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We investigate the linearized form of metric fðRÞ-gravity, assuming that fðRÞ is analytic about R ¼ 0

so it may be expanded as fðRÞ ¼ Rþ a2R
2=2þ . . . . Gravitational radiation is modified, admitting an

extra mode of oscillation, that of the Ricci scalar. We derive an effective energy-momentum tensor for the

radiation. We also present weak-field metrics for simple sources. These are distinct from the equivalent

Kerr (or Schwarzschild) forms. We apply the metrics to tests that could constrain fðRÞ. We show that light

deflection experiments cannot distinguish fðRÞ-gravity from general relativity as both have an effective

post-Newtonian parameter � ¼ 1. We find that planetary precession rates are enhanced relative to general

relativity; from the orbit of Mercury we derive the bound ja2j & 1:2� 1018 m2. Gravitational-wave

astronomy may be more useful: considering the phase of a gravitational waveform we estimate deviations

from general relativity could be measurable for an extreme-mass-ratio inspiral about a 106M� black hole

if ja2j * 1017m2, assuming that the weak-field metric of the black hole coincides with that of a point

mass. However Eöt-Wash experiments provide the strictest bound ja2j & 2� 10�9 m2. Although the

astronomical bounds are weaker, they are still of interest in the case that the effective form of fðRÞ is
modified in different regions, perhaps through the chameleon mechanism. Assuming the laboratory bound

is universal, we conclude that the propagating Ricci scalar mode cannot be excited by astrophysical

sources.
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I. INTRODUCTION

General relativity (GR) is a well tested theory of gravity
[1]; so far no evidence has been found that suggests it is not
the correct classical theory of gravitation. However, there
are many unanswered questions that remain regarding
gravity which motivate the exploration of alternate theo-
ries: What are the true natures of dark matter and dark
energy? How should we formulate a quantizable theory of
gravity? What drove inflation in the early Universe? Is
GR the only theory that is consistent with current obser-
vations? Moreover, the majority of the tests that have been
carried out to date have been in the weak-field, low-energy
regime [1,2]: in the laboratory [3,4], within the Solar
System [5,6], or using binary pulsars [7]. It is not unrea-
sonable to suppose that GR would begin to break down at
higher energies.

Over the coming decade, a new avenue for testing
relativity will be opened up, through the detection of
gravitational waves (GWs) using the existing ground-
based GW detectors, the Laser Interferometer
Gravitational-Wave Observatory [8,9], Virgo [10] and
GEO [11,12], and the proposed space-based GW detector,
the Laser Interferometer Space Antenna (LISA) [13,14].
These detectors will observe GWs generated during the
inspiral and merger of binary systems comprising one or
more black holes (BHs). The GWs are generated in
the strong-field regime, while the components are highly

relativistic and the spacetime is evolving dynamically: GW
astronomy will open a new window into the strong-field
regime of gravity, complementing traditional electromag-
netic observations [15]. A comparison of the GWs ob-
served from such systems with the predictions of GR will
provide powerful tests of the theory in a region yet to be
explored.
The radiation generated during the final merger and

ringdown of two BHs will offer tests of GR in the highest
energy and most dynamical sector, but it is thought that the
most sensitive tests will come from LISA observations of
extreme-mass-ratio inspirals (EMRIs) [16]. An EMRI in-
volves the inspiral of a stellar-mass compact object, a white
dwarf, neutron star or BH, into a massive BH in the center
of a galaxy. The mass of the compact object is typically
1–10M�, while the mass of the massive BH (for sources in
the LISA band) will be �105–107M�, so the mass-ratio is
of the order of �10�7–10�4. This extreme mass-ratio
means that the inspiral proceeds slowly, and on short time-
scales the compact object acts like a test particle moving in
the background spacetime of the central BH. LISA will
detect �105 cycles of gravitational radiation generated
while the compact object is in the strong field of the
spacetime, and this encodes a detailed map of the space-
time structure outside the central BH. This idea was first
elucidated by Ryan [17,18], who showed that, for an
arbitrary stationary and axisymmetric spacetime in GR,
the multipole moments of the spacetime enter at different
orders in an expansion of the frequency of small vertical or
radial oscillations of circular, equatorial orbits. As
these frequencies are in principle observable in the GWs
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generated during an inspiral, it should be possible to mea-
sure the multipole moments from an EMRI observation
and hence test whether the central object is a Kerr BH:
according to the no-hair theorem, a Kerr BH is described
completely by its mass M and spin angular momentum J
[19–23], and its mass multipole Ml (M0 � M) and mass-
current multipole moments Sl (S1 � J) are determined
from these according to [24]

Ml þ iSl ¼ M

�
i
J

M

�
l
: (1)

The multipole expansion is not a convenient way to char-
acterize arbitrary spacetimes, since the Kerr metric itself
requires an infinite number of multipoles to fully character-
ize. Subsequent authors have instead adopted the approach
of considering bumpy BH spacetimes [25–28], which de-
viate from the Kerr metric by a small amount and depend
on some parameter, �, such that � ¼ 0 is precisely the Kerr
solution. Relatively small perturbations to the Kerr solu-
tion can be detected in EMRI observations due to small
differences in the precession frequencies that accumulate
over the 100 000 waveform cycles that will be detected.
There are also certain qualitative features that could be
smoking guns for a departure from the Kerr metric, such as
ergodicity in the orbits [28], persistent resonances [29], or
a shift in the frequency of plunge [28,30].

