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We have studied the nonlinear structure formation of the environmentally dependent dilaton model

using N-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density

regions works very well. Within the parameter space allowed by the solar-system tests, the dilaton model

predicts small deviations of the matter power spectrum and the mass function from their �CDM

counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.
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I. INTRODUCTION

Modifying gravity on large scales is one of the plausible
ways of explaining the recent acceleration of the expansion
of the universe. So far, the construction of valid models
of modified gravity has been fraught with difficulties.
The most serious one is already present in the original
Pauli-Fierz formulation of massive gravity [1] and involves
the existence of a ghost in curved backgrounds.1 This
phenomenon seems to be generic as suggested by
Ostrograski’s theorem[3] which states that higher deriva-
tive theories have a Hamiltonian which is unbounded from
below. Higher dimensional versions of modified gravity
such as theDvali-Gabadadze-Porratti model [4] also suffer
from the presence of a ghost in their spectrum at low
energy. This problem is nicely avoided in fðRÞ models
[5] which turn out to be equivalent to a particular type of
scalar-tensor theories [6]. In these models, the compatibil-
ity with solar system and laboratory tests of gravity is not
straightforward and can only be achieved thanks to the so-
called chameleon mechanism [7–12]. Indeed, the existence
of a nearly massless scalar field on cosmological scales
could jeopardize gravity locally. This issue is common to
all known models of dark energy coupled to matter [13]. In
a large class of dark-energy models involving a linear
coupling to matter and a nonlinear potential, the chame-
leon mechanism, whereby the scalar-field mass becomes
dependent on the ambient environment, would be sufficient
to hide away the field locally. Similarly, in models of
gravity such as the Dvali-Gabadadze-Porratti or Galileon
[14,15] theories for which a shift symmetry only allow for
nonlinearities in the scalar-field kinetic terms, the

Vainshtein mechanism [16] can be at play and prevent
the existence of a fifth force locally. In this paper, we
will focus on a different type of models involving a scalar
field. These models are inspired from the string dilaton in
the strong coupling regime [17–19]. Their gravitational
validity relies on an environmentally dependent form of
the Damour-Polyakov mechanism [20] whereby the cou-
pling to matter is driven to vanish cosmologically. Here,
the coupling to matter is negligible in dense regions and in
the vicinity of dense bodies. This prevents the existence of
a fifth force in galaxies. Constraints on the parameter space
of these models springing from local tests of gravity have
already been obtained in [21]. Here we will study the
cosmology of these models in the nonlinear regime when
structures form (see [22] for an analysis of the bispectrum
of matter distribution in this model and [23–26] for similar
nonlinear simulations for some other related models). This
requires large computer simulations. As a result, we have
access to nonlinear properties of the dilaton models such as
the nonlinear power spectrum or the number of dark matter
halos for a given mass. Moreover we will be able to probe
how much the local tests of gravity constrain large-scale
structure formation and deviations from general relativity.
We find that the dilaton models differ from general rela-
tivity at most at the level of a few percent once the local
(i.e. solar-system) constraints have been imposed.
Although possibly detectable in principle, observing such
small deviations will be challenging in the near future.
The arrangement of this paper is as follows: in Sec. II we

briefly review the dilaton model under study and derive the
field equations in the Newtonian limit, which are relevant
for the study of structure formation on subhorizon scales
and at late times. In Sec. III we describe the algorithm and
code of our N-body simulations, and perform relevant tests
of the code. More technical details are given in the appen-
dices. The numerical results and their analysis are summa-
rized in Sec. IV and finally we conclude in Sec. V. The
metric convention is ð�;þ;þ;þÞ and we use c ¼ 1 unless
stated otherwise.
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II. THE ENVIRONMENTALLY
DEPENDENT DILATON

In this section we very briefly summarize the essential
ingredients of the environmentally dependent dilaton
model, which will be used for the simulations and discus-
sions below. For more details about the model the reader is
referred to [21].

A. The model

The dilaton model is fully specified by the following
Einstein-Hilbert action in the Einstein frame:

S ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
R

2�2
� k2ð’Þ

�2
ra’ra’� Vð’Þ

�

þ Smð�i; A
2ð’Þgab;’Þ; (1)

in which g is the determinant of the metric gab, �
2 � 8�G

withG the gravitational constant, ’ is the dilaton field, and
Vð’Þ its potential, which is derived from string theory in
the strong coupling limit. In the matter action Sm, �i

collectively represents the matter fields and A2ð’Þgab is
the metric governing the geodesics of matter particles. In
the Einstein frame, the particles feel an extra, or fifth, force
whose strength is determined by the coupling function
�ð’Þ � ½lnAð’Þ�;’ where a comma denotes partial differ-

entiation. The function kð’Þ is given by

kð’Þ � ��1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2�2’

q
(2)

where � is a constant. Throughout this paper Latin indices
a; b; c; . . . run over 0, 1, 2, 3 and Greek indices�;�; . . . run
over 1, 2, 3.

