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We analyze the gravitational perturbations induced by particles falling into a three dimensional,

asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations

obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This

setup ensures that the Uð1Þ symmetry of the background is preserved. The nonasymptotic flatness of the

background raises difficulties in attributing the significance of energy and angular momentum to the

conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has

never been addressed in the literature. We confirm that the naive expressions for energy and angular

momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic

censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the

black hole cannot be spun-up past its extremal limit.
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I. INTRODUCTION

The cosmic censorship conjecture has been proposed by
Penrose [1] in 1969 and despite its relatively long lifetime
it remains one of the outstanding unresolved issues in
classical general relativity. The idea of a cosmic censor
was put forward to prevent curvature singularities to be
noticeable to distant observers. Such an occurrence, termed
naked singularity, would signal the breakdown of predict-
ability within the theory. We shall be concerned only with
the weak cosmic censorship conjecture (wCCC), which
forbids the appearance of naked singularities as the end-
point of a generic gravitational collapse of physically
acceptable matter starting off in a regular initial state.
A somewhat more precise formulation of the wCCC has
been given in Ref. [2].

A notable attempt to destroy a black hole (BH) was
envisaged by Wald in 1974 [3]. The simplest such thought
experiment consisted in throwing a point particle at a Kerr
black hole, with large enough angular momentum to spin-
up the black hole. The Kerr solution possesses an event
horizon only when its angular momentum is bounded by its
mass as J � M2. Therefore, if it were possible for the BH
to absorb particles with sufficiently high angular momenta,
then one might exceed the Kerr bound, thus creating a
naked singularity. However, the wCCC is unharmed by
this test as the potentially dangerous particles are simply
not captured by the black hole [3].

Following Wald’s seminal work, many other attempts
have been made to violate the wCCC [4–7] (see also [8]
and references therein). Among the cases studied, those
that succeeded in producing naked singularities either

(i) neglected backreaction or (ii) relied on the assumption
of a high degree of symmetry throughout the gravitational
evolution of the system. Backreaction effects have been
argued to invalidate the analyses belonging to class
(i) [8,9], whereas the studies pertaining to class (ii) do
not correspond to generic situations.
Recently, Wald’s analysis has been generalized to a

multitude of higher dimensional spacetimes [10], more
specifically the Myers-Perry [11] black holes and both
neutral and dipole black rings [12,13] in five dimensions.
In all situations the findings were the same: none of the
black holes considered were ever overspun. A seemingly
different problem, but in the same spirit, has been studied
in [14] where the authors attempted to speed up an infinite
rigidly rotating dust cylinder by throwing in test particles.
Above a critical value of the rotation parameter the space-
time develops closed timelike curves and the impossibility
of overspinning the system beyond this point was proven.
In this article we follow a program analogous to Wald’s

process in anti-de Sitter (AdS) backgrounds. More pre-
cisely, we test an AdS version of the wCCC with the
Bañados-Teitelboim-Zanelli (BTZ) black hole [15]. In ef-
fect, the formulation of the wCCC presented in [2] ex-
cludes the case of black holes in AdS simply because the
notion of distant observers in nonasymptotically flat space-
times is not well defined. However, one might question
whether this assumption is necessary to prevent the over-
spinning of black hole geometries. Another motivation
comes from AdS/CFT: black holes in AdS rotating above
the extremal limit map to some state on the boundary
theory rotating at a speed greater than light [16].
Therefore, one should be distrustful about any physical
process which would result in the overspinning of a black
hole in AdS.*jorge.v.rocha@ist.utl.pt
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We thus propose to investigate the problem of spinning-
up a rotating black hole in AdS with test particles. The
setting for our analysis shares some similarities with a
previous study [17]. However, a crucial issue was left
unanswered: how does one define energy and angular
momentum of the test particles? A rotating stationary
spacetime specified by a metric tensor g�� possesses

both timelike and rotational Killing vectors, from which
we can build two conserved quantities:

E � �g��ð@=@tÞ� _z� ¼ �dT

d�

�
gtt þ gt�

d�

dt

�
; (1)

