
Lorentz covariance of loop quantum gravity

Carlo Rovelli and Simone Speziale

Centre de Physique Théorique de Luminy*, Case 907, F-13288 Marseille, France
(Received 7 January 2011; published 17 May 2011)

The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conven-

tional SUð2Þ-spin-network Hilbert space can be mapped to a space K of SLð2;CÞ functions, where
Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin

networks studied by Livine, Alexandrov and Dupuis. It is formed by SLð2;CÞ functions completely

determined by their restriction on SUð2Þ. These are square-integrable in the SUð2Þ scalar product, but not
in the SLð2;CÞ one. Thus, SUð2Þ-spin-network states can be represented by Lorentz-covariant SLð2;CÞ
functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleuler formalism.

As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also

be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum

gravity is locally SLð2;CÞ-invariant in the bulk, and yields states that are precisely inK on the boundary.

This clarifies how the SLð2;CÞ spinfoam formalism yields an SUð2Þ theory on the boundary. These

structures define a tidy Lorentz-covariant formalism for loop gravity.

DOI: 10.1103/PhysRevD.83.104029 PACS numbers: 04.60.Pp

I. INTRODUCTION

General relativity (GR) has a local Lorentz symmetry.
Here we discuss the Lorentz covariance of loop quantum
gravity (LQG) in the spinfoam and canonical formalisms.

The state space H SUð2Þ of canonical LQG is defined in

a fixed gauge, thus manifest local Lorentz covariance is
broken. The lack of manifest Lorentz covariance has been
often pointed out as an unpalatable feature of canonical
LQG. Is LQG consistent with the local Lorentz invariance
of GR? Can we reformulate the LQG kinematics in a
manifestly Lorentz-covariant language? The ‘‘projected
spin network’’ formalism and recent developments in spin-
foam theory bring light to this question.

A spinfoam definition of the LQG dynamics has been
fast developing in the last few years [1–7] and is summa-
rized in [8]. The theory is built in an SLð2;CÞ-covariant
formalism and determines transition amplitudes between
boundary states. Here we observe that the boundary states
of the spinfoam theory can be represented as functions on
SLð2;CÞ, but these functions are not square integrable with
respect to the Haar measure on SLð2;CÞ. Rather, they span
a generalized linear subspace, K. Furthermore, they sat-
isfy a kind of analyticity property: they are fully deter-
mined by their restriction on SUð2Þ. Hence the space K,
which does not carry an SLð2;CÞ-covariant scalar product,
is instead isomorphic to the Hilbert space of the SUð2Þ spin
networks, H SUð2Þ.

This observation clarifies how the SLð2;CÞ-covariant
dynamics provides amplitudes for the canonical theory,
based on SUð2Þ. But it also provides a way to give a

Lorentz-covariant description to the canonical states. In
fact, the isomorphism between H SUð2Þ and K equips

boundary states with natural covariance properties: con-
ventional SUð2Þ spin networks can be represented as func-
tions on SLð2;CÞ, in a form where their transformation
properties under a local Lorentz transformation are mani-
fest, providing an elegant answer to the question we have
started from, and restoring manifest Lorentz covariance in
canonical quantum gravity.
The tools which make this link possible are the ‘‘pro-

jected’’ spin networks introduced by Livine [9] and devel-
oped by Alexandrov and Livine [10–12]. In particular,
Alexandrov has extensively developed a manifestly
Lorentz-covariant spin networks formalism [12–14]. Here
we focus on aspects and results of this framework that
are of direct value for LQG, disentangling them from
Alexandrov’s attempts to find alternative models. In [15],
Dupuis and Livine study a map f that sends a SUð2Þ spin
networks into (a certain class of) projected spin networks.
The space K defined by the LQG spinfoam amplitudes
satisfies the simplicity constraints and is in the image of
this map [12,15,16]. In a paper appearing in parallel with
this one [17], Wieland gives another direct derivation of the
fact that the space K can also be obtained directly from a
canonical quantization of general relativity, by using the
original self-dual Ashtekar connection as a variable in the
Holst action with real Barbero-Immirzi parameter.
The fact that SLð2;CÞ functions describe states of ca-

