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We study twist and shear aspects of the stingy geodesic surface congruence. Under some natural

conditions we derive the equations of the twist and shear in terms of the expansion of the Universe. We

observe in this higher dimensional cosmology that, as the early universe evolves with expansion rate, the

twist of the stringy congruence decreases exponentially and the initial twist value should be large enough

to sustain the rotations of the ensuing universe, while the effects of the shear are negligible to produce the

isotropic and homogeneous universe. We also investigate the twist and shear of the geodesic surface

congruence of the null strings.
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I. INTRODUCTION

The Hawking-Penrose (HP) singularity [1] is assumed to
exist at the beginning of the Universe. In the standard
inflationary cosmology based on the HP singularity theo-
rem and inflationary scenario, the Universe is believed to
expand from the big bang. Assuming that the early uni-
verse was filled with a perfect fluid consisting of massive
particles and/or massless particles and using the strong
energy condition that was used to show the HP singularity
theorem, one could find equations of state for each particle.

In the inflationary standard cosmology, it is believed
that, after the big bang explosion, the radiation dominated
phase occurred followed by the matter dominated one,
even though there was a hot thermalization period of
radiation and matter immediately after the big bang.
Moreover, a phase transition exists between massive par-
ticle and massless particle phases in the Universe. The
equation of state of the massive particle is different from
that of the massless particle, and thus the massive particle
phase is not the same as the massless particle one.

Recently, applying the string theory [2,3] to cosmology,
both of us have studied the expansion of the Universe in
terms of the HP singularity in geodesic surface congruen-
ces for the timelike and null strings [4,5]. Taking an ansatz
that the expansion of the stringy congruence is constant
along the string coordinate direction, we have derived the
Raychaudhuri type equation, which is an evolution
equation for the expansion, possessing correction terms
associated with the stringy configurations. Assuming the
stringy strong energy condition, we have the HP type
inequality equation that produces the same inequality
equation for both the timelike and null stringy
congruences.

There have also been some progresses in geometrical
approaches to the theoretical physics associated with the
stringy congruence cosmology [4–6], the stringy Jacobi-
Morse theory [7], the Sturm-Liouville theory [8], and the
Gromov-Witten invariants [9]. The variation of the surface
spanned by closed strings in a spacetime manifold has been
considered to discuss conjugate strings on the geodesic
surface and to induce the geodesic surface equation and
the geodesic surface deviation equation, which yields a
Jacobi field and the index form of a geodesic surface as
in the case of point particles [7]. Later, after the geodesic
equation and geodesic deviation equation with breaks on
the path were formulated, the physical changes of the
action have been investigated through the study of the
geometry of the moduli space associated with the critical
points of the action functional and the asymptotic bound-
ary conditions in path space for point particles in a con-
servative physical system, where the particle motion on the
n-sphere Sn was considered to discuss the moduli space of
the path space, the corresponding homology groups, and
the Sturm-Liouville operators [8]. Using symplectic cut-
and-gluing formulas of the relative Gromov-Witten invar-
iants, one of us obtained a recursive formula for the
Hurwitz number of triple ramified geodesic surface cover-
ings of a Riemann surface by a Riemann surface [9].
In this paper, we extend the previous results in the

stringy cosmology to study the twist and shear features
of the stringy geodesic congruences in the early universe.
To do this, we exploit the paradigm that can delineate the
stringy features of the HP singularity in the mathematical
cosmology. Especially, we investigate the effects of the
twist and shear of stringy congruence on the ensuing uni-
verse evolution.
This paper is organized as follows. In Sec. II, we in-

troduce the formalism that describes the stringy congru-
ence in the early universe. In Sec. III, we briefly
recapitulate the expansion rate of the timelike stringy
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congruence by exploiting the Raychaudhuri type equation.
In Sec. IV, we investigate the aspects of twist and shear of
the stringy congruences in the early universe. Section V
includes summary and discussions. In the Appendix, we
treat the null stringy congruence in the early universe.