L � g��ð@=@�Þ� _z� ¼ dT

d�

�
gt� þ g��

d�

dt

�
; (2)

where z�ð�Þ ¼ ðTð�Þ, Rð�Þ, �ð�ÞÞ stands for the particle
coordinates and the dot indicates derivation with respect to
proper time �. In an asymptotically flat spacetime these
would correspond to the energy and angular momentum of
the test particles. However, in asymptotically AdS geome-
tries this identification cannot be immediately made. Of
course, this issue has been known for many decades but,
to the best of our knowledge, has never been addressed in
the literature. One of the main points of this article is to
show that E and L given above are indeed the correct
expressions.

The strategy we will follow to identify the conserved
quantities is to consider linear perturbations induced by
test particles. This was first done by Zerilli [18] for the
Schwarzschild solution, building on the seminal work by
Regge and Wheeler [19]. The presence of such test parti-
cles in the geometry will produce a variation (at the linear
level) of the mass and angular momentum of the black hole
which defines the background. We then read off E and L
from these variations. References [18,19] rely heavily on
the high degree of symmetry of the Schwarzschild black
hole. Of course, once one considers rotating black holes the
amount of symmetry gets reduced and the problem be-
comes technically less tractable. The only exception occurs
in three spacetime dimensions and this is the reason why
we consider the BTZ black hole. Furthermore, to preserve
the rotational symmetry of the background we will perturb
the geometry, not with a point particle but with a circular
homogeneous distribution of test particles. This amounts to
keeping only the zero-modes in our analysis, i.e., we shall
consider metric perturbations independent of the angular
coordinate �.

The plan of the paper is as follows. In Sec. II the general
form of the linearized perturbation equations for asymp-
totically AdS spacetimes is given and the stress-energy
tensor describing the infall of a ringlike distribution of
test particles in the BTZ geometry is obtained. The gravi-
tational perturbation equations are then solved in Sec. III.
The result of this calculation allows us to identify the
energy and angular momentum of the test particles.

Finally, in Sec. IV it is shown that the BTZ black hole
cannot be overspun by throwing in test particles. The issues
concerning gauge transformations are relegated to the
Appendix.

II. PRELIMINARIES

A. Gravitational perturbations
of asymptotically AdS solutions

Consider a small perturbation h�� of a background

metric g��,

~g�� ¼ g�� þ h��: (3)

We assume the background metric is a solution of the
sourceless cosmological Einstein equations inD spacetime
dimensions,

G�� þD� 2

2
�g�� ¼ 0; (4)

where G�� ¼ R�� � 1
2g��R denotes the Einstein tensor

and� � �ðD� 1Þ=‘2 is the (negative) cosmological con-
stant. Then, the linearized perturbation equations read as
follows [20]:

2�G�� � �r2h�� þ 2r�rð�h�Þ� �r�r�h

þ g��ðr2h�r�r�h��Þ � h��R

þ g��h��R
�� þ ðD� 2Þ�h��

¼ 16	GNT��; (5)

where the covariant derivatives are taken with respect to
the background metric and h � g��h�� denotes the trace

of the metric perturbation. T�� is the stress-energy tensor

of the test particles that will drive the perturbation. By
virtue of the Bianchi identity, the stress-energy tensor must
be divergenceless to ensure consistency of Eqs. (5). This
occurs if and only if the source particles follow geodesics.
In the remainder of the manuscript we shall particularize

to D ¼ 3.

B. The BTZ black hole

The BTZ solution [15] describes an asymptotically anti-
de Sitter rotating black hole in D ¼ 3 spacetime dimen-
sions. The spacetime is defined by the line element

ds2 ¼ �N2dt2 þ N�2dr2 þ r2ðN�dtþ d�Þ2; (6)

with lapse (squared) and shift

N2 ¼ �Mþ r2

‘2
þ J2

4r2
; N� ¼ � J

2r2
: (7)

Here,M and J are the total mass and angular momentum of
the spacetime, and ‘ð>0Þ is the anti-de Sitter radius. The
spacetime has a Cauchy and an event horizon at
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2r2�
‘2