The majority of the work to date has focused on space-
times that are solutions in GR, but which deviate from the
Kerr solution. However, if GR was not the correct theory of
gravity, this could also lead to detectable signatures in the
observed gravitational waves. Certain alternative theories
of gravity, including fðRÞ, do admit the Kerr metric as a
solution, since it has vanishing Ricci tensor, R�� ¼ 0

[31,32]. However, the Kerr metric need not be the expected
end state of gravitational collapse [33]. If a Kerr BH
existed in an alternative theory, the geodesics would be
the same, but the energy flux carried by the GWs could still
be different, and so differences would show up in the rate
of inspiral; although in many cases these differences do not
appear at leading order. In most cases, however, either the
Kerr metric is not admitted as a solution, or it is not the
correct metric to describe collapsed objects [32].
Waveform differences then show up as a result of the
differences in the instantaneously-geodesic orbits of the
compact object involved in the EMRI. Since the leading-
order energy-momentum tensor of the GWs often takes the
same form as in GR [34], this is the primary effect and
means the problem of testing alternative theories through
EMRI observations is equivalent to the spacetime mapping
program within GR described previously.

As a consequence of the difficulties of solving for GW
emission in alternative theories, work on testing alternative
theories of gravity using LISA EMRIs has so far been
restricted to a few cases. In Brans-Dicke gravity, in
which the gravitational field is coupled to a scalar field,

differences show up due to a modification to the inspiral
rate that arises from dipole radiation of the scalar field [35].
Neutron star EMRIs are required since the dipole radiation
depends on a sensitivity difference between the two ob-
jects, and the sensitivity is the same for all BHs. Lower
mass central BHs provide the most powerful constraints,
but a LISA observation of a neutron star EMRI into a
104M� BH could place constraints on the Brans-Dicke
coupling parameter that are competitive with Solar
System constraints [35]. In dynamical Chern-Simons
modified gravity, the action is modified by a parity-
violating correction, inspired by string theory [36,37]. In
this case, the BH solution differs from the Kerr solution at
the fourth multipole, l ¼ 4, but the energy-momentum
tensor of gravitational radiation takes the same form as
in GR [38]. LISA observations of EMRIs should place
constraints on the Chern-Simons coupling parameter that
are an order of magnitude better than will be possible from
binary pulsar observations, although a full analysis ac-
counting for parameter degeneracies has not yet been
carried out [38].
In this work, we focus our attention on metric

fðRÞ-gravity, in which the Einstein-Hilbert action is modi-
fied by replacing the Ricci scalar R with an arbitrary
function fðRÞ. This is one of the simplest extensions to
standard GR [39,40]. It has attracted significant interest
because the flexibility in defining the function fðRÞ allows
a wide range of cosmological phenomena to be described
[41,42]. For example, Starobinsky [43] suggested that a
quadratic addition to the field equations could drive ex-
ponential expansion of the early Universe [44]: inflation in
modern terminology. In this model fðRÞ ¼ R� R2=ð6�2Þ;
the size of the quadratic correction can be tightly con-
strained by considering the spectrum of curvature pertur-
bations generated during inflation [45,46]. Using the
results of the Wilkinson Microwave Anisotropy Probe
[47,48], the inverse length-scale can be constrained to � ’
3� 10�6ð50=NÞl�1

P [40,49], where N is the number of

e-folds during inflation and lP is the Planck length.
We consider simple fðRÞ corrections within the frame-

work of linearized gravity, and explore what constraints
LISA might be able to place on the form of fðRÞ (we will
not consider cosmological implications where terms be-
yond linear order could play a significant role). We will see
that, although the field equations for fðRÞ-gravity do admit
the Kerr metric as a solution [31,33], this is not necessarily
the metric that describes the exterior of collapsed objects.
We consider the modifications to geodesic orbits in the
weak-field of the fðRÞ spacetime exterior to massive ob-
jects and, assuming this also describes the weak-field
external to a BH, we estimate how observable the differ-
ences in the precession frequencies will be by LISA. We
will also describe Solar System and laboratory constraints
that can be placed on the same model. The overall con-
clusion is that LISA could place constraints on
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fðRÞ-gravity, which may be more powerful than those in
the Solar System, but not as powerful as constraints from
laboratory experiments. However, the LISA observations
will probe a different energy scale, so these constraints will
still be important, particularly if we regard fðRÞ as an
effective theory that could be different in different regimes.

