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Models with an extra dimension generally contain background scalar fields in a nontrivial configura-

tion, whose stability must be ensured. With gravity present, the extra dimension is warped by the scalars,

and the spin-0 degrees of freedom in the metric mix with the scalar perturbations. Where possible, we

formally solve the coupled Schrödinger equations for the zero modes of these spin-0 perturbations. When

specializing to the case of two scalars with a potential generated by a superpotential, we are able to fully

solve the system. We show how these zero modes can be used to construct a solution matrix, whose

eigenvalues tell whether a normalizable zero mode exists, and how many negative mass modes exist.

These facts are crucial in determining stability of the corresponding background configuration. We

provide examples of the general analysis for domain-wall models of an infinite extra dimension and

domain-wall soft-wall models. For five-dimensional models with two scalars constructed using a super-

potential, we show that a normalizable zero mode survives, even in the presence of warped gravity. Such

models, which are widely used in the literature, are therefore phenomenologically unacceptable.
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I. INTRODUCTION

A plausible way to extend the standard model is to
embed it in one or more extra dimensions. This opens up
a new set of model-building tools which can help to solve a
diverse range of theoretical and phenomenological prob-
lems, as well as yielding distinct collider signatures such as
Kaluza-Klein (KK) modes. Almost all extra-dimensional
models require one or more background scalar fields
in some nontrivial configuration. For example, to generate
a domain-wall which localizes chiral fermions [1], to
stabilize the size of a compact extra dimension [2,3], to
generalize the Randall-Sundrum warped space [4] to a
smoothed-out version [5], or to cut off the extra dimension
at a singularity [6,7]. Domain-wall models, whether they
have an infinite [8] or compact [9] extra dimension, make
heavy use of background scalar configurations as a field-
theoretic substitution for fundamental branes.

Given the ubiquity and necessity of background scalar
fields, it is important to understand both their statics and
dynamics. The problem is best thought about in terms of a
ground state, upon which exist perturbations. We want to
know which particular scalar configurations have the low-
est energy and are stable, and what the perturbations about
a background lead to in terms of effective four-dimensional
(4D) modes. These two issues are closely related. The
existence of negative-mass modes (tachyonic KK modes)
signals an instability of the corresponding background.
Massless modes may also signal an instability [9] or may
be harmless in the case of a translation mode. Positive-
mass modes always exist and their precise spectrum is
what distinguishes these extra-dimensional models at a
particle collider.

For the case of a single scalar field in a flat compact extra
dimension, a general method for determining the lowest
energy configuration has been worked out [10,11]. The
inclusion of gravity in the analysis presents some compli-
cations because of the coupling of the scalar fields to
gravity. This coupling generically warps the extra dimen-
sion [5] and the scalar perturbations mix with the spin-0
degrees of freedom in the metric. For this warped case with
one extra dimension there have been some general stability
analyses with a single background scalar [12,13], and some
initial work on the multiple scalar case [9,14]. For the case
of a single scalar in multiple extra dimensions it has also
been shown that the scalar and metric spin-0 modes mix
[15]. Related analyses determining the spin-0 spectrum of
multiple scalars in 5D have been done in the context of
the anti–de Sitter/conformal field theory correspondence
[16–18]. In particular, an algorithm for computing the
scalar spectrum in general 5D compact models has been
prescribed [19].
Despite the complications introduced by gravity, it is

still possible to find the effective coupled Schrödinger
equations which describe the KKmodes of multiple scalars
in a warped background [9]. It is the aim of the current
paper to, when possible, formally solve this set of
Schrödinger equations for the massless KK modes—the
zero modes—in the case of a 5D bulk with no gravity (flat)
and with gravity (warped). In addition to providing closed
form solutions for the zero modes for a large number of
cases, we shall also discuss how these solutions can be used
to determine if any normalizable zero modes exist and
whether or not the background is perturbatively stable.
Some relevant examples shall be provided.
One reason for studying the zero modes of the system is

that, if they exist, they should play a large role at low
energies in the effective 4D theory. For example, zero*dpgeorge@nikhef.nl
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modes of a 5D fermion are generally used to implement the
fermions of the standard model [8]. When constructing
domain-wall models using scalar background fields in
flat space, one always obtains a spin-0 zero mode corre-
sponding to the broken translation symmetry. This degree
of freedom is not welcome in the effective 4D theory since
we have never observed such a particle, which would
manifest as a ‘‘fifth force.’’ Adding warped gravity can
cure this problem because this removes the translation zero
mode, as shown by Shaposhnikov et al. [20] for the case of
a single background scalar. In this paper this result is
extended to the case of multiple background scalar fields:
the zero mode of translation does not survive, no matter
how many scalars. It is possible though, and we shall give
some explicit examples, that additional scalars introduce
additional zero modes which do survive in the presence of
gravity. Our examples of such models are constructed
using the superpotential approach, and we argue that these
models are phenomenologically unacceptable.

The paper is organized as follows. In Sec. II we first
present the zero mode solutions, for the flat and warped
cases, with general potential V and also specializing to a
superpotential W with N ¼ 2 scalars. For this latter case
we give all four independent zero modes in closed analytic
form. Section III discusses the construction of a solution
matrix, and how its eigenvalues can be used to find normal-
izable zero modes, and to count the number of normal-
izable negative modes. Following this we look in Sec. IV
and V at specific domain-wall models in both an infinite
and a compact extra dimension, and show that zero modes
can survive in the presence of gravity. We conclude in
Sec. VI. The Appendix summarizes the method of reduc-
tion of order for ordinary differential equations.

II. THE ZERO MODE SOLUTIONS

In this section we study spin-0 perturbations of N real
scalar fields in a 5D bulk for both a flat and warped extra
dimension. The scalar fields are assumed to have some
nontrivial background profile along the extra dimension,
such as a kink. The aim is to derive formal solutions for the
extra-dimensional profile of the zero modes, that is, the
massless perturbations around the background. We shall
concentrate mainly on the N ¼ 2 case, and, for part of the
analysis, specialize to potentials V that are generated by a
superpotential W.

Throughout this paper we work with the matter
Lagrangian

L m ¼ � 1

2
gMN@M�i@N�i � Vð�iÞ; (1)

where gMN is the 5D metric with signature ð� þþþþÞ,
�iðx�; yÞ are N scalar fields indexed by i ¼ 1 . . .N, x� is
the 4D subspacetime, y is the coordinate of the extra
dimension, and Vð�iÞ is the scalar potential. Repeated
scalar field indices are always summed over.

Perturbations of the scalar fields around some arbitrary
background are written as

�iðx�; yÞ ¼ �iðyÞ þ ’iðx�; yÞ: (2)

The background profiles �iðyÞ depend only on the extra
dimension, while the perturbations are general functions of
all spacetime coordinates, and are required to be relatively
small: ’i � �i.
From the equations of motion for the scalars one can

obtain N coupled, one-dimensional, time-independent
Schrödinger-like equations for the perturbations.1 The in-
dependent variable of the these equations is the extra
dimension y and the eigenvalue corresponds to the mass
of the KK mode of the perturbation. Where possible, we
shall formally solve this system of coupled Schrödinger
equations for the case of a zero eigenvalue. Since we have
N second order, linear, ordinary differential equations
(ODEs) we expect to obtain 2N linearly independent solu-
tions. These 2N solutions are not necessarily physical (that
is, are not normalizable), but they do form a basis from
which one can construct the unique solution for any given
initial, boundary and/or normalizability conditions. The
zero mode solutions are useful for studying the perturba-
tive stability of the background configuration, as shall be
discussed in Sec. III.

A. Flat case

We analyze first the gravity-free, flat-space scenario
where the action is given simply by S ¼ R

Lmd
4xdy. The

discussion is divided into the case of a general V, and the
case where V is generated by a (fake) superpotentialW.