Varying the action with respect to the metric gab, we
obtain the total energy-momentum tensor of the model,

�2Tab ¼ �2Að’ÞTm
ab � �2gabVð’Þ

þ k2ð’Þ½2ra’rb’� gabrc’rc’� (3)

where Tm
ab is the energy-momentum tensor for fluid matter,

i.e., baryons, radiation and cold dark matter (CDM). Note
that there is a factor Að’Þ in front of Tm

ab. T
ab
m is not, in

general, conserved but instead

raT
ab
m ¼ A;’ð’Þ

Að’Þ ½Tmrb�� Tab
m ra��: (4)

For pressureless dust, where Tab
m ¼ �mu

aub, uau
a ¼ �1,

Eq. (4) implies that the usual continuity equation holds,
rað�mu

aÞ ¼ 0, and hence �m is conserved. In a
Robertson-Walker spacetime, this means that the usual
conservation equation for matter still holds:

_��m þ 3H ��m ¼ 0; (5)

in which _� d=dt, subscript m denotes matter, H ¼ _a=a is
the background expansion rate with a the scale factor, and
an overbar stands for the background value of a physical

quantity. The gravitational field equation, or Einstein’s
equation, is given as usual:

Gab � Rab � 1
2gabR ¼ �2Tab; (6)

whereGab, Rab and R are, respectively, the Einstein tensor,
Ricci tensor and Ricci scalar.
Varying the action with respect to the scalar field ’, we

obtain its equation of motion:

ra½kð’Þra’� ¼ 4�G

kð’Þ ½�Vð’Þ��ð’ÞðAð’ÞTm� 4Vð’ÞÞ�
(7)

where Tm is the trace of Tm
ab. The energy-momentum tensor

of an individual particle with mass m0 at position r0 is
given by

Tab
m ðrÞ ¼ m0ffiffiffiffiffiffiffi�g

p �ðr� r0Þ _ra0 _rb0 ; (8)

where r is the general spatial coordinate. Using the Bianchi
identity we get

€r a
0 þ �a

bc _r
b
0 _r

c
0 ¼ ��ð’Þra’� �ð’Þ _’ _ra0 ; (9)

in which �a
bc is the Levi-Civita connection. Clearly, if

� ¼ 0 then this reduces to the geodesic equation in general
relativity, as expected.
Equations (6), (3), (7), and (9) contain all the physics for

the analysis below, though to implement them in N-body
simulations we still have to simplify them using appropri-
ate approximations. These will be carried out below.
In this paper, we focus on the particular model of [21],

which is motivated from string theory, specified by

Að’Þ ¼ 1þ 1
2A2ð’� ’0Þ2; (10)

�ð’Þ ¼ A2ð’� ’0Þ; (11)

k2ð’Þ ¼ 3A2
2ð’� ’0Þ2 þ ��2; (12)

Vð’Þ ¼ A4ð’ÞV0e
�’ (13)

where A2 � 1 is a parameter and ’0 is the current back-
ground value of ’. V0 is another parameter of mass dimen-
sion four. Because the potential is exponential, we are free
to shift the value of ’ so that ’0 ¼ 0. Clearly Vc ¼
V0e

�’0 ¼ V0 should be chosen carefully so that it can
play the role of dark energy today. Both the parameters
A2 and � are crucially constrained by local tests. In the
numerical simulations, we will choose values of the pa-
rameters which are on the verge of the allowed parameter
space in order to enhance the possible effects on large
scales.

B. Nonrelativistic Limit

Equations (6), (3), (7), and (9) are general relativistic
equations. To implement them into N-body simulations for
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large-scale structure formation, it suffices to work in the
nonrelativistic limits, since the simulations only probe
weak-gravity regime and small volumes compared with
the cosmos.

We write the perturbed metric in the conformal
Newtonian gauge as

ds2 ¼ �a2ð1þ 2�Þd	2 þ a2ð1� 2c Þ
��dx
�dx� (14)

where 	, x� are, respectively, the conformal time and
comoving coordinate, 
�� is the metric of a three-

dimensional Euclidean space, and �, c respectively the
Newtonian potential and the perturbation to the spatial
curvature. For completeness, we list the expressions of
the components of Gab in terms of the metric variables
using our convention in Appendix A. Note that j�j and jc j
are at most of order 10�4 in galaxy clusters, which justifies
a linearization of the metric and correspondingly of the
left-hand side of the Poisson equation as given in Eq. (19)
below. The matter density perturbation, on the other hand,
could be of order unity or even much bigger, and is there-
fore in the nonlinear regime. The N-body simulations here
and in the literature (see e.g., [27–30]) are considered as
nonlinear not because they solve the fully nonlinear equa-
tion of the gravitational potential, but because the two
conservation equations of matter, as given in Eqs. (21) and
(22), contain higher order terms in the density perturbation
and peculiar velocity (see, e.g., Eqs. (2.1) of Ref. [31]).

Let us first look at the scalar field equation of motion
Eq. (7). For this, we define 
 such that ra
 ¼ kð’Þra’,
and write ra½kð’Þra’� to first order in the metric pertur-
bation variables as

a2ra½kð’Þra’� � �ð1� 2�Þ
00 þ r2
x


� 
0
�
2
a0

a
ð1� 2�Þ � ð�0 þ 3c 0Þ

�

where 0 � d=d	, and rx is the derivative with respect to
the comoving coordinate x. Substituting this expression
into Eq. (7), and removing the background equation of
motion