This paper is organized as follows. We begin with a
review of the fðRÞ field equations. In Sec. III we derive
the linearized equations and in Sec. IV we apply these to
find wave solutions. These results can be used to study how
gravitational radiation is modified for fðRÞ-gravity. They
are largely known in the literature, but are worked out here
ab initio; they are included as a compendium of useful
results within a consistent system of notation. To be able to
accurately model gravitational waveforms one needs to
know how an object will inspiral. Accordingly, we derive
an effective energy-momentum tensor for gravitational
radiation in Sec. V, following the short-wavelength ap-
proximation of Isaacson [50,51]. In Sec. VI we look at
the effects of introducing a source term and derive the
weak-field metrics for a point source, a slowly rotating
point source, and a uniform density sphere, recovering
some results known for quadratic theories of gravity.
These are used in Sec. VII to compute the frequencies of
radial and vertical epicyclic oscillations about circular-
equatorial orbits in the weak-field, slow-rotation metric,
and hence to construct an estimate of the detectability of
the fðRÞ deviations in LISA EMRI observations. For com-
parison, in Sec. VIII, we describe the constraints on
fðRÞ-gravity that can be obtained from Solar System and
laboratory tests. We conclude in Sec. IX with a summary of
our findings.

Throughout this work we will use the timelike sign
convention of Landau and Lifshitz [52]:

(1) The metric has signature ðþ;�;�;�Þ.
(2) The Riemann tensor is defined as R�

��� ¼
@��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��:

(3) The Ricci tensor is defined as the contraction
R�� ¼ R�

���.

Greek indices are used to represent spacetime indices � ¼
f0; 1; 2; 3g (or � ¼ ft; ~r; �; 	g) and lowercase Latin indices
are used for spatial indices i ¼ f1; 2; 3g. Natural units with
c ¼ 1 will be used throughout, but factors of G will be
retained.

II. DESCRIPTION OF fðRÞ-GRAVITY

A. The action and field equations

General relativity may be derived from the Einstein-
Hilbert action [52,53]

SEH½g� ¼ 1

16
G

Z
R

ffiffiffiffiffiffiffi�g
p

d4x: (2)

In fðRÞ theory we make a simple modification of the action
to include an arbitrary function of the Ricci scalar R such
that [54]

S½g� ¼ 1

16
G

Z
fðRÞ ffiffiffiffiffiffiffi�g

p
d4x: (3)

Including the function fðRÞ gives extra freedom in defining
the behavior of gravity. While this action may not encode
the true theory of gravity it could contain sufficient infor-
mation to act as an effective field theory, correctly describ-
ing phenomenological behavior [55]; it may be that as an
effective field theory, a particular fðRÞ will have a limited
region of applicability and will not be universal. We will
assume that fðRÞ is analytic about R ¼ 0 so that it can be
expressed as a power series [31,54,56–58]

fðRÞ ¼ a0 þ a1Rþ a2
2!

R2 þ a3
3!

R3 þ . . . (4)

Since the dimensions of fðRÞ must be the same as of R,

½an� ¼ ½R�ð1�nÞ. To link to GR we will set a1 ¼ 1; any
rescaling can be absorbed into the definition of G.
Various models of cosmological interest may be ex-

pressed in such a form, for example, the model of
Starobinsky [49]

fðRÞ ¼ Rþ �R0

��
1þ R2

R2
0

��n � 1

�
(5)

can be expanded as

fðRÞ ¼ R� �n

R0

R2 þ �nðnþ 1Þ
2R3

0

R4 þ . . . (6)

Consequently such a series expansion can constrain model
parameters, although we cannot specify the full functional
form from only a few terms.
The field equations are obtained by a variational princi-

ple; there are several ways of achieving this. To derive the
Einstein field equations from the Einstein-Hilbert action,
one may use the standard metric variation or the Palatini
variation [53]. Both approaches can be used for fðRÞ,
however they yield different results [39,40]. Following
the metric formalism, one varies the action with respect
to the metric g��. Following the Palatini formalism one
varies the action with respect to both the metric g�� and the
connection ��

��, which are treated as independent quan-

tities: the connection is not the Levi-Civita metric
connection.1

1Imposing the condition that the metric and Palatini formal-
isms produce the same field equations, assuming an action that
only depends on the metric and Riemann tensor, results in
Lovelock gravity [59]. Lovelock gravities require the field
equations to be divergence free and no more than second order;
in four dimensions the only possible Lovelock gravity is GR with
a potentially nonzero cosmological constant [60–62].
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Finally, there is a third version of fðRÞ-gravity: metric-
affine fðRÞ-gravity [63,64]. This goes beyond the Palatini
formalism by supposing that the matter action is dependent
on the variational independent connection. Parallel trans-
port and the covariant derivative are divorced from the
metric. This theory has its attractions: it allows for a natural
introduction of torsion. However, it is not a metric theory
of gravity and so cannot satisfy all the postulates of the
Einstein equivalence principle [1]: a free particle does not
necessarily follow a geodesic and so the effects of gravity
might not be locally removed [59]. The implications of this
have not been fully explored, but for this reason wewill not
consider the theory further.