II. CONGRUENCE OF STRINGS

The action for a string is proportional to the area of the
surface spanned in spacetime manifoldM by the evolution
of the string. In order to define the action on the curved
manifold, we let ðM;gabÞ be a D-dimensional manifold
associated with the metric gab. Given gab, we can have a
unique covariant derivative ra satisfying [10]

ragbc ¼ 0;

ra!
b ¼ @a!

b þ �b
ac!

c;

ðrarb �rbraÞ!c ¼ Rabc
d!d:

(2.1)

We parameterize the surface generated by the evolution of
a string by two world sheet coordinates � and �, and then
we have the corresponding vector fields �a ¼ ð@=@�Þa and
�a ¼ ð@=@�Þa. Since we have gauge degrees of freedom,
we can choose the orthonormal gauge as follows [11]:

� � � ¼ 0; � � �þ � � � ¼ 0; (2.2)

where the plus sign in the second equation is due to the fact
that � � � ¼ �1 is timelike and � � � ¼ 1 is spacelike. In
the orthonormal gauge, we introduce tensor fields Bab and
�Bab defined as

Bab ¼ rb�a; �Bab ¼ rb�a; (2.3)

which satisfy the following identities:

Bab�
a ¼ 0; �Bab�

a ¼ 0; �Bab�
b þ �Bab�

b ¼ 0:

(2.4)

Here in the last equation, we have used the geodesic
surface equation

� �ara�
b þ �ara�

b ¼ 0: (2.5)

In particular, the timelike curves of the strings are geode-
sic, then the geodesic surface equation holds.

We let the vector field �a ¼ ð@=@�Þa be the deviation
vector which represents the displacement to an infinitesi-
mally nearby world sheet, and we let � denote the three-
dimensional submanifold spanned by the world sheets
��ð�; �Þ. We then may choose �, �, and � as coordinates
of � to yield the commutator relations,

L��
a ¼ �brb�

a � �brb�
a ¼ 0;

L��
a ¼ �brb�

a � �brb�
a ¼ 0;

L��
a ¼ �brb�

a � �brb�
a ¼ 0:

(2.6)

Using the above relations, we obtain

�ara�
b � �ara�

b ¼ ðBb
a � �Bb

aÞ�a: (2.7)

Next we introduce the metrics hab and �hab,

hab ¼ gab þ �a�b; �hab ¼ gab � �a�b; (2.8)

which satisfy

hab�
a ¼ 0; hab�

b ¼ 0; habg
bchcd ¼ had;

�hab�
a ¼ 0; �hab�

b ¼ 0; �habg
bc �hcd ¼ �had;

habh
ab ¼D� 1; �hab �h

ab ¼D� 1; hab �h
ab ¼D� 2:

(2.9)

Here we note that hab and �hab are the metrics on the
hypersurfaces orthogonal to �a and �a, respectively.
Moreover, we can define projection operators hab and
�hab as follows:

hab ¼ gachcb; �hab ¼ gac �hcb: (2.10)

These operators fulfil

habh
b
c ¼ habhbc ¼ hac; �hab

�hbc ¼ �hab �hbc ¼ �hac;

habh
bchcd ¼ had; �hab �h

bc �hcd ¼ �had: (2.11)

Now, we decompose Bab into three pieces

Bab ¼ 1

D� 1
�hab þ �ab þ!ab; (2.12)

where the expansion �, the shear �ab, and the twist !ab of
the stringy congruence are given by

� ¼ Babhab;

�ab ¼ BðabÞ � 1

D� 1
�hab;

!ab ¼ B½ab�:

(2.13)

Similarly, �Bab is also decomposed into three parts

�Bab ¼ 1

D� 1
�� �hab þ ��ab þ �!ab; (2.14)

where

�� ¼ �Bab �hab;

��ab ¼ �BðabÞ � 1

D� 1
�� �hab;

�!ab ¼ �B½ab�:

(2.15)

We then find

�abh
ab¼0; !abh

ab¼0;

��ab
�hab¼0; �!ab

�hab¼0;

��ab�
bþ ��ab�

b¼0; �!ab�
bþ �!ab�

b¼0;

(2.16)

and
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� �crcBab þ �crc
�Bab ¼ Bc

bBac � �Bc
b
�Bac � Rcbadð�c�d � �c�dÞ: (2.17)