nonical LQG, but there is no SLð2;CÞ-covariant scalar
product on the space where they live, is reminiscent of
the Gupta-Bleuler formalism [18,19], where the two physi-
cal photons can be described in a Lorentz-covariant lan-
guage, but without a positive-definite Lorentz-covariant
scalar product. The fact that K is not a proper subspace
of H SLð2;CÞ is also reminiscent of loop cosmology, where
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the state space is taken to be defined by a Bohr compacti-
fication of the real line [20]. Functions in K are of the
same kind: discrete linear combinations of distributions.

Altogether, these observations show that LQG admits a
manifestly Lorentz-covariant formulation, and behaves
under Lorentz transformations as expected from classical
GR. Like classical GR, the theory is invariant under local
Lorentz transformation in the bulk and is covariant under
local Lorentz transformation in the boundary.

II. DUPUIS-LIVINE MAP

Let c ðhÞ be a function on SUð2Þ. Following Dupuis and
Livine [15], consider a map f:c � ~c from functions on
SUð2Þ to functions on SLð2;CÞ, as the integral transform

~c ðgÞ ¼
Z
SUð2Þ

dhKðg; hÞc ðhÞ; g 2 SLð2;CÞ (1)

defined by the kernel

Kðg; hÞ ¼ X
j

d2j

Z
SUð2Þ

dk�pðjÞ;jðgkÞ�jðkhÞ: (2)

Here j 2 N=2, dj ¼ 2jþ 1, �jðhÞ is the spin-j SUð2Þ
character and �p;kðgÞ is the SLð2;CÞ character in the
ðp; kÞ representation.1 Finally, pðjÞ is the assignment of a
positive real number p for each j, which we call the
‘‘degree’’ of the map.

It is not hard to show that

ðfc ÞjSUð2Þ ¼ c : (6)

Therefore the image of f is formed by a linear subspace of
the space of functions on SLð2;CÞ, denote it K, charac-
terized by the property

~c ðgÞ ¼
Z
SUð2Þ

dhKðg; hÞ ~c ðhÞ: (7)

We call the functions satisfying this property projected
functions of degree pðjÞ.

Notice that these functions satisfy a sort of analyticity
property: they are determined by their restriction on
SUð2Þ. The space of these functions is therefore linearly
isomorphic to a space of functions on SUð2Þ. If we define
the components of c on the Peter-Weyl basis,

c jmn ¼
Z
SUð2Þ

dhDj
mnðhÞc ðhÞ; (8)

where Dj
mnðhÞ are the Wigner matrices; then, (1) can be

rewritten

~c ðgÞ ¼ X
jmn

djc jmnD
pðjÞ;j
jm;jnðgÞ; (9)

where Dp;k
jm;j0n are the matrix elements of the ðp; kÞ repre-

sentation in the jðp; kÞ; j;mi basis that diagonalizes L2 and
Lz of the canonical SUð2Þ subgroup.
An important aspect of these functions is that the space

K spanned is not a proper subspace of L2½SLð2;CÞ�. This
can be better seen by introducing in L2½SLð2;CÞ� the
generalized basis jp; k; j;m; j0; m0i, defined by

hgjp; k; j;m; j0; m0i ¼ Dp;k
jm;j0m0 ðgÞ: (10)

The basis vector are orthogonal,

h~p; ~k; ~j; ~m; ~j0; ~m0jp; k; j; m; j0; m0i

¼ �ðp� p0Þ
ðp2 þ k2Þ �k~k�j~j�j0~j0�m ~m�m0 ~m0 : (11)