We will restrict our attention to metric fðRÞ-gravity.
This is preferred, as the Palatini formalism has undesirable
properties: static spherically symmetric objects described
by a polytropic equation of state are subject to a curvature
singularity [40,65,66]. Varying the action with respect to
the metric g�� produces

�S ¼ 1

16
G

Z �
f0ðRÞ ffiffiffiffiffiffiffi�g

p ½R�� �r�r� þ g��h�

� fðRÞ 1
2

ffiffiffiffiffiffiffi�g
p

g��

�
�g��d4x; (7)

where h ¼ g��r�r� is the d’Alembertian and a prime

denotes differentiation with respect to R. Proceeding from
here requires certain assumptions regarding surface terms.
In the case of the Einstein-Hilbert action these gather into a
total derivative. It is possible to subtract this from the
action to obtain a well-defined variational quantity
[67,68]. This is not the case for general fðRÞ [69].
However, since the action includes higher-order derivatives
of the metric we are at liberty to fix more degrees of
freedom at the boundary, in so doing eliminating the
importance of the surface terms [39,70]. Setting the varia-
tion �R ¼ 0 on the boundary allows us to subtract a term
similar to in GR [71]. Thus we have a well-defined varia-
tional quantity, from which we can obtain the field
equations.

The vacuum field equations are

f0R�� �r�r�f
0 þ g��hf0 � f

2
g�� ¼ 0: (8)

Taking the trace of our field equations gives

f0Rþ 3hf0 � 2f ¼ 0: (9)

If we consider a uniform flat spacetime R ¼ 0, this equa-
tion gives [56]

a0 ¼ 0: (10)

In analogy to the Einstein tensor, we define

G�� ¼ f0R�� �r�r�f
0 þ g��hf0 � f

2
g��; (11)

so that in a vacuum

G�� ¼ 0: (12)

B. Conservation of energy-momentum

If we introduce matter with a stress-energy tensor T��,

the field equations become

G�� ¼ 8
GT��: (13)

Acting upon this with the covariant derivative

8
Gr�T�� ¼ r�G��

¼ R��r�f0 þ f0r�

�
R�� � 1

2
Rg��

�
� ðhr� �r�hÞf0: (14)

The second term contains the covariant derivative of the
Einstein tensor and so is zero. The final term can be shown
to be

ðhr� �r�hÞf0 ¼ R��r�f0; (15)

which is a useful geometric identity [72]. Using this

8
Gr�T�� ¼ 0: (16)

Consequently energy-momentum is a conserved quantity
in the same way as in GR, as is expected from the symme-
tries of the action.

III. LINEARIZED THEORY

We start our investigation of fðRÞ by looking at line-
arized theory. This is a weak-field approximation that
assumes only small deviations from a flat background,
greatly simplifying the field equations. Just as in GR, the
linearized framework provides a natural way to study
GWs. We will see that the linearized field equations will
reduce down to flat-space wave equations: GWs are as
much a part of fðRÞ-gravity as of GR.
Consider a perturbation of the metric from flat

Minkowski space such that

g�� ¼ ��� þ h��; (17)

where, more formally, we mean that h�� ¼ "H�� for a

small parameter ".2 We will consider terms only to Oð"Þ.
Thus, the inverse metric is

g�� ¼ ��� � h��; (18)

where we have used the Minkowski metric to raise the
indices on the right, defining

h�� ¼ ������h��: (19)

Similarly, the trace h is given by

2It is because we wish to perturb about flat spacetime that we
have required fðRÞ to be analytic about R ¼ 0.
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h ¼ ���h��: (20)

All quantities denoted by ‘‘h’’ are strictly Oð"Þ.
The linearized connection is

�ð1Þ�
�� ¼ 1

2
���ð@�h�� þ @�h�� � @�h��Þ: (21)

To Oð"Þ the covariant derivative of any perturbed quantity
will be the same as the partial derivative. The Riemann
tensor is

Rð1Þ�
��� ¼ 1

2
ð@�@�h�� þ @�@�h�� � @�@�h

�
�

� @�@�h��Þ; (22)

where we have raised the index on the differential operator
with the background Minkowski metric. Contracting gives
the Ricci tensor

Rð1Þ
�� ¼ 1

2
ð@�@�h�� þ @�@�h

�
� � @�@�h�hh��Þ;

(23)

where the d’Alembertian operator is h ¼ ���@�@�.