Exploiting (2.17) one arrives at

��ara�þ �ara
�� ¼ 1

D� 1
ð�2 � ��2Þ þ �ab�

ab � ��ab ��
ab �!ab!

ab þ �!ab �!
ab þ Rabð�a�b � �a�bÞ; (2.18)

��crc!abþ�cra �!ab¼ 2

D�1
�ð!ab��c�½a!b�cÞ� 2

D�1
��ð �!abþ�c�½a �!b�cÞþ2ð�c

½b!a�c� ��c
½b �!a�cÞ; (2.19)

��crc�ab þ �cra ��ab ¼ 1

ðD� 1Þ2 ð�
2�a�b þ ��2�a�bÞ þ 2

D� 1
ð�hcða � �� �hcðaÞ�bÞc þ �ac�

c
b � ��ac ��

c
b

þ!ac!
c
b � �!ac �!

c
b �

�
RcðabÞd þ 1

D� 1
gabRcd

�
ð�a�b � �a�bÞ

� 1

D� 1
gabð�cd�

cd � ��cd ��
cd �!cd!

cd þ �!cd �!
cdÞ þ 1

D� 1
��c�ðarjcj�bÞ

þ 1

D� 1
���c�ðarjcj�bÞ þ 1

D� 1
�a�b�

crc�þ 1

D� 1
�a�b�

crc
��: (2.20)

III. EXPANSION OF STRINGY CONGRUENCE

The motion types of stringy congruence can be de-
scribed in terms of expansion, twist, and shear. In this
section, we will pedagogically summarize the previous
results [4,5] on the expansion rate of stringy congruence
in the early universe for the sake of completeness. We will
consider the twist and shear motions in the next section.

Taking an ansatz that the expansion �� is constant along
the � direction, from (2.20), one obtains a Raychaudhuri
type equation

d�

d�
¼� 1

D�1
ð�2� ��2Þ��ab�

abþ ��ab ��
abþ!ab!

ab

� �!ab �!
ab�Rabð�a�b��a�bÞ: (3.1)

We now assume that !ab ¼ �!ab, �ab ¼ ��ab and a stringy
strong energy condition

Rabð�a�b��a�bÞ
¼8	

�
Tabð�a�b��a�bÞþ 2

D�2
T

�
�0; (3.2)

where Tab and T are the energy-momentum tensor and its
trace, respectively. The Raychaudhuri type equation (3.1)
then has a solution of the form

1

�ð�Þ � 1

�ð0Þ þ
1

D� 1

�
��

Z �

0
d�

� ��
�

�
2
�
: (3.3)

We assume that �ð0Þ is negative so that the congruence is
initially converging as in the point-particle case. The in-
equality (3.3) implies that �ð�Þ must pass through the
singularity within a proper time

� � D� 1

j�ð0Þj þ
Z �

0
d�

� ��
�

�
2
: (3.4)

For a perfect fluid, the energy-momentum tensor given by

Tab ¼ 
uaua þ Pðgab þ uaubÞ; (3.5)

where 
 and P are the mass-energy density and pressure of
the fluid as measured in its rest frame, respectively, and ua

is the timelike D-velocity in its rest frame [10,12], the
stringy strong energy condition (3.2) yields only one in-
equality equation

D� 4

D� 2

þ D

D� 2
P � 0: (3.6)

Now, we consider the point-particle limit of the timelike
stringy congruence. If the fiber space F in the fibration 	:
M ! N4 is a point, then the total spaceM is the same as the
base spacetime four manifold N4. In this case, the geodesic
surfaces are geodesic in N4, the congruence of timelike
geodesic surfaces is a congruence of timelike geodesics,
and so �Bab ¼ �� ¼ ��ab ¼ �!ab ¼ 0. If the congruence is
hypersurface orthogonal, then we have !ab ¼ 0. Suppose
that the strong energy condition Rab�

a�b � 0 is satisfied to
yield two inequalities [1,10,13]


þ 3P � 0; 
þ P � 0: (3.7)

We then have the differential inequality equation

d�

d�
þ 1

3
�2 � 0; (3.8)

which has a solution in the following form:

1

�ð�Þ � 1

�ð0Þ þ
1

3
�: (3.9)

If we assume that �ð0Þ is negative, the expansion �ð�Þmust
go to the negative infinity along that geodesic within a
proper time
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� � 3

j�ð0Þj ; (3.10)

whose consequence coincides with that of Hawking and
Penrose [1].