½kð �’Þ �’0�0 þ 2
a0

a
kð �’Þ �’0 ¼ 4�Ga2

kð �’Þ ½Vð �’Þ � �ð �’ÞðAð �’Þ ��m

þ 4Vð �’ÞÞ�; (15)

we obtain the perturbation part of this equation:

rx � ½kð’Þrx’�

� 4�Ga2

kð’Þ f�ð’Þ½Að’Þ�m þ 4Vð’Þ� � Vð’Þg

� 4�Ga2

kð �’Þ f�ð �’Þ½Að �’Þ ��m þ 4Vð �’Þ� � Vð �’Þg: (16)

Note that in the above derivation we have dropped terms

such as �0, c 0 and a0
a �, since we are working in the

quasistatic limit in which the time derivative of a quantity

is much smaller than its spatial gradient, i.e.,
jrx�j � j�0j.
Using the expressions given in Appendix A, we can

write the 00-component of the Ricci scalar as

a2R0
0 � �r2

x�þ 3

�
a00

a
�

�
a0

a

�
2
�
ð1� 2�Þ � 3c 00

� 3ð1� 2�Þ a
0

a
ð�0 þ c 0Þ

again up to first order in the perturbed metric variables.
Similarly,

8�GT��8�G½Að’Þ�mþ4Vð’Þ�þk2ð’Þ 2
a2

ð1�2�Þ’02

where T is the trace of the total energy-momentum tensor.
Then the 00-component of the Einstein equation

Rab ¼ 8�GðTab � 1
2gabTÞ; (17)

with the background part, i.e., the Raychaudhuri equation,

3

�
a00

a
�

�
a0

a

�
2
�
¼ �4�GAð �’Þ ��ma

2 � 2k2ð �’Þ �’02

þ 8�GVð �’Þa2 (18)

removed, can be written as

r2
x� � 4�G½Að’Þ�m � Að �’Þ ��m�a3

� 8�G½Vð’Þ � Vð �’Þ�a3; (19)

where we have defined � � a� for convenience.
Finally, for the equation of motion of matter particles,

Eq. (9), using the relationship between physical coordi-
nates r and comoving distance x, we can rewrite it as

€xþ 2
_a

a
_x ¼ � 1

a3
rx�� 1

a3
rxða’Þ � � _’ _x : (20)

Defining the conjugate momentum to x as p ¼ a2 _x, this
equation could be decomposed as

dx

dt
¼ p

a2
; (21)

dp

dt
¼ � 1

a
rx�� 1

a
�ð’Þrxða’Þ � �ð’Þ _’p: (22)

Note that there are two components of the fifth force, as
discussed in [25]
Equations (16), (19), (21), and (22) are all that we need

to put into the N-body simulation code to study structure
formation in the nonlinear regime. Before that we have to
discretize these equations and write them using code units,
so that they can be applied on a mesh with finite grid
size. These lengthy expressions are given in Appendix B,
where we also discuss the subtleties in the numerical
implementation.
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III. THE N-BODY SIMULATIONS

In this section we briefly describe the algorithm and
model specifications of the N-body simulations we have
performed. We also give results for the tests of the code,
which show that the scalar-field solver works quite well.

A. Outline of the simulation algorithm

For our simulations we have used a modified version of
the publicly-available N-body code MLAPM [27]. The mod-
ifications we have made follow the detailed prescription of
Ref. [25], and here we only give a brief description.

The MLAPM code has two sets of meshes: the first
includes a series of increasingly refined regular meshes
covering the whole cubic simulation box, with respectively
4; 8; 16; � � � ; Nd cells on each side, where Nd is the size of
the domain grid, which is the most refined of these regular
meshes. This set of meshes are needed to solve the Poisson
equation using multigrid method or fast Fourier transform
(for the latter only the domain grid is necessary). When the
particle density in a cell exceeds a predefined threshold, the
cell is further refined into eight equally sized cubic cells;
the refinement is done on a cell-by-cell basis and the
resulting refinement could have arbitrary shape which
matches the true equal-density contours of the matter
distribution. This second set of meshes are used to solve
the Poisson equation using the linear Gauss-Seidel relaxa-
tion scheme.

The dilaton field is the most important ingredient in the
model studied here, and we have to solve it to obtain
detailed information about the fifth force. In our N-body
code, we have added a new scalar-field solver which is
based on Eqs. (B13)–(B16). It uses a nonlinear Gauss-
Seidel scheme for the relaxation iteration and the same
criterion for convergence as the default Poisson solver in
MLAPM. But it uses V-cycle [32] instead of the self-

adaptive scheme in arranging the Gauss-Seidel iterations.
The value of u (see definition in Appendix B) solved in

this way is then used to calculate the total energy density
including that of the scalar field, and this completes the
computation of the source term to the modified Poisson
equation. The latter is then solved using fast Fourier trans-
form on the domain grid and Gauss-Seidel relaxation on
refinements, according to Eq. (B18).

With the gravitational potential � and the scalar field u
at hand, we can use Eq. (B20) to evaluate the total force on
the particles and update their momenta/velocities. Then
Eq. (B19) is used to advance the particles in space.

For more details about the implementation see [25].

