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We consider black holes localized on the brane in the Randall-Sundrum infinite braneworld model.

These configurations are static and charged with respect to a spherically symmetric, electric Maxwell field

living on the brane. We start by attempting to construct vacuum black holes, in which case our conclusions

are in agreement with those of Yoshino [J. High Energy Phys. 01 (2009) 068]. Although approximate

solutions appear to exist for sufficiently small brane tension, these are likely only numerical artifacts. The

qualitative features of the configurations in the presence of a brane U(1) electric field are similar to those

in the vacuum case. In particular, we find a systematic unnatural behavior of the metric functions in the

asymptotic region in the vicinity of the anti–de Sitter horizon. Our results are most naturally interpreted as

evidence for the nonexistence of static, nonextremal charged black holes on the brane. In contrast,

extremal black holes are more likely to exist on the brane. We determine their near-horizon form by

employing both analytical and numerical methods. For any bulk dimension d > 4, we find good

agreement between the properties of large extremal black holes and the predictions of general relativity,

with calculable subleading corrections.
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I. INTRODUCTION

The Randall-Sundrum (RS) infinite braneworld scenario
[1] has been proposed as a mechanism to explain the
hierarchy between the TeV scale and the Planck scale,
and to realize four-dimensional gravity effectively on the
3-brane. In this model, the observable universe is a 3-brane
(domain wall) to which standard model fields are confined,
while gravity can access the extra spatial dimensions.
The bulk metric is a locally anti–de Sitter (AdS) spacetime
satisfying the Einstein equations with negative cosmo-
logical constant. At low enough energy, perturbative
Newtonian gravity is recovered on the brane at distances
large compared to the AdS length scale ‘.

The existence of black hole solutions in the RS model is
an interesting open problem (see, e.g., Kanti [2] for a
recent review on this issue). A priori, it is not clear why
such black hole solutions should not exist, and the exis-
tence of bulk black hole solutions would imply that there
are also black hole solutions on the brane. Indeed, such
exact black hole solutions were found by Emparan et al. [3]
for the dimension d ¼ 4 of the bulk spacetime, where the
static black hole is localized on a 2-brane. The construction
of such black hole solutions in [3] relied on the existence of
a special class of solutions of the d ¼ 4 Einstein gravity—
the so-called C metric [4], and the brane is a suitable slice
in this spacetime.

However, in the absence of a d > 4 generalization of the
C metric, the existence of higher dimensional brane world
black holes is controversial. Although Dadhich et al. [5]
proposed an analytic solution for brane black holes in the
d ¼ 5 RS scenario, this result was obtained subject to

approximations whose validity is not clear. In that ap-
proach, the braneworld Einstein equations [6] were solved
assuming a particular form for the bulk Weyl tensor on the
wall. Interestingly, this resulted in a Reissner-Nordström
(RN) geometry, although there is no brane electric charge.
However, in this case only the induced metric on the brane
was found, without solving the bulk equations of motion.
Thus the solution proposed in [5] for a brane black hole in
the RS scenario is not really satisfactory.
Hence, for bulk dimensions d > 4, one has to rely on

numerical methods to address the existence of black
holes in the RS model. So far, the only results supporting
the existence of such solutions on a nonperturbative
level are those by Kudoh et al. [7,8]. They were obtained
within an in principle rigorous approach, i.e., by solving
the full set of equations in the bulk with suitable boundary
conditions on the brane. Reporting numerical results
for spacetime dimensions d ¼ 5 and 6, Kudoh et al. [7,8]
presented localized black holes whose horizon radius was
much smaller than the AdS length scale. In contrast, for
larger black holes their numerical accuracy decreased and
convergence was lost within their numerical scheme.
Moreover, the recent numerical work of Yoshino [9]

(while finding agreement with earlier perturbative [10]
and numerical [7,8] results) also failed to find such large
black hole configurations. Performing a careful error
analysis in terms of systematic and nonsystematic errors,
Yoshino [9] concluded that the positive results in [7,8]
were nothing but numerical artifacts, mainly due to an
inappropriate treatment of the outer boundary of the
integration region.
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In fact, Emparan et al. [11] and also Tanaka [12] had
earlier put forward a number of theoretical arguments
against the existence of d > 4 static black holes on the
brane in the RS model, which were mainly based on a
version of the AdS/CFT correspondence. According to the
conjecture by Emparan et al. [11], such bulk black holes
would necessarily be time dependent, since their duals
would describe quantum corrected black holes in a d� 1
dimensional braneworld. Counterarguments were, how-
ever, given by Fitzpatrick et al. [13]. Further results on
black holes localized on the brane can be found in [14–17].

Motivated by these conflicting arguments and results, we
have performed an independent investigation of the issue
of the numerical construction of d > 4 braneworld black
holes. Similar to the previous work by Kudoh et al. [7,8]
and Yoshino [9], we have solved the bulk Einstein
equations with Israel junction conditions on the brane,
employing different numerical methods from those
in [7–9]. In particular, we have used a compactified radial
coordinate which in principle avoids the problems associ-
ated with the position of the outer boundary of integration
for the radial coordinate.

The results we have found for bulk dimensions d ¼ 5
and 6 support the claim of Yoshino [9] that ‘‘a solution
sequence of a static black hole on an asymptotically flat
brane that is reduced to the Schwarzschild black hole in the
zero tension limit is unlikely to exist.’’ In particular, we
have noticed a systematic unnatural behavior of the metric
functions for large values of the radial coordinate, i.e. close
to the AdS horizon. This behavior seems to be at the origin
of the loss of numerical convergence for large black holes.

Obviously, it is interesting to examine how generic this
behavior is, and whether it can be circumvented in more
general cases. Perhaps the simplest more general case to be
studied corresponds to black hole solutions, which are
electrically charged with respect to a Maxwell field living
on the brane. This type of solution was considered by
Chamblin et al. [18], following a different approach,
however. There the ‘‘initial’’ data on the brane was pre-
scribed, and then it was evolved in the spacelike direction
transverse to the brane, by solving the bulk equations
numerically. The results in [18] show the occurrence of
pathological features in the bulk for any initial data.
However, Chamblin et al. [18] postulated a special
restricted form of the braneworld metric, with a single
essential function; moreover, the numerical integration
employed a relatively small cutoff radius.

Our present approach is rather different from [18], since
we attempt to directly solve the bulk vacuum Einstein
equations with suitable boundary conditions. The bulk
theory is the same as for the uncharged case, the electric
charge entering the problem via the Israel junction con-
ditions on the brane. Restricting to static, nonextremal
configurations in an AdS5 bulk, our results show that all
pathologies present for vacuum black holes occur also in

this case. Therefore, we conclude that the existence of
static, charged, nonextremal solutions is unlikely, as well.
Turning next to static, extremal, electrically charged

black holes in the RS braneworld scenario, however, we
anticipate that such solutions are more likely to exist, since
a number of arguments put forward against the existence of
static black holes do not apply when the Hawking tem-
perature vanishes. Here we investigate the near-horizon
structure of extremal black hole solutions with electric
charge on the brane, without attempting to construct the
full configurations. This restriction leads to a system of
coupled nonlinear ordinary differential equations, which
are solved numerically within a nonperturbative approach
for several dimensions d � 5 of the bulk.
For a five-dimensional AdS bulk, this problem has been

considered by Kaus and Reall [19]. In this work we gen-
eralize their results for any d � 5 dimensions, and show
that for large black holes, there is good agreement for the
induced metric on the brane and for the entropy with the
predictions of general relativity (GR), with calculable sub-
leading corrections.
The paper is organized as follows: in the next section we

present our results for nonextremal black holes in the RS
braneworld model, employing a nonperturbative approach,
by directly solving a set of three nonlinear partial differ-
ential equations with suitable boundary conditions. In
Sec. III we consider extremal black holes that are charged
with respect to a purely electric Maxwell field on the brane
and determine their near-horizon form. We give our con-
clusions and remarks in the final section. The Appendix
contains a discussion of some technical aspects involved in
our numerical investigation of nonextremal braneworld
black holes.