Next, we consider the expansion of the null stringy
congruence in the early universe, which is explicitly de-
scribed in the Appendix. Taking the ansatz that the expan-
sion �� is constant along the � direction as in the timelike
case, we have another Raychaudhuri type equation (A20).
With the assumption that !ab ¼ �!ab, �ab ¼ ��ab, and a
stringy strong energy condition (A21) for null case, ex-
ploiting the energy-momentum tensor of the perfect fluid
we reproduce the inequality (3.6) in the timelike congru-
ence of strings. We assume again that �ð0Þ is negative. The
inequality (A22) then implies that �ð�Þ must pass through
the singularity within an affine length

� � D� 2

j�ð0Þj þ
D� 2

D� 1

Z �

0
d�

� ��
�

�
2

as in (A23).
In the point-particle limit with the strong energy

condition

Rabk
akb � 0

in (A29), one can obtain the equation of state


þ P � 0

in (A30) for the null point congruence [1,10,13]. If we
assume that the initial value is negative, the expansion �ð�Þ
must go to the negative infinity along that geodesic within a
finite affine length

� � 2

j�ð0Þj

as in (A31) [1].
Moreover, the stringy universe evolves without any

phase transition, since there exists only one equation of
state (3.6) both for the radiation and matter, differently
from the point-particle inflationary cosmology with two
equations of state in (3.7) and (A30) for matter and radia-
tion, respectively.

IV. TWIST AND SHEAR OF STRINGY
CONGRUENCE

In this section we will consider the twist and shear of
stringy congruence in the early universe. First, we inves-
tigate the twist feature of the stringy congruence. Taking in

(2.20) an ansatz that the twist �!ab is constant along the �
direction, we obtain an evolution equation for the twist

d!ab

d�
¼ � 2

D� 1
�ð!ab � �c�½a!b�cÞ

þ 2

D� 1
��ð �!ab þ �c�½a �!b�cÞ

� 2ð�c
½b!a�c � ��c

½b �!a�cÞ: (4.1)

We now assume that !ab ¼ �!ab, �ab ¼ ��ab, and
� � �� to obtain1

d!ab

d�
¼ � 2

D� 1
�ð!ab � �c�½a!b�cÞ: (4.2)

Here one notes that the twist !bc is orthogonal to the
timelike vector field �c so that their inner product contrac-
tion �c!bc in (4.2) vanishes. The above equation then
becomes

d!ab

d�
¼ � 2

D� 1
�!ab; (4.3)

which has solution of the form

!abð�Þ ¼ !abð0Þ exp
�
� 2

D� 1

Z �

0
d��

�
: (4.4)

This solution indicates that, as the early universe evolves
with the expansion rate �, � increases and the twist of the
stringy congruence !ab decreases exponentially.
Moreover, the initial twist !abð0Þ should be enormously
large enough to support the whole rotations of the ensuing
universe later.
It is worthy to note that in the higher D-dimensional

stringy cosmology, one can have the condition !ab ¼
�!ab � 0, where the nonvanishing !ab initiates the rota-
tional degrees of freedom in the Universe such as the
rotational motions of galaxies, stars, planets, and moons.
Moreover the nonvanishing �!ab could explain the rota-
tional degrees of freedom of the strings or physical
particles themselves [2,3,11]. Next, we consider the
point-particle limit of the timelike stringy congruence
where !ab ¼ �!ab ¼ 0. We can then have the Hawking
and Penrose limit with!ab ¼ 0 in theD ¼ 4 point-particle
congruence cosmology [1].
Second, we study the shear of the stringy congruence.

