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We analyze the relation between teleparallelism and local Lorentz invariance. We show that generic

modifications of the teleparallel equivalent to general relativity will not respect local Lorentz symmetry.

We clarify the reasons for this and explain why the situation is different in general relativity. We give a

prescription for constructing teleparallel equivalents for known theories. We also explicitly consider a

recently proposed class of generalized teleparallel theories, called fðTÞ theories of gravity, and show why

restoring local Lorentz symmetry in such theories cannot lead to sensible dynamics, even if one gives up

teleparallelism.
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I. INTRODUCTION

A key feature of general relativity is observer indepen-
dence, expressed through general covariance. This makes it
possible to formulate the theory in terms of spacetime
tensors, without making any reference to the tangent space
of each point of the spacetime manifold (even though this
is where vectors and tensors are naturally defined). Also, in
general relativity, the spacetime geometry can be fully
described by the metric alone, because the connection
that defines parallel transport is assumed to be the Levi-
Civita connection of the metric. The effects of the gravi-
tational interaction are described in terms of the curvature
of spacetime, which responds to the distribution and mo-
tion of mass-energy.

The avoidance of any reference to the tangent space in
general relativity is not mandatory. It is straightforward to
introduce an orthonormal basis for the tangent space at
each point, the vierbein or tetrad fields, haðx�Þ, project
along this basis and formulate the theory in terms of the
projected quantities. This is generally referred to as the
tetrad or vierbein formalism. Such an approach has
advantages, especially when working with fermions. In
the tangent-space picture of general relativity, distances
are measured with the flat metric, but there still exists a
nonvanishing connection with nonvanishing curvature.

Alternatively, we could consider constructing a theory
where, at least in a suitable class of frames, the connection
in the tangent space would have zero curvature, without
vanishing altogether. This can be achieved if torsion is not
zero and the corresponding connection is called the
Weitzenbock connection [1]. Such a theory is called tele-
parallel gravity [2,3]. The simplest form of this theory is
actually equivalent to general relativity [3]. This appears
surprising, given that the role of curvature is so central in
the latter. It is entirely consistent though, since the zero-
curvature Weitzenbock connection does not coincide with
the Levi-Civita connection of the metric. This will be
explained in more detail below.

The teleparallel formulation of general relativity, which

we will refer to simply as teleparallel gravity below, allows

a different physical interpretation of the gravitational in-

teraction in terms of torsion instead of curvature. It has

attracted interest in the past because it allows us to interpret

general relativity as a gauge theory.
Very recently, there have been proposals for constructing

generalizations of teleparallel gravity in Refs. [4–20]

which followed the spirit of fðRÞ gravity (see Ref. [21]

for a review) as a generalization of general relativity. That

is, the Lagrangians of the theories were generalised to the

form fðTÞ, where f is some suitably differentiable function

and T is the Lagrangian of teleparallel gravity. The interest

in these theories was aroused by the claim that their

dynamics differ from those of general relativity but their

equations are still second order in derivatives and,

therefore, they might be able to account for the accelerated

expansion of the universe and remain free of pathologies.

We showed in Ref. [22], however, that this last expec-

tation was unfounded: these theories are not locally

Lorentz invariant and appear to harbour extra degrees of

freedom.
Our aim here is to elaborate on the findings of Ref. [22].

More specifically, we clarify below the role of violations of

local Lorentz invariance in generalized teleparallel theo-

ries. We provide an illustrative example of an analogous

situation with general covariance in ordinary field theory.