II. NONEXTREMAL CONFIGURATIONS

A. The problem

We consider the RS braneworld model, with a
d-dimensional bulk spacetime and a single (d� 1)-
dimensional brane with positive tension in it. Also, we
impose Z2 symmetry about the brane, which is assumed
to be asymptotically flat. The bulk matter is merely a
negative cosmological constant, and the brane tension
and the matter localized on the brane are treated in a
distributional sense.
The action of this model is

S¼ 1

16�Gd

Z
M

ddx
ffiffiffiffiffiffiffi�g

p ðR�2�Þ

þ
Z
brane

dd�1x
ffiffiffiffiffiffiffi�h

p �
1

8�Gd

K��� 1

16�Gd�1

F��F
��

�
;

(2.1)

where M is the bulk spacetime, �¼�ðd�2Þ=ðd�1Þ=
ð2‘2Þ is the bulk cosmological constant, and K�� is

the projection of the extrinsic curvature of the brane
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hypersurface with induced metric h��. Also Gd is

Newton’s constant in d-spacetime dimensions; � and
F ¼ dA are the brane tension and the field strength of
the Maxwell field on the brane, respectively.

From the above action, we obtain the d-dimensional
Einstein equation in the bulk

Rij � 1
2Rgij þ�gij ¼ 0: (2.2)

For the RS infinite braneworld scenario, the Israel junction
conditions on the brane are given by [20]

K�� � Kh�� ¼ 4�Gd

�
��h�� þ 1

4�Gd�1

t��

�
; (2.3)

where t�� is the energy-momentum tensor of the matter

fields on the brane. For a U(1) field, the expression of t�� is

t�� ¼ F��F�
� � 1

4F��F
��h��: (2.4)

We shall set the brane tension to the RS value

� ¼ 1

4�Gd

d� 2

‘
;

while

Gd�1 ¼ d� 3

2‘
Gd:

This simplifies Eq. (2.3) to

K�� � Kh�� ¼ �d� 2

‘
h�� þ 2‘

d� 3
t��; (2.5)

which is the form used in what follows. The brane U(1)
field is a solution of the Maxwell equations

r�F
�� ¼ 0; (2.6)

for a metric background given by h��.

1. The ansatz and the equations

The metric ansatz employed here essentially corre-
sponds to the one used in the previous studies [7–9]. The
black hole metric is spherically symmetric on the brane
and axisymmetric in the bulk spacetime, with line element

ds2 ¼ 1

z2ðr; �Þ
�
e2Bðr;�Þ

�
dr2

FðrÞ þ r2d�2

�

þ e2Cðr;�Þr2sin2�d�2
d�3 � e2Aðr;�ÞFðrÞdt2

�
; (2.7)

which is parametrized in terms of two background func-
tions

FðrÞ ¼ 1�
�
r0
r

�
d�3

; zðr; �Þ ¼ 1þ r

‘
cos�; (2.8)

and three unknown metric functions Aðr; �Þ, Bðr; �Þ, and
Cðr; �Þ. In the above relations, r0 is a positive constant and
d�2

d�3 is the metric on the (d� 3) sphere. The background
functions FðrÞ and zðr; �Þ have been introduced such that
two important limits of the general solution are already
contained within the ansatz (2.7). For ‘ ! 1 one finds
the well-known Schwarzschild-Tangherlini black hole,
expressed in the usual Schwarzschild coordinates.1

Another limit of interest is r0 ¼ 0, in which case one
recovers the original RS model, i.e. a part of AdSd space-
time expressed in Poincaré coordinates (and A ¼ B ¼
C ¼ 0 in both limits).
The event horizon is supposed to reside at a surface of

constant radial coordinate r ¼ r0 and characterized by the
condition Fðr0Þ ¼ 0, while the brane is located at � ¼
�=2. Then the coordinate range considered is r0� r<1
and 0����=2. Therefore the coordinates in Eq. (2.7)
have a rectangular boundary and thus are suitable for the
numerical methods employed.
The induced metric on the brane has line element2

d�2 ¼ grrðrÞdr2 þ g��ðrÞd�2
d�3 þ gttðrÞdt2; (2.9)

with

grrðrÞ ¼ e2Bðr;�=2Þ

FðrÞ ; g��ðrÞ ¼ e2Cðr;�=2Þr2;

gttðrÞ ¼ �e2Aðr;�=2ÞFðrÞ;
(2.10)

i.e. it describes a static, spherically symmetric black hole
spacetime in d� 1 dimensions.
The equations satisfied by the functions A, B, and C are

found by using a suitable combination of the Einstein

equations, Gt
t þ� ¼ 0, Gr

r þG�
� þ 2� ¼ 0, and G�

� þ
� ¼ 0 (where � denotes an angle of the d�
3-dimensional sphere) and read3

1References [7–9] preferred to describe the Schwarzschild
black hole in isotropic coordinates, which was also our initial
choice. However, we realized that a Schwarzschild coordinate
system together with the coordinate transformation (2.16) im-
proved the quality of the numerical calculations for d ¼ 5.

2Note the presence of three distinct metric functions in
Eq. (2.9). In contrast, in GR only two metric functions are
present, with the usual choices grr ¼ 1=NðrÞ, g�� ¼ r2, and
gtt ¼ NðrÞ�2ðrÞ.

3One can see that the case d ¼ 4 is special, since a number of
terms vanish in this case. However, the structure of the equations
is the same for any d > 4.
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A00 þ 1

r2F
€Aþ

�
d�2

r
þ3F0

2F

��
A0 �cos�

‘z

�
þðd�3ÞF0

2F

�
C0 �cos�

‘z

�
þ
�
A0 �cos�

‘z

�
2þðd�3Þ

�
A0 �cos�

‘z

��
C0 �cos�

‘z

�

þðd�3Þcot�
r2F

�
_Aþrsin�

‘z

�
þ 1

r2F

�
_Aþrsin�

‘z

�
2þðd�3Þ

r2F

�
_Aþrsin�

‘z

��
_Cþrsin�

‘z

�
�ðd�1Þe2B

‘2Fz2

þ 1

rF

ðrþ‘cos�Þ
‘2z2

þcos2�

‘2z2
¼0; (2.11)

B00 þ 1

r2F
€B�ðd�3Þ

r

�
A0 �cos�

‘z
þðd�4Þ

�
C0 �cos�

‘z

��
þ1

r

�
B0 �cos�

‘z

�
þ F0

2F

�
B0 �cos�

‘z

�
�ðd�3ÞF0

2F

�
C0 �cos�

‘z

�

�ðd�3Þ
�
A0 �cos�

‘z

��
C0 �cos�

‘z

�
�1

2
ðd�3Þðd�4Þ

�
C0 �cos�

‘z

�
2�ðd�3Þcot�

r2F

�
_Aþrsin�

‘z
þðd�4Þ

�
_Cþrsin�

‘z

��

�ðd�3Þ
r2F

�
_Aþrsin�

‘z

��
_Cþrsin�

‘z

�
�ðd�3Þðd�4Þ

2r2F

�
_Cþrsin�

‘z

�
2þðd�3Þðd�4Þ e2ðB�CÞ

2sin2�Fr2
þðd�1Þðd�4Þe2B

2‘2Fz2

�ðd�3Þðd�4Þ
2r2

�
1þcot2�

F

�
�ðd�4ÞF0

2rF
þ 1

‘2z2

�
cos2�þrþ‘cos�

rF

�
¼0; (2.12)

C00 þ 1

r2F
€Cþðd�3Þ

�
C0 �cos�

‘z

�
2þ1

r

�
A0 �cos�

‘z

�
þ2d�5

r

�
C0 �cos�

‘z

�
þF0

F

�
C0 �cos�

‘z

�
þ
�
A0�cos�

‘z

��
C0 �cos�

‘z

�

þðd�3Þ
r2F

�
_Cþrsin�

‘z

�
2þcot�

r2F

�
_Aþrsin�

‘z

�
þ2ðd�3Þcot�

r2F

�
_Cþrsin�

‘z

�
þ 1

r2F

�
_Aþrsin�

‘z

��
_Cþrsin�

‘z

�

�ðd�4Þ e2ðB�CÞ

r2Fsin2�
�ðd�1Þ e2B

‘2Fz2
þrþ‘cos�

F‘2rz2
þd�3

r2
þcos2�

‘2z2
þ 1

r2F
ððd�4Þcot2��1Þþ F0

rF
¼0; (2.13)

where a prime denotes the derivative with respect to the
radial variable r and a dot denotes the derivative with
respect to the angular variable �. The remaining equations
Gr

� ¼ 0, Gr
r �G

�
� ¼ 0 yield two constraints. Following

[21], we note that setting Gt
tþ�¼0, Gr

rþG�
�þ2�¼0,

G�
�þ�¼0 in r�G

�r ¼ 0 and r�G
�� ¼ 0, we obtain

Cauchy-Riemann relations for Gr
� and Gr

r �G�
�. Thus the

weighted constraints satisfy Laplace equations, and the
constraints are fulfilled, when one of them is satisfied on
the boundary and the other at a single point [21].