Taking an ansatz that the shear ��ab is constant along the �
direction, from (2.20) we obtain an evolution equation for
the shear:

1In deriving (3.3), we did not neglect the �� correction terms.
However, from now on, we will keep the zeroth order term of ��
with respect to � to see the twist and shear features of the stringy
congruence.
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d�ab

d�
¼ � 1

ðD� 1Þ2 ð�
2�a�b þ ��2�a�bÞ � 2

D� 1
ð�hcða � �� �hcðaÞ�bÞc � �ac�

c
b þ ��ac ��

c
b �!ac!

c
b þ �!ac �!

c
b

þ
�
RcðabÞd þ 1

D� 1
gabRcd

�
ð�a�b � �a�bÞ þ 1

D� 1
gabð�cd�

cd � ��cd ��
cd �!cd!

cd þ �!cd �!
cdÞ

� 1

D� 1
��c�ðarjcj�bÞ � 1

D� 1
���c�ðarjcj�bÞ � 1

D� 1
�a�b�

crc�� 1

D� 1
�a�b�

crc
��: (4.5)

We again assume that !ab ¼ �!ab, �ab ¼ ��ab, and � � ��
to yield

d�ab

d�
¼ � 1

ðD� 1Þ2 �
2�a�b � 2

D� 1
�hcða�bÞc

þ
�
RcðabÞd þ 1

D� 1
gabRcd

�
ð�a�b � �a�bÞ

� 1

D� 1
��c�ðarjcj�bÞ � 1

D� 1
�a�b�

crc�:

(4.6)

At this point, we digress to carefully consider the shear
tensor field �ab of the stringy congruence. In the
D-dimensional spacetime manifold ðM;gabÞ, we consid-
ered the metrics hab and �hab in (2.8) on the hypersurfaces
orthogonal to the timelike direction and to the string di-
rection, respectively. The metrics gab, hab, and �hab have
signatures ð1; D� 1Þ, ð0; D� 1Þ, and ð1; D� 2Þ, respec-
tively. In particular, hab is positive definite and may have
an Euclidean metric on the ðD� 1Þ-dimensional hypersur-
face ND�1, which is orthogonal to the time direction. We
may now choose orthogonal basis for the hypersurface
ND�1.

The symmetric part BðabÞ of the tensor field Bab on the

hypersurfaceND�1 is given by a ðD� 1Þ � ðD� 1Þmatrix
which can be split into two pieces as follows:

BðabÞ ¼ 1

D� 1
�hab þ �ab; (4.7)

where

1

D�1
�hab¼

�
D�1

���
�

D�1

0
BB@

1
CCA;

�ab¼
�1� �

D�1 �ij

���
�ji �D�1� �

D�1

0
BB@

1
CCA:

(4.8)

Here �ij are off-diagonal elements of the matrix �ab. It is

well known in astrophysics that the Universe is homoge-
neously and isotropically expanding. Exploiting the fact
that the Universe is homogeneously expanding, one can see
that the off-diagonal part of the shear tensor vanishes,
�ij ¼ 0, to yield

�ab¼diag

�
�1� �

D�1
;��� ;�D�1� �

D�1

�
: (4.9)

Next, since the Universe is isotropically expanding, one
can observe that all the diagonal elements of the shear
tensor are the same so that we can arrive at

�1 ¼ � � � ¼ �D�1: (4.10)

Moreover, by definition the shear tensor field �ab is trace-
less and symmetric to yield

�a ¼ �

D� 1
; ða ¼ 1; 2; � � � ; D� 1Þ; (4.11)

which indicates that all the shear tensor components
vanish,

�ab ¼ 0: (4.12)

This result on the Euclidean manifold can be extended to
the more general curved manifold case without loss of
generality. One can thus conclude that there are no shear
features in the homogeneous and isotropic universe regard-
less of the dynamic equation for the shear �ab in (4.6).
Next, we consider the point-particle limit of the timelike
stringy congruence in which �ab ¼ ��ab ¼ 0. In this case
we can have the Hawking and Penrose limit with �ab ¼ 0
in the point-particle congruence cosmology [1].
Now, we consider the twist and shear of the null stringy

congruence in the early universe, which is systematically
delineated in the Appendix. Exploiting the fact that the
twist !bc is orthogonal to the null tangent vector field kc,
one can arrive at the evolution equation