B. Simulation details

The physical parameters we use in the simulations are as
follows: the present dark-energy fractional energy density
�� ¼ 0:743 and �m ¼ 0:257, H0 ¼ 71:9 km=s=Mpc,
ns ¼ 0:963 and �8 ¼ 0:769. We use two sets of simulation

box which have sizes of 32h�1 Mpc and 64h�1 Mpc re-
spectively, in which h ¼ H0=ð100 km=s=MpcÞ. We simu-
late four models, with parameters ðA2; �Þ ¼ ð4� 106; 2Þ,
(4� 105, 10), (2� 105, 100) and (2� 106, 30). These
parameters are chosen so that they predict local fifth forces
which are allowed by current experiments and observa-
tions.2 In all those simulations, the particle number is 2563,
so that the mass resolution is 1:114� 109h�1 M� for the
64h�1 Mpc simulations and 1:393� 108h�1 M� for
the 32h�1 Mpc simulations. The domain grid is a
128� 128� 128 cubic and the finest refined grids have
16 384 cells on each side, corresponding to a force resolu-
tion of about 12h�1 kpc and 6h�1 kpc respectively for the
two sets of simulations. The force resolution determines
the smallest scale on which the numerical results are
reliable. We have also run a �CDM simulation with the
same physical parameters.
Our simulations are purely N-body, which means that

baryonic physics has not been included in the numerical
code. We use the same initial conditions for the dilaton and
the �CDM simulations, because before the initial redshift
zi ¼ 49 the fifth force is strongly suppressed so that the
effect of the dilaton on the matter power spectrum is
negligible.

C. Code tests

Before displaying the numerical results from theN-body
simulations, we show some evidence that our numerical
procedure works correctly. As our modification to the
default MLAPM code is only in the scalar-field part, we
focus on tests of the scalar-field solver and the fifth force
only.
The scalar-field solver uses the nonlinear Gauss-Seidel

relaxation scheme to compute �, and an indicator that it
works is to show that, given the initial guess of the solution
that is very different from the true solution, the relaxation
could produce the latter within a reasonable number of
iterations. Consider a simulation box with homogeneous
density, then the true solution to�,�th, could be calculated
analytically. We therefore make an initial guess for �
which is randomly scattered around �th and let the scalar
solver try to recover�th. In Fig. 1 we have shown j�� �thj
before (symbols) and after (curve) the relaxation: as can be
seen there, before the relaxation the difference between the
initial guess � and �th is of order 0.01, while after the
relaxation it reduces to 10�6. Note that 10�6 corresponds
to the error caused by using floating-point numbers, and as
a result this shows that the scalar solver works accurately.
As a second test of the scalar-field solver, consider

having a point mass at the origin x ¼ y ¼ z ¼ 0 and the

2The values are taken from near the boundary of the allowed
region in the parameter space in Fig. 1 of [21]. As a result we
expect that they should give us the biggest effect on large-scale
structure while satisfying constraint from local experiments.

BRAX et al. PHYSICAL REVIEW D 83, 104026 (2011)

104026-4



vacuum density otherwise. This could be achieved by fill-
ing the densities in the cells of the simulation grid accord-
ing to [30]

�c ¼ 10�4N3
d (23)

for the cell with i ¼ j ¼ k ¼ 0, in which Nd is the number
of cells on each side of the domain grid, and �c ¼ 10�4 for
all other cells.

Outside the particle it is the vacuum, in which the scalar-
field equation of motion can be approximately linearized as

r2
x�� � 8�GV0A2a

2 3
��ð1� 2 ��Þ þ 2��2

ð3 ��2 þ ��2Þ2 ��; (24)

where we remind the reader that � ¼ A2’ [see Eq. (10)
with ’0 ¼ 0], and �� � �� ��. �� is the background
value of �, which can be analytically calculated as [21]

�� ¼ ��a
3

�m þ 4��a
3
: (25)

Using the code units (see Appendix B), this can be
written as

r2�� � m2
eff�� (26)

with

m2
eff ¼

ðBH0Þ2
ac2

3��a
3A2

3 ��ð1� 2 ��Þ þ 2��2

ð3 ��2 þ ��2Þ2 ��: (27)

Here B is the box size of the simulation box, and c is the
speed of light, which we have restored to make the dimen-
sion explicit. The analytic solution is thus

��ðrÞ ¼ C

r
e�meffr (28)

where C is some constant determined by the value of the
point mass and r the distance from the origin. Because C is
unknown, we fix its value by requiring that Eq. (28) be
equal to the numerical solution at r ¼ 10h�1 Mpc.
The normalized analytical solution to � is shown as the

continuous curve in Fig. 2, while the numerical solutions
are shown as symbols. We see that the two agree over a
wide range of r (note that j��j changes by several orders of
magnitude). Note that when r is small the agreement is not
perfect, because linearization does not work very well near
the high-density region; meanwhile, for very big r the
value of j��j drops below Oð10�6Þ and numerical error
due to using floating-point numbers becomes important.
Also note that plotted here is��� as �� itself is negative.
This can be understood as follows: � characterizes the
strength of the fifth force and due to the environment-
dependence it is suppressed in high-density regions (near
the point particle in this case) where it becomes smaller
than its background value in the vacuum. As one goes
farther away from the particle� approaches its background
value and �� vanishes.
In summary, Figs. 1 and 2 show that our scalar solver

works well. Below, we also show that the fifth force agrees
with analytic approximations in certain regimes.

IV. NUMERICAL RESULTS

In this section, we shall present our simulation results,
including the snapshots, the matter power spectrum and the
halo mass function.

FIG. 1. A first test of the scalar-field solver. For this test we use
a simulation box of 256h�1 Mpc on each side, and set the
density field to be homogeneous in the box. The exact value
of �, �th, is known analytically. The differences between �th the
initial guess of � in the grid cells along the x axis are shown as
symbols, while that between �th and the � after relaxation are
shown as the continuous curve. Clearly the relaxation works
accurately.