For completeness, we here present also the expressions
for the Hawking temperature TH and the event horizon area

AðdÞ
H of a bulk black hole,

TH¼eAð0;�Þ�Bð0;�Þ ðd�3Þ
4�r0

;

AðdÞ
H ¼Vd�3r

d�2
0

Z �=2

0
eBð0;�Þþðd�3ÞCð0;�Þ sind�3�

ð1þ r0
‘ cos�Þd�2

d�;

(2.14)

where Vd�3 is the area of the unit Sd�3 sphere. (The
Einstein equation Gr

� ¼ 0 implies that eA�B is indeed

constant on the horizon.) The associated black hole on
the brane would have the same Hawking temperature as
the bulk solution, while its event horizon area would be

Aðd�1Þ
H ¼ Vd�3r

d�3
0 eðd�3ÞCð0;�=2Þ: (2.15)

In practice, we have found it convenient to introduce the
radial coordinate4

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q
; (2.16)

such that the horizon would reside at 	 ¼ 0, which gives a
simpler set of boundary conditions for the black hole
horizon. The transformation then results in a new form of
the general ansatz (2.7) with

ds2¼ 1

z2ð	;�Þ
�
e2Bð	;�Þ

�
d	2

F1ð	Þþð	2þr20Þd�2

�

þe2Cð	;�Þð	2þr20Þsin2�d�2
d�3�e2Að	;�ÞF2ð	Þdt2

�
;

(2.17)

where F1ð	Þ ¼ Fðrð	ÞÞð	2 þ r20Þ=	2 and F2ð	Þ¼Fðrð	ÞÞ.
[Note that F1ð	Þ ! ðd� 3Þ=2þOð	2Þ, F2ð	Þ !
ðd� 3Þ	2=ðr20Þ þOð	4Þ as 	 ! 0.] The temperature and

the horizon area are still given by (2.14) and (2.15).

4This change of the radial coordinate proved useful before in
the numerical study of nonuniform black string solutions [22],
which is an axisymmetric problem with some similarities to the
problem studied here.
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2. U(1) field on the brane and boundary conditions

Perhaps the simplest example of nonvacuum solutions in
the RS infinite braneworld scenario is provided by a
Maxwell field confined to the brane. In this work we shall
restrict to a static, spherically symmetric, purely electric
field with U(1) potential

A ¼ Vð	Þdt: (2.18)

Thus the field strength tensor is F ¼ dV
d	 d	 ^ dt. The

Maxwell equations (2.6) imply the existence of the first
integral

Vð	Þ ¼ Q
Z

d	
	

ð	2 þ r20Þðd�2Þ=2

� eAð	;�=2ÞþBð	;�=2Þ�ðd�3ÞCð	;�=2Þ; (2.19)

where Q is an integration constant that fixes the electric
charge on the brane.

The numerical solution of the equations is pursued sub-
ject to the following set of boundary conditions:

@	Aj	¼0 ¼ @	Bj	¼0 ¼ @	Cj	¼0 ¼ 0; (2.20)

on the black hole horizon,

Aj	¼1 ¼ Bj	¼1 ¼ Cj	¼1 ¼ 0; (2.21)

at infinity, and

@�Aj�¼0 ¼ @�Bj�¼0 ¼ @�Cj�¼0 ¼ 0; (2.22)

on the symmetry axis. Regularity at � ¼ 0 further requires
that Bj�¼0 ¼ Cj�¼0. This condition can be implemented

by working with the new function �C ¼ C� B. The Israel
junction condition (2.5) together with the expression (2.19)
for the U(1) potential lead to the following boundary
conditions on the brane:

@�Aj�¼�=2¼@�Bj�¼�=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2þr20

q

‘
ðeBð	;�=2Þ�1Þþ 2d�7

ðd�2Þðd�3Þ
�eBð	;�=2Þ�2ðd�3ÞCð	;�=2Þ ‘

ð	2þr20Þð2d�7Þ=2Q
2;

@�Cj�¼�=2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2þr20

q

‘
ðeBð	;�=2Þ�1Þ� 3

ðd�2Þðd�3Þ
�eBð	;�=2Þ�2ðd�3ÞCð	;�=2Þ ‘

ð	2þr20Þð2d�7Þ=2Q
2;

(2.23)

where Q ¼ 0 corresponds to the vacuum limit.

B. Numerical results

The results exhibited in this section concern the physi-
cally most interesting case d ¼ 5 (i.e. a 3-brane). However,
we have observed a similar behavior when considering
vacuum black holes for a 4-brane instead.

The numerical calculations have been based on the
Newton-Raphson method and been performed with help
of the program FIDISOL/CADSOL [23], which also provides
an error estimate for each unknown function. Different
from previous work on this problem, in our approach the
boundary conditions (2.21) are really imposed at 	 ¼ 1.
This is achieved by employing a compactified radial coor-
dinate x ¼ 	=ð1þ 	Þ which maps 	 ¼ 1 to the finite
value x ¼ 1. Further details on the numerical method are
given in the Appendix.
The first relevant input parameter for our problem is the

dimensionless ratio

L ¼ r0
‘
: (2.24)

Without any loss of generality, by using a simple rescaling
of 	, one can set r0 to take a fixed value, and then vary the
AdS length scale ‘. The results reported in this section
correspond to the choice r0 ¼ 1, although similar results
have been found for other values of r0. In the charged case,
there is a second input parameter of the problem, which is
the ratio

q ¼ Q

rd�3
0

: (2.25)

1. The vacuum case (Q ¼ 0)

Similar to Kudoh et al. [7,8] and Yoshino [9], we have
first applied the numerical procedure to the above stated set
of equations and boundary conditions, choosing a large
value of the AdS length scale ‘ (typically L ’ 10�4–10�3)
and employing the initial guess5 A ¼ B ¼ C ¼ 0. In this
case, the solver has converged and provided numerical
output with good accuracy.6 The functions A, B, and C
have a nontrivial shape, but their magnitude is small, al-
most zero. Next, we have started a new iteration and
employed these data as an initial guess for a slightly larger
value of L. Again, the solver has converged and provided
apparently reasonable numerical output, which in turn has
been used as input for the next iteration for another slightly
larger value of L, etc. For all configurations with suffi-
ciently small values of L, we have found good agreement
of the extracted physical properties with those reported by
Kudoh et al. [7,8], obtained within their numerical
scheme.
In principle, working in small steps, one expects to find

solutions for arbitrarily large values of L in this way.
However, for any grid choice employed, we have noticed
that the numerical accuracy appeared to be progressively
deteriorating with increasing L. Around L ’ 0:3 finally, the

5We note that for L � 0, A ¼ B ¼ C ¼ 0 is not a solution of
the field equations unless r0 ¼ 0.