We will also explain why general relativity, which does

respect local Lorentz invariance, can nevertheless admit a

teleparallel formulation. It is argued that this is not a sign

of the uniqueness for general relativity, and a prescription

is given for constructing teleparallel equivalents of other

known gravity theories. Finally, we focus on fðTÞ theories
and argue that, even if we decide to give up teleparallelism,

such actions would not make sense as descriptions of

the dynamics of gravity if local Lorentz symmetry was

restored.
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II. SPACETIME AND TANGENT-SPACE
DESCRIPTIONS

If we want to describe a spacetime in a coordinate basis,
we need a metric g�� and a connection �

�
��. The connec-

tion does not have to be related to the metric. Instead of
working with a coordinate basis we could choose to asso-
ciate a tangent space to each spacetime point and work in
terms of that tangent space. The vierbein or tetrad fields,
haðx�Þ, would then form an orthonormal basis for the
tangent space at each point of the manifold with spacetime
coordinates x�. Latin indices label tangent-space coordi-
nates while Greek indices label spacetime coordinates. All
indices run from 0 to 3. Clearly, haðx�Þ is a vector in the
tangent space, and can be described in a coordinate basis
by its components h�a . So, h

�
a also transforms as a vector in

spacetime.
The spacetime metric, g��, is given by

g�� ¼ �abh
a
�h

b
�; (1)

where �ab ¼ diagð1;�1;�1;�1Þ is the Minkowski met-
ric for the tangent space. It follows that

h�a ha� ¼ ��
� ; h�a hb� ¼ �b

a; (2)

where Einstein’s summation convention has been used.
A general connection cannot be described just in terms

of the tetrad (in the same way that the Christoffel symbols
are not generically related to the metric components). The
following relations hold

��
�� � h�b@�h

b
� þ h�aA

a
b�h

b
� � h�bD�h

b
�; (3)

which also implicitly define the Lorentz covariant deriva-
tiveD�. Here, A

a
b� is the spin connection and solving for it

we find

Aa
b� ¼ ha�@�h

�
b þ ha��

�
��h

�
b � ha�r�h

�
b; (4)

where r� denotes the covariant derivative associated with

��
��. Note that �

�
�� is a Lorentz scalar (as long as A

a
b� is

left unrestricted). The torsion tensor is defined by

T�
�� � ��

�� � ��
��: (5)

If we denote the Levi-Civita connection by

�� �
�� � 1

2
g��ðg��;� þ g��;� � g��;�Þ; (6)

then

K�
�� � ��

�� � ���
�� (7)

is defined to be the contorsion tensor. Note that the Levi-
Civita connection does not have vanishing Aa

b�; instead

�A a
b� ¼ ha�

�r�h
�
b; (8)

where a bar is used to denote all quantities associated with
the Levi-Civita connection. Finally, it is possible to show

(after expressing the equation in terms of the connection
explicitly) that if

r�g�� ¼ 0; (9)

then

K�
�� ¼ 1

2
ðT�

�
� þ T�

�
� � T�

��Þ: (10)

That is, if the connection is metric compatible (i.e. it has
vanishing nonmetricity), then the contorsion tensor can be
expressed in terms of the torsion. From now on we will
only consider metric compatible connections, but not nec-
essarily symmetric ones. Equation (10) can be solved for
the torsion to give

T��� ¼ K��� � K���: (11)

Next, we define the tensor S��� as

S��� � K��� � g��T��
� þ g��T��

�; (12)

and the associated invariant is

T � 1

2
S���T��� ¼ �S���K���

¼ 1

4
T���T��� þ 1

2
T���T��� � T��

�T��
�: (13)

Using the definitions given above, and without any restric-
tions on Aa

b� apart from those implied by metric compati-

bility for ��
��, we see that T

�
�� is a spacetime tensor and

a Lorentz scalar, which makes T both a spacetime scalar
and a Lorentz scalar. On the other hand,

R�
��� � @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��;

(14)

and

R�� � R�
��� (15)

are spacetime tensors and Lorentz scalars, and

R � g��R��; (16)

is both a spacetime scalar and a Lorentz scalar, just like T.
The same properties hold for �R�

���,
�R�� and �R. Using the

definitions listed above, it is a straightforward exercise to
show that

R�
��� ¼ �R�

��� þ �r�K
�
�� � �r�K

�
�� þ K�

��K
�
��

� K�
��K

�
��; (17)

R�� ¼ �R�� þ �r�K
�
�� � �r�K

�
�� þ K�

��K
�
��

� K�
��K

�
��; (18)

R ¼ �Rþ T þ 2 �r�ðT�
��Þ: (19)

Our aim in this section was just to give some basic
definitions in two equivalent descriptions of spacetime.
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So, the important message is that the spacetime descrip-
tions with a metric g�� and a (metric compatible, but

only due to our assumption) connection ��
��, is dual to

a description which refers to a tangent space and uses a
tetrad h

�
a , and a spin connection Aa

b�. We intend to exploit

the equivalence of the two descriptions in what comes next.