FIG. 2. A second test of the scalar-field solver. For this test we
use a simulation box of 128h�1 Mpc on each side, and set the
density field to be the equivalent of having a point mass at
x ¼ y ¼ z ¼ 0 and zero otherwise. Far from the point mass, the
solution to � can be approximately solved analytically (the
continuous curve). The symbols show the results for � from
the numerical code. The two show good agreement in a wide
range of x.
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A. Snapshots

As we have seen, in the dilaton model � and thus the
fifth force is suppressed in high-density regions. In this
subsection we demonstrate these qualitative features using
some snapshots.

Figure 3 shows the comparison of the magnitudes of the
fifth force and gravity for the four models we have con-
sidered, at three different output times a ¼ 0:2, 0.5 and 1.0.
For this, we pick out a thin slice from the middle of the
z ¼ 16h�1 Mpc simulation box, and compute the fifth
force and gravity on the particles within that slice.

At early times, the density is high everywhere and we
expect the fifth force on all particles in all the four models
to be strongly suppressed, and this is confirmed by the first
row of Fig. 3, which shows that the fifth force is much
weaker than gravity. Note that the degree of suppression of
the fifth force is dependent on the value of A2: the larger A2

is, the more the fifth force is suppressed. Also, the fifth
force is weaker in higher density regions (where gravity is
stronger) than in lower density regions (where gravity is
weaker), showing a strong dependence on the environment.
As the Universe expands, the overall density decreases

and the fifth force becomes stronger, which could be seen
in the lower rows of Fig. 3. If there is no suppression on the
fifth force, then its strength should be

� ¼
��2

3 ��2 þ ��2
(29)

times that of gravity [21]. For comparison, in the lowest
row (a ¼ 1) we have over-plotted � times gravity as
continuous curves. We can see that in the model with
smaller A2 (the middle two columns) Eq. (29) gives a
relatively good description of the fifth force at least in
some regions. But for the models with big A2 (the first

FIG. 3. The magnitude of the fifth force (the vertical axis) versus that of gravity (the horizontal axis), for the particles (black points)
selected from a thin slice of the 32h�1 Mpc simulation box. We show this for the four models we have simulated and at three different
output times, as given in the subtitle of each panel. Note that both forces are expressed using the internal unit (see Appendix B), which
is H2

0=B times the physical force unit.
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and fourth columns) the fifth force is strongly suppressed
even today.

Since � determines the strength of the fifth force
[cf. Eq. (9)], we are also interested in it. Figure 4 shows
the values of � as a function of position in the same
slices as Fig. 3. As expected, at very early times
(a ¼ 0:2) � 	 1 because the fifth force is strongly sup-
pressed. As the Universe expands, � increases (the color
on the points becomes blue rather than black), but in the
high-density regions � remains very small. Also, for
the models with big A2 (the first and fourth columns) the
values of � in high and low-density regions tend to have
stronger contrast, showing stronger environment depen-
dence. This is clearer in the third row, which shows the
result at a ¼ 1:0. This is consistent with what we have seen
in Fig. 3.

B. Matter power spectrum

The nonlinear matter power spectrum is an important
structure formation observable and could be used to distin-
guish amongst different structure formation scenarios. In
Ref. [21] it has been shown that the growth rate of linear
matter density perturbations in the dilaton model differs
from that of�CDM only slightly, and therefore the dilaton
model (with its parameters constrained by solar-system
tests) does not deviate at more than the percent level from
�CDM in practice. On the other hand, the fifth force in the
dilaton model has a finite range and is expected to only take
effect on the scales of galaxy clusters (
OðMpcÞ) and
smaller, which already fall into the nonlinear regime. We
are therefore interested in seeing how the fifth force affects
the growth of density perturbations on these scales.

FIG. 4 (color online). The color scale plot of the value of � as a function of coordinates x, y, for the same thin slice of the 32h�1 Mpc
simulation box as in Fig. 3. We show this for the four models we have simulated and at three different output times, as given in the
subtitle of each panel. Each point represents a particle, and the color of the point depends on the value of � at the position of that
particle: for all the panels the lightest color (white) denotes � ¼ 0:3 and the darkest color (black) denotes � ¼ 10�7; the blue color is
interpolated linearly between these two extremes.
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Figure 5 displays the fractional difference of the dilaton
nonlinear matter power spectrum from that of the �CDM
model, defined as ðPðkÞ � P�CDMðkÞÞ=P�CDMðkÞ. From
this we can see that the difference is strongly suppressed
even on small scales where the fifth force is expected to
take effect. This is different from the linear perturbation
prediction of [21] (cf. Fig. 3 therein), which shows that the
growth rate of density perturbation on small scales is
significantly higher than that on large scales. The reason
for this is that by linearizing the scalar-field equation, the
nonlinearity of the dilaton model, which is the very mecha-
nism that suppresses the fifth force in high-density regions,
is artificially removed (at least partially), and the strength
of the fifth force is determined by the average, instead of
the local, matter density. In contrast, the N-body simula-
tion overcomes this problem by taking full account of the
suppression of the fifth force.

The results indicate that it is even more difficult to use
the nonlinear matter power spectrum to constrain the

dilaton model or distinguish it from �CDM as the differ-
ences to the�CDM power spectrum are only a few percent
on very small length scales at late times.