The key point is that p is a continuous label. Therefore
normalizable states can be obtained only by integrating
in p,

jc i ¼ X
k...m0

Z
dpðp2 þ k2Þc kjmj0m0 ðpÞjp; k; j; m; j0; m0i

with c kjmj0m0 ðpÞ square integrable in p. But for jc i to be in
K it must be of the form

c kjmj0m0 ðpÞ ¼ �ðp� pðkÞÞ
ðp2 þ k2Þ �jk�j0kc jmm0 (12)

which is not square integrable in p. In other words, the
fixed relation between the continuous variable p and the
discrete variable k forces the states in K to be a discrete
linear combinations of distributions.
It follows that the SLð2;CÞ scalar product is not well

defined onK. Instead, a scalar product is naturally defined
by the linear isomorphism between K and a space of
functions on SUð2Þ. This amounts essentially in replacing
the Dirac delta in (11) with a Kroneker delta (and adjusting
the measure factor). That is, since

fjj;m;m0i ¼ jpðjÞ; j; j; m; j; m0i;
and in L2½SUð2Þ�

h~j; ~m; ~m0jj;m;m0i ¼ �j~j

dj
�m ~m�m0 ~m0 ;

we can define on K the well-behaved scalar product

hpðjÞ; j;~j; ~m; ~j; ~m0jpðjÞ; j;j;m;j;m0i ¼�j~j

dj
�m ~m�m0 ~m0 ; (13)

instead of the diverging SL½2;C� one (11).2

1SLð2;CÞ unitary representation in the principle series are
determined by the two quantum numbers, p 2 R and k 2
N=2, of the two Casimirs C1 and C2,

C1 � ð1=2ÞJIJJIJ ¼ j ~Lj2 � j ~Kj2 ¼ p2 � k2; (3)

C2 � ð1=4Þ�IJKLJIJJIJ ¼ 2 ~K � ~L ¼ 2pk; (4)

where JIK, I,K ¼ 0; . . . ; 3 are the generators of SLð2;CÞ. Here ~L
are the generators of SUð2Þ � SLð2;CÞ and ~K the generators of
the corresponding boosts. That is, letting i, j, k ¼ 1, 2, 3,

Li ¼ � 1

2
�ijkJ

jk; Ki ¼ J0i: (5) 2The reduction of p to a discrete label echoes the Bohr
compactification of the real line used in loop cosmology [20].
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III. FIXING THE DEGREE

All that we said above is valid for an arbitrary degree
pðjÞ of the Dupuis-Livine map. Let us now select, once and
for all, the degree to be

pðjÞ ¼ �j (14)

where � is a positive real parameter. We still refer toK as
the space of projected functions with this degree, which is

now spanned by D�j;j
jm;jnðgÞ.

The interest in this space K comes from the fact that
this space implements the linear simplicity constraints of
general relativity [1,21,22]. At the classical level, these can
be written in the time gauge as

~K þ � ~L ¼ 0: (15)

From this expression we can extract the following gauge-
invariant part,

2�C1 � ð�2 � 1ÞC2 ¼ 0: (16)

One can then show [1,21,22] that for all ~c and ~c 0 belong-
ing to K, the condition (16) is satisfied strongly,

ð2�C1 � ð�2 � 1ÞC2Þj ~c i ¼ 0; (17)

and (15) weakly,

h ~c j ~K þ � ~Lj ~c 0i ¼ 0 (18)

in the limit j � 1.3 Here the scalar product is the one
determined by the SLð2;CÞ Haar measure.

That is, K is a linear subspace of L2½SLð2;CÞ� where
Eqs. (17) and (18) hold. The first condition imposes
p ¼ �k, and the second one fixes k ¼ j, the minimal
spin of the canonical SUð2Þ subgroup. These are the linear
simplicity constraints used in the new spinfoam models for
quantum general relativity [1,21].

At the classical level, these constraints guarantee that
the full covariant dynamics can be encoded in the SUð2Þ
Ashtekar-Barbero connection [25,26], Ai ¼ !i þ �!0i,
where !i ¼ � 1

2 �
i
jk!

jk and !IJ is the full SLð2;CÞ con-
nection. Indeed, let

! ¼ !IKJIK ¼ �!0iKi þ!iLi (19)

be an SLð2;CÞ algebra element. If the condition (15)
between generators holds, we have

!jK ¼ ð!i þ �!0iÞLi � AiLi: (20)

At the quantum level, the correspondence (20) is lost
since the connection is not a well-defined operator by
itself. Only the holonomy, namely, the exponential of
the connection along a finite path, is. Therefore (20) is

replaced by the relation between the SLð2;CÞ holonomy g
and the SUð2Þ holonomy h induced by (1),

gjK ¼ D�j;j
jm;jnðgÞ ¼

Z
SUð2Þ

dhKðg; hÞDj
mnðhÞ: (21)

This relation guarantees that the SLð2;CÞ holonomy is
fully determined by its restriction to SUð2Þ.4
After these preliminaries, we are now ready to get to our

main subject.