!abð�Þ ¼ !abð0Þ exp
�
� 2

D� 2

Z �

0
d��

�

as in (A26) of the twist !ab of the null stringy congruence
along the affine parameter �. This shows that !ab de-
creases exponentially with the modified factor associated
with the dimensionality, with respect to the timelike stringy
congruence in (4.4).
Next, in order to consider the point-particle limit of the

null stringy congruence, we first assume that !ab ¼ �!ab,
�ab ¼ ��ab, and � � �� to yield (A27). As in the case of the
timelike stringy congruence, all the shear tensor compo-
nents again vanish as in (A28), so that there are no shear
features in the homogeneous and isotropic universe regard-
less of the dynamic equation for the shear �ab in (A27).
As for the point-particle case of the twist of the null
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congruence, we have !ab ¼ �!ab ¼ �ab ¼ ��ab ¼ 0 so
that there are no twist and shear motions in the homoge-
neous and isotropic universe.

V. CONCLUSIONS

In summary, the stringy universe evolves without any
phase transition, because there is only one equation of state
both for the radiation and matter, differently from the
point-particle inflationary cosmology with two equations
of state for matter and radiation, respectively. By exploit-
ing the fact that there is only one equation of state in
evolution of the Universe, it was also shown that the stringy
cosmology is cyclic, similar to the brane cyclic cosmology,
but modified: big bang, radiation-matter mixture phase,
dark energy dominated phase, big crunch, and again big
bang [5].

In the higher dimensional stringy cosmology, as the
early universe evolves with the expansion rate �, � in-
creases and the twist of the stringy congruence !ab de-
creases exponentially, and the initial twist !abð0Þ should
be extremely large enough to support the whole rotation of
the ensuing universe. It is worthy to note that in the stringy
cosmology one can have the condition !ab ¼ �!ab � 0.
Here the nonvanishing !ab initiates the rotational degrees
of freedom in the Universe such as the rotational motions
of galaxies, stars, planets, and moons, while the nonvan-
ishing �!ab could explain the rotational degrees of freedom
of the strings or physical particles themselves. On the other
hand, the effects of the shear of the stringy congruence on
the ensuing universe evolution are negligible to produce
the isotropic and homogeneous universe features, regard-
less of the details of the dynamic equations of motions for
the shear of the stringy congruence.

Next, for the null stringy congruence corresponding to
the massless photons in the higher dimensional cosmology,
through the evolution of the early universe, the expansion
rate � increases and the twist !ab of the null stringy
congruence decreases exponentially, and the initial twist
is extremely large enough to generate the whole rotation of
the ensuing universe, similar to the case of the timelike
stringy congruence corresponding to the massive physical
particles. In the null stringy cosmology one can also have
the condition !ab ¼ �!ab � 0. !ab initiates the rotational
degrees of freedom in the Universe such as the celestial
body rotational motions, while the nonvanishing �!ab could
explain the rotational degrees of freedom of the strings or
physical photons themselves. On the other hand, there exist
no effects of the shear of the null stringy congruence on the
ensuing universe evolution to produce the isotropic and
homogeneous universe features, regardless of the details of
the dynamic equations of motions for the shear of the
stringy congruence.

Recently, the Alice detector of the Large Hadron
Collider (LHC) is scheduled to detect the so-called
quark-gluon plasma state, which is assumed to exist in an

extremely hot soup of massive quarks and massless gluons.
Both in the standard and stringy cosmologies, this quark-
gluon plasma state is supposed to occur immediately after
the big bang of the tiny early universe manufactured in the
LHC. In the point-particle standard cosmology, the quark-
gluon plasma state can exist shortly and disappear even-
tually to enter the radiation dominated phase, while in the
stringy higher dimensional cosmology the quark-gluon
plasma state can develop into particles such as protons
and neutrons and sustain the radiation and matter mixture
phase. It is expected that the Alice will be able to detect the
procedure of particle states along with the evolution of
the tiny universe planned to occur at the LHC, and it will be
able to determine which cosmology is viable. We recall
that as far as radiation and matter are concerned, the
mixture of these two exists together in the current universe.
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APPENDIX: NULL STRINGY CONGRUENCE