1. General V

In flat space, the general background equations are

�00
i � Vi ¼ 0; (3)

and the coupled Schrödinger-like equations for the pertur-
bations are

� ’00
i þ Vij’j ¼ h’i: (4)

Prime denotes derivative with respect to y, subscripts i and
j on V denote a derivative with respect to �i and �j, and

h ¼ @�@�. In addition, Vij, which is a function of �i,

must be evaluated on the background solution,�i ¼ �iðyÞ,
where�iðyÞ is a solution to Eq. (3). As usual, separation of
variables of x� and y is the correct way to proceed here.
For the sake of reducing the number of field variables we
shall abuse notation slightly by using ’i to denote both the
full perturbation which is a function of x� and y, as well as
the separated factor that depends only on y. Separation of

1In the case with gravity, we present N þ 1 Schrödinger
equations plus one constraint equation, yielding effectively N
Schrödinger equations.
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variables then proceeds as per ’iðx�; yÞ ¼ ’iðyÞ�ðx�Þ,
with � the 4D KK mode with mass m, such that
h� ¼ m2�.

One now solves Eq. (4) for the profiles ’iðyÞ and corre-
sponding allowed mass values, obtaining a tower of modes.
Then one takes the original 5D action and substitutes�i ¼
�iðyÞ þ ’iðyÞ�ðx�Þ with ’iðyÞ being a particular solution.
The extra dimension can then be integrated out, leaving an
effective 4D action for the mode �. To second order in �,
this action is

S ¼
Z

d4x

�
�"bg þN

�
� 1

2
@��@��� 1

2
m2�2

��
þ ðsurface termsÞ: (5)

Here, "bg is the energy density of the scalar background

configuration. The normalization constant for the mode
is N ¼ R

’2
i dy and, so long as we pick a solution ’i

that is normalizable, one can scale said solution to obtain
N ¼ 1. The action then describes a canonical, 4D scalar
field. The surface terms in the action are of the formR
S0d4xdy, where S is one of

S1 ¼ ��0
i’i; (6a)

S2 ¼ � 1

2
’i’

0
i: (6b)

The requirements that these terms independently vanish on
the boundaries of the extra dimension, and thatN is finite,
pick out the physical modes of the KK tower.

As mentioned previously, we are interested in the zero
modes, and shall look for formal solutions to Eq. (4) when
h’i ¼ 0. For general V and all N one solution is2

’ð1Þ
i ¼ �0

i; (7)

where�i is the background scalar field configuration. Note
that this solution is actually a vector of length N. It is the
well-known translation mode of the background, since it is
the first term in a Taylor expansion of the shifted back-
ground, �iðyþ �Þ ¼ �iðyÞ þ ��0

iðyÞ þOð�2Þ. For the
case of N ¼ 1, where there are 2N ¼ 2 independent solu-

tions, we can use the ’ð1Þ
i solution to perform reduction of

order (see the Appendix) and obtain the other solution,

’ð2;N¼1Þ
i ¼ �0 Z ð�0Þ�2dy: (8)

For N > 1 we could also perform reduction of order, but
we would still have a relatively large (at least third order
for N ¼ 2) ODE to solve. At this point we shall be content
with having only the translation solution for general N.

2. V generated by a superpotential

It is possible to make progress and obtain an additional
zero mode solution when the form of V is restricted to

V ¼ 1

2
W2

i ; (9)

where Wð�iÞ is a fake superpotential (it is just a formal
construction and does not indicate a supersymmetry). As it
does on V, a subscript i on W denotes a derivative with
respect to�i. In this case the background equations can be
written as

�0
i ¼ Wi; (10)

and the perturbation equation (4) becomes

� ’00
i þ ðWijWjk þWijkWjÞ’k ¼ h’i: (11)

Here, Wij are to be evaluated on the background solution,

and then they become functions of y. The utility of the
superpotential approach comes from the fact that this
perturbation equation can be factorized as [21]

ð@y�ij þWijÞð�@y�jk þWjkÞ’k ¼ h’i: (12)

Now when we look for zero modes, half of the solutions
can be obtained by solving the much simpler equation

ð�@y�ij þWijÞ’j ¼ 0: (13)

For all N the translation mode still exists,

’ð1Þ
i ¼ Wi; (14)

and for N ¼ 1 the second solution will be given by Eq. (8).
For N ¼ 2 the situation becomes more interesting than the

general V case. We can use the ’ð1Þ
i solution to reduce

the order of Eq. (13) from two to one, and then solve the
resulting first-order ODE to obtain a second zero mode
solution,

’ð2Þ
i ¼ Wi

Z JZ

X2
dyþ ai

J

X
: (15)

Here we have defined

J ¼ exp

�Z
ðW11 þW22Þdy

�
; (16a)

X ¼ a2W1 � a1W2; (16b)

Z ¼ a1a2ðW11�W22Þ � ða21 � a22ÞW12: (16c)

a1 and a2 are constants and must be chosen such that the
entity X (which is a function of y) is nonzero throughout
the entire domain of y. For example, for systems where �1

is odd and �2 is even one can choose a1 ¼ 0, a2 ¼ 1. We
stress that different values of the ai do not generate inde-
pendent zero mode solutions.
At this point we need to make a few remarks about

integration constants. There are two integrals in the solu-

tion ’ð2Þ
i . The constant coming from the integral in J yields

2Equation (4) is linear in ’i and we are free to scale any
solution by an arbitrary constant, a constant which in some cases
is dimensionful. For brevity, and because we are providing just
formal solutions, we leave this constant out. Hence the units of
this equation, and some of the equations that follow, do not
match.
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an overall normalization factor for the zero mode solution.
The constant in the integral in the first term in Eq. (15)

pulls out a constant multiple of ’ð1Þ
i , which effectively adds

a multiple of this other zero mode solution. Thus our two
integration constants amount to taking linear combinations
of two linearly independent zero mode solutions.
Alternatively, one can fix these constants of integration to
zero and take linear combinations of Eqs. (14) and (15).
Either way, we have a closed form for the general solution
to Eq. (13) when N ¼ 2.

There are two more linearly independent zero mode
solutions for the N ¼ 2 case. We cannot obtain them in
closed form like the first two, but we can make some

progress. Using the two known solutions ’ð1Þ
i and ’ð2Þ

i

the fourth-order equation (12) can be reduced to a
second-order ODE. This allows us to write the third and
fourth zero mode solutions as

’ð3;4Þ
i ¼ A1’

ð1Þ
i þ A2’

ð2Þ
i ; (17)

where

A1 ¼
Z 1

J
ðw3’

ð2Þ
2 � w4’

ð2Þ
1 Þdy; (18a)

A2 ¼
Z 1

J
ð�w3’

ð1Þ
2 þ w4’

ð1Þ
1 Þdy; (18b)

w0
3 ¼ �W11w3 �W12w4; (18c)

w0
4 ¼ �W12w3 �W22w4: (18d)

The equations for w3ðyÞ and w4ðyÞ constitute the second-
order ODE which can be solved only with specific infor-
mation aboutW. Since it is second order, there will be two
sets of solutions for the pair fw3; w4g, and substituting these
solutions into the equations for A1 and A2 will yield,
through Eq. (17), the final two independent zero modes.
There are four integration constants in the above system of
equations, as expected. Those in A1 and A2 add, respec-

tively, a constant multiple of ’ð1Þ
i and ’ð2Þ

i to ’ð3;4Þ
i . The

other two come from solving for w3 and w4. (The constant
from J can be absorbed in a rescaling of w3 and w4.)