C. Mass function

The halo mass function is another key structure forma-
tion observable. It is defined to be the number density of
dark matter halos within a given mass range. Clearly, in
case of a fifth force which could boost the clustering of
matter, we expect more halos to form. In Fig. 6 we have
shown the mass functions of the dilaton models compared
with that of�CDM, at z ¼ 0. Although the dilaton models
do have higher mass functions than �CDM, especially for
small halos which generally live in low-density regions
where the fifth force is less suppressed, the differences are
again very small, making all these models hard to distin-
guish in practice at present and a challenge for future
surveys.

FIG. 5 (color online). The fractional difference between the dilaton and �CDM nonlinear matter power spectra, which is defined
to be ðPðkÞ � P�CDMðkÞÞ=P�CDMðkÞ. The black, green, pink, and purple curves are, respectively, for the models with ðA2; �Þ ¼
ð4� 106; 2Þ, (4� 105, 10), (2� 105, 100) and (2� 106, 30). The four panels (upper-left, upper-right, lower-left and lower-right) are
results at a ¼ 0:3, 0.5, 0.7 and 1.0.
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D. Halo profile of �

In Fig. 7 we show the profile of � inside the dark matter
halos, which are assumed to be spherical. Because �
characterizes the strength of the fifth force, this can also
provide information about the fifth force in halos. We have
selected three halos with different masses (respectively
3:5� 1014, 6:0� 1013 and 1:6� 1013 solar mass) to check
the results.

As can be seen from Fig. 7, � (and thus the strength
of the fifth force) increases from inner to outer regions
of the halos as the matter density is highest and the fifth
force most severely suppressed in the central region.
Furthermore, the fifth force is stronger for smaller halos,
because those generally reside in low-density regions
where the fifth force is less suppressed. However, for all
these selected halos � is at most 
Oð10�2Þ and typically
less than
Oð10�3Þ except near the halo edge, which mean
that well inside the halos (such as where the solar system
is) the fifth force is much weaker than gravity and has
negligible effects (and we have not even included baryons
in the simulations, which are generally much denser than
dark matter in galaxies).

The results are consistent with what we have seen in the
nonlinear matter power spectra and mass functions, all of
them showing that the fifth force has little influence in the
structure formation of the dilaton models (as long as the
solar-system tests are passed).

V. SUMMARYAND CONCLUSION

The dilaton model of [21] is an interesting alternative to
the chameleon models with a different mechanism by
which the fifth force produced by a coupling between
matter and scalar field(s) could be suppressed in high-

density regions. The theory therefore evades all solar sys-
tem constraints while at the same time leaving open the
possibility of significant effects on cosmological scales.
The dilaton model has the advantage of being motivated
from fundamental string theory. Given the parameter space
allowed by local experiments, we have found that the
effects of the fifth force on linear-perturbation evolution
is weak. Here we have studied the possible imprints on the
nonlinear evolution of large-scale structure using N-body
simulations.
By solving the whole nonlinear equation instead of using

linearization, N-body simulations could fully capture the
environment-dependence of the (scalar) dilaton field, and
our results confirm the expectation that the high matter
density in galaxy clusters strongly suppresses the strength
of the fifth force. Consequently, the key cosmological
observables such as the nonlinear matter power spectrum
and mass function of the dilaton model are even closer to
the corresponding �CDM predictions than that suggested
by the linear-perturbation analysis.
These results show that the suppression of the

environment-dependent coupling strength in the dilaton
model is very efficient, and the model in practice satisfies
all the known constraints, from solar system to cosmologi-
cal. On the other hand, this also means that it is difficult to
distinguish the dilaton model from the �CDM paradigm
using the current (and possibly next generation of) cosmo-
logical observations. There may, however, be larger im-
prints of the fifth force in the galaxy clusters which reside
in voids, where the overall density is low and the fifth force
could be as strong as gravity. However, the spatial and
mass resolutions of our simulations do not allow a detailed
analysis of this.
Note that in the simulations of this work we have only

included dark matter but not baryons. However, as long as
the scalar field has a uniform coupling to different matter
species, we expect that all the results will qualitatively
remain. In particular, in the inner regions of the halos,
baryon density is much higher than that of dark matter,
which could further suppress the fifth force compared to
what we have seen in our simulations.
In conclusion, while observationally hard to distinguish

from the �CDM model, the environmentally dependent
dilaton model is a very effective way to shield the dilaton
from observations.
The N-body simulations in this work have been per-

formed using a modified version of the publicly-available
code MLAPM [27], on the COSMOS supercomputer of the
UK. The nonlinear matter power spectrum is measured
using the POWMES code [33].
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FIG. 6 (color online). The mass functions for the �CDM
model (black solid curve), and the four dilation models with
ðA2; �Þ ¼ ð4� 106; 2Þ, (4� 105, 10), (2� 105, 100) and
(2� 106, 30) (the colored curves). All the curves are very close.
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APPENDIX A: USEFUL EXPRESSIONS

Up to first order in the perturbed metric variables �, c ,
the nonzero components of the symmetric Levi-Civita
connection are

�0
00 ¼

a0

a
þ�0; (A1)

�0
0� ¼ �;�; (A2)

��
00 ¼ �;�; (A3)

�
�
0� ¼

�
a0

a
� c 0

�
�
�
� ; (A4)