6The computed relative error of the ‘‘solution’’ (truncation
error) was on the order of 0.001 in this case.
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numerical errors have turned unacceptably large for the
configurations,7 while for still larger values of L the nu-
merical errors have accumulated further, until finally con-
vergence of the numerical scheme has been lost.

In our scheme, the numerical problems appear to origi-
nate mainly in the asymptotic region.8 As L increases, the

metric functions start to develop an increasingly unnatural
shape for large values of the radial coordinate (typically for
	 > 10‘) and all values of � (although in some functions
this feature is more pronounced for � ! 0). This unnatural
behavior manifests itself in the occurrence of ‘‘oscilla-
tions’’ of the metric functions in the far field.9 The ampli-
tude of these oscillations increases with increasing L. At
the same time these oscillations start at increasingly

FIG. 1 (color online). The metric functions A, B, and C are shown as functions of the compactified radial coordinate x ¼ 	=ð1þ 	Þ
and the angular variable � for a vacuum configuration with L ¼ 1 (left panel) and a charged one with L ¼ 0:24, q ¼ 1:73 (right panel).

7This has also been manifest in the constraint equations G	
�

and G
	
	 �G

�
�, implying large errors in the evaluation of a

Hawking temperature.
8In previous numerical work numerical problems were largely

associated with the symmetry axis � ¼ 0.

9A similar behavior was noticed by Yoshino [9] (see his
Fig. 3).
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smaller values of the radial coordinate. We illustrate this
unnatural behavior of the metric functions close to
the AdS horizon for a typical d ¼ 5 calculation (with large
numerical errors) in Fig. 1 (left panels) and also in Fig. 2
(the case with q ¼ 0).

This unnatural behavior appears for all grid choices
and all metric parametrizations considered, including the
ones employed in [7–9]. Also, quite interesting, when
working with a finite grid with cutoff radius 	max ’ 10r0
(the typical case considered in [7]), one usually fails to
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FIG. 2. The metric functions A, B, and C are shown at � ¼ 0 (on the symmetry axis) and at � ¼ �=2 (on the brane) for
configurations for L ¼ 10 and three values of the charge parameter q.
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detect this oscillatory behavior, since it appears only
for larger values of the radial coordinate. (A distinct
dependence of the numerical results on the value of 	max

was already noticed by Yoshino [9], representing an essen-
tial part of the nonsystematic error present in his
calculations.)

Moreover, since the numerical error increases gradually,
it is impossible to identify a critical value Lc, such that
one could claim nonexistence of the solutions for L> Lc.
Thus the oscillations are likely to exist for any value
of L. We surmise that for very small values of L such a
behavior is located at values of x very close to unity
(i.e. at very large values of 	), and that the amplitude
of the oscillations is at the same time very small (and
thus difficult to detect within the numerical approach
employed).

2. U(1) field on the brane

It is interesting to examine whether the above
results hold also for more general cases. In particular,
one would like to know whether the unnatural asymptotic
behavior, that we have noticed in the vacuum case, survives
in the presence of matter fields on the brane or whether it
can be circumvented due to their presence.

The simplest case one may think of corresponds to a
spherically symmetric static Maxwell field living on the
brane. As one can see from Eqs. (2.23), although the bulk
equations are the same as in the vacuum case, the presence
of the U(1) field leads to a different set of boundary
conditions on the brane and thus to a different geometry
in the bulk. Naively, one may then expect the metric on the
brane to correspond to a RN black hole with corrections.

Our initial hope has been that the presence of an
electric charge on the brane would make the numerical
scheme more stable. However, in contrast to our expecta-
tions, our results for typical charged configurations have
turned out to be qualitatively similar to the vacuum
case.10 For a given value of L, we have employed the
corresponding vacuum data as the initial guess for the
numerical integration of the equations in the presence
of a small electric chargeQ. Subsequently, we have slowly
increased the value of Q, and thus the second dimension-
less parameter q.

For small values of L (typically L < 0:1), the solver has
converged and has provided apparently reasonable numeri-
cal output, as in the vacuum case. In particular, the shape
of the functions appears to be rather insensitive to the value
of q, while their magnitude is increasing with q. When
extracting the Hawking temperature and the horizon
area from the numerical data for these small values
of L, we have observed that for fixed L the Hawking
temperature decreases with increasing q as expected,

while the horizon area increases for the ‘‘supposed’’ bulk
black hole as well as for the associated supposed black hole
on the brane.
However, for any value of q employed, we have seen

the numerical accuracy of the calculations to strongly
deteriorate with increasing L as in the vacuum case, until
at some stage the numerical solver has stopped to con-
verge. Moreover, the behavior of the metric functions for
large values of 	 is also qualitatively similar to what we
have found for q ¼ 0, while the magnitude of the oscil-
lations in the asymptotic region even increases with
increasing q, as seen in Fig. 2. This unnatural behavior
appears to be generic for any choice of the nonequidistant
grid employed in the integration, and we conclude that
all pathologies observed for vacuum configurations are
also present in the charged case. Clearly, this puts the
existence of such charged black hole solutions into strong
doubt.
Wewould like to emphasize that all of the configurations

obtained numerically yield a nonvanishing Hawking
temperature and thus would correspond to nonextremal
black holes (if they were indeed solutions). Evaluated
according to Eq. (2.14), the expression for the Hawking
temperature does not yield a strictly constant value, but
typically varies slightly (because of the numerical error), as
long as L and q are sufficiently small. For the charged
configurations obtained here, however, the numerical
error makes jAð0; �Þ � Bð0; �Þj (and thus the temperature)
deviate appreciably from a constant value. In fact, the
variations become larger the larger the charge q, whereas
in principle the equations should guarantee a constant
value of the temperature. It is thus not surprising to see
the numerical integration fail to converge for some critical
value of the charge.
On the other hand, with increasing q, the supposed

Hawking temperature of the configurations decreases,
and configurations with appropriately large values of q
would be expected to correspond to near-extremal
solutions. Indeed, this reasoning suggests that, similar to
GR, extremal solutions might exist, which possess
a maximal value of the electric charge for a given
event horizon radius, and whose temperature would be
zero. However, the study of black holes which are
extremal or close to extremality is a difficult numerical
problem already for situations, where the existence
of solutions is not controversial. Consequently, the exis-
tence of extremal braneworld black holes in the RS
model is an open problem, which we cannot attack
within our current numerical scheme. However, we will
address the problem from a different direction in the next
section.

3. The interpretation of the results

We think that the interpretation of our results can
only be analogous to the interpretation proposed by

10We have considered charged configurations only in d ¼ 5
dimensions.
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Yoshino [9]. In particular, we would like to consider
the following possibilities:

First, one might suspect that our approach and/or the
numerical methods are wrong. However, similar methods11

were used in the past to solve a variety of problems, see e.g.
[22,24,25]. Moreover, we have extensively tested these
numerical routines to recover numerous exact solutions
in GR and field theory. At the same time, some of the
new solutions derived by using the code FIDISOL/CADSOL

were rederived subsequently by other groups with different
numerical methods. Therefore we think that this hypothesis
can be safely excluded.

The second possibility would be that static solutions
exist, but that they are very hard to find, forming
isolated ‘‘islands’’ in the parameter space. Moreover,
these islands would be disconnected from the L ¼ 0
Schwarzschild black hole used as an initial guess in the
numerical attempts to construct such solutions.12 In this
setup, the numerical results found would be numerical
artifacts, since the true solutions would require a starting
profile different from the Schwarzschild black hole.
However, we consider this possibility as counterintuitive
and unlikely.