B. Warped case

We now repeat the previous gravity-free calculation for
the case with gravity. It turns out that the Einstein con-
straint equation allows one to obtain additional zero mode
solutions.

The 5D action for N scalar fields coupled minimally to
gravity is

S ¼
Z

d4xdy
ffiffiffiffiffiffiffi�g

p �
1

6�2
RþLm

�
; (19)

where�2 ¼ 1=6M3 andM is the 5DPlanckmass. Einstein’s
equations arising from this action are GMN ¼ 3�2TMN,
where the stress energy tensor is TMN ¼ @M�@N�þ
gMNLm. We restrict our analysis to a warped metric ansatz,
which is actually the most general 5D metric that respects
4D Poincaré invariance, and is used extensively in realistic
models. As for perturbations of the metric, we need only
consider scalar perturbations, as vector and tensor pertur-
bations decouple from the spin-0 sector [3]. With scalar
perturbations Fðx�; yÞ, the metric ansatz is

ds2 ¼ e�2�ð1� 2FÞ��	dx
�dx	 þ ð1þ 4FÞdy2: (20)

The warp factor exponent is �ðyÞ and ��	 is the 4D

Minkowski metric. For consistency of small perturbations
we requireF � 1. The perturbations of the scalar fields are
as in the previous section, Eq. (2).
We now look for formal zero modes of this setup, first in

the case of a general scalar potential V, then in the case of
V generated by a superpotential W.

1. General V

With a general potential V the background fields �iðyÞ
and �ðyÞ satisfy the equations

�02 ¼ �2

2

�
1

2
�02

i � V

�
; (21a)

�00
i � 4�0�0

i � Vi ¼ 0: (21b)

By x� scaling invariance, we are free to choose �ð0Þ ¼ 0,
leaving 2N integration constants for this set of equations.
One of the redundant Einstein equations, which is some-
times useful, is �00 ¼ �2�02

i . For the rest of this section, �
and�i will be used to denote solutions to these background
equations, and the potential V and its derivatives with
respect to �i are to be evaluated on this background.
For the perturbation equations, it is best to work with the

new variables 
ðx�; yÞ and c iðx�; yÞ defined by

F ¼ �ffiffiffi
2

p e2�
; (22a)

’i ¼ e2�c i: (22b)

We shall write these N þ 1 components as a vector � ¼
ð
; c iÞ when it makes things neater; �m is an indexed
version with m ¼ 0 . . .N so that �0 ¼ 
 and �i ¼ c i. In
physical y coordinates, these perturbations obey the
Einstein constraint equation (a detailed derivation can be
found in [9])


0 � ffiffiffi
2

p
��0

ic i ¼ 0; (23)

as well as the coupled second-order equation

��00
m þ 2�00 2

ffiffiffi
2

p
�ð��0�0

j þ�00
j Þ

2
ffiffiffi
2

p
�ð��0�0

i þ�00
i Þ ð4�02 � 2�00Þ�ij þ 6�2�0

i�
0
j þ Vij

0
@

1
A�n ¼ e2�h�m: (24)
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As in the flat case, we again perform separation of
variables, slightly abusing notation, Fðx�; yÞ ¼
FðyÞ�ðx�Þ and ’iðx�; yÞ ¼ ’iðyÞ�ðx�Þ. Equations (23)
and (24) allow us to solve for the KK tower of spin-0
modes, with extra-dimensional profiles FðyÞ and ’iðyÞ.
Substituting these solutions in the metric and original field
variables �i, computing the 5D action, and then integrat-
ing out the extra dimension yields the 4D effective action
for the mode �,

S ¼
Z

d4xN
�
� 1

2
@��@��� 1

2
m2�2

�
þ ðsurface termsÞ; (25)

where the normalization is

N ¼
Z

e2�ð
2 þ c 2
i Þdy ¼

Z
e�2�

�
2

�2
F2 þ ’2

i

�
dy:

(26)

In deriving the effective action, we encounter three inde-
pendent surface terms of the generic form

R
S0d4xdy,

where S is one of

S0¼ 1

3�2
e�4��0; (27a)

S1¼ 1

3
ffiffiffi
2

p
�
e2�ðe�4�
Þ0 ¼ 1

3
ffiffiffi
2

p
�
e�2�ð
0 �4�0
Þ; (27b)

S2¼�1

6
e28�
ðe�28�
Þ0�1

2
e�2�c iðe2�c iÞ0

¼�1

6

ð
0 �28�0
Þ�1

2
c iðc 0

iþ2�0c iÞ: (27c)

The subscripts here correspond to the order of perturbation.
The last two equations in terms of physical variables are

S1 ¼ 1

3�2
e2�ðe�6�FÞ0 ¼ 1

3�2
e�4�ðF0 � 6�0FÞ; (28a)

S2 ¼ �1

3�2
e26�Fðe�30�FÞ0 � 1

2
e�4�’i’

0
i

¼ �e�4�

�
1

3�2
FF0 � 10

�2
�0F2 þ 1

2
’i’

0
i

�
: (28b)

S0 must vanish on the y boundary for a background con-
figuration to be physical. When looking for physical modes
of perturbation, the solutions FðyÞ and ’iðyÞ must be such
that N is finite and S1;2 vanish on the boundary.

Let us now look for zero modes of this system, that is,
when h� ¼ 0. For this special case the constraint equa-
tion (23) can be combined with the first row in Eq. (24) to
solve for 
,


 ¼ �ffiffiffi
2

p
�00 ½�0

ic
0
i þ ð2�0�0

i ��00
i Þc i�: (29)

Thus the zero mode system is really just N coupled, linear,
second-order ODEs. Ignoring finite normalizability and the

vanishing of the boundary terms, such a system has 2N
linearly independent solutions. Two of these solutions are

�ð1Þ ¼
ffiffi
2

p
� �0

�0
i

 !
; (30a)

�ð2Þ ¼ B1�
ð1Þ þ

1ffiffi
2

p
�
e�2�

0

 !
; (30b)

where

B1 ¼
Z

e�2�dy: (31)

These solutions were first derived by Shaposhnikov et al.
[20] for the N ¼ 1 case [see their Eq. (3.6)],
but the straightforward generalization to all N is also a
solution.

For N ¼ 1, �ð1Þ and �ð2Þ are the two linearly indepen-
dent zero modes. For N > 1, we can use these known
solutions to reduce the order of the system by two. We
shall do this explicitly for the N ¼ 2 case. Begin by using
Eq. (29) to eliminate 
 in the set of Eqs. (24). This gives
two second-order equations for c 1 and c 2. Now write this
as four first-order equations and reduce the order by two
using the method outlined in the Appendix. In terms of
solutions, fðyÞ, of this reduced ODE, the final two zero
modes are

�ð3;4Þ ¼ G1

ffiffi
2

p
� �0

�0
1

�0
2

0
BB@

1
CCA

þ
1ffiffi
2

p
�
e�2�G2 þ �ffiffi

2
p

�00 ð2�0�0
2 ��00

2 Þfþ �ffiffi
2

p
�00 �

0
2f

0

0

f

0
BB@

1
CCA;

(32)

where

G1 ¼
Z

e�2�G2dy; (33a)

G2 ¼ H1fþ
Z

H2fdy; (33b)

H1 ¼ 2�2e2�
�0

2

�00 ½logð�0
1e

��Þ�0; (33c)

H2 ¼ e2�
1

�0
1

ð6�2�0
1�

0
2 þ V12Þ � ðe�2��0

2H1Þ0
e�2��0

2

: (33d)

The second-order ODE that the auxiliary variable fðyÞ
must solve is

� f00 þH3f
0 þH4f ¼ 0; (34)

where
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H3 ¼ d

dy
log

�
1þ

�
�0

2

�0
1

�
2
�
¼ 2�2 �

0
1�

0
2

�00

�
�0

2

�0
1

�0
; (35a)

H4 ¼ 4�02 � 2�00 þ V22 ��0
2

�0
1

V12 þ
�
2�0 ��00

2

�0
2

�
H3:

(35b)

The two independent zero mode solutions, �ð3Þ and �ð4Þ,
correspond to the two independent solutions for f. This
system has four integration constants in total. Those in G1

and G2 add to �ð3;4Þ a constant multiple of �ð1Þ and �ð2Þ,
respectively. The other two constants come from the solu-
tion for f.