Contracting this with ��� gives the first-order Ricci scalar

Rð1Þ ¼ @�@�h
�� �hh: (24)

To Oð"Þ we can write fðRÞ as a Maclaurin series

fðRÞ ¼ a0 þ Rð1Þ; (25)

f0ðRÞ ¼ 1þ a2R
ð1Þ: (26)

As we are perturbing from aMinkowski background where
the Ricci scalar vanishes, we use (10) to set a0 ¼ 0.
Inserting these into (11) and retaining terms toOð"Þ yields
G ð1Þ

�� ¼ Rð1Þ
�� � @�@�ða2Rð1ÞÞ þ ���hða2Rð1ÞÞ

� Rð1Þ

2
���: (27)

Now consider the linearized trace equation, from (9)

Gð1Þ ¼ Rð1Þ þ 3hða2Rð1ÞÞ � 2Rð1Þ

Gð1Þ ¼ 3hða2Rð1ÞÞ � Rð1Þ;
(28)

where Gð1Þ ¼ ���Gð1Þ
��. This is the massive inhomoge-

neous Klein-Gordon equation. Setting G ¼ 0, as for a
vacuum, we obtain the standard Klein-Gordon equation

hRð1Þ þ�2Rð1Þ ¼ 0; (29)

defining the reciprocal length (squared)

�2 ¼ � 1

3a2
: (30)

For a physically meaningful solution �2 > 0: we constrain
fðRÞ such that a2 < 0 [73–76]. From � we define a re-
duced Compton wavelength

�R ¼ 1

�
(31)

associated with this scalar mode.
The next step is to substitute in h�� to try to find wave

solutions. We want a quantity �h�� that will satisfy a wave

equation, related to h�� by

�h �� ¼ h�� þ A��: (32)

In GR we use the trace-reversed form where A�� ¼
�ðh=2Þ���. This will not suffice here, but let us look for

a similar solution

�h�� ¼ h�� � h

2
��� þ B��: (33)

The only rank-two tensors in our theory are: h��, ���,

Rð1Þ
��, and @�@�; h�� has been used already, and we wish

to eliminate Rð1Þ
��, so we will try the simpler option based

around ���. We want B�� to be Oð"Þ; since we have

already used h, we will try the other scalar quantity Rð1Þ.
Therefore, we construct an ansatz

�h �� ¼ h�� þ
�
ba2R

ð1Þ � h

2

�
���; (34)

where a2 has been included to ensure dimensional consis-
tency and b is a dimensionless number. Contracting with
the background metric yields

�h ¼ 4ba2R
ð1Þ � h; (35)

so we can eliminate h in our definition of �h�� to give

h�� ¼ �h�� þ
�
ba2R

ð1Þ �
�h

2

�
���: (36)

Just as in GR, we have the freedom to perform a gauge
transformation [53,77]: the field equations are gauge-
invariant since we started with a function of the
gauge-invariant Ricci scalar. We will assume a Lorenz, or
de Donder, gauge choice

r� �h�� ¼ 0; (37)

or for a flat spacetime

@� �h�� ¼ 0: (38)

Subject to this, from (23), the Ricci tensor is

Rð1Þ
�� ¼ � 1

2

�
2b@�@�ða2Rð1ÞÞ þh

�
�h�� �

�h

2
���

�

þ b

3
ðRð1Þ þ Gð1ÞÞ���

�
: (39)

Using this with (28) in (27) gives
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Gð1Þ
�� ¼ 2� b

6
Gð1Þ��� � 1

2
h

�
�h�� �

�h

2
���

�

� ðbþ 1Þ
�
@�@�ða2Rð1ÞÞ þ 1

6
Rð1Þ���

�
: (40)

Picking b ¼ �1 the final term vanishes, thus we set
[76,78]

�h�� ¼ h�� �
�
a2R

ð1Þ þ h

2

�
��� (41a)

h�� ¼ �h�� �
�
a2R

ð1Þ þ
�h

2

�
���: (41b)

From (24) the Ricci scalar is

Rð1Þ ¼ h

�
a2R

ð1Þ �
�h

2

�
�hð�4a2R

ð1Þ � �hÞ

¼ 3hða2Rð1ÞÞ þ 1

2
h �h: (42)

For consistency with (28), we require

� 1

2
h �h ¼ Gð1Þ: (43)

Inserting this into (40), with b ¼ �1, we see

� 1

2
h �h�� ¼ Gð1Þ

��; (44)

we have our wave equation.
Should a2 be sufficiently small that it can be regarded an

Oð"Þ quantity, we recover the usual GR formulas to lead-
ing order within our analysis.