�0
�� ¼ 
��

�
a0

a
ð1� 2�� 2c Þ � c 0

�
; (A5)

��
�� ¼ �c ;���� � c ;��

�
� þ c ;�
��: (A6)

The components of the Ricci tensor and Ricci scalar up to
first order in �, c are then easy to compute as

R00 ¼ �;�
;� � 3

�
a00

a
�

�
a0

a

�
2
�
þ 3c 00 þ 3

a0

a
ð�0 þ c 0Þ;

(A7)

R0� ¼ 2c 0
;� þ 2

a0

a
�;�; (A8)

R�� ¼ �c 00
�� � a0

a
ð�0 þ 5c 0Þ
�� � c ;�

;�
��

þ
�
a00

a
þ

�
a0

a

�
2
�
ð1� 2�� 2c Þ
�� � ð�� c Þ;��;

(A9)

FIG. 7. The profiles for �ðrÞ in some chosen halos. The diamond, triangle and box represent results for three halos with masses equal
to 3:5� 1014, 6:0� 1013 and 1:6� 1013 h�1M� respectively. The horizontal axis is the distance from the halo center, in unit
of h�1 kpc.
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R ¼ 6

a2
a00

a
ð1� 2�Þ þ 1

a2
ð4c ;�

;� � 2�
;�
;�Þ

� 6

a2

�
c 00 þ a0

a
ð�0 þ 3c 0Þ

�
: (A10)

APPENDIX B: DISCRETIZATION OF EQUATIONS

To implement the nonrelativistic equations into our nu-
merical code, we have to rewrite them using code units,
which are given by

xc ¼ x

B
; pc ¼ p

H0B
; tc ¼ tH0;

�c ¼ �

ðH0BÞ2
; �c ¼ �m

��m

; rc ¼ Brx

(B1)

in which a subscript c denotes code unit, B is the size of the
simulation box and H0 ¼ 100h km=s=Mpc. In what fol-
lows we shall write r ¼ rc for simplicity.

1. Scalar-field equation of motion

Recall that in our model we have chosen ’0 ¼ 0 such
that �ð’Þ ¼ A2’. It is then the same to solve for ’ or to
solve for�. As A2 � 1,� � ’ and sowe shall solve for�
rather than ’ to reduce possible numerical errors. The
equation of motion for � could be obtained simply by
multiplying that for ’ by A2:

rx � ½kð�Þrx��

�4�GA2a
2

kð�Þ ½�fAð�Þ�mþ4Vð�Þ��Vð�Þg

�4�GA2a
2

kð ��Þ ½ ��fAð ��Þ ��mþ4Vð ��Þ��Vð ��Þg; (B2)

where we have used � instead of ’ as the variable.

As discussed in [21], � characterizes the strength of the
fifth force. In high-density environments, � 	 1 so that
the fifth force is too weak to be measured; in low-density
regions, however, we have �
 0:23 today, indicating that
the fifth force is roughly as strong as gravity. Furthermore,
Eq. (B2) does not say anything about the sign of �.
Obviously, because � ranges from Oð10�6Þ to Oð1Þ,

using � directly in the numerical code could easily cause
big numerical errors in the regions where � is small. One
alternative is to use lnð�Þ as a new variable, but this does
not necessarily work because � might be negative.
Therefore, in this work, we shall use a different variable

u � �1=n, with n being some odd positive integer, as the
redefined scalar field. More explicitly, we shall adopt
n ¼ 9 which guarantees that u
Oð0:1–1Þ, i.e., u spans
a much smaller range than �, making it easier to control
numerical errors. Furthermore, n being oddmakes sure that
u is never undefined even if �< 0.
In terms of u, we have

kðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u2n þ ��2

p
; (B3)

AðuÞ ¼ 1þ u2n

2A2

; (B4)

VðuÞ ¼
�
1þ u2n

2A2

�
4
V0 exp

�
� un

A2

�
: (B5)

Then, defining

~� � 8�GV0

3H2
0

; (B6)

and using the code units defined above, we could rewrite
the scalar equation of motion Eq. (B2) as

ac2

ðBH0Þ2
r� ðbruÞ � A2

kðuÞ
��
3

2

�
1þ u2n

2A2

�
�m�cþ 6 ~�a3

�
1þ u2n

2A2

�
4
exp

�
�un

A2

��
un� 3

2
~�a3

�
1þ u2n

2A2

�
4
exp

�
�un

A2

��

� A2

kð ��Þ
��
3

2

�
1þ

��2

2A2

�
�mþ 6~�a3

�
1þ

��2

2A2

�
4
exp

�
�

��

A2

��
��� 3

2
~�a3

�
1þ

��2

2A2

�
4
exp

�
�

��

A2

��
(B7)

where we have defined

bðuÞ ¼ nun�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u2n þ ��2

p
; (B8)

and �� is the background value of �, which can be com-
puted as [21]

�� ¼ ��a
3

�m þ 4��a
3
: (B9)