2. Fake supergravity potential

In the fake supergravity formalism [22,23] the scalar
potential is generated by a superpotential W,

V ¼ 1

2
W2

i � 2�2W2: (36)

The background equations are then first order,

�0 ¼ �2W; (37a)

�0
i ¼ Wi: (37b)

As for the general V case, we work with the variable � ¼
ð
; c iÞ for the perturbations. The Einstein constraint equa-
tion is


0 � ffiffiffi
2

p
�Wic i ¼ 0; (38)

and the equivalent of Eq. (24) factorizes to give

ð@y þUÞð�@y þUÞ� ¼ e2�h�; (39)

where

U ¼ 0
ffiffiffi
2

p
�Wjffiffiffi

2
p

�Wi �2�2�ijW þWij

0
@

1
A: (40)

We now look for zero mode solutions to Eqs. (38) and
(39). To begin with, we have the two solutions found in the
general V case for all N, written here in terms of W,

�ð1Þ ¼
ffiffiffi
2

p
�W

Wi

 !
; (41a)

�ð2Þ ¼ B1�
ð1Þ þ

1ffiffi
2

p
�
e�2�

0

 !
: (41b)

We now concentrate on the N ¼ 2 case and perform
reduction of order on the system of equations. Because of
the factorizability of the perturbation equation (39), we
proceed here in a different manner than we did in the case
for general V. We begin with the third-order system

ð�@y þUÞ� ¼ 0 and use the two known solutions �ð1;2Þ

to reduce the system to a single first-order ODE, which we

solve for the third solution�ð3Þ. To get the fourth solution,
we take the full sixth-order system ð@y þUÞ�
ð�@y �UÞ� ¼ 0 and eliminate 
 using Eq. (29) (using

W instead of the background fields). We then use solutions

�ð1;2;3Þ to reduce the resulting system from order four to

order one. This final ODE can be solved to find �ð4Þ. The
two additional solutions are

�ð3Þ ¼ C1�
ð1Þ þ C2�

ð2Þ þ 0
1ffiffi
2

p
�2 e

�2�ai
J
X

 !
; (42a)

�ð4Þ ¼ D1�
ð1Þ þD2�

ð2Þ þD3�
ð3Þ þ

1ffiffi
2

p
�
e2� W2

JW1

0

 !
:

(42b)

The auxiliary factors are

C1 ¼
Z ffiffiffi

2
p

J

�
a1W1 � a2W2

X
�WZ

X2

�
dy; (43a)

C2 ¼
Z � 1ffiffiffi

2
p

�2
e�2� JZ

X2
� B1C

0
1

�
dy; (43b)

D1 ¼
Z

D0
3

�
�C2 � B1T � 1ffiffiffi

2
p

�2
e�2�a1

J

W1X

�
dy; (43c)

D2 ¼
Z

D0
3ð�C1 þ TÞdy; (43d)

D3 ¼
Z ffiffiffi

2
p

�2e4�
W 0

J2
dy; (43e)

T ¼
ffiffiffi
2

p
�

J

W1

�
W2

W 0W1

ðW0
1 � �2WW1Þ � 1

2

W12

W1

þ �2ai
W

X

�
:

(43f)

Note that everything here is ultimately defined only in
terms of W, its derivatives with respect to �, and �, all
evaluated on the background. Once W is given, everything
else can be computed in a closed form, including the four
linearly independent zero modes (for the N ¼ 2 case).
Also note the identities W 0 ¼ W2

1 þW2
2 and W 0

1 ¼
W11W1 þW12W2.
It is not immediately obvious, but there are only three

independent integration constants in the definition of �ð3Þ

and four in �ð4Þ. These constants pull out constant multi-

ples of lower zero mode solutions. In effect, �ð4Þ is the
most general zero mode solution.
There are two conditions that allowed us to find the

general zero mode solution in closed form for N ¼ 2 in
the fake supergravity case. One, there is a constraint equa-
tion, and two, the rest of the perturbation equations factor-
ized. In contrast, for the flat case with W we did not have
the constraint equation, and for the warped case with
general V we could not factorize.
The full zero mode solution that we derived for general

V in the warped case, Eq. (32), is equivalent to the solution

�ð4Þ found in this section, although they are written in
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manifestly different ways. It is straightforward to write
them in equivalent ways, allowing us to find the solutions
to Eq. (34) for f,

fð1Þ ¼ e�2� J

W1

D3; (44a)

fð2Þ ¼ e�2� J

W1

D3

Z
e4�

W 0

J2D2
3

dy: (44b)

(The first of these was found by inspection, the second
by reduction of order using the first.) Putting these
solutions in Eq. (32), along with the relevant substitu-
tions for the backgrounds � and �i in terms of W, yields

equivalent expressions for the zero mode solutions �ð3;4Þ.
These can be used in place of Eqs. (42a) and (42b) if
desired.

Unfortunately we cannot use these solutions for f to
intelligently deduce the correct solutions in the general V
case. This is because J appears in f, which is computed
fromW11 andW22. These latter functions cannot be written
in terms of V, its derivatives, and/or the fields� and�i. We
also remark that while one can recover the known flat case
zero mode solutions by taking � ! 0 in the warped solu-
tions this does not produce any new solutions for the flat
case.

C. Summary of zero mode solutions

Let us recall the main results of this section. ForN scalar
fields in a flat and warped extra dimension there exist 2N
linearly independent zero mode solutions for perturbations
around a background configuration. These formal solutions
may or may not be physical; physicality is obtained by
demanding that the normalization N is finite and the
surface terms Si vanish at the boundaries of the extra
dimension.

For the N ¼ 1 scalar field, the two zero modes are
completely determined for general V, for both the flat
case, Eqs. (7) and (8), and warped case, Eqs. (30a) and
(30b).

ForN ¼ 2 scalars we have derived the following results:
(i) Flat space, general V: one explicit solution, Eq. (7).
(ii) Flat space, using W: two explicit solutions, Eqs.

(14) and (15), and a second-order ODE for the full
solution, Eq. (17).

(iii) Warped space, general V: two explicit solutions,
Eqs. (30a) and (30b), and a second-order ODE for
the full solution, Eq. (32).

(iv) Warped space, using W: four explicit solutions,
Eqs. (41a), (41b), (42a), and (42b).

For N > 2 we can say the following for both general V
and a V generated by a superpotential W. In a flat extra
dimension the zero mode of translation always exists,
given by Eq. (7). Extra dimensions that are warped admit
two closed form solutions, Eqs. (30a) and (30b).

III. THE USE OF ZERO MODES

By knowing the formal zero mode solutions of a system
(they need not be physically normalizable), we can deduce
some important physical properties of that system. We
shall provide some practical remarks on using zero mode
solutions to
(i) look for linear combinations that give normalizable,

physical zero modes;
(ii) check for perturbative stability.