IV. GRAVITATIONAL RADIATION

Having established two wave equations, (28) and (44),
we now investigate their solutions. Consider waves in a
vacuum, such that G�� ¼ 0. Using a standard Fourier

decomposition

�h �� ¼ ĥ��ðk�Þ expðik�x�Þ; (45)

Rð1Þ ¼ R̂ðq�Þ expðiq�x�Þ; (46)

where k� and q� are four-wave vectors. From (44) we

know that k� is a null vector, so for a wave travelling along

the z-axis

k� ¼ !ð1; 0; 0; 1Þ; (47)

where ! is the angular frequency. Similarly, from (28)

q� ¼
�
�; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ��2

p �
; (48)

for frequency�. These waves do not travel at c, but have a
group velocity

vð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ��2

p

�
; (49)

provided that �2 > 0, v < 1 ¼ c. For �<�, we find an
evanescently decaying wave. The travelling wave is dis-
persive. For waves made up of a range of frequency com-
ponents there will be a time delay between the arrival of the
high-frequency and low-frequency constituents. This may
make it difficult to reconstruct a waveform, should the
scalar mode be observed with a GW detector [79].
From the gauge condition (38) we find that k� is or-

thogonal to ĥ��,

k�ĥ�� ¼ 0; (50)

in this case

ĥ 0� þ ĥ3� ¼ 0: (51)

Let us consider the implications of (43) using Eqs. (28)
and (35),

hð4a2Rð1Þ þ hÞ ¼ 0

hh ¼ � 4

3
Rð1Þ:

(52)

For nonzeroRð1Þ (as required for the Ricci mode) there is no
way tomake a gauge choice such that the trace hwill vanish
[76,78]. This is distinct from in GR. It is possible, however,
to make a gauge choice such that the trace �h will vanish.
Consider a gauge transformation generated by � which

satisfies h� ¼ 0, and so has a Fourier decomposition

� ¼ ̂� expðik�x�Þ: (53)

A transformation

�h �� ! �h�� þ @�� þ @�� � ���@
��; (54)

would ensure both conditions (38) and (44) are satisfied
[53]. Under such a transformation

ĥ �� ! ĥ�� þ iðk�̂� þ k�̂� � ���k
�̂�Þ: (55)

We may therefore impose four further constraints (one for

each ̂�) upon ĥ��. We take these to be

ĥ 0� ¼ 0; ĥ ¼ 0: (56)

This might appear to be five constraints, however we have

already imposed (51), and so setting ĥ00 ¼ 0 automatically

implies ĥ03 ¼ 0. In this gauge we have

h�� ¼ �h�� � a2R
ð1Þ���; h ¼ �4a2R

ð1Þ: (57)

Thus �h�� behaves just as its GR counterpart; we can define

½ĥ��� ¼
0 0 0 0
0 hþ h� 0
0 h� �hþ 0
0 0 0 0

2
6664

3
7775; (58)

where hþ and h� are constants representing the amplitudes
of the two transverse polarizations of gravitational
radiation.
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It is important that our solutions reduce to those of GR in
the event that fðRÞ ¼ R. In our linearized approach this
corresponds to a2 ! 0, �2 ! 1. We see from (48) that in
this limit it would take an infinite frequency to excite a
propagating Ricci mode, and evanescent waves would
decay away infinitely quickly. Therefore there would be
no detectable Ricci modes and we would only observe the
two polarizations found in GR. Additionally, �h�� would

simplify to its usual trace-reversed form.

V. ENERGY-MOMENTUM TENSOR

We expect gravitational radiation to carry energy-
momentum. Unfortunately, it is difficult to define a proper
energy-momentum tensor for a gravitational field: as a
consequence of the equivalence principle it is possible to
transform to a freely falling frame, eliminating the gravi-
tational field and any associated energy density at a given
point, although we can still define curvature in the neigh-
borhood of this point [53,77]. We will do nothing revolu-
tionary here, but will follow the approach of Isaacson
[50,51]. The full field Eqs. (8) have no energy-momentum
tensor for the gravitational field on the right-hand side.
However, by expanding beyond the linear terms we can
find a suitable effective energy-momentum tensor for
GWs. Expanding G�� in orders of h��

G�� ¼ GðBÞ
�� þGð1Þ

�� þ Gð2Þ
�� þ . . . (59)

We use (B) for the background term instead of (0) to avoid
potential confusion regarding its order in ". So far we have
assumed that our background is flat; however, we can
imagine that should the gravitational radiation carry
energy-momentum then this would act as a source of
curvature for the background [80]. This is a second-order
effect that may be encoded, to accuracy of Oð"2Þ, as

G ðBÞ
�� ¼ �Gð2Þ

��: (60)

By shifting Gð2Þ
�� to the right-hand side we create an

effective energy-momentum tensor. As in GR we will
average over several wavelengths, assuming that the back-
ground curvature is on a larger scale [34,53],

G ðBÞ
�� ¼ �hGð2Þ

��i: (61)

By averaging we probe the curvature in a macroscopic
region about a given point in spacetime, yielding a
gauge-invariant measure of the gravitational field strength.
The averaging can be thought of as smoothing out the
rapidly varying ripples of the radiation, leaving only
the coarse-grained component that acts as a source for
the background curvature.3 The effective energy-
momentum tensor for the radiation is

t�� ¼ � 1

8
G
hGð2Þ

��i: (62)

Having made this provisional identification, we must set
about carefully evaluating the various terms in (59). We
begin as in Sec. III by defining a total metric

g�� ¼ ��� þ h��; (63)

where ��� is the background metric. This changes our

definition for h��: instead of being the total perturbation

from flat Minkowski, it is the dynamical part of the metric
with which we associate radiative effects. Since we know

that GðBÞ
�� is Oð"2Þ, we decompose our background met-

ric as

��� ¼ ��� þ j��; (64)

where j�� is Oð"2Þ to ensure that RðBÞ�
��� is also Oð"2Þ.

