particles moving
along circular orbits [50]. Then, in the case of black hole
we find two different types of accretion disks made of
charged test particles. The first type consists of a disk
that begins at a minimum radius R and can extend to
infinity, in principle. In the second possible configuration,
we find a circular ring of charged particles with radii

ðrint; rextÞ, surrounded by the disk, i. e., with rext < R. For
certain choices of the parameter �, the exterior disk might
be composed only of neutral particles. A study of the
stability of circular orbits shows that the second structure
of a ring plus a disk is highly unstable. This means that test
particles in stable circular motion around RN black holes
can be put together to form only a single disk that can, in
principle, extend to infinity.
In the case of RN naked singularities we find the same

two types of accretion disks. The explicit values of the radii
rmin, rext, and R depend on the values of the ratios � and
Q=M, and differ significantly from the case of black holes.
In fact, we find that the case of naked singularities offers a
much richer combination of values of the charge-to-mass
ratios for which it is possible to find a structure composed
of an interior ring plus an exterior disk. A study of the
stability of this specific situation shows that for certain
quite general combinations of the parameters the configu-
ration is stable. This result implies that test particles in
stable circular motion around RN naked singularities can
be put together to form either a single disk that can extend,
in principle, to infinity or a configuration of an interior ring
with an exterior disk. This is the main difference between
black holes and naked singularities from the viewpoint of
these hypothetical accretion disks made of test particles.
The question arises whether it is possible to generalize

these results to the case of more realistic accretion disks
around more general gravitational sources, taking into
account, for instance, the rotation of the central body
[51,52]. It seems reasonable to expect that in the case of
Kerr and Kerr-Newman naked singularities, regions can be
found where stable circular motion is not allowed so that an
accretion disk around such an object would exhibit a
discontinuous structure. Indeed, some preliminary calcu-
lations of circular geodesics in the field of rotating compact
objects support this expectation. Thus, we can conjecture
that the discontinuities in the accretion disks around naked
singularities are a consequence of the intensity of the
repulsive gravity effects that characterize these speculative
objects. Furthermore, it was recently proposed that static
compact objects with quadrupole moment can be inter-
preted as describing the exterior gravitational field of
naked singularities [53,54]. It would be interesting to test
the above conjecture in this relatively simple case in which
rotation is absent. If the conjecture turns out to be true, it
would give us the possibility of distinguishing between
black holes and naked singularities by observing their
accretion disks.
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APPENDIX: VELOCITY OF TEST PARTICLES
IN A RN NAKED SINGULARITY

In this Appendix we explore charged test particles in
circular motion in a RN naked singularity by using the
tetrad formalism, as developed in Sec. III for the black hole
analysis. In Sec. IV, we studied the timelike circular mo-
tion in the naked singularity case by analyzing directly the
existence conditions for the energy, Eq. (12), and the
angular momentum, Eq. (11). Here, we use the formalism
of ‘‘local proper linear velocity’’ as measured by an ob-
server attached to an orthonormal frame. The results are
equivalent to those obtained by using the expressions for
the energy and angular momentum.

In Sec. III, we showed that the linear velocity of a test
particle in a RN spacetime can be written as

��
� ¼ �g

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

q �
1=2

; (A1)

where

� ¼ 1� �2
g

2

�
�

�0

�
2
; �g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr�Q2

�

s
;

�0 ¼ Mr�Q2

Q
ffiffiffiffi
�

p :

(A2)

Then, the conditions for the existence of timelike velocities
are

�2 � 1þ ð�=�0Þ2 � 0; (A3)

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1þ ð�=�0Þ2

q
� 0; (A4)

ð��
� Þ2 < 1: (A5)
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FIG. 33. The positive solution of the linear velocity �þ
� is plotted as a function of the radial distance r=M for different values

of the ratios Q=M and �. The geodesic velocity �g is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter

choice is Q=M ¼ 3 and � ¼ 2, with r� � Q2=M ¼ 9M. In (b) the parameter choice is Q=M ¼ 2 and � ¼ 3, with r� � Q2=M ¼ 4M.

In (c) the parameter choice is Q=M ¼ 1:04 and � ¼ 2, with r� � Q2=M 	 1:08M, rþ� � ½3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p �=2 	 1:79M, and

r�� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p �=2 	 1:201M. In (d) the parameter choice is Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
and � ¼ 2, with r� � Q2=M ¼ ð9=8ÞM,

r�� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p �=2 ¼ ð3=2ÞM.
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We first note that, in the case of a naked singularity, these
conditions can be satisfied only for r � Q2=M.