III. TELEPARALLELISM AND LOCAL
LORENTZ INVARIANCE

The main requirement of teleparallelism is that there
exist a class of frames where the spin connection vanishes,
i.e. where

Aa
b� ¼ 0: (20)

In these frames

��
�� � h�b@�h

b
� ¼ �hb�@�h

�
b (21)

which implies

R�
��� ¼ 0; (22)

but nonzero torsion. A very important observation is that,
since R�

��� is a Lorentz scalar, if there exists some class of

frames where it is zero, then it will actually be zero in all
frames. But this requirement cannot be imposed without
introducing some prior geometry.

Let us examine this in more detail. Suppose we are
working in the tangent-space picture, where the fundamen-
tal fields are considered to be the tetrad h

�
a , and the

spin connection Aa
b�. Clearly, if it is a characteristic of

the theory that there exists a class of frames in which
Aa

b� ¼ 0 then we can always choose to work in one of

these frames (that is, define the theory as a preferred-frame
theory a priori). Then, we have R ¼ 0, and T�

�� is man-

ifestly not a Lorentz scalar anymore. The same holds for T.
This was the approach followed in Ref. [22] and many
other papers in the literature.

On the other hand, since Aa
b� is a connection, it can be

nonzero in other frames. Therefore, another option is to
define all quantities in a manifestly Lorentz covariant way,
as done above, and enforce the teleparallelism condition,
i.e. that Aa

b� ¼ 0 in some class of frames, as a constraint

on the form of Aa
b�. Such constraints are usually imposed

either by the explicit use of a Lagrange multiplier, or
implicitly by allowing only variations that respect them
when extremizing the action. Even though in this formu-
lation the action can be made manifestly covariant, it is not
really a way to restore local Lorentz invariance at the level
of the solutions due to the existence of the constraint. This
is best seen in the dual picture where the tangent space is
abandoned and the theory is described by the metric g��

and the connection ��
�� (clearly, the Levi-Civita connec-

tion of the metric exists as well but it is not an independent
field). As mentioned earlier, in this picture, the requirement
of teleparallelism, that there be a class of frames where

Aa
b� ¼ 0, translates to the requirement that R�

��� ¼ 0 in

all frames because R�
��� is a Lorentz scalar. Suppose that

the action of such a theory is written in a manifestly
(spacetime and of course Lorentz since we have abandoned
the use of tangent space) covariant way. Enforcing the
constraint R�

��� ¼ 0 at the level of the field equation

(e.g. through a suitable covariant Lagrange multiplier)
implies the existence of a second metric which is always
forced to be flat. Obviously, such a theory cannot generi-
cally respect local Lorentz covariance.
An illuminating example of an analogous situation in a

much simpler theory is that of a relativistic massless scalar
field in flat spacetime, which is usually described by the
action

S� ¼
Z

d4x���@��@��: (23)

Variation with respect to � yields

���@�@�� ¼ 0: (24)

Now consider the action

Sc� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðg�� �r��
�r��þM�

��� �R�
���Þ: (25)

Variation with respect to � yields

g�� �r�
�r�� ¼ 0; (26)

whereas variation with respect to A�
��� yields

�R �
��� ¼ 0: (27)

The last equation has the unique solution g�� ¼ ���.

Then, Eq. (26) becomes identical to Eq. (24). There will
also be a third equation coming from the variation with
respect to g��, which will determineM�

���. However, the

dynamics of M�
��� become irrelevant as there is no cou-

pling to �, not even an indirect one since Eq. (27) forces
the metric to be flat.
The point of this example is to illustrate that we can

write the action or the field equations of a scalar field in flat
space in a manifestly covariant way. If action (25) is taken
at face value the theory appears to be invariant under
diffeomorphisms. However, at the level of the solutions
this theory is only invariant under global Lorentz trans-
formations, exactly like the theory described by action (23)
.