Therefore its introduction will make no difference to the
linearized theory.
We will consider terms only to Oð"2Þ. We identify

�ð1Þ�
�� from (21). There is one small subtlety: whether

we use the background metric ��� or ��� to raise indices
of @� and h��. Fortunately, to the accuracy considered

here, it does not make a difference; however, we will
consider the indices to be changed with ���. We will not

distinguish between @� and rðBÞ
�, the covariant derivative

for the background metric: to the order of accuracy re-

quired covariant derivatives would commute and rðBÞ
�

behaves just like @�. Thus

�ð1Þ�
��¼1

2
���½@�ð �h���a2R

ð1Þ���Þ
þ@�ð �h���a2R

ð1Þ���Þ�@�ð �h���a2R
ð1Þ���Þ�;

(65)

and

�ð2Þ�
��¼�1

2
h��ð@�h��þ@�h���@�h��Þ

¼�1

2
ð �h���a2R

ð1Þ���Þ½@�ð �h���a2R
ð1Þ���Þ

þ@�ð �h���a2R
ð1Þ���Þ�@�ð �h���a2R

ð1Þ���Þ�:
(66)

For the Ricci tensor we can use our linearized expres-
sion, (39), for the first-order term,

Rð1Þ
�� ¼ a2@�@�R

ð1Þ þ 1

6
Rð1Þ���: (67)

The next term is

3By averaging we do not try to localize the energy of a wave to
within a wavelength; for the massive Ricci scalar mode we
always consider scales greater than �R.
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Rð2Þ
�� ¼ @��

ð2Þ�
�� � @��

ð2Þ�
�� þ �ð1Þ�

���
ð1Þ�

�� � �ð1Þ�
���

ð1Þ�
��

¼ 1

2

�
1

2
@� �h��@� �h

�� þ �h��½@�@� �h�� þ @�@�ð �h�� � a2R
ð1Þ���Þ � @�@�ð �h�� � a2R

ð1Þ���Þ
� @�@�ð �h�� � a2R

ð1Þ���Þ� þ @� �h�� ð@� �h�� � @� �h��Þ � a2@
�Rð1Þ@� �h�� þ a22ð2Rð1Þ@�@�Rð1Þ

þ 3@�R
ð1Þ@�Rð1Þ þ Rð1ÞhðBÞRð1Þ���Þ

�
: (68)

The d’Alembertian is hðBÞ ¼ ���@�@�.
To find the Ricci scalar we contract the Ricci tensor with

the full metric. To Oð"2Þ,
RðBÞ ¼ ���RðBÞ

�� (69)

Rð1Þ ¼ ���Rð1Þ
�� (70)

Rð2Þ ¼ ���Rð2Þ
�� � h��Rð1Þ

��

¼ 3

4
@� �h��@

� �h�� � 1

2
@� �h��@� �h��

� 2a2 �h
��@�@�R

ð1Þ þ 2a2R
ð1Þ2

þ 3a22
2

@�R
ð1Þ@�Rð1Þ: (71)

Using these

fðBÞ ¼ RðBÞ (72)

fð1Þ ¼ Rð1Þ (73)

fð2Þ ¼ Rð2Þ þ a2
2
Rð1Þ2; (74)

and

f0ðBÞ ¼ a2R
ðBÞ (75)

f0ð0Þ ¼ 1 (76)

f0ð1Þ ¼ a2R
ð1Þ (77)

f0ð2Þ ¼ a2R
ð2Þ þ a3

2
Rð1Þ2: (78)

We list a zeroth-order term for clarity. RðBÞ is Oð"2Þ.
Combining all of these

Gð2Þ
�� ¼ Rð2Þ

�� þ f0ð1ÞRð1Þ
�� � @�@�f

0ð2Þ þ �ð1Þ�
��@�f

0ð1Þ þ ����
��@�@�f

0ð2Þ � ����
���ð1Þ�

��@�f
0ð1Þ

� ���h
��@�@�f

0ð1Þ þ h���
��@�@�f

0ð1Þ � 1

2
fð2Þ��� � 1

2
fð1Þh��

¼ Rð2Þ
�� þ a2ð���h

ðBÞ � @�@�ÞRð2Þ � 1

2
Rð2Þ��� þ a3

2
ð���h

ðBÞ � @�@�ÞRð1Þ2 � 1

6
�h��R

ð1Þ

� a2���
�h��@�@�R

ð1Þ þ a2
2
@�Rð1Þð@� �h�� þ @� �h�� � @� �h��Þ þ a2

�
Rð1ÞRð1Þ

�� þ 1

4
Rð1Þ2���

�

� a22

�
@�R

ð1Þ@�Rð1Þ þ 1

2
���@

�Rð1Þ@�Rð1Þ
�
: (79)