Our discussion here is restricted to systems whose back-
ground configuration has definite parity, that is, �iðyÞ are
either even or odd under y ! �y (different fields can have
different parities).3 For the warped case, � must always be
even, due to the Einstein equation �00 ¼ �2�02

i .
Furthermore, since we choose �ðy ¼ 0Þ ¼ 0 and also de-
mand that at least one of the scalars have �0

iðy ¼ 0Þ � 0,
we have that � is strictly monotonically increasing. Then,
without negative tension branes, the extra dimension can
only end when � ! 1 (otherwise the junction conditions
coming from Einstein’s equations cannot be satisfied at the
patching points). We then have two scenarios: either �
diverges only as y ! 1 and we obtain an infinite extra
dimension [4], or � and at least one scalar diverge at some
finite y value and we get a soft wall [6,7]. Examples of both
of these types of spaces will be presented in the following
sections.
The 2N linearly independent zero modes of a system can

be written in an infinite number of ways, as they form a
basis for the set of all solutions to the massless perturbation
equation. Regardless of the linearly independent solutions
that are obtained, one should be able to compute character-
istic, physical properties of the system in an unambiguous
way. To find these characteristics, our idea is to construct a
specific matrix of the zero mode solutions (which will be a
function of y) and then compute the y dependent eigenval-
ues of this matrix. Looking at these eigenvalues is an
extension of the idea of looking at the determinant of the
solution matrix [17,24].
Specifically we want to construct an N � N square

matrix whose columns are vectors of formal zero mode
solutions, that is, a single column is a vector whose N
entries are a particular solution ’i.

4 Actually, we want to
construct two such matrices: a matrix MEðyÞ for the even
solutions—those that have ’i the same parity as the cor-
responding background field �i—and MOðyÞ for the odd
solutions, whose parity is opposite the background field.
The initial conditions (values of the perturbation ’i at

3Note that even though the backgrounds �i must have parity,
there is no restriction on the full field �i nor the perturbations.

4Recall that for the warped case the gravitational perturbation

 could be solved in terms of c i, so only the c i degrees of
freedom, equivalently the ’i, are needed to construct our matrix.
Thus, the following discussion is valid for both the flat and
warped scenarios.
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y ¼ 0) of the solutions in the ME (MO) matrix will form a
basis for an arbitrary even (odd) mode. For N scalars there
will be N linearly independent even and odd solutions, so
our matrices will have N columns.

As long as the above criteria are satisfied, the actual
initial conditions of the ME;O matrices are not important.

But for clarity we shall describe a simple realization. Let
the system have N background fields �i with parity Pi 2
f0; 1g such that an even (odd) field has value 1 (0). Then the
even solution matrix has initial conditions

MEðy ¼ 0Þ ¼

P1 0 . . . 0

0 P2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . PN

0
BBBBBB@

1
CCCCCCA;

M0
Eðy ¼ 0Þ ¼

1� P1 0 . . . 0

0 1� P2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1� PN

0
BBBBBB@

1
CCCCCCA: (45)

The odd solution matrix has opposite initial conditions,
MOðy ¼ 0Þ ¼ M0

Eðy ¼ 0Þ and M0
Oðy ¼ 0Þ ¼ MEðy ¼ 0Þ.

Given these initial values, one must then compute all
entries in the two matrices as a function of y, up to the
boundary of the extra dimension. This can be accom-
plished by using the closed form expressions for the zero
modes in the previous section, or by directly integrating the
coupled ODEs describing the perturbations. In the former
case the integration constants in the closed form solutions
must be chosen to achieve the correct initial conditions. In
the latter case the initial conditions in ME;O can be used

directly as initial conditions in, for example, a numerical
ODE solver.

The full ME;OðyÞ matrices form a basis of even and odd

solutions because their initial conditions form a basis of all
possible initial conditions. The set of all zero mode solu-
tions is generated by the matrix products ME � � and
MO � �, where � ¼ ð�1; . . . ; �NÞ, �i 2 R is a vector of
constant coefficients.

We can now compute the eigenvalues ofME;O. They will

be functions of y and there will be N of them; let us denote

them by �E;O
i ðyÞ. These eigenvalue functions give us a lot

of information about the stability of our background con-
figuration. Assuming that the condition for normalizability
is that a perturbation must vanish at the boundaries of the
extra dimension, at y�, we make the following two con-
jectures:

(1) For each �E
i ! 0 as y ! y� there exists a corre-

sponding, normalizable, even zero mode given by
ME � �i, where �i is the eigenvector for �

E
i ðy�Þ. The

correspondence is one-to-one: the existence of a
normalizable mode implies the vanishing of one of

the eigenvalues at y�. An equivalent statement is
true for the odd sector.

(2) The number of negative mass modes in the full
spectrum of perturbations equals the number of

times the eigenvalues �E;O
i pass through zero in

the domain 0 � y < y�.
We shall sketch the proof for the first conjecture. Let M

be eitherME orMO. A normalizable zero mode exists if we
can find a linear combination of formal mode solutions that
vanishes as y ! y�.

5 That is, we want to find a constant,
nontrivial vector � such thatM � � ! 0 for y ! y�. This is
simply an eigenvalue equation with a zero eigenvalue, and
with eigenvector �. Thus, we want to find the N eigenval-
ues of the solution matrix M, called �iðyÞ, and we want at
least one of these eigenvalue functions to tend to zero at the
boundary of y. If there exists such a �i, then the corre-
sponding eigenvector evaluated at y� gives the coefficients
needed to construct a normalizable zero mode. Conversely,
if a normalizable zero mode is known to exist, then one can
find the vector � such that M � � ¼ 0 at y ¼ y�, and so M
has an eigenvalue function which vanishes at the boundary.
For the second conjecture we do not provide a proof. It is

based on a closely related theorem given by Amann and
Quittner [24]. They work with a system of coupled radial
Schrödinger equations and the wave-function values must
all vanish at the origin; effectively they are looking only for
solutions where all wave functions are odd. Their proof
should be adaptable to our second conjecture stated above,
including correct handling of the weight function e2� in the
warped case in Eq. (24). We do not attempt to construct the
proof here, and the analysis in the following sections is
largely independent of it. Our interest in presenting the

second conjecture is to show that the eigenvalues �E;O
i

contain more information than just whether or not a nor-
malizable zero mode exists. For an application of Amann
and Quittner’s theorem to a system with 16 components,
see [25].
To summarize, we claim that the eigenvalue functions

�E;O
i ðyÞ of the general solution matrices ME;OðyÞ give all

the information about the perturbative stability of a specific
background configuration, for both flat and warped extra
dimensions. They tell the number of unstable modes, if
any, and whether or not the configuration is critically
stable, that is, it admits a normalizable zero mode. For
phenomenological reasons, one generally tries to construct
models that are free of zero modes.
In the following sections we shall apply our first con-

jecture to some example models to show the existence, or
lack thereof, of zero modes.

5Since we are dealing with a Schrödinger-like equation, solu-
tions at infinity either oscillate or behave exponentially. If a
solution asymptotes to zero then it must decay exponentially,
implying square integrability.
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Before moving on to the examples, let us discuss the
massless translation mode associated with a background.
For the flat case, there is always a formal solution corre-
sponding to translations of the background, Eq. (7).
Assume this solution is normalizable. We would like to
know what happens to this mode when one adds gravity to
the system. For N ¼ 1 scalar, Shaposhnikov et al. [20]
have shown that when gravity is turned on this mode is no
longer massless and becomes instead a wide resonance.

Now consider the existence of a translation mode for

general N with gravity. The solution �ð1Þ given by
Eq. (30a) looks like it has the right form for such a
mode, as the c i components are exactly �0

i. Even though
the actual perturbations are ’i ¼ e2�c i ¼ e2��0

i, this so-
lution still has the correct initial conditions for it to be a
valid translation mode: ’ið0Þ ¼ �0

ið0Þ and ’0
ið0Þ ¼ �00

i ð0Þ
since �ð0Þ ¼ �0ð0Þ ¼ 0. These initial conditions are

enough to uniquely specify the mode solution, so �ð1Þ is
the solution with the initial conditions of a translation
mode. But this mode is non-normalizable, since � ! 1
as y ! y�.