IV. TRANSITION AMPLITUDES

Following [8,29], the transition amplitudes of LQG can
be written in the form

ZCðhlÞ ¼
Z
SLð2;CÞ

dgev
Z
SUð2Þ

dhef

�X
jf

Y
f

djf�
�jf;jf

�Y
e2@f

g
�ef
ef

�Y
e2@f

�jf ðhefÞ: (22)

Here C is a combinatorial two-complex with vertices v,
edges e and faces f, bounded by a graph � ¼ @C with
nodes n and links l (See Fig. 1). Inside the SLð2;CÞ
characters, �ef is a sign, and the quantity gef is defined by

gef ¼
�
gesehefg

�1
ete for internal edges;

hl 2 SUð2Þ for boundary edges:
(23)

Here se and te are, respectively, the source and target
vertices of the edge e. For the rest of the definition, see [8].
Notice that in this definition the SUð2Þ elements hl only

enter inside the SLð2;CÞ characters. It follows that ZCðhlÞ
is in fact the restriction to SUð2Þ of the function on
SLð2;CÞ defined by

~Z CðglÞ ¼ same as ð22; 23Þ with hl replaced by gl: (24)

We now begin elucidating the properties of these tran-
sition amplitudes, at the light of the mathematics discussed
in the two preceding sections. We draw largely from the
work of Alexandrov and Livine [9–15]. See also Conrady
and Freidel in [16].
The first important result is the following.
Theorem 1:~ZCðglÞ is a projected function with degree

pðjÞ ¼ �j in each of its entries. Equivalently:

ð�lfÞZC ¼ ~ZC: (25)

This can be shown by an explicit computation, inserting
(22) into the definition of projected functions (1). The
computation is straightforward, although somewhat tedi-
ous, and we omit the details. The key reason for which the
result holds is that the hl are directly sandwiched between
the variables hef and he0f, where f is the face bounding l

and e and e0 are the edges bounding the two nodes that

3It is also possible to satisfy the condition (18) for all spins
[12,22], if one chooses p ¼ �ðjþ 1Þ, but this would violate the
cylindrical consistency of the spinfoam amplitude [23,24].

4For a discussion on the splitting Ai ¼ !i þ �!0i at the
discrete level, see also [27,28].
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bound l. (Recall that there is no g integration at the
boundary nodes.) The integrations over hef and he0f,

amount to projections on the j ¼ k SUð2Þ subspace of
the SLð2;CÞ representation, thus trivializing the integrals
in the definition of f.

As a consequence of this theorem, the SUð2Þ-invariant
boundary space H LQG is naturally mapped into the

SUð2Þ-invariant tensor product of spaces K at each link:

c ½�;jl;in�ðhlÞ ¼ �lD
jlðhlÞ � in � ~c ½�;jl;in�ðglÞ

¼ �lD
�jl;jlðglÞ � in;

where in are SUð2Þ intertwiners, and contraction over the
magnetic indices is tacitly assumed.

V. LORENTZ COVARIANCE

The point of our main interest is the restoration of
manifest local Lorentz covariance of the boundary space.
In classical general relativity, spacetime is assumed to be a
pseudo-Riemannian manifold, and a Minkowksi metric is
defined on the tangent space of each spacetime point.
The Lorentz group SOð3; 1Þ is the symmetry group of
Minkowski space, and in this sense the dynamics of gen-
eral relativity is locally Lorentz invariant. The symmetry is
manifest in the tetrad formalism, where the gravitational
field is described by a one form with values in Minkowski
space, and the GR action is invariant under local Lorentz
transformations in this space.