IV. TELEPARALLEL FORMULATION
OF GENERAL RELATIVITYAND LOCAL

LORENTZ INVARIANCE

Let us now return to teleparallel gravity. Superficially,
there appears to be a contradiction in the statements made
above: it was claimed in Sec. I that, on the one hand,
teleparallel gravity can provide an alternative formulation
of general relativity, which is intrinsically a locally
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Lorentz-invariant theory. On the other hand, it was argued
in the last section that the requirement that there is a class
of frames where the spin connection vanishes, which is the
cornerstone of teleparallelism, cannot generically be en-
forced without violating local Lorentz invariance.
However, there is no real contradiction, and the resolution
lies on the exact form of the Lagrangian (28).

The action for (ordinary) teleparallel gravity is given by

ST � 1

16	G

Z
d4xhT; (28)

in which h ¼ ffiffiffiffiffiffiffi�g
p

is the determinant of h�a and g is the

determinant of the metric g��, G is the gravitational con-

stant. Equation (22) implies that R ¼ 0 in teleparallel
theories, and Eq. (19) yields

T ¼ � �R� 2 �r�ðT�
��Þ: (29)

Consequently, the action differs from the Einstein–Hilbert
action only by a boundary term, and will therefore lead to
the same field equations. This is why teleparallel gravity
can be considered as an alternative formulation of general
relativity.

The presence of the boundary term is crucial. Without it,
the action is the Einstein–Hilbert action with the usual
symmetries. Adding it and enforcing the teleparallelism
condition, the action becomes that of teleparallel gravity,
with Lagrangian (28), and is no longer locally Lorentz
covariant. In conclusion, the Einstein–Hilbert action,
which of course leads to a fully diffeomorphism invariant
and Lorentz invariant theory, can be written as the sum of
two pieces: the teleparallel action and a boundary term.
Neither of these two pieces is locally Lorentz invariant
once teleparallelism is imposed (though they sum up to a
locally Lorentz-invariant quantity). Imposing the last con-
dition however, and formally subtracting the boundary
term, is crucial for the interpretation of the theory as a
teleparallel theory of gravity. Of course, this does not alter
at all the dynamical context of the theory, or its real
symmetries in the spacetime picture.

In conclusion, the reason that the teleparallel theory
described by the action (28) does not really violate local
Lorentz symmetry, even though it respects teleparallelism,
is because its action only differs from a locally Lorentz
covariant action by a boundary term. In fact, this action
turns out to be that of general relativity. Of course this
cannot be a property of a general teleparallel action. If a
Lagrangian is constructed with the tetrad and the torsion
tensor, then even if this Lagrangian is a spacetime and
Lorentz scalar initially, it will not be a local Lorentz scalar
once teleparallelism has been imposed.

V. TELEPARALLEL FORMULATION
OF GRAVITY THEORIES

The previous discussion does not imply that general
relativity is the only gravity theory that can be cast into

a teleparallel formulation and take on a teleparallel
interpretation. In fact, given Eqs. (17)–(19) it should be
clear that any action constructed with curvature invariants
of the metric can be cast into a teleparallel formulation.
Additionally, all teleparallel theories (i.e. theories whose
Lagrangians are constructed with the curvature-free
Weitzenbock connection and the tetrad) whose action dif-
fers from a diffeomorphism invariant and locally Lorentz-
invariant action only by a boundary term, will lead to
locally Lorentz-invariant theories. This follows from
straightforwardly generalizing the example of general rela-
tivity considered above.
To understand this better, let us consider some simple

examples. Let us start from Brans-Dicke theory [23],
which is the best known alternative theory of gravity.
The action of the theory is

SBD ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� �R�!0

�
�r��

�r��

�
þ SMðg��; c Þ;