6 We therefore conclude that for general N with
a warped extra dimension the usual translation mode is
rendered non-normalizable by the introduction of gravity.

From a phenomenological point of view the absence of a
translation mode is good news, since massless spin-0 par-
ticles are not seen in nature. But, for N > 1, it may be that
there are additional zero modes in the spectrum that sur-
vive when gravity is turned on. For example, there may
exist a zero mode that both translates and dilates the

background, and so has different initial conditions to �ð1Þ
and is normalizable. We show in the following sections that
such modes do in general exist, and the addition of gravity
does not in general remove all zero modes from the spin-0
particle spectrum.

IV. DOMAIN-WALLS IN AN
INFINITE EXTRA DIMENSION

Our first example model has an infinite extra dimension
with N ¼ 2 scalars in a kink-lump configuration. This type
of setup was used in [8] in an attempt to realize the
standard model confined to a domain-wall. We shall
present two incarnations of this model. The first is effec-
tively that presented in [8] and is described by a straight-
forward quartic potential; we shall call it the V-model. As
will be shown, in the flat case this V-model has a single
zero mode, whereas in the warped case the zero mode is
absent. The second incarnation is based on the fake super-
gravity approach and is described by a superpotential W;
we call this model theW-model. We shall see that although
the background solutions are qualitatively the same as
those in the V-model (and in fact can be made exactly
the same for certain choices of parameters) the W-model

posses two zero modes in the flat case, one of which
survives when gravity is turned on.

A. Kink-lump model in flat space

The Lagrangian of the flat-space V-model is given by
Eq. (1) with N ¼ 2 scalars, �1;2, and potential

V ¼ �2lv2�2
1 �

1

2
�2


�
2
2 þ

1

2
c�2

1�
2
2

þ l�4
1 þ

�

4
�4

2 þ lv4: (46)

It is not our aim here to perform a complete analysis of this
model. Instead, we shall use it to give a constructive
example of how one looks for normalizable zero modes,
and show the effect of adding gravity.
We first restrict ourselves to the region of parameter

space where all five parameters are positive, cv2 �
�2


 > 0 and 4l�v4 ��4

 > 0. This ensures that the

kink-lump configuration is stable (has no negative
modes) [26]. Next, we impose the relation 2ð��
cÞ�2


 ¼ ð2c�� 4l�� c2Þv2 which allows us to obtain

analytic solutions for the background [8],

�1 ¼ v tanhðkyÞ; �2 ¼ Acosh�1ðkyÞ; (47)

where k2 ¼ cv2 ��2

 and A2 ¼ ð2�2


 � cv2Þ=�. These
are solutions of Eq. (3). The background configuration is
straightforward with �1 the kink and �2 the lump; we
do not plot these functions for the flat case, but see
Fig. 3 for qualitatively similar plots of �1;2 in the

warped case. Note that in all our plots we show only
the y � 0 half of the fields. The other halves are found
by relevant parity transformations.
Using this background, we now solve Eq. (4) for the four

independent zero modes, two which are even and two
which are odd, and construct the zero-mode solution ma-
trices ME;OðyÞ. Recall that even and odd are relative to the

background configuration, so, for example, the even set of
zero modes inMEðyÞ have ’1 odd and ’2 even. Parameters
we choose are l ¼ 0:7, v ¼ 1:0, c ¼ 1:5 and � ¼ 0:4, with
derived parameter �2


 ¼ 0:98636. This choice gives typi-

cal looking solutions which exhibit the behavior we are
interested in. It is not a fine-tuned choice and small varia-
tions in the parameters give qualitatively similar results.
Having computed the two 2� 2 matrices ME;OðyÞ we then
compute their two eigenvalues (four eigenvalues in total),
which are plotted as a function of y on the left in Fig. 1. In
order to accommodate the large range of the eigenvalues

�E;O
i we implement a quasilog scale by plotting

arcsinh½�E;O
i ðyÞ�.

This plot gives a quantitative summary of the stability
behavior of the background configuration of the V-model.
According to conjecture one, the existence of an odd
eigenvalue �O with �O ! 0 as y ! 1, as is apparent in
the plot, implies the existence of a normalizable zero

6Unless there exists �i such that e2��0
i ! 0 as y ! y�, with

�00 ¼ �2�02
i .
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mode. The eigenvector corresponding to �O evaluated at
large y gives the linear combination of formal zero mode
solutions which yield the normalizable zero mode. The
resulting initial conditions for this normalizable mode are
ð’1ð0Þ; ’2ð0ÞÞ ¼ ð1; 0Þ and ð’0

1ð0Þ;’0
2ð0ÞÞ¼ð0;�0:77912Þ,

and the mode is plotted on the right in Fig. 1. This mode is
exactly the translation zero mode given by Eq. (7), as
expected. The fact that the other three eigenvalues diverge
at large y implies, by conjecture one, that there are no more
normalizable zero modes for this particular background
configuration. By conjecture two, since none of the eigen-
values cross zero there are no negative-mass modes, which
is again as expected due to our choice of parameters.

Let us now consider the flat W-model, which admits
similar kink-lump configurations as the V-model, but has
different behavior when it comes to the zero modes. The
W-model has a potential described by Eq. (9) with super-
potential given by

W ¼ a�1 � b�3
1 � c�1�

2
2: (48)

This model always has the analytic kink-lump background
solution given by Eq. (47), with the constants in the

solution given in terms of the parameters in W as v2 ¼
a=3b, k2 ¼ 4ac2=3b and A2 ¼ a=c� 2a=3b. For the fol-
lowing analysis we choose parameters to give the same v, k
and A as in the V-model, namely a ¼ 1:14017, b ¼
0:38006 and c ¼ 0:35834. The outcome of our analysis
is not so dependent on parameter choice since we simply
want to demonstrating the existence of zero modes.
As before, we compute the solution matrices and their

eigenvalues, the latter of which are shown on the left in
Fig. 2. From this plot we see that the W-model has two
normalizable zero modes, one odd and one even, and no
negative modes. The normalizable odd mode is the trans-
lationmode, and is the same as in theV-model. The normal-
izable even mode has initial conditions ð’1ð0Þ; ’2ð0ÞÞ ¼
ð0; 1Þ and ð’0

1ð0Þ; ’0
2ð0ÞÞ ¼ ð�0:77912; 0Þ, and is shown on

the right in Fig. 2. Physically, this evenmode expands both y
and�2, or shrinks both. Although any linear combination of
the odd and even normalizable zero modes is again a
normalizable zero mode, what is important is that there
are a total of two massless physical degrees of freedom.
The choice between an odd and even basis, or some other
basis without parity, will depend on the physical problem at
hand.
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FIG. 1 (color online). Eigenvalues of the zero-mode solution matrices ME;OðyÞ (left) and the normalizable zero mode of translation
(right) for the flat-space kink-lump V-model. The single odd eigenvalue that asymptotes to zero at large y signals the existence of the
translation zero mode. Since the other three eigenvalues diverge, there are no other normalizable zero modes.
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FIG. 2 (color online). Eigenvalues of the solution matrices (left) and the normalizable even zero mode (right) for the flat-space
W-model. There are two normalizable zero modes for this model, the other one is the odd translation mode and is exactly the same as
in the V-model.
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Note that in [9] it is shown that for models generated by
a superpotentialW, exciting the zero modes corresponds to
changing the integration constants in the first order equa-
tions of motion for the background, �0

i ¼ Wi. In our ex-
ample here we have two fields, two integration constants,
and so two zero modes. The odd mode changes the value
�1ð0Þ and the even mode changes �2ð0Þ. These modes are
massless because changes in the initial values �ið0Þ do not
change the energy density of the configuration.