In the physical theory, then, SLð2;CÞ represents the
covering group of the part connected to the identity,
SO0ð3; 1Þ, of the group of the local Lorentz transformation,
while SUð2Þ represents the covering group of the SOð3Þ
group of rotations of the physical space defined by a certain
Lorentz frame. If we view SUð2Þ and SLð2;CÞ as groups of
matrices, then SUð2Þ is naturally a subgroup of SLð2;CÞ.
Let us call xo this canonical embedding: xoðhÞ ¼ h. From
the point of view of physics, on the other hand, there is no
preferred embedding of the abstract group SUð2Þ into the
abstract group SLð2;CÞ. If we select a unit timelike vector
x on the hyperboloid H3, namely, a local Lorentz frame,
then the subgroup SOð3Þx � SO0ð3; 1Þ that leaves x invari-
ant defines the group of rotations of physical space. The
canonical embedding as matrix groups, xo, simply corre-
sponds to a special choice of vector. Hence, there is an

H3-worth of isomorphisms, which we also denote by x, of
SUð2Þ into SLð2;CÞ: one per each possible state of motion
of an observer at a spacetime point. Calling SUð2Þx the
image of x, we have the embeddings

hx ¼ xðhÞ 2 SUð2Þx � SLð2;CÞ: (26)

Fixing a reference vector, say xo ¼ ð1; 0; 0; 0Þ in some
coordinates, each x defines a Lorentz transformation �x

which is a pure boost and sends xo to x. Clearly,

hx ¼ �xh�
�1
x : (27)

Furthermore, one can also consider more general em-
beddings h ! hxx0 , of the form

hxx0 ¼ �xh�
�1
x0 ; (28)

where x and x0 may be different. Such embeddings are
motivated if we view h as the parallel transport between
two points, and �x, �x0 as gauge transformations. The
image SUð2Þxx0 of this map is a subgroup only if x ¼ x0.
Given one of these embeddings from SUð2Þ into

SLð2;CÞ, we have immediately a map from functions on
SLð2;CÞ to functions on SUð2Þ, simply obtained restricting
the former to the image of the map.
The Dupuis-Livine map is also defined for such arbitrary

embeddings h � hxx0 . We have

fxx0 : c � ~c xx0 ; (29)

with

~c xx0 ðgÞ ¼
Z
SUð2Þ

dhKxx0 ðg; hÞc ðhÞ; (30)

and the kernel given by

Kxx0 ðg; hÞ ¼
X
j

d2j

Z
SUð2Þ

dk��j;jðgkxx0 Þ�jðkhÞ:

Here we have already fixed the degree of the map that is
relevant for quantum general relativity.
As before, one can easily check the projection property

ðfxx0c ÞjSUð2Þxx0 ¼ c : (31)

The image of fxx0 is formed by a linear subspace Kxx0 of
the space of functions on SLð2;CÞ characterized by the
property

~c xx0 ðgÞ ¼
Z
SUð2Þ

dhKxx0 ðg; hÞ ~c xx0 ðhx0xÞ: (32)

These functions are determined by their restriction on
SUð2Þx0x, and the space of these functions is still isomor-
phic to L2½SUð2Þ�. They have the form

~c xx0 ðgÞ ¼
X
jmn

djc jmnD
�j;j
jm;jnð��1

x0 g�xÞ: (33)

FIG. 1. A two-complex with one bulk vertex.
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Notice now that the transition amplitudes (22) are de-
fined in terms of the embedding xo of SUð2Þ into SLð2;CÞ.
But we have observed that from the point of view of
physics the two groups are abstract groups and there is
no preferred embedding. Disregarding this fact leads to a
formulation of the theory in which a certain Lorentz gauge
has been chosen at each point. Let us instead look for a
formulation where the covariance under the choice of this
gauge is left explicit. For this, pick a unit timelike vector xe
at each edge of the 2-complex, and generalize the defini-
tion of the transition amplitudes (22) to the form

~ZC;xeðglÞ ¼ same as ð22Þ with gef given by

gef ¼
�geseðhefÞxeg�1

ete for internal edges;

ðhlÞxsðlÞxtðlÞ for boundary edges:

It is then immediate to derive the second key result.
Theorem 2: ~ZC;xeðglÞ is independent from all xe where e

is a bulk edge. This follows trivially from the fact that all
�x group elements can be reabsorbed into the SLð2;CÞ
integrations. This is a simple but important result, because
it shows explicitly that the dynamics of the theory is
Lorentz invariant in the bulk.