(30)

where !0 is the Brans-Dicke parameter, SM is the matter
action and c collectively denotes the matter fields. Simply
using Eq. (19) and the fact that teleparallelism requires
R ¼ 0, this action can take the form of a teleparallel theory

SBD ¼
Z

d4xh

�
��T �!0

�
r��r��þ 2T�

��r��

�

þ SMðg��; c Þ; (31)

and can acquire a teleparallel interpretation. Note that we
have discarded a boundary term.
Another example is fð �RÞ gravity. The action for fð �RÞ

gravity is

Sf ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
fð �RÞ þ SMðg��; c Þ: (32)

As is well known [24–27], as long as f00ð �RÞ � 0 this action
can be brought into the form

Sf ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½� �R� Vð�Þ� þ SMðg��; c Þ; (33)

where

Vð�Þ ¼ fð
Þ � 
�; (34)

and 
 implicitly defined through � ¼ f0ð
Þ. The prime
denotes differentiation with respect to the argument.
Again, using Eq. (19) to replace �R, imposing teleparallel-
ism and discarding a boundary term, we get

Sf ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½��T þ 2T�
��r��� Vð�Þ�

þ SMðg��; c Þ: (35)

These simple examples demonstrate how we can
construct teleparallel versions of known gravity theories.
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On the other hand, we could also use fðTÞ theories of
gravity as a characteristic example of why generic ad hoc
teleparallel actions will not respect local Lorentz invari-
ance. Let us consider the action

SfðTÞ �
Z

d4xhfðTÞ: (36)

In an analogous manner to the procedure followed above
for fð �RÞ gravity, this action can be brought into the form

SfðTÞ ¼
Z

d4xh½�T � Vð�Þ� þ SMðg��; c Þ: (37)

To demonstrate this, first consider the action

S1 ¼
Z

d4xh½fð
Þ ��ð
� TÞ� þ SMðg��; c Þ: (38)

Variation with respect to � yields the algebraic constraint

 ¼ T. Replacing this constraint in Eq. (38) gives Eq. (36),
implying the dynamical equivalence of these two actions.
On the other hand, variation with respect to 
 yields
another algebraic constraint: � ¼ f0ð
Þ. Placing this con-
straint back in Eq. (38), suitably defining Vð�Þ and writing
the action in terms of � instead of 
, yields the equivalent
action Eq. (37). Suppose now that we want to use Eq. (19)
together with the teleparallelism constraint R ¼ 0 in order
to eliminate T in favor of �R. We would then get

SfðTÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�� �Rþ 2T�
��

�r��� Vð�Þ�
þ SMðg��; c Þ: (39)

It is the presence of the T�
��

�r�� term that leads to the

violations of local Lorentz invariance as, under the con-
straint of teleparallelism, T�

�� is not a Lorentz scalar

anymore. Indeed, this term makes the difference between
actions Eq. (39) and (33) or Eq. (37) and (35) (the sign
differences are not important here as they can be absorbed
by a redefinition of �). Note that, action Eq. (28) differs
from the Einstein-Hilbert action only by a boundary term,
whereas the difference between Eq. (36) and (32) is not
simply a boundary term.

VI. A COVARIANT VERSION OF fðTÞ THEORIES?

We have established that general teleparallel theories
will not respect local Lorentz invariance and we have
argued that this stems from the fact that teleparallelism
cannot generally be imposed without prior geometry. We
also saw that teleparallel fðTÞ theories of gravity are
typical examples of theories that suffer from this problem.
Suppose now that, for some reason, wewish to restore local
Lorentz invariance in these theories without changing the
form of the action. This can clearly be achieved only by
giving up teleparallelism. This is because, as explained in
Sec. II, if no restrictions related to teleparallelism are

imposed on Aa
b�, then T and consequently fðTÞ, will be

local Lorentz scalars.1

What would giving up the teleparallelism restriction on
Aa

b� mean for the dynamics for fðTÞ theories? The best

way to understand the answer is to consider the duality
between the ðh�a ; Aa

b�Þ and the ðg��;�
�
��Þ descriptions.