For � > 1 and � <�1 the solutions are the geodesic
velocities � ¼ ��þ

� . In fact, in this case, condition (A4)
with the minus sign is no more satisfied. On the other
hand, conditions (A3)–(A5) imply that circular timelike

orbits exist for Q=M >
ffiffiffiffiffiffiffiffi
9=8

p
in the entire range r >

Q2=M. For 1<Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
circular orbits are possible

in r > Q2=M and r � r�� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p �=2.
Finally, for Q=M ¼ ffiffiffiffiffiffiffiffi

9=8
p

timelike circular orbits exist
for all r > Q2=M, except at r ¼ ð3=2ÞM. Moreover, the
radii r ¼ r�� correspond to photon orbits in the RN space-

time (see Fig. 33).
Consider now the case j�j< 1. It is useful to introduce

here the following notations:

r�l � 3M

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2 �Q2�2

q
; (A6)

~�� � 1ffiffiffi
2

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M2 � 4Q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25M2 � 24Q2

qr
; (A7)

and

r�s � Q2

�2Q2�M2

�
Mð�2�1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�2�1ÞðM2�Q2Þ

q �
:

(A8)

First, consider the case 0< �< 1. For � > 0 condition
(33) implies that r > Q2=M. Applying this constraint on
conditions (A3) and (A4), we obtain the following results
for timelike geodesics.

(1) For 1<Q=M � 5=ð2 ffiffiffi
6

p Þ the following subcases
occur:
(a) 0< �< ~��: Fig. 34(a)

The velocity � ¼ ��þ
� exists in the range

Q2=M < r � r�l and r � rþl with r � r�� ,
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FIG. 34. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ 1:01 and
different values of the ratio �. In this case rþ� ¼ 1:96M, r�� ¼ 1:042M with r� � Q2=M ¼ 1:02M, ~�� ¼ 0:31, ~�þ ¼ 0:9, �l 	 0:91.

The geodesic velocity �g is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ 0:2 with

rþs ¼ 1:05M, and rþl ¼ 1:95M, r�l ¼ 1:05M. In (b) the parameter choice is � ¼ 0:5. Here rþs ¼ 1:11M, and rþl ¼ 1:88M,

r�l ¼ 1:12M. In (c) the parameter choice is � ¼ 0:9. Here rþs ¼ 1:11M, and rþl ¼ 1:88M, r�l ¼ 1:12M. In (d) the parameter choice

is � ¼ 0:95. Here rþs ¼ 1:79M, and r�l do not exist.
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� ¼ ���
� exists in the range rþs < r � r�l and

r � rþl .
(b) ~�� � � � ~�þ: Fig. 34(b)

The velocity � ¼ ��þ
� exists in the range

Q2=M < r < r�l and r � rþl with r � r�� ,
� ¼ ���

� exists in the range r � rþl .
(c) ~�þ < �< �l,: Fig. 34(c).

The velocity � ¼ ��þ
� exists in the range

Q2=M < r � r�l and r � rþl with r � r�� ,
� ¼ ���

� exists in the range rþs < r � r�l and

r � rþl .
(d) �l � � < 1: Fig. 34(d)

The solutions are the geodesic velocities
�¼��þ

� in the range r > Q2=M with r � r�� .
The solution � ¼ ���

� exists for �l �
� <M=Q in the range r > rþs .

(2) For 5=ð2 ffiffiffi
6

p Þ<Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
the following sub-

cases occur:
(a) 0< �< �l: Fig. 35(b)

The velocity � ¼ ��þ
� exists in the range

Q2=M < r � r�l and r > rþl with r � r�� ,
� ¼ ���

� exists in the range rþs < r � r�l and

r � rþl .
(b) �l � � < 1: Fig. 35(a)

The velocity � ¼ ��þ
� exists in the range

r > Q2=M, �¼���
� exists in the range r > rþs .

(3) Q=M � ffiffiffiffiffiffiffiffi
9=8

p
: Figs. 36 and 37.

The velocity � ¼ ��þ
� exists in the range

r > Q2=M for Q=M >
ffiffiffiffiffiffiffiffi
9=8

p
whereas for Q=M ¼ffiffiffiffiffiffiffiffi

9=8
p

this is a solution in r=M > 9=8 with r=M �
3=2, � ¼ ���

� exists for 0< �<M=Q in the range
r > rþs .
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FIG. 35. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ 1:05 and
different values of the ratio �. In this case rþ� ¼ 1:71M, r�� ¼ 1:29M with r� � Q2=M 	 1:102M, �l 	 0:40. The geodesic velocity �g

is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ 0:7. Here rþs ¼ 1:61M, and r�l are not

defined. In (b) the parameter choice is � ¼ 0:2. Here rþs ¼ 1:2M, and rþl ¼ 1:68M, r�l ¼ 1:32M.
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FIG. 36. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
and

different values of the ratio �. In this case rþ� ¼ r�� ¼ 3=2M with r� � 9=8M, �l ¼ 0. The geodesic velocity �g is also shown (dashed

curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ 0:2 with rþs ¼ 1:2M. In (b) the parameter choice is � ¼ 0:7 with
rþs ¼ 1:72M.
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FIG. 37. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ 2 and different
values of the ratio �. In this case r� � Q2=M 	 4M. The geodesic velocity �g is also shown (dashed curve). Shaded region is

forbidden. In (a) the parameter choice is � ¼ 0:7 with rþs ¼ 1:48M. In (b) the parameter choice is � ¼ 0:2 with rþs ¼ 6:2M.
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FIG. 38. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ 1:01 and
different values of the ratio �. In this case rþ� ¼ 1:96M, r�� ¼ 1:042M r� � Q2=M ¼ 1:02M, ~�� ¼ 0:31, ~�þ ¼ 0:9, and �l 	 0:91.