Hence, the transition amplitudes depend only on the x’s
on the boundary edges. Since there is one of these per each
node n of the boundary graph, it is convenient to write
~ZC;xeðglÞ in the form ~ZC;xnðglÞ.
Finally, we can study the covariance properties of the

amplitude.
Theorem 3: Under a local Lorentz transformations on

the boundary, the transition amplitudes transform in the
following way

~Z C;�nxnðglÞ ¼ ~ZC;xnð�slgl�tlÞ; (34)

where sl and tl are the source and target of the link l.
The result is a direct consequence of the transformation
properties of projected spin networks. This is the correct
covariance property of the SLð2;CÞ holonomy under gauge
transformations.

VI. CONCLUSION

We have studied the covariance properties of the LQG
transition amplitudes under local Lorentz transformations.
We have shown that the amplitudes are invariant under
local gauge transformations in the bulk (Theorem 2). On
the boundary, there exists a manifestly Lorentz covariant
formalism, given by a certain class of ‘‘projected spin
networks.’’

The Dupuis-Livine map that sends LQG boundary states
into projected spin networks trivializes for the transition
amplitudes, in the sense that these amplitudes are in fact
naturally defined as SLð2;CÞ functions that satisfy the
condition defining the relevant class of projected spin
networks (Theorem 1). It follows immediately that the

transition amplitudes transform properly under local gauge
transformations on the boundary (Theorem 3).
The restriction to a special class of projected spin

networks is motivated by the simplicity constraints.
Remarkably, the same space K can be obtained from a
canonical quantization, as discussed by Wieland in a paper
that is appearing at the same time with this one [17].
Wieland’s results can be interpreted as follows. Start
from the Holst action

S½e;!� ¼
Z �

ðe ^ eÞ� þ 1

�
ðe ^ eÞ

�
^ F½!� (35)

and fix the time gauge obtained demanding that the re-
striction of e to the boundary satisfies ne ¼ 0, where n is a
scalar with values in Minkowski space. The momentum
conjugate to ! is immediately read out of the action:

� ¼ ðe ^ eÞ� þ 1

�
ðe ^ eÞ: (36)

In the time gauge, it satisfies

K :¼ n�¼ ðe^ eÞ�; L :¼�n�� ¼� 1

�
ðe^ eÞ�; (37)

where K and L are its electric and magnetic components in
the time gauge. The linear simplicty constraint (15) follows
immediately. Notice that SLð2;CÞ has a natural complex
structure and we can define the complex variables

� ¼ K þ iL and �� ¼ K � iL. Then (15) can be inter-
preted as a reality condition. If we quantize the theory in
terms of SLð2;CÞ cylindrical functions, then � becomes
the SLð2;CÞ generator, and we can impose (15) simply
by choosing a scalar product with respect to which this
reality condition is realized. On the space of functions on
SLð2;CÞ, the scalar product (13) is precisely a solution to
this problem, and defines K. Thus the same K we have
derived here from the spinfoam amplitudes can also be
obtained via straightforward canonical quantization of the
Holst action, using the old idea of implementing the reality
conditions as the conditions that determine the scalar prod-
uct (see e.g. [30]).
The possibility of a Lorenz covariant formulation of spin

networks has been extensively studied by Alexandrov in
[12–14], where several of the results presented here can be
already found, framed in a different context. See also [31].
In summary, the dynamical diffeomorphism invariant

quantum field theory defined by the transition amplitudes
(22) appears to be fully consistent with the local Lorentz
invariance of general relativity.
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