In this section, we will investigate the congruence of the
null strings, where the tangent vector of a null curve is
normal to itself. See Refs. [14–16] for the proper definition
and propagation of the classical null strings. We consider
the evolution of vectors in a ðD� 2Þ-dimensional subspace
of spatial vectors normal to the null tangent vector field
ka ¼ ð@=@�Þa, where � is the affine parameter, and to an
auxiliary null vector la that points in the opposite spatial
direction to ka, normalized by [13]

laka ¼ �1 (A1)

and is parallel transported, namely,

karal
b ¼ 0: (A2)

The spatial vectors in the ðD� 2Þ-dimensional subspace
are then orthogonal to both ka and la.
We now introduce the metrics nab and �hab that are

defined in (2.8),

nab¼gabþkalbþ lakb; �hab¼gab��a�b: (A3)

Similarly to the timelike case, we introduce tensor fields

Bab ¼ rbka; �Bab ¼ rb�a; (A4)

satisfying the identities

Babk
a¼ �Bab�

a¼0; �Babk
bþ �Bab�

b¼0: (A5)

We also define the deviation vector �a ¼ ð@=@�Þa repre-
senting the displacement to an infinitesimally nearby world
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sheet so that we can choose �, �, and � as coordinates of
the three-dimensional submanifold spanned by the world
sheets. We then have the commutator relations

Lk�
a ¼ L��

a ¼ Lk�
a ¼ 0;

kara�
b � �ara�

b ¼ ðBb
a � �Bb

aÞ�a:
(A6)

We decompose Bab into three pieces

Bab ¼ 1

D� 2
�nab þ �ab þ!ab; (A7)

where the expansion, shear, and twist of the stringy con-
gruence along the affine direction are defined as

� ¼ Babnab;

�ab ¼ BðabÞ � 1

D� 2
�nab;

!ab ¼ B½ab�:

(A8)

It is noteworthy that even though we have the same nota-
tions for Bab, �, �ab, and !ab in (2.12) and (A7), the
differences of these notations among the timelike string
cases and null string cases are understood in the context.
The metric nab also satisfies the identities

�abn
ab ¼ !abn

ab ¼ 0; (A9)

and

nabk
a ¼ nabk

b ¼ nabl
a ¼ nabl

b ¼ 0;

nabg
bcncd ¼ nad;

nabn
ab ¼ D� 2;

nab �h
ab ¼ D� 3:

(A10)

We define nab as

nab ¼ gacncb ¼ �a
b þ kalb þ lakb; (A11)

which fulfills the following identities:

kcrcn
a
b ¼ 0; (A12)

and

nabk
b ¼ nabka ¼ nabl

b ¼ nabla ¼ 0;

nabn
b
c ¼ nac;

nabn
ac ¼ nb

c;

na
bnbc ¼ nac:

(A13)

Similarly, we decompose �Bab into three parts as in the
timelike case

�Bab ¼ 1

D� 1
�� �hab þ ��ab þ �!ab; (A14)

where ��, ��ab, and �!ab are given by (2.15). We then have
the identities

Babk
a ¼ �Bab�

a ¼ 0;

��abk
b þ ��ab�

b ¼ 0;

�!abk
b þ �!ab�

b ¼ 0;

(A15)

and

� kcrcBab þ �crc
�Bab ¼ Bc

bBac � �Bc
b
�Bac

� Rcbadðkckd � �c�dÞ:
(A16)

Using (A16) we find

�kara�þ �ara
�� ¼ 1

D� 2
�2 � 1

D� 1
��2 þ �ab�

ab

� ��ab ��
ab �!ab!

ab þ �!ab �!
ab

þ Rabðkakb � �a�bÞ; (A17)

�kcrc!ab þ �cra �!ab ¼ 2

D� 2
�ð!ab � kck½a!b�cÞ

� 2

D� 1
��ð �!ab þ �c�½a �!b�cÞ

þ 2ð�c
½b!a�c � ��c

½b �!a�cÞ;
(A18)

�kcrc�ab þ �cra ��ab ¼ 1

ðD� 2Þ2 �
2kakb þ 1

ðD� 1Þ2
��2�a�b þ 2

D� 2
�hcða�bÞc � 2

D� 1
�� �hcða�bÞc

þ �ac�
c
b � ��ac ��

c
b þ!ac!

c
b � �!ac �!