In summary, even though the V-model and W-model
have the same background configuration, the former ad-
mits only one normalizable zero mode, while the latter
admits two. Since the W-model contains some extra sym-
metries owing to its supersymmetric nature, it has the extra
zero mode. These results are instructive, although not
particularly profound in their own right. The reason we
have constructed these two models is so we can compare,
qualitatively, what happens when gravity is turned on and
the extra dimension is warped.

B. Kink-lump model in warped space

We now look at the existence of zero modes for the kink-
lump model when gravity is turned on and the infinite extra
dimension is warped, as per a smoothed-out version [5,22]
of Randall-Sundrum [4]. We shall analyze both the V- and
W-models.

The action is given by Eq. (19) with metric ansatz (20).
The scalar potential is

Vwarp ¼ V þ�; (49)

where V is the flat-space potential, Eq. (46), and � is the
bulk cosmological constant required to fine-tune flat 4D
slices in the warped space. For stable solutions, constraints
on the parameters in the potential are the same as for the
flat-space case. We can again obtain analytic background
solutions, but the relations are now different, being

� ¼ 2c� 4l; (50a)

�2

 ¼ lv2

1þ 2�2v2
þ �v2ð3þ 8�2v2Þ

4þ 8�2v2
; (50b)

� ¼ �2�2v4k2; (50c)

where k2 ¼ ðcv2 ��2

Þ=ð1þ 4�2v2Þ. Recall that � is the

5D Newton’s constant. With these relations the background
configuration is

� ¼ �2v2 log½coshðkyÞ�; �1 ¼ v tanhðkyÞ;
�2 ¼ vcosh�1ðkyÞ: (51)

A representative choice of parameters is � ¼ 1:0, l ¼ 0:7,
v ¼ 1:0 and c ¼ 1:5, with derived parameters � ¼ 0:2,
�2


 ¼ 0:41667. Plots of the background fields are given

in Fig. 3. In the gravity-free limit � ! 0, and we have
� ! 0 while �1;2 retain their kink-lump structure, so we

obtain similar solutions as in the flat-space case. But we

must make it clear that the point in parameter space we
have chosen for the warped case is not the same (but it is
close to) the point in parameter space that we analyzed in
the flat case. Nevertheless, since we are interested only in
qualitative features of the setups, we can still make a fair
comparison between the flat and warped configurations.
Given this warped background we can proceed to com-

pute the zero mode solution matrices ME;OðyÞ. The metric

perturbation 
 (and its counterpart F) can be written in
terms of the c i (counterparts’i), so we only need the latter
to construct the solution matrices. Now, if we use c i to
construct the matrices and look for eigenvalues that tend to
zero for large y, we will obtain modes that are normalizable
with respect to the integral

R
c 2dy. But what we really

want are modes that are normalizable as per Eq. (26). So in
fact we should construct solution matrices from ’i, which,
by Eq. (22b), is simply e2�ME;OðyÞ, where ME;O here is

constructed from c i.
Figure 4 shows the eigenvalues of the solutions for the

warped V-model. All of the eigenvalues diverge for large y
so there are no zero modes in the physical spectrum.
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FIG. 3 (color online). Background configuration for the kink-
lump model with a warped extra dimension.
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FIG. 4 (color online). Eigenvalues for odd and even zero
modes for the V-model with a warped extra dimension. All
eigenvalues diverge for large y so there are no normalizable
zero modes. Since the eigenvalues do not pass through zero,
there are also no negative modes.
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In particular, the translation zero mode does not survive in
the presence of gravity, in concordance with the results of
[20]. Similarly, since none of the eigenvalues pass through
zero, there are no negative modes in the spectrum either.
This is also as expected since we restricted our parameters
so the configuration would be stable. In summary, the
V-model in warped space has no normalizable negative
modes and no normalizable zero modes.

Now consider theW-model in warped space. We use the
same superpotential as given by Eq. (48), but now the
derived potential V is modified, as per Eq. (36). Such a
potential is again, as in the flat-space case, qualitatively
similar to the V-model. In fact, for the choice of parameters
b ¼ c, we can get analytic solutions of exactly the same
form as the warped V-model, Eq. (51) (such a model is
used in [27]). The parameters of this solution in terms of
the parameters in W are v2 ¼ a=3b and k2 ¼ 4ab=3. To
obtain a background with exactly the same form as the one
we used in the analysis of the V-model we choose a ¼
0:69821 and b ¼ c ¼ 0:23274; the background is show in
Fig. 3. The conclusions that we shall draw regarding zero
modes are generically the same for a large parameter
range, but we make this choice so we can compare with
the V-model.

The eigenvalues of the solution matrix for the physical
perturbations ’i for the warpedW-model are shown on the
left in Fig. 5. As can be seen, there is a surviving even zero
mode. The initial conditions for this mode are ð’1ð0Þ;
’2ð0ÞÞ ¼ ð0; 1Þ and ð’0

1ð0Þ; ’0
2ð0ÞÞ ¼ ð�0:172148; 0Þ and

the mode is plotted on the right in Fig. 5. It is normalizable,
as per Eq. (26), and the surface terms, Eq. (28), vanish at
large y. The mode is therefore present in the physical
spectrum. It has a qualitatively similar form to the even
zero mode in the flat W-model. Finally, no eigenvalue
crosses zero, so there are no negative modes in the spec-
trum, a result which is already known for general W [9].

Even though the potentials of the four models we have
looked at (flat and warped, V- and W-models) are qualita-
tively very similar and admit the same background

configurations, they show very different behavior when it
comes to having zero modes in the physical spectrum. Our
general conclusion is that adding gravity in the form of a
warped extra dimension will remove the translation zero
mode from the spectrum, but will not necessarily remove
other zero modes. In this section we have also explicitly
shown how the eigenvalues of the solution matrices
ME;OðyÞ allow one to easily find normalizable zero modes.

Furthermore, our analysis of the warped V-model shows, at
least for some values of the parameters, that it contains no
zero modes. It is therefore phenomenologically acceptable
to use this type of setup for constructing realistic models,
as is done in [8].

V. DOMAIN-WALL SOFT-WALL MODELS

In this section we briefly analyze another example
model, one with a compact extra dimension and N ¼ 2
scalars. The potential is generated by a superpotential with
gravity and we show that a zero mode again survives in this
compact setup. The model was first presented in [9] as a
realization of a domain-wall soft-wall model, where the
extra dimension is dynamically compactified by the
formation of curvature singularities.
The superpotential is

W ¼ � sinhð	�1Þ þ ða�2 � b�3
2Þ: (52)

For background configurations of definite parity with both
scalars odd there is a unique solution to the first-order
equations of motion,

�¼��2

	2
log½cosð�	2yÞ�þ�2a

18b
f1þ4log½coshð ffiffiffiffiffiffiffiffiffi

3ab
p

yÞ�
�cosh�2ð ffiffiffiffiffiffiffiffiffi

3ab
p

yÞg; (53a)

�1¼ 2

	
arctanh

�
tan

�
�	2y

2

��
; (53b)

�2¼
ffiffiffiffiffiffi
a

3b

r
tanhð ffiffiffiffiffiffiffiffiffi

3ab
p

yÞ: (53c)
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FIG. 5 (color online). Eigenvalues of the solution matrix (left) and the single normalizable zero mode (right) for the warped-space
W-model. Compare with the flat-space W-model, Fig. 2, which has two zero modes, and the warped-space V-model, Fig. 4, which has
no zero modes.
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The edge of the extra dimension is fixed at y� ¼ =2�	2.
We choose parameters � ¼ 1:0, 	 ¼ 1:4, a ¼ 0:5, and
b ¼ 0:3 and plot the background in Fig. 6. In [9] it was
shown that enforcing odd parity on the fields �1;2 them-

selves, as opposed to just the background configuration,
ensures that there are no normalizable zero modes in the
spectrum. We shall now show that relaxing the parity
condition leads to the appearance of a zero mode that
destabilizes the background.