¼ M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J2

M2‘2

s �
: (8)

Therefore, the existence of an event horizon imposes a
bound on the angular momentum J, such that

jJj � M‘: (9)

C. The stress-energy tensor

For a single test particle of rest-mass m0 the stress-
energy tensor is given by

T��
ð1pÞ ¼ m0

Z
�ð3Þðx� zð�ÞÞdz

�

d�

dz�

d�
d�;

¼ m0

dT

d�

dz�

dt

dz�

dt

�ðr� RðtÞÞ
r

�ð���ðtÞÞ; (10)

where � denotes proper time along the world line z�ð�Þ.
As mentioned before, we will perturb the BTZ space-

time with test particles homogeneously distributed along a
‘‘ring’’. The stress-energy tensor is then

T�� ¼ m0

dT

d�

dz�

dt

dz�

dt

�ðr� RðtÞÞ
r

; (11)

and the quantity m0 may be viewed as the mass density of
the ring.

The components of the stress-energy tensor may be
expressed as follows:

Ttt ¼ �m0E

�
gtt þ gt�

d�

dt

�
�ðr� RðtÞÞ

r
;

Ttr ¼ �m0Egrr
dR

dt

�ðr� RðtÞÞ
r

;

Tt� ¼ �m0E

�
gt� þ g��

d�

dt

�
�ðr� RðtÞÞ

r

¼ m0L

�
gtt þ gt�

d�

dt

�
�ðr� RðtÞÞ

r
;

Trr ¼ m0

dT

d�
g2rr

�
dR

dt

�
2 �ðr� RðtÞÞ

r
;

Tr� ¼ m0Lgrr
dR

dt

�ðr� RðtÞÞ
r

;

T�� ¼ m0L

�
gt� þ g��

d�

dt

�
�ðr� RðtÞÞ

r
: (12)

III. LINEARIZED PERTURBATION
EQUATIONS FOR BTZ

As shown in the Appendix, the existing gauge freedom
allows us to eliminate several components of the metric
perturbation so that we can choose it to take the following
form:

h�� ¼
Aðt; rÞ 0 Wðt; rÞ
0 Bðt; rÞ=N4 0

Wðt; rÞ 0 0

2
64

3
75: (13)

With this choice of gauge, the trace of the metric pertur-
bation becomes

h ¼ Hðt; rÞ � �Aðt; rÞ þ Bðt; rÞ þ 2N�Wðt; rÞ
N2

: (14)

Given the stress-energy tensor (12), the ftrg and fr�g
components of the linearized cosmological Einstein Eq. (5)
become

1

rN2
@tf�r2ðN�Þ2H þ B� r@rðN�WÞg

¼ �
m0E
dR

dt

�ðr� RðtÞÞ
rN2

; (15)

1

rN2
@t

�
�r2N�H � r3@r

�
W

r2

��
¼ 
m0L

dR

dt

�ðr� RðtÞÞ
rN2

;

(16)

where we have defined 
 � 16	GN for convenience.
Performing the time integration one obtains

� r2ðN�Þ2H þ B� r@rðN�WÞ ¼ 
m0E�ðr� RðtÞÞ;
(17)

� r2N�H � r3@r

�
W

r2

�
¼ �
m0L�ðr� RðtÞÞ; (18)

where � represents the Heaviside step function.
Multiplying (18) by N� and subtracting from (17) imme-
diately yields

Bðt; rÞ ¼ 
m0ðEþ N�LÞ�ðr� RðtÞÞ: (19)

Now consider the following linear combinations of the
components of Eq. (5): fttg � N�ft�g and ft�g�N�f��g.
The resulting equations are

N2

r
@rf�r2ðN�Þ2H þ B� r@rðN�WÞg

¼ 
m0E
N2

r
�ðr� RðtÞÞ; (20)

N2

r
@r

�
�r2N�H� r3@r

�
W

r2

��
¼ �
m0L

N2

r
�ðr� RðtÞÞ:

(21)