c
b �

�
RcðabÞd þ 1

D� 2
gabRcd

�
kckd

þ
�
RcðabÞd þ 1

D� 1
gabRcd

�
�c�d � 1

D� 2
gabð�cd�

cd �!cd!
cdÞ

þ 1

D� 1
gabð ��cd ��

cd � �!cd �!
cdÞ þ 1

D� 2
�kckðarjcjkbÞ þ 1

D� 1
���c�ðarjcj�bÞ

þ 1

D� 2
kakbk

crc�þ 1

D� 1
�a�b�

crc
��: (A19)
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Taking the ansatz that the expansion �� is constant along
the � direction as in the timelike case, we have another
Raychaudhuri type equation,

d�

d�
¼ � 1

D� 2
�2 þ 1

D� 1
��2 � �ab�

ab þ ��ab ��
ab

þ!ab!
ab � �!ab �!

ab � Rabðkakb � �a�bÞ:
(A20)

Assuming !ab ¼ �!ab, �ab ¼ ��ab, and a stringy strong
energy condition for null case

Rabðkakb � �a�bÞ � 0; (A21)

and exploiting the energy-momentum tensor of the perfect
fluid, we reproduce the inequality (3.6) in the timelike
congruence of strings. The Raychaudhuri type equation
(A20) for the null strings then has a solution in the
following form:

1

�ð�Þ �
1

�ð0Þþ
1

D�2

�
��D�2

D�1

Z �

0
d�

� ��
�

�
2
�
; (A22)

where �ð0Þ is the initial value of � at � ¼ 0. We assume
again that �ð0Þ is negative. The inequality (A22) then
implies that � must pass through the singularity within an
affine length [1]

� � D� 2

j�ð0Þj þ
D� 2

D� 1

Z �

0
d�

� ��
�

�
2
: (A23)

Similarly, we assume that !ab ¼ �!ab, �ab ¼ ��ab, and
� � �� to obtain

d!ab

d�
¼ � 2

D� 2
�ð!ab � kck½a!b�cÞ: (A24)

Here one notes that the twist !bc is orthogonal to the null
tangent vector field kc so that their inner product contrac-
tion kc!bc in (A24) vanishes. The above equation is then
reduced to the following form:

d!ab

d�
¼ � 2

D� 2
�!ab; (A25)

whose solution is given by

!abð�Þ ¼ !abð0Þ exp
�
� 2

D� 2

Z �

0
d��

�
: (A26)

As in the timelike case, as the early universe evolves with
the expansion rate �, � increases and the twist of the null
stringy congruence !ab decreases exponentially.
Next, we assume that the shear ��ab is constant along the

� direction as in the timelike case and !ab ¼ �!ab, �ab ¼
��ab, and � � �� to yield

d�ab

d�
¼� 1

ðD�2Þ2�
2kakb� 2

D�2
�hcða�bÞc

þ
�
RcðabÞdþ 1

D�2
gabRcd

�
kckd

�
�
RcðabÞdþ 1

D�1
gabRcd

�
�c�d

þ 1

ðD�1ÞðD�2Þgabð�cd�
cd�!cd!

cdÞ

� 1

D�2
�kckðarjcjkbÞ� 1

D�2
kakbk

crc�: (A27)

As in the case of the timelike stringy congruence, all the
shear tensor components again vanish,

�ab ¼ 0; (A28)

so that there are no shear features in the homogeneous and
isotropic universe regardless of the dynamic equation for
the shear �ab in (A27).
Finally, we consider the point-particle case of the

null congruence with �Bab ¼ �� ¼ ��ab ¼ �!ab ¼ 0 and
!ab ¼ 0. We assume that the strong energy condition

Rabk
akb � 0 (A29)

is satisfied, then we obtain [1,10,13]


þ P � 0: (A30)

If we assume that �ð0Þ is negative, the expansion �ð�Þmust
go to the negative infinity along that geodesic within a
finite affine length to yield [1]

� � 2

j�ð0Þj : (A31)

As for the point-particle case of the twist of the null
congruence, we have !ab ¼ �!ab ¼ �ab ¼ ��ab ¼ 0 so
that there are no twist and no shear motions in the homo-
geneous and isotropic universe.
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