For the background configuration and choice of parame-
ters given above we compute the solution matricesME;OðyÞ
for the physical perturbations ’i. The eigenvalues of these
two matrices are shown on the left in Fig. 7. Three of the
eigenvalues diverge as y ! y�, but the other one remains
finite. Even though our first conjecture states that we must
look for eigenvalues that tend to zero to find normalizable
modes, we find that this finite eigenvalue does actually
correspond to a properly normalizable mode. Since our
space is finite, if ’i and F remain finite throughout the
extra dimension they will be physically allowed perturba-
tions (a small multiple of them will be small compared

with �i and �). The initial conditions for the normalizable
mode corresponding to the finite odd eigenvalue are
ð’1ð0Þ; ’2ð0ÞÞ ¼ ð�0:198 47; 1Þ and ð’0

1ð0Þ; ’0
2ð0ÞÞ ¼

ð0; 0Þ. This mode is shown on the right in Fig. 7. It is
normalizable as per Eq. (26), and the relevant surface terms
in the effective 4D action vanish because e�4� ! 0 at the
boundaries of the extra dimension. This zero mode has
opposite parity to the background, so if one does not
enforce parity on the fields themselves this mode will exist
in the 4D spectrum and the background configuration will
not be stable.
As we have shown, the eigenvalues of the solution

matrices are also useful for finding zero modes when the
extra dimension is compact and the perturbations are al-
lowed to be finite over all y. The domain-wall soft-wall
model in [9] contains a normalizable zero mode which
must be removed by enforcing parity on the fields them-
selves (the model-building philosophy of these setups for-
bids adding fundamental branes to restrict the boundary
conditions of the KK modes, thereby eliminating any zero
modes). Alternatively, we suggest that it may be possible to
construct a domain-wall soft-wall model using a normal
potential V that does not have the extra symmetries inher-
ent in the superpotential approach, and hence does not have
a surviving zero mode.

VI. CONCLUSIONS

In this paper we looked at scalar perturbations around a
background configuration, and were concerned with find-
ing zero modes. Both flat and warped extra dimensions
were studied, with both a general scalar potential V, and a
potential generated by a superpotential W. The results can
be split into three main parts: analytic zero mode solutions,
use of these solutions, and examples. In Sec. II we pre-
sented analytic expressions for formal zero mode solutions
to the perturbation equations, with particular emphasis on
the N ¼ 2 scalar case. For N ¼ 2 scalars in warped space
with a potential generated by a superpotential we found

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

ar
cs

in
h(

ei
ge

nv
al

ue
)

extra dimension y

odd eigenvalues
even eigenvalues

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

pe
rt

ur
ba

tio
n

extra dimension y

F
ϕ1
ϕ2

FIG. 7 (color online). Eigenvalues of the solution matrices (left) and the normalizable odd zero mode (right) for the domain-wall
soft-wall model.
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domain-wall solution. The extra dimension ends at a physical
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analytic closed-form expressions for the four, linearly
independent zero mode solutions. Section III discusses
the use of formal zero modes, and here we made two
conjectures which use the eigenvalues of the solution
matrices: one states how to find normalizable zero modes;
the other tells how many normalizable negative modes
there are in the spectrum. In Secs. IV and V we looked at
some specific example models to demonstrate the workings
of these conjectures, and to show that normalizable zero
modes can survive when the extra dimension is warped.

Our general conclusions regarding extra-dimensional
model building are the following. If one uses a general
potential V then in flat space there will exist the translation
zero mode, which is removed from the 4D KK spectrum
when the extra dimension is warped (for N ¼ 1 scalar this
conclusion was made in [20]). But it is not always the case
that all spin-0 zero modes are removed by the inclusion of
gravity. We have shown that models which have N ¼ 2
scalars and generate the potential from a superpotential
generally admit an extra zero mode which survives in the
presence of gravity.7 Such superpotential models are
widely studied in the literature for the reason that they
give first-order equations of motion. But without some
extra input, like a fundamental brane or forced parity,
these superpotential models will be phenomenologically
unacceptable due to the presence of massless spin-0 de-
grees of freedom, something which we have not observed
in nature.

Finally, the general solutions we have found for the fake
supergravity scenario with N ¼ 2 scalars rely only on the
metric ansatz (20) and should have wider applicability than
to the domain-wall models that we emphasize here. For
example, the inclusion of fundamental brane terms would
change only the boundary conditions; the bulk solutions we
have found will remain the same. Extending the zero mode
solutions to more than one extra dimension may also be
possible, following the analysis of [15].
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APPENDIX: REDUCTION OF ORDEROFA SETOF
LINEAR HOMOGENEOUS ORDINARY

DIFFERENTIAL EQUATIONS

Any set of linear homogeneous ODEs which is nth order
can be easily recast as a set of n first-order differential
equations. We assume this has been done and that the
resulting n dependent variables fiðyÞ, where i ¼ 1 . . . n
and y is the independent variable, satisfy the equations

f0iðyÞ ¼ AijðyÞfjðyÞ: (A1)

There is an implicit sum over j. This equation has n
independent solutions. If we know m of these solutions
then we can perform reduction of order on (A1) to obtain a
set of n�m coupled first-order ODEs. We outline this
procedure, which follows closely that given in [29].
Write Eq. (A1) as a matrix equation, f0ðyÞ ¼ AðyÞ � fðyÞ,

where fðyÞ is a vector of length n made of the dependent
variables. Let Fs be the n� n solution matrix of this ODE,
such that each column of Fs is an independent solution

vector fðsÞðyÞ. It must be that detFs � 0 for all y. ThenFs is
known as the fundamental matrix of the set of ODEs
specified by A, since Fs determines A uniquely by A ¼
F0
sF

�1
s (the converse is not true since Fs � ðconst matrixÞ is

also a fundamental matrix of A).
Reduction of order then proceeds as follows. Assumewe

know m columns of Fs (that is, m linearly independent

solutions of the ODE) which we label fðsiÞ with i ¼ 1 . . .m.
Then construct the n� n matrix

U ¼ ðfðs1Þ; fðs2Þ; . . . ; fðsmÞ; aðmþ1Þ; . . . ; aðnÞÞ; (A2)

where the aðjÞ, j ¼ mþ 1 . . . n, are linearly independent
constant vectors. They can be freely chosen, so long as

detU � 0 for all y. Usually the aðjÞ can be unit vectors.
Now change variables to g by the definition f ¼ U � g and
the equation f0 ¼ A � f becomes

g0 ¼ U�1 � A � ð0; . . . ; 0; aðmþ1Þ; . . . ; aðnÞÞ � g: (A3)

The firstm components of the vector g do not appear on the
right-hand side of this ODE (after multiplying the matrices
out), so this procedure decouples m of the equations. Call

the solutions to Eq. (A3) gðsiÞ. We know m of these

are just constant vectors, gðs1Þ ¼ ð1; 0; . . . ; 0Þ, gðs2Þ ¼
ð0; 1; 0; . . . ; 0Þ, and so on to gðsmÞ. The remaining n�m
solutions are to be determined using other techniques.
Once they are found, the remaining solutions to the origi-

nal ODE are given by fðsjÞ ¼ U � gðsjÞ.
7For related results on the survival of light (but not exactly

massless) spin-0 states, see [19,28].
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