The geodesic velocity �g is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ �0:95. Here

rþs ¼ 1:79M, and r�l do not exist. In (b) the parameter choice is � ¼ �0:9. Here rþs ¼ 1:11M, rþl ¼ 1:88M, and r�l ¼ 1:12M. In

(c) the parameter choice is � ¼ �0:5. Here rþs ¼ 1:11M, rþl ¼ 1:88M, and r�l ¼ 1:12M. In (d) the parameter choice is � ¼ �0:2.
Here rþs ¼ 1:05M, rþl ¼ 1:95M, and r�l ¼ 1:05M.
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The results for �1< �< 0 are summarized below.

(1) For 1<Q=M � 5=ð2 ffiffiffi
6

p Þ the following subcases
occur:
(a) For �1< � � ��l, the velocity � ¼ ��þ

�

exists in the range r > Q2=M with r � r�� ,
� ¼ ���

� exists for �ðM=QÞ< � � ��l in
the range r > rþs [see Fig. 39(a)].

(b) For ��l < � <�~�þ, the solution is � ¼ ��þ
�

in the range Q2=M < r � r�l and r � rþl with

r � r�� , � ¼ ���
� exists in the range rþs < r �

r�l and r � rþl [see Fig. 39(b)].

(c) For �~�þ � � � �~��, the velocity � ¼ ���
�

exists in the range r � rþl . � ¼ ��þ
� exists

for �~�þ < �<�~�� in the range ðQ2=MÞ<

r < rþs , and r � rþl with r � r�� , and for

� ¼ �~�� the velocity �þ
� exists for Q2=M <

r < r�l and r � rþl with r � r�� . Finally, for
Q ¼ 5=ð2 ffiffiffi

6
p ÞM and � ¼ �~�þ, �þ

� exists for
ðQ2=MÞ< r < r�l , and r � rþl [see Fig. 38(c)].

(d) For �~�� < �< 0, the solutions are the geode-
sic velocities � ¼ ��þ

� in the range ðQ2=MÞ<
r � r�l and r � rþl with r � r�� . The solution

� ¼ ���
� exists in rþs < r � r�l and r � rþl

[see Fig. 38(d)].

(2) For 5=ð2 ffiffiffi
6

p Þ<Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
the following sub-

cases occur:
(a) For �1< � � ��l, the velocity � ¼ ��þ

�

exists in the range r > Q2=M with r � r�� ,
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FIG. 39. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ 1:05 and
different values of the ratio �. In this case rþ� ¼ 1:71M, r�� ¼ 1:29M, r� � Q2=M 	 1:102M, and �l 	 0:40. The geodesic velocity �g

is also shown (dashed curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ �0:2. Here rþs ¼ 1:2M, rþl ¼ 1:68M, and

r�l ¼ 1:32M. In (b) the parameter choice is � ¼ �0:7. Here rþs ¼ 1:61M, and r�l are not defined.
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FIG. 40. The positive solution of the linear velocity �� is plotted as a function of the radial distance r=M for Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
and

different values of the ratio �. In this case rþ� ¼ r�� ¼ 3=2M, r� � 9=8M, and �l ¼ 0. The geodesic velocity �g is also shown (dashed

curve). Shaded region is forbidden. In (a) the parameter choice is � ¼ �0:7 with rþs ¼ 1:72M. In (b) the parameter choice is � ¼ �0:2
with rþs ¼ 1:2M.
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� ¼ ���
� exists for�ðM=QÞ< � � ��l in the

range r > rþs [see Fig. 39(b)].
(b) For ��l � � < 0, the velocity � ¼ ��þ

� exists
in the range Q2=M < r � r�l and r � rþl , r �
r�� , � ¼ ���

� exists in the range rþs < r � r�l
and r � rþl [see Fig. 39(a)].

(3) For Q=M � ffiffiffiffiffiffiffiffi
9=8

p
the velocity � ¼ ���

� exists for
�ðM=QÞ< �< 0 in the range r > rþs . � ¼ ��þ

� is

a solution for Q=M >
ffiffiffiffiffiffiffiffi
9=8

p
and �1< �< 0 in

r > Q2=M whereas for Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
this is a so-

lution in r=M > 9=8 with r=M � 3=2 (see Figs. 40
and 41).
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