In our opinion, the most likely scenario is that there are
no static solutions of the bulk Einstein equations (2.11),
(2.12), and (2.13) with the boundary conditions (2.20),
(2.22), and (2.23). Moreover, in agreement with the
conjecture put forward by Emparan et al. [11] and
Tanaka [12], all nonextremal black holes on the brane
would be dynamical objects. If this were indeed the
case, then the numerical results could be interpreted as
follows: what we have found should correspond to static
approximations of some yet unknown time-dependent con-
figurations. The full solutions for black holes on the brane
would be dynamical, quantum corrected, evaporating black
holes; thus also the bulk solutions would depend on time.
The systematic occurrence of the observed unnatural
behavior of the metric functions close to the AdS horizon
would be the result of an inappropriate static metric ansatz.
For black holes with sizes small compared to the AdS
length scale, the pathological behavior at infinity would
not be seen due to the lack of numerical accuracy. In other
words, for small values of j�j, the hyperbolic character
of the equations would not become manifest, and
the solver would fail to see the quantum corrections.
However, as the value of L ¼ r0=‘ increases, the

neglected dynamical terms would destabilize the nu-
merics.13 This interpretation should hold for both
vacuum and charged configurations.

III. EXTREMAL SOLUTIONS: THE
NEAR-HORIZON GEOMETRY

A. The problem

The discussions in the previous section concern the case
of nonextremal static black holes possessing a nonzero
Hawking temperature. However, these findings cannot be
used to argue against the existence of static extremal
configurations. In contrast, static extremal configurations
would have zero temperature and therefore would not
Hawking radiate. Thus the arguments put forward by
Emparan et al. [11] and Tanaka [12] against the existence
of static black holes on the brane would be circumvented.
From this point of view, arbitrarily large extremal black
holes might indeed exist on the brane.
In principle, the metric ansatz (2.7) could still be used

in an attempt to numerically construct extremal black
holes, after replacing the background function F by FðrÞ ¼
ð1� ðr0=rÞd�3Þ2. (Then the bulk metric would still depend
on the coordinates r, �.) However, the numerical construc-
tion of extremal black holes is a highly nontrivial task.14

Therefore we do not attempt here to construct such bulk
configurations numerically. Instead, in the following we
only address a simplified problem and concentrate on the
near-horizon region of ‘‘potential’’ extremal black holes.
Such a restricted study may well provide hints on the

properties of the full black hole solutions without solving
for the full metric.15 However, we would like to emphasize
that this study could only allow us to rule out possible full
black hole solutions, while it cannot prove their existence,
since for a given near-horizon geometry there need not be a
corresponding full black hole solution.
Let us start by recalling that in GR an extremal RN

solution in D dimensions (where later D ¼ d� 1) has a
near-horizon geometry AdS2 � SD�2, which is also a so-
lution of the equations of motion. For a Lagrangian density
L ¼ R� F2, the corresponding near-horizon line element
reads

11In particular, the treatment of the behavior of the metric
functions on the axis � ¼ 0 and at infinity has been similar to
that used in this work.
12Such examples are known for numerical solutions in field
theory, the case of vortons (which are d ¼ 4 flat space toroidal
solitons somewhat analogous to d ¼ 5 black rings) being per-
haps the most notorious. There several disconnected branches of
numerical solutions are known to exist, which do not possess a
static limit [25,26].

13We note that the observed oscillatory behavior of the con-
figurations is not predicted by perturbation theory (see [7] and
references therein). However, we suspect that this is a deficiency
of the perturbation theory. A somewhat similar situation is
encountered in Einstein gravity coupled to non-Abelian matter
fields. There perturbation theory predicted the existence of
d ¼ 4 rotating Einstein-Yang-Mills solitons [27]. Such configu-
rations were, however, ruled out by nonperturbative arguments.
14In fact, we are not aware of any successful numerical con-
struction of extremal black holes, obtained as solutions of second
order partial differential equations.
15Such an approach has been used recently to investigate
properties of higher dimensional extremal black holes with a
nonspherical horizon topology, see e.g. [28].
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ds2 ¼ L2
1ðGRÞd�

2
2 þ L2

2ðGRÞd�
2
D�2; (3.1)

where

L2
1ðGRÞ ¼

2ðD�3Þ
D�2

Q2; L2
2ðGRÞ ¼

2ðD�3Þ3
D�2

Q2; (3.2)

d�2
2 ¼ dx2=x2 � x2dt2 is the line element of the two-

dimensional AdS space, and the gauge field is Fxt ¼ Q.
[Note that the electric charge Q of the bulk RN black
holes is Q ¼ QLD�2

2ðGRÞ=L
2
1ðGRÞ (up to a volume factor).]

The entropy of this solution is

SDðGRÞ ¼ VD

4GD

LD�2
2ðGRÞ: (3.3)

Turning now to black holes on the brane, we expect that
the near-horizon geometry of static extremal black holes
on the brane in the RS model will, analogously, have a
near-horizon geometry AdS2 � Sd�3 (where AdS2 and
Sd�3 have constant radii), which should then be the in-
duced metric on the brane. Thus we assume that this metric
has a form similar to Eq. (3.1), with, in general, different
values for the constant coefficients, but recovering
Eqs. (3.2) and (3.3) in a certain limit.

These considerations correspond in fact to the approach
of Kaus and Reall [19] used to study d ¼ 5 extremal black
holes, charged with respect to a Maxwell field on the brane.
Kaus and Reall [19] found that the GR results are recov-
ered for large black holes. (We further note that Suzuki
et al. [29] examined the case of extremal black holes in a
braneworld with a cosmological constant.)

B. The bulk: Equations and asymptotics

The considerations above lead us to propose the
following line element for the near-horizon limit of an
extremal bulk black hole16,

ds2 ¼ d
2

fð
Þ þ að
Þd�2
2 þ 
2d�2

d�3; (3.4)

containing two metric functions að
Þ and fð
Þ. Here
the coordinate 
 � 0 is the coordinate normal to the brane,
and the brane is located at some 
0 > 0. Thus the
coordinate 
 is proportional to sin� in the bulk parametri-
zation Eq. (2.7).17

The functions að
Þ and fð
Þ are solutions of the differ-
ential equations

a00 �a02

a2
þðd�5Þðd�4Þ

2
2

�
1�1

f

�
þðd�4Þaf0

2
f

þðd�4Þa0



þa0f0

2f
þ1

f
þ�a

f
¼0;

f0 þ 4�


d�2
þ2ðd�4Þ



ðf�1Þþ2fa0

a
¼0;

(3.5)

together with the constraint equation

a02 þ 2ðd� 3Þðd� 4Þa2

2

�
1� 1

f

�
þ 4að1þ�aÞ

f

þ 4ðd� 3Þaa0



¼ 0: (3.6)

These equations have the following exact solutions:

fð
Þ ¼ 1þ 
2

‘2
; að
Þ ¼ 
2 þ ‘2; (3.7)

which correspond to AdSd in coordinates adapted to a
foliation by AdS2 � Sd�2 hypersurfaces, and

fð
Þ ¼ 1þ d� 1

d� 3


2

‘2
; að
Þ ¼ ‘2

d� 1
; (3.8)

which corresponds to AdS2 �Hd�2.
For the general solutions of these equations smoothness

at 
 ¼ 0 requires that að
Þ and fð
Þ possess a Taylor series
expansion there, consisting of even powers of 
 only, with
að0Þ> 0 and fð0Þ ¼ 1. To order 
4, the small 
 expansion
reads

að
Þ¼a0�d�2þ2a0�

ðd�2Þ2 
2

þðd�2þ2a0�Þððd�1Þðd�2Þþ2a0�Þ
a0ðd�2Þ4ðd�3Þd 
4þ��� ;

fð
Þ¼1þ2ðd�2�a0ðd�4Þ�Þ
a0ðd�2Þ2ðd�3Þ 
2

þ2ðd�2þ2a0�Þððd�1Þðd�2Þþ2a0�Þ
a20ðd�2Þ4ðd�3Þd 
4þ��� :

(3.9)

One can also construct an approximate solution for large
values of the ratio 
=‘ [although we shall see that configu-
rations with this asymptotics exist for a restricted set of
initial data, að0Þ> ‘2=ðd� 1Þ only], which is useful in our
analytical study of large black holes. For even d, this
solution reads

16We employed a similar metric ansatz and the same numerical
methods in our previous studies [30,31] of asymptotically AdS
solitons with a nonstandard asymptotic structure.
17The coordinate r in Eq. (2.7) becomes the coordinate x in the
AdS2 parametrization d�2