The full equation for u, Eq. (B7), contains the quantity
r � ðbruÞ. To discretize it, we shall assume that the dis-

cretization is performed on a grid with grid spacing h. We
shall require second order precision which is the same as
the default Poisson solver in MLAPM, and then ru in one
dimension can be written as

ru ! rhuj ¼
ujþ1 � uj�1

2h
(B10)

where a subscript j means that the quantity is evaluated on
the j-th point. The generalization to the three dimensional
case is straightforward.
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The factor b in r � ðbruÞ makes this a standard variable coefficient problem. We need also to discretize b, and do it in
this way (again for one dimension) [23]:

r � ðbruÞ ! 1

h2
½bjþð1=2Þujþ1 � ujðbjþð1=2Þ þ bj�ð1=2ÞÞ þ bj�ð1=2Þuj�1�; (B11)

in which bj�ð1=2Þ ¼ 1
2 ðbj þ bj�1Þ. Generalizing this to three dimensions, we have

r � ðbruÞ ! 1

h2
½biþð1=2Þ;j;kuiþ1;j;k � ui;j;kðbiþð1=2Þ;j;k þ bi�ð1=2Þ;j;kÞ þ bi�ð1=2Þ;j;kui�1;j;k�

þ 1

h2
½bi;jþð1=2Þ;kui;jþ1;k � ui;j;kðbi;jþð1=2Þ;k þ bi;j�ð1=2Þ;kÞ þ bi;j�ð1=2Þ;kui;j�1;k�

þ 1

h2
½bi;j;kþð1=2Þui;j;kþ1 � ui;j;kðbi;j;kþð1=2Þ þ bi;j;k�ð1=2ÞÞ þ bi;j;k�ð1=2Þui;j;k�1�: (B12)

Then the discrete version of Eq. (B7) is

Lhðui;j;kÞ ¼ 0; (B13)

in which

Lhðui;j;kÞ ¼ 1

h2
ac2

ðBH0Þ2
½biþð1=2Þ;j;kuiþ1;j;k � ui;j;kðbiþð1=2Þ;j;k þ bi�ð1=2Þ;j;kÞ þ bi�ð1=2Þ;j;kui�1;j;k�

þ 1

h2
ac2

ðBH0Þ2
½bi;jþð1=2Þ;kui;jþ1;k � ui;j;kðbi;jþð1=2Þ;k þ bi;j�ð1=2Þ;kÞ þ bi;j�ð1=2Þ;kui;j�1;k�

þ 1

h2
ac2

ðBH0Þ2
½bi;j;kþð1=2Þui;j;kþ1 � ui;j;kðbi;j;kþð1=2Þ þ bi;j;k�ð1=2ÞÞ þ bi;j;k�ð1=2Þui;j;k�1�

� A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u2ni;j;k þ ��2

q
�
3

2

�
1þ u2ni;j;k

2A2

�
�m�c þ 6~�a3

�
1þ u2ni;j;k

2A2

�
4
exp

�
�uni;j;k

A2

��
uni;j;k

þ A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u2ni;j;k þ ��2

q 3

2
~�a3

�
1þ u2ni;j;k

2A2

�
4
exp

�
� uni;j;k

A2

�

þ A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 ��2 þ ��2

p
�
3

2

�
1þ

��2

2A2

�
�m þ 6~�a3

�
1þ

��2

2A2

�
4
exp

�
�

��

A2

��
��

� A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 ��2 þ ��2

p 3

2
~�a3

�
1þ

��2

2A2

�
4
exp

�
�

��

A2

�
: (B14)

Then the Newton-Gauss-Seidel iteration says that we can obtain a new (and usually more accurate) solution of u, unewi;j;k,
using our knowledge about the old (and less accurate) solution uoldi;j;k as

unewi;j;k ¼ uoldi;j;k �
Lhðuoldi;j;kÞ

@Lhðuoldi;j;kÞ=@ui;j;k
: (B15)

The old solution will be replaced with the new one once the latter is ready, using a red-black Gauss-Seidel sweeping
scheme. Note that
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@Lhðui;j;kÞ
@ui;j;k

¼ 1

2h2
dðui;j;kÞ ac2

ðBH0Þ2
½uiþ1;j;k þ ui�1;j;k þ ui;jþ1;k þ ui;j�1;k þ ui;j;kþ1 þ ui;j;k�1 � 6ui;j;k�
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2h2
ac2
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(B16)

where we have defined

dðuÞ � dbðuÞ
du

¼ 3nð2n� 1Þu3n�2 þ nðn� 1Þ��2un�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u2n þ ��2

p :

(B17)

In principle, if we start from some high redshift, then the
initial guess of ui;j;k could be chosen as the background

value because we expect that any perturbations should be
small then. For subsequent time steps we can use either the
solution at the last time step or some analytical approxi-
mated solution as the initial guess.

2. Poisson equation

In terms of the newly-defined scalar field u and using the
code units, the modified Poisson equation becomes

r2�c ¼ 3

2
�m

��
1þ u2ni;j;k

2A2

�
�c;i;j;k �

�
1þ

��2

2A2

��

� 3 ~�a3
��
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4
exp

�
�uni;j;k

A2

�

�
�
1þ

��2

2A2

�
4
exp

�
�

��

A2

��
: (B18)

The discretization of r2�c is straightforward and will
not be presented here.

3. Particle equation of motion

Using the code units, Eq. (21) could be easily
rewritten as

dxc

dtc
¼ pc

a2
: (B19)

Similarly, Eq. (22) becomes

dpc

dtc
¼ � 1

a
r�c � 1

a

nu2n�1
i;j;k

A2

ac2

ðBH0Þ2
ru

� 1

A2

uni;j;k
a _�

H0

pc: (B20)
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