It is easy to see that after a radial integration these equa-
tions yield precisely the same solutions (17) and (18) as
above.
There remain two equations out of the linearized

Einstein equations to be analyzed, which we may choose
to be the frrg and f��g components. However, the six
equations are not all independent: setting the divergence of
both sides of Eq. (5) to zero allows one to express the f��g
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component in terms of the other linear combinations we are
considering (and derivatives thereof). This leaves us with
just one more independent equation to consider, namely,
the frrg component:

� 2

‘2N2
H� 1

rN2
@rA ¼ 
m0

dT

d�

�
dR

dt

�
2 �ðr� RðtÞÞ

rN4
: (22)

Multiplying the above by rN2 and subtracting Eq. (18)
times 2N�=r yields

N2@rH � @rB ¼ 
m0

�
dT

d�

�
dR

dt

�
2 �ðr� RðtÞÞ

N2

þ 2N�

r
L�ðr� RðtÞÞ

�
: (23)

By replacing the solution for Bðt; rÞ previously found in
(19) it can be verified that @rH / �ðr� RðtÞÞ. Therefore,
an integration in r results inHðt; rÞ being a function of time
only, for r > RðtÞ. More specifically, one obtains

Hðt; rÞ ¼ 
m0FðtÞ�ðr� RðtÞÞ; (24)

where we have defined

FðtÞ �
�
2
Eþ N�L

N2
� 1

Eþ N�L

�
�þ L2

r2

��
r¼RðtÞ

: (25)

Here, the quantity � arises from a term proportional to _R2;
see Eq. (33) below.

We can now insert (24) back into (18) to find that

Wðt; rÞ ¼ �
m0

L

2
�ðr� RðtÞÞ þ 
m0�ðr� RðtÞÞ

�
�
� JFðtÞ

4
þ r2

RðtÞ2
�
L

2
þ JFðtÞ

4

��
: (26)

Now, putting together Eqs. (14), (19), (24), and (26)
immediately gives

Aðt; rÞ ¼ 
m0E�ðr� RðtÞÞ þ 
m0�ðr� RðtÞÞ

�
��

M� r2

‘2

�
FðtÞ � J

RðtÞ2
�
L

2
þ JFðtÞ

4

��
: (27)

Finally, evoking the results from the Appendix, we can
eliminate the terms inside square brackets in Eqs. (26) and
(27) simultaneously by making a residual gauge transfor-
mation. This same gauge transformation sets Hðt; rÞ ¼ 0,
in agreement with Eq. (14).

Hence, the solution for the metric perturbation can be
cast into the form (13) with the nonvanishing components
given by

Aðt; rÞ ¼ 
m0E�ðr� RðtÞÞ;
Wðt; rÞ ¼ �
m0

L

2
�ðr� RðtÞÞ;

Bðt; rÞ ¼ 
m0ðEþ N�LÞ�ðr� RðtÞÞ: (28)

The result we have obtained for the linearized perturbation
agrees with our expectations: referring to Eq. (6) we con-
clude that the perturbation imparted by the circular distri-
bution of test particles vanishes inside the ring and
corresponds simply to shifting the charges of the BTZ
black hole in the outer region,

M ! Mþ �M; J ! J þ �J: (29)

The precise values we have found for the shifts,

�M ¼ 16	GNm0E; �J ¼ 16	GNm0L; (30)

justify the naive identification of m0E and m0L, as ex-
pressed in Eqs. (1) and (2), with the energy and angular
momentum of the test particles. As usual, for massive
particles E and Lmay be interpreted as energy and angular
momentum per unit mass.