2 ¼ dx2=x2 � x2dt2 after taking the
near-horizon limit.
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að
Þ¼U‘2
�

2

‘2
þ Xðd�4Þ=2

k¼0

ak

�
‘




�
2k�M

�
‘




�
d�3

�
þOð1=
d�2Þ;

fð
Þ¼
2

‘2
þ Xðd�4Þ=2

k¼0

fk

�
‘




�
2k�2M

�
‘




�
d�3þOð1=
d�2Þ;

(3.10)

where the parameter U corresponds to the asymptotic ratio
of the radius of AdS2 to that of Sd�3. Also, ak and fk are
constants depending on the spacetime dimension d and U
only. Specifically, one finds

a0 ¼ 1þ ðd� 4ÞU
Uðd� 3Þ ; a1 ¼ �ðd� 4Þð1�UÞð1þ ðd� 4ÞUÞ

ðd� 2Þðd� 3Þ2ðd� 5ÞU2
;

a2 ¼ ðd� 4Þð1�UÞð1þ ðd� 4ÞUÞð2ðd� 5Þd� 4þ ðd� 4Þð26þ ð3d� 23ÞdÞUÞ
3ðd� 2Þ2ðd� 3Þ3ðd� 5Þðd� 7ÞU3

;

(3.11)

and

f0 ¼ 2þ ðd� 1Þðd� 4ÞU
Uðd� 2Þðd� 3Þ ; f1 ¼ � 2ðd� 4Þð1�UÞð1þ ðd� 4ÞUÞ

ðd� 2Þðd� 3Þ2ðd� 5ÞU2
;

f2 ¼ 2ðd� 4Þð1�UÞð1þ ðd� 4ÞUÞðdðd� 7Þ þ 8þ ðd� 4Þð11þ ðd� 8ÞdÞUÞ
ðd� 2Þ2ðd� 3Þ3ðd� 5Þðd� 7ÞU3

;

(3.12)

their expressions becoming more complicated for higher order k, without exhibiting a general pattern. The corresponding
expansion for odd values of the spacetime dimension is more complicated, with logð
=‘Þ terms in the asymptotic
expression

að
Þ ¼ U

�

2

‘2
þ Xðd�5Þ=2

k¼0

ak

�
‘




�
2k þ q log

�
‘




��
‘




�
d�3 þ

�
�Mþ �Þ

�
‘




�
d�3

�
þO

�
log



d�1

�
;

fð
Þ ¼ 
2

‘2
þ Xðd�5Þ=2

k¼0

fk

�
‘




�
2k þ 2q log

�
‘




��
‘




�
d�3 � 2M

�
‘




�
d�3 þO

�
log



d�1

�
;

(3.13)

where ak and fk are still given by Eqs. (3.11) and (3.12), while q and� are two new constants depending on ‘ and d that can
be expressed in a compact form as

� ¼ 0�5;d � 3ð1�UÞ2ð1þ 3UÞ
3200U3

�7;d þ 25ð1�UÞ2ð1þ 5UÞð157þ 725UÞ
42674688

�9;d þ � � � ;

q ¼ 1�U2

12U2
�5;d � 3ð1�UÞð1þ 3UÞð2þ 3UÞ

800U3
�7;d þ 5ð1�UÞð1þ 5UÞð171þ 1100Uþ 1375U2Þ

1778112U4
�9;d þ � � � :

(3.14)

The parameterM in Eqs. (3.10) and (3.13) is a constant that
can be fixed by numerical calculations, but whose value is
not of interest in the present context.

We remark, however, that these bulk solutions are
interesting in themselves, since they provide gravitational
duals for some conformal field theories (CFTs) in a fixed
AdS2 � Sd�2 background given by

ds2 ¼ ‘2ðU2d�2
2 þ d�2

d�3Þ: (3.15)

These configurations have a well-defined mass and action
which can be computed by using the boundary counterterm
prescription of Balasubramanian and Kraus [32]. [In fact,
both the mass and action are essentially fixed by the
parameter M in the asymptotic expansion, Eqs. (3.10) and
(3.13).] The stress tensor of the dual CFT can also be
calculated by the method of Myers [33]. A detailed study

of these aspects will be presented elsewhere in a more
general context.

C. The brane

We now assume that the brane is located at 
 ¼ 
0, and,
following the RS construction, we keep the region
0 � 
 � 
0 of the bulk. The induced metric on the brane
is a product of AdS2 and Sd�2, with

d�2 ¼ L2
1d�

2
2 þ L2

2d�
2
d�3; (3.16)

where

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
að
0Þ

q
; L2 ¼ 
0: (3.17)

Similar to the case of Einstein-Maxwell gravity discussed
above, we shall take a purely electric field with Fxt ¼ Q.
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(Note that, similar to the GR case, the electric charge of the
full solution on the brane would be only proportional toQ.)

The Israel junction conditions on the brane, Eq. (2.5),
yield the relation

a0ð
0Þ
að
0Þ

¼ 2

3

�
2ðd� 2Þ
‘

ffiffiffiffiffiffiffiffiffiffiffiffi
fð
0Þ

p � 2d� 7


0

�
; (3.18)

together with

Q2 ¼ 1

3
ðd� 2Þðd� 3Þ a

2ð
0Þ
‘
0

� ffiffiffiffiffiffiffiffiffiffiffiffi
fð
0Þ

q
� 
0

‘

�
: (3.19)

Then the constraint equation (3.6) implies that

1

L2
1

� ðd� 3Þðd� 4Þ
2L2

2

¼ Q2

L4
1

�
d� 5

d� 3
þ 7d� 23

2ðd� 2Þðd� 3Þ2
‘2Q2

L4
1

�
; (3.20)

(which has been used to test the accuracy of the numerical
results). Moreover, this relation implies L2 >L1; thus the
Sd�3 radius is always greater than the AdS2 radius.

The entropy of the bulk solution is taken to be one-
quarter of the event horizon area (note the factor of 2 which
originates from the Z2 symmetry of the problem)

Sd ¼ 2
Vd�3

4Gd

Z 
0

0
d



d�3

ffiffiffiffiffiffiffiffiffiffi
fð
Þp : (3.21)

D. The solutions

1. General results

We have solved the bulk equations (3.5) by imposing
the initial conditions (3.9) together with the boundary
conditions on the brane (3.18) and (3.19) for all dimensions
between 5 and 9. Thus such solutions are likely to exist for
any higher dimension d. Different from the strategy
employed in Sec. II, when trying to solve for the full
configurations, we have here fixed the AdS length scale
‘ ¼ 1 and varied instead the position of the brane, i.e.,
the size of the black hole as given by the parameter L2,
Eq. (3.17).

The near-horizon region of the extremal black holes has
then been constructed in several steps as follows. First, we
have solved numerically the Einstein equations (3.5) by
employing a standard ordinary differential equation solver.
In particular, for a given value a0, we have evaluated the
initial conditions (3.9) at 
 ¼ 10�6 and allowed for a
global tolerance of 10�12, when integrating toward large
values of 
. (We note that we have not encountered any
problems in the numerical integration of the configurations
in this section.) Given such a solution of the bulk Einstein
equations, in the second step we have used the junction
condition (3.18) to evaluate the position 
0 of the brane.
In the final step, the corresponding value of the charge
parameter Q has been obtained from condition (3.19).