The action is defined in the former as in Eq. (36), but since
h ¼ ffiffiffiffiffiffiffi�g

p
it can take the form

SfðTÞ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
fðTÞ: (40)

What remains is to determine T in terms of g�� and ��
��.

Recall that ��
�� is an independent connection which

satisfies Eq. (9). This implies that the part of this connec-
tion which is independent of the metric is just the con-
torsion tensorK�

��. Therefore, the independent fields with

respect to which we must vary the action are g�� and

K�
��. Equation (11) expresses the torsion in terms of the

contorsion. Taking a trace of the same equation yields

T�
�� ¼ �K�

��: (41)

Replacing the last expression in Eq. (13), we can obtain an
expression for T in terms of g�� and K�

�� only:

T ¼ �K���K��� � K��
�K

�
��: (42)

But with T given in terms of K�
�� by Eq. (42), it becomes

evident that the action (40) is dynamically trivial, as it
contains no derivatives of either of the two fundamental
fields: the metric and the contorsion. In fact, variations
with respect to the metric and the contorsion yield respec-
tively

� f0��ð�K
�
�Þ� � f0���K

�
�� � f

2
g�� ¼ S��; (43)

ðK��
� þ K�

�
� þ K��

��
�
� � K�

��g
��Þf0 ¼ 0; (44)

where we have taken into account the fact that the metric is
symmetric, the contorsion tensor is antisymmetric in the
first two indices and

S�� � � 1ffiffiffiffiffiffiffi�g
p �SM

�g�� : (45)

After some mathematical manipulations, and provided that
f0ðTÞ � 0 generally, Eq. (44) yields

K�
�� ¼ 0: (46)

1One might wonder why imposing the teleparallelism con-
straint on Aa

b�, which implies a constraint on ��
��, does not

allow T to be a Lorentz scalar, whereas imposing that ��
�� does

not contain any part leading to nonmetricity does not cause such
a problem. The reason is that the latter restriction just expresses
part of the connection in terms of another dynamical field (the
metric), whereas the former requires the introduction of prior
geometry as discussed in Sec. III.
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This implies that Eq. (43) is trivially satisfied in vacuo and
inconsistent with the presence of matter. In addition, g��

remains indeterminate. The choice f0ðTÞ ¼ 0 clearly does
not improve things.

These results should not come as a surprise and are not
in conflict with the fact that, after teleparallelism is en-
forced, the same action leads to dynamical equations for
the tetrad h

�
a . The reason for this is that if ��

�� is to have

zero curvature then we must be able to express K�
�� in

terms of the tetrad (much as the requirements of zero
nonmetricity and torsion yield the expression for the
Levi-Civita connection). This introduces derivatives of
the tetrad in the action and leads to a dynamical (yet locally
Lorentz-violating) theory.

Note that all of the arguments in this section could have
be made in terms of T�

�� instead of K�
��, given the

algebraic relation between the two quantities in Eq. (10).

VII. CONCLUSIONS

We have investigated the relation between teleparallel-
ism and local Lorentz symmetry violations, and have con-
cluded that generically imposing teleparallelism requires
the introduction of prior geometry in the theory, which
leads to violations of local Lorentz symmetry. A special
class of teleparallel actions create an exception: those

which differ from diffeomorphism-invariant and locally
Lorentz-invariant actions (without constraints) only by a
boundary term. The Einstein-Hilbert action belongs to this
exceptional class. A prescription for constructing telepar-
allel equivalents of known theories was also given. Finally,
we focussed on fðTÞ theories, which have attracted a lot of
recent attention as possible dark energy equivalents, and
demonstrated that giving up teleparallelism in order to
restore local Lorentz invariance leads to a dynamically
trivial theory, which also becomes inconsistent if matter
is added. Therefore, there seems to be no way to get
sensible dynamics from such an action, while simulta-
neously satisfying local Lorentz invariance.
It would be interesting to explore further the generation

of teleparallel equivalents of known gravity theories and
also to study their properties. It could provide some insight
into the interpretation of other gravity theories as gauge
theories.
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