IV. SPINNING-UP THE BTZ BLACK HOLE
BY THROWING POINT PARTICLES

From the above, we now know how to relate physical
mass and angular momentum of an infalling particle to its
conserved quantities. Let us try to spin-up a BTZ black
hole with massM0 and angular momentum J0. For that, we
throw in a particle of mass m0 with angular momentum
�J ¼ m0L and energy �M ¼ m0E. According to the ex-
tremality bound (9) the dimensionless spin of the BH must
satisfy jj0j � J0=ðM0‘Þ � 1.
To be able to clearly define the problem, we will ask for

well-defined initial and final states. Thus, initially we con-
sider a particle on an unbound geodesic and sufficiently far
away from the black hole. This is equivalent to really
throwing in a particle from ‘‘infinity’’ [21].
Now, the only particles on unbound geodesics must be

null [22]. In fact, it is not hard to show that the geodesic
equations yield

_� ¼ 2EJ‘2 � 4‘2LMþ 4LR2

4R2‘2N2
; (31)

_T ¼ 2ER2 � JL

2R2N2
; (32)

_R 2 ¼ ��N2 þ E2 � L2=‘2 þ R�2ðL2M� JELÞ; (33)

where dots denote proper time derivatives and � ¼ 1, 0 for
timelike or null geodesics, respectively. In these equations
the lapse should be viewed as a function of R instead of r.
The radial Eq. (33) can be integrated directly, and it is

easy to see that massive particles in the BTZ geometry are
always on bound orbits and are always captured by the
black hole [22,23]. An inspection of the radial Eq. (33)
shows that for the particle to be on an unbound orbit, it
must be null and satisfy the requirement [22]

q � L

E‘
� 1: (34)
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Now, upon absorption of a particle, the dimensionless spin
of a BTZ black hole becomes

j � J

M‘
¼ J0 þm0L

‘ðM0 þm0EÞ ¼
j0 þ qm0E=M0

1þm0E=M0

: (35)

Clearly, j0, q � 1 implies j � 1, with the equality being
satisfied in the extremal limit if and only if L ¼ E‘. Thus,
a BTZ black hole cannot be spun-up past extremality.
Unlike in previous studies [6,10], the above derivation is
quite general and does not rely explicitly on an expansion
around m0E ¼ 0, i.e., the point particle limit (though it
is assumed that the particle follows a geodesic, as imposed
by the requirement of consistency of the linearized
perturbations).

The massive case

Our argument above for considering only null particles
relies on the fact that having a well-defined initial state
requires the particle to be sent from infinity. However, one
could argue that in the limit that m0 ! 0, one should be
allowed to describe a system in terms of a black hole plus a
point particle, since the backreaction on the geometry tends
to zero in this limit. We now show that in this regime
massive particles cannot overspin the black hole. The
condition that the geodesic is future-directed, _T � 0, con-
strains the angular momentum to satisfy (see Eqs. (33))
ER2 � 1

2 JL � 0 outside the event horizon. At the horizon,

this condition implies that

L

E
� 2r2þ

J
: (36)

For an extreme black hole this yields L=E � ‘. Upon
absorption of a particle, the dimensionless spin of the
BTZ black hole is

j ¼ j0 �m0E

M0

�
j0 � L

E‘

�
: (37)

Notice an important difference with respect to the null
particle calculation: we are now Taylor-expanding around
j0, because we are only allowed to work in the regime
m0 ! 0. For j0 ¼ 1, taking relation (36) into account
yields j � 1. Thus, a BTZ black hole cannot be spun-up
past extremality.

V. CONCLUSIONS

We have shown how to read off the physical energy and
angular momentum of point particles falling into a BTZ
black hole. The results of our calculation and generaliza-
tions thereof are interesting for a number of processes
taking place in the vicinities of asymptotically anti-de
Sitter black holes. We have studied a particular attempt
at violating the weak version of the Cosmic Censorship

Conjecture, an attempt at overspinning the BTZ black hole
by throwing point particles into it. We argued that for
well-defined initial conditions, BTZ black holes cannot
be spun-up past extremality, thus verifying the wCCC in
the nontrivial case of asymptotic AdS spacetimes.
The technical problem we have tackled, namely, the

analysis of gravitational perturbations of rotating black
holes, naturally led us to consider black holes in (2þ 1)
dimensions. In this lower-dimensional case we can take
advantage of the existing amount of symmetry of the
problem to completely solve for the perturbation.
Nevertheless, there is a bonus: in three spacetime dimen-
sions there are no gravitational-wave degrees of freedom
and so backreaction effects are suppressed relatively to the
four-dimensional, asymptotically flat case [6,9]. Therefore,
gravitational radiation could not have been evoked to
prevent overspinning (if it were possible) and our results
should be the end of the story. It would be highly desirable
to extend this study to generic asymptotically AdSD ge-
ometries, even though the path followed here may not have
a simple generalization.
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APPENDIX: GAUGE TRANSFORMATIONS