Our results indicate the existence of a single parameter
family of solutions of the full problem (i.e., bulk plus
brane), conveniently labeled by the value að0Þ. The basic
features of these solutions are independent of the dimen-
sion d. First, for 0< að0Þ � ‘2=ðd� 1Þ, the bulk solutions
do not approach the asymptotic form (3.10) and (3.13).
Instead, the function að
Þ decreases monotonically and
vanishes at some finite radius 
max, which is a curvature
singularity, as seen e.g. by evaluating the Kretschmann
scalar. However, such configurations are also relevant in
the present context, since the junction condition (3.18)
possesses a solution with 
0 < 
max. (Thus the singularity
is outside the physical manifold.)
Solutions of the Einstein equations which for suffi-

ciently large values of 
 approach the asymptotic forms
(3.10) and (3.13) are present for að0Þ> ‘2=ðd� 1Þ. In this
case, there occurs a maximal value of að0Þ as well, since
the junction condition (3.18) can be satisfied only for
að0Þ< ac, where the critical value ac depends on the
dimension. While ac ¼ 1 for d ¼ 5, approximate values
for ac are 0.43, 0.28, and 0.21 for d ¼ 6, 7, and 8, respec-
tively. Also, the position of the brane as given by 
0 is a
monotonic function of að0Þ, with both 
0=‘ and Q diverg-
ing as að0Þ ! ac, while the parameter U stays finite in this
limit.
The functions að
Þ and fð
Þ of d ¼ 6 bulk solutions are

exhibited in Fig. 3 for several values of the initial parame-
ter að0Þ. Note that the picture here is generic (as seen e.g.
by comparing with the figures obtained by Kaus and Reall
[19] for d ¼ 5). The exact solution (3.8) clearly separates
the two different types of configurations.
In Fig. 4 we exhibit the parameters L1, L2, and Sd for

d ¼ 6 and 7 solutions, normalized with respect to the
corresponding Einstein-Maxwell results, Eqs. (3.2) and
(3.3) with D ¼ d� 1. For any d, the parameters L1, L2,
and Sd vanish as Q ! 0. However, both L1=L1ðGRÞ and

L2=L2ðGRÞ diverge in this limit; at the same time, the ratio

Sd=Sd�1 approaches a constant nonzero value (e.g.
Sd=Sd�1 ’ 0:14, 0.078, and 0.095 for d ¼ 5, 6, and 7,
respectively). Moreover, for sufficiently large values of
Q, the GR results are recovered.
For d ¼ 5, we have the choice to consider an electric or

a magnetic charge on the brane. However, similar to the
case of Einstein-Maxwell gravity, one can show that
the properties of the solution are the same in both cases
and the electric-magnetic U(1) duality still holds.18 Our
numerical results for d ¼ 5 are in good agreement with
those in [19]. (We note, however, that in [19] a different
parametrization of the metric was employed.)

2. The large black holes limit

The observation that 
0=‘ diverges as að0Þ ! ac implies
that one can use the asymptotic expressions (3.10) and

18We thank H. Reall for a correction on this issue.
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(3.13) to derive a number of simple analytic results for
large black holes, and thus to understand the large-Q
behavior, demonstrated in Fig. 4. Following Kaus and
Reall [19], one starts by assuming an asymptotic expres-
sion for the parameter U [which enters the large-
 expan-
sion (3.10) and (3.13)] in terms of a power series in
� ¼ ‘=
0. Then the first junction condition (3.18) implies
that

U ¼ 1

ðd� 4Þ2 �
ðd� 3Þð4d� 11Þ
4ðd� 2Þðd� 4Þ2 �

2 þ � � � : (3.22)

This shows that the metric function að
0Þ (i.e., the size of
the AdS2 part of the brane metric) has the following
approximate form on the brane:

a¼L2
1¼

1

ðd�4Þ2
‘2

�2
� ðd�1Þ‘2
4ðd�2Þðd�4Þ2þ��� : (3.23)

The second junction condition (3.18) gives for the charge
parameter the expression

Q2¼ d�3

2ðd�4Þ3
‘2

�2
�ðd�3Þð7d�18Þ
8ðd�2Þðd�4Þ3 ‘

2þ��� : (3.24)

Inversion of Eqs. (3.22) and (3.23) yields � as a function of
Q2. One obtains

L2
1 ¼

2ðd� 4Þ
ðd� 3Þ Q

2 þ 6d� 19

4ðd� 2Þðd� 4Þ2 ‘
2 þ � � � ; (3.25)
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FIG. 4. The ratios Sd=Sd�1, L1=L1ðGRÞ, and L2=L2ðGRÞ (shifted by �1) are shown for d ¼ 6 and 7 with ‘ ¼ 1.
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FIG. 3. The functions að
Þ and fð
Þ are shown for d ¼ 6 and ‘ ¼ 1. The initial parameter assumes the values að0Þ ¼ 0:4, 0.3, 0.24,
0.2, 0.15, 0.1, 0.05, and 0.02 from top to bottom (left figure) and from left to right (right figure).
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L2
2 ¼

2ðd� 4Þ3
ðd� 3Þ Q2 þ 7d� 18

4ðd� 2Þ ‘
2 þ � � � ; (3.26)

where comparison with (3.1) (with D ¼ d� 1) shows
agreement with GR in the limit of large Q=‘. (Note that
the leading order corrections are strictly positive.)

The same holds also for the entropy of these solutions,
which, in d > 5 dimensions, is given by

Sd¼2
Vd�3

4Gd

‘

ðd�3Þ

d�3
0

�
1�3ðd�3Þðd�4Þ

2ðd�2Þðd�5Þ
‘2


2
0

�
þ��� :
(3.27)

The first term here corresponds to the entropy of an
extremal RN black hole in d� 1 dimensions. [Recall
that Gd ¼ ½2‘=ðd� 3Þ�Gd�1.] With the help of relation
(3.24), one can reexpress Sd as a function of the charge
parameter Q. As seen from the large-Q region of Fig. 4,
the analytical and numerical results are in excellent
agreement.

For d ¼ 5, the leading order correction for the entropy
as a function of Q contains a log term, which is absent in
other dimensions. The corresponding relations are given in
[19], together with some relevant plots.19

IV. FURTHER REMARKS

In this work we have addressed the issue of black hole
solutions in the RS infinite braneworld scenario, allowing
the black holes to carry electric charge on the brane. In the
first part of the paper we have considered vacuum black
holes and nonextremal charged black holes on the brane.
Employing a different numerical technique by solving
the set of elliptic partial differential equations in the full
bulk, ranging from the brane to the AdS horizon, we have
obtained results that fully support the claim by Yoshino [9]
for the nonexistence of static vacuum black holes on an
asymptotically flat brane in the RS infinite braneworld
model. This conclusion does not change when (nonextre-
mal) solutions are considered, which are charged with
respect to a Maxwell field living on the brane. Although
‘‘approximate’’ solutions appear to exist for sufficiently
small brane tension, these configurations are very likely
only numerical artifacts.

One should emphasize that, of course, the numerical
results cannot be used to prove the nonexistence of static
black hole solutions on the brane. To clarify the issue of the
existence of black holes on the brane one would thus need
to either find a full analytic solution or, alternatively, to
provide a rigorous theoretical argument for the absence of
such black hole solutions. Lacking both, however, we
think that a natural interpretation of our and previous
numerical results is provided by the conjecture that

nonextremal braneworld black holes would necessarily
be time dependent [11,12].
The situation is different for extremal black holes, since

the conjecture put forward by Emparan et al. [11] and
Tanaka [12] does not forbid the existence of static
extremal black holes. Thus, in principle, the presence of
a second global charge, apart from the mass, could
allow for the existence of extremal black holes also in a
braneworld context. While the numerical construction
of localized extremal black holes still represents a numeri-
cal challenge to be met, we here have considered the
less ambitious task of constructing only the near-horizon
geometry of extremal solutions with a Maxwell field on
the brane. In particular, we have found that the GR pre-
dictions in d� 1 dimensions are reproduced for extremal
black holes which are sufficiently large as compared to the
AdS scale.
One should mention, though, that finding local solutions

in the vicinity of the horizon does not guarantee the
existence of the corresponding global solutions. (Chen
et al. [34], for instance, give an example where the
physically relevant global solutions are absent despite
the presence of a closed form near-horizon solution.)
In our opinion, any progress in this direction would
require the development of a consistent numerical scheme
capable to achieve the explicit construction of the bulk
extremal black holes.
However, another physically interesting situation to con-

sider in the context of the RS infinite braneworld model
concerns the case of static localized solitons on the brane.
With no event horizon present, solitons do not possess
intrinsic thermodynamical properties. Thus the conjecture
of Emparan et al. [11] and Tanaka [12] has no obvious
bearing on the existence of solitons on the brane.
Let us thus consider as the simplest example of (pos-

sible) solitons on the brane in the RS model, the case of
braneworld Q-balls based on the matter field Lagrange
density