Under rotations around the origin, the six components of
the perturbation tensor transform like three scalars, namely
htt, htr and hrr, one vector ðht�; hr�Þ and one second-order
tensor h��. The scalars can be decomposed into their

Fourier modes (labeled by n). To preserve the Uð1Þ sym-
metry of the background geometry we will consider a
perturbation by a circular homogeneous distribution of
test particles. Thus, only the �-zero-modes survive.
For the ‘‘vector’’ components there are only two quan-

tities in the problem with the right transformation proper-
ties: a constant vector times @�e

in�; and ðgt�; gr�Þ. Since
by construction we pick only the n ¼ 0 modes, the first
candidate vanishes. From (6) we then have hr� ¼ 0

automatically.
Under an infinitesimal coordinate transformation,

x� ! x� � 1
2�

�, the metric perturbation transforms as

h�� ! hnew�� ¼ h�� þrð���Þ: (A1)

In order not to spoil the rotational invariance we wish to
consider only gauge transformations that do not depend on
the angle �. Thus,
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hnewtr ¼ htr þ 1

2
@t�r þ 1

2
@r�t � r

‘2N2
ð�t � N���Þ;

hnewr� ¼ hr� þ r2

2
@r

�
��

r2

�
� rN�

N2
ð�t � N���Þ;

hnew�� ¼ h�� þ rN2�r: (A2)

First we make a gauge transformation of the form �ð1Þ
� ¼

ð0; �r; 0Þ. With the choice �rðt; rÞ ¼ �h��=rN
2 we set

hnew�� ¼ 0. This transformation preserves hr� ¼ 0.

Next, consider a coordinate transformation implemented

by �ð2Þ
� ¼ ð�t; 0; ��Þ. This preserves h�� ¼ 0. To keep

hr� ¼ 0 as well, we need

�t ¼ N��� þ rN2

2N�
@r

�
��

r2

�
: (A3)

To eliminate the component htr we must have

htr þ 1

2
@r�t � r

‘2N2
ð�t � N���Þ ¼ 0: (A4)

Replacing �t by (A3) we obtain

@r

�
r3@r

�
��

r2

��
¼ 2J

N2
htr; (A5)

for which the solution is

�� ¼ r2
Z 1

r
r�3

�Z 1

r

2J

N2
htrdr

�
dr: (A6)

Thus, the gauge transformation described by �ð2Þ with ��

and �t given, respectively, by (A6) and (A3) effectively
sets hnewtr ¼ hnewr� ¼ 0.

In accordance with the above considerations, we choose
to work in a gauge such that the metric perturbation takes
the form (13).
At this point note that there is a further residual gauge

freedom: one can still make a coordinate transformation of

the form �ð3Þ
� ¼ ð�res

t ; 0; �res
� Þ with

�res
� ¼ f1ðtÞ þ r2f2ðtÞ;

�res
t ¼ � 2

J

�
M� r2

‘2

�
f1ðtÞ � J

2
f2ðtÞ: (A7)

This leaves the components htr, hrr, hr� and h�� unal-

tered, while the remaining components and the trace
change as

hnewtt ¼ htt � 2

J

�
M� r2

‘2

�
f01ðtÞ �

J

2
f02ðtÞ;

hnewt� ¼ ht� þ 1

2
f01ðtÞ þ

r2

2
f02ðtÞ;

hnew ¼ h� 2

J
f01ðtÞ: (A8)

Therefore, we can use the residual gauge transformations
to eliminate a function of time only from the trace of the
metric perturbation and to eliminate terms of the form
F1ðtÞ þ r2F2ðtÞ from htt and ht�. In Sec. III we exploit

this residual gauge freedom when solving the linearized
perturbation equations.
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