L Q ¼ @��
�@��þUðj�jÞ: (4.1)

The matter field in this case is a complex scalar field �
with a harmonic time dependence and a nonrenormalizable
self-interaction described by the potential Uðj�jÞ. The flat
spacetime solutions of this theory were considered for the
first time by Coleman [35], while their Einstein gravity
generalizations were discussed in [36–38]. These gravitat-
ing nontopological solitons describe localized particlelike
objects with finite energy.
We have attempted to construct d ¼ 5 spherically

symmetric gravitating Q-balls in the RS model, where
the scalar field is confined to the brane and described by
the simple ansatz

� ¼ fðrÞe�iwt; (4.2)19For d ¼ 5, the electric charge is Q ¼ ðL2
2=L

2
1ÞQ.
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where we have followed a basically similar approach
for these gravitating Q-balls as for the static black hole
solutions. In particular, we have tried to solve the bulk
Einstein equations numerically for the metric ansatz (2.7)
with r0 ¼ 0, where the boundary conditions at r ¼ 0,
r ¼ 1, and � ¼ 0 are still given by (2.20), (2.21), and
(2.22) (with r0 ¼ 0) and (2.5), respectively, and where the
energy-momentum tensor is given by

t�� ¼ @��
�@��þ @��

�@��� g��LQ: (4.3)

However, unexpectedly, our attempts to construct grav-
itatingQ-balls on the brane have not been successful. As in
our attempts to construct static black hole solutions on the
brane, we have failed here to obtain reliable numerical
gravitating Q-ball solutions on the brane. Interestingly,
the reason for the numerical inaccuracy of the configura-
tions and the lack of the numerical convergence again
resides in the unnatural far field behavior of the metric
functions close to the AdS horizon. In fact, this unnatural
far field behavior is completely analogous to one observed
for the configurations supposed to describe static black
holes.

Clearly, this behavior is hard to understand, since there
is no clear a priori reason for solitons not to exist on the
brane. However, if we interpret our results for the static
(nonextremal) black hole solutions as implying that there
are no such solutions on the brane (satisfying the given set
of equations and boundary conditions), we must, consis-
tently, draw the same conclusion for the gravitating Q-ball
solutions. While it might be interesting to attempt the
construction of other types of solitons on the brane, the
present results strongly discourage such a construction,
since the same problems in the vicinity of the AdS horizon
are likely to arise.

How do we then judge the issue of black holes and
regular solutions on the brane? There are still the positive
results from the near-horizon black hole solutions in the
extremal case, but these extremal near-horizon solutions
avoid the problematic region in the vicinity of the AdS
horizon. Thus a full calculation of extremal solutions is
clearly called for, where one attempts to smoothly extend
the near-horizon geometry of the extremal solutions into
the asymptotic region, in spite of the tremendous numerical
challenge. The final outcomemight, however, be that one is
led to conclude that there are no extremal black hole
solutions on the brane, either.
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APPENDIX: THE NUMERICAL METHOD

The set of three coupled nonlinear elliptic partial differ-
ential equations for the functions A, B, and C has been
solved numerically for the ð	; �Þ coordinate system intro-
duced in Sec. II A 1, subject to the boundary conditions
(2.20), (2.21), (2.22), and (2.23).
The first step has been to introduce a new radial variable

x ¼ 	=ð1þ 	Þ which maps the semi-infinite region ½0;1Þ
to the finite region ½0; 1�. This involves the following
substitutions in the differential equations:

	u;	!ð1�xÞf;x; 	2u;		!ð1�xÞ2u;xx�2ð1�xÞu;x;
(A1)

where u denotes any of the unknown functions A, B, or C.
Next the equations for these functions are discretized on

a nonequidistant grid in x and �. Here we have considered
various grid choices, the number of grid points ranging
between 180� 30 and 80� 70. The grid covers the inte-
gration region 0 � x � 1 and 0 � � � �=2. Typically, the
mesh in the x direction has been denser in the near-horizon
region (x ¼ 0) and for values of x close to the AdS horizon.
Most of the � meshes employed have been equidistant.
All numerical calculations have been performed by us-

ing the programs FIDISOL/CADSOL [23]. Here we shall
briefly review its basic aspects. The code requests the
system of nonlinear partial differential equations in the
form

Pðx; y; u; ux; uy; uxy; uxx; uyyÞ ¼ 0; (A2)

subject to a set of boundary conditions on a rectangular
domain. (For convenience, we have used the notation
��y.) Besides the set of equations, FIDISOL/CADSOL

requires the boundary conditions, the Jacobian matrices
for the equations, and the boundary conditions, as
well as some initial guess for the functions. The Jacobian
matrices are generated by simple differentiation of
each equation P with respect to u, ux, uy, uxy, uxx, and uyy.

FIDISOL/CADSOL uses a Newton-Raphson method. The

numerical procedure works as follows: for an approximate

solution uð1Þ, Pðuð1ÞÞ does not vanish. The next step is then
to consider an improved solution

uð2Þ ¼ uð1Þ þ w�u; (A3)

supposing that Pðuð1Þ þ w�uÞ ¼ 0 (with w a relaxation
factor, which is usually chosen as w ¼ 1). The expansion
in the small parameter �u gives to first order

0 ¼ Pðuð1Þ þ �uÞ 	 Pðuð1ÞÞ þ @P

@u
ðuð1ÞÞ�uþ � � � : (A4)

This equation is then used to determine the correction

�uð1Þ ¼ �u. Repeating these calculations iteratively

(uð3Þ ¼ uð2Þ þ �u, etc.), the approximate solutions will
converge, provided the initial guess is close enough to
the true solution. In each step, a linear system of equations
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is solved, and the residual kPðuðiÞÞk decreases by a factor of
approximately 10–20. The iteration stops after i steps,

when the Newton residual PðuðiÞÞ is smaller than a pre-
scribed tolerance. Clearly, it is essential to have a good first
guess, to start the iteration procedure.

The package FIDISOL/CADSOL provides also error
estimates for each function, which allows one to judge
the quality of the computed solution. The errors are
computed on the ‘‘consistency level,’’ namely, the discre-
tized Newton residual, and as discretization error terms in
x, y directions. The discretization error is estimated
through the difference of difference quotients. For ex-
ample, in (A4), the derivative of the solution u and of
the correction function �u are discretized by a difference
method with arbitrary consistency orders. Derivatives are
replaced, for example, in the form uxx ( uxx;d þ dxx,
�uxx ( �uxx;d, where the index d means ‘‘discretized.’’

dxx is the estimate for the discretization (or truncation)
error of uxx, defined as dxx ¼ uxx;d;next � uxx;d, where the

index ‘‘next’’ denotes the next higher member of the
family of nonequidistant backward difference formulas.

The discretized Newton residual decreases with the
number of Newton-Raphson iterations, while the discreti-
zation error terms depend on the grid size and the used
consistency order, i.e. on the order of the discretization
of derivatives (in our work, this order was 6). Furthermore,
the error terms are used for the determination of stopping
criteria for the Newton-Raphson method. Further details
on the numerical method and explicit examples are pro-
vided in [23].
In this scheme, the input parameters are the event hori-

zon radius r0 and the value ‘ of the AdS length scale which
form the dimensionless parameter L ¼ r0=‘. In our ap-
proach we set r0 ¼ 1 and we start with the Schwarzschild-
Tangherlini solution as an initial guess (i.e., L ¼ 0 and
A ¼ B ¼ C ¼ 0). Then we increase the value of L slowly.
The iterations converge, and, in principle, repeating the
procedure we obtain in this way solutions for higher values
of L. In some of the calculations, we interpolate the
resulting configurations on points between the chosen
grid points, and then use these for a new guess on a finer
grid.
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