It is simplest to split this up for the purposes of averaging.
Since we average over all directions at each point, gra-
dients average to zero [34,77]

h@�Vi ¼ 0: (80)

As a corollary of this we have

hU@�Vi ¼ �hV@�Ui: (81)

Repeated application of this, together with our gauge
condition, (38), and wave equations, (28) and (44), allows
us to eliminate many terms. Those that do not average to
zero are the last three terms in (79), plus

hRð2Þ
��i ¼

�
� 1

4
@� �h��@� �h

�� þ a22
2
@�R

ð1Þ@�Rð1Þ

þ a2
6
���R

ð1Þ2
	
; (82)

hRð2Þi ¼
�
3a2
2

Rð1Þ2
	
; (83)

hRð1ÞRð1Þ
��i ¼

�
a2R

ð1Þ@�@�Rð1Þ þ 1

6
���R

ð1Þ2
	
: (84)

Combining terms gives
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hGð2Þ
��i ¼

�
� 1

4
@� �h��@� �h

�� � 3a22
2

@�R
ð1Þ@�Rð1Þ

	
:

(85)

Thus we obtain the result

t�� ¼ 1

32
G
h@� �h��@� �h

�� þ 6a22@�R
ð1Þ@�Rð1Þi: (86)

In the limit of a2 ! 0 we obtain the familiar GR result as
required. The GR result is also recovered if Rð1Þ ¼ 0, as
would be the case if the Ricci mode was not excited; for
example, if the frequency was below the cutoff frequency
�. Rewriting the effective energy-momentum tensor in
terms of metric perturbation h��, using (57),

t�� ¼ 1

32
G
h@�h��@�h�� þ 1

8
@�h@�hi: (87)

These results do not depend upon a3 or higher-order co-
efficients [34].

The effective energy-momentum tensor could be used to
constrain the parameter a2 through observations of the
energy and momentum carried away by GWs. Of particular
interest would be a system with a frequency that evolved
from !<� to !>�, as then we would witness the

switching on of the propagating Ricci mode. If we could
accurately identify the cutoff frequency we could accu-
rately measure a2. However, see Sec. VIII C for further
discussion of why this is unlikely to happen.

VI. fðRÞ WITH A SOURCE

Having considered radiation in a vacuum, we now add a
source term. We want a first-order perturbation, so the
linearized field equations are

G ð1Þ
�� ¼ 8
GT��: (88)

We will again assume a Minkowski background, consider-
ing terms to Oð"Þ only. To solve the wave Eqs. (28) and
(44) with this source term we use a Green’s function

ðhþ�2ÞG�ðx; x0Þ ¼ �ðx� x0Þ; (89)

where h acts on x. The Green’s function is familiar as the
Klein-Gordon propagator (up to a factor of �i) [81]

G �ðx; x0Þ ¼
Z d4p

ð2
Þ4
exp½�ip � ðx� x0Þ�

�2 � p2
: (90)

This can be evaluated by a suitable contour integral to give

G�ðx; x0Þ ¼
� R d!

2
 exp½�i!ðt� t0Þ� 1
4
r exp½ið!2 ��2Þ1=2r� !2 >�2R

d!
2
 exp½�i!ðt� t0Þ� 1

4
r exp½�ð�2 �!2Þ1=2r� !2 <�2 ; (91)

where we have introduced t ¼ x0, t0 ¼ x00 and r ¼
jx� x0j. For � ¼ 0

G 0ðx; x0Þ ¼ �ðt� t0 � rÞ
4
r

; (92)

the familiar retarded-time Green’s function. We can use
this to solve (44)

�h ��ðxÞ ¼ �16
G
Z

d4x0G0ðx; x0ÞT��ðx0Þ

¼ �4G
Z

d3x0
T��ðt� r; x0Þ

r
: (93)

This is exactly as in GR, so we can use standard results.
Solving for the scalar mode

Rð1ÞðxÞ ¼ �8
G�2
Z

d4x0G�ðx; x0ÞTðx0Þ: (94)

To proceed further we must know the form of the trace

Tðx0Þ. In general the form of Rð1ÞðxÞ will be complicated.

A. The Newtonian limit

Let us consider the limiting case of a Newtonian source,
such that

T00 ¼ �; jT00j � jT0ij; jT00j � jTijj; (95)

with a mass distribution of a stationary point source

� ¼ M�ðx0Þ: (96)

This source does not produce any radiation. As in GR

�h 00 ¼ � 4GM

r
; �h0i ¼ �hij ¼ 0: (97)

Solving for the Ricci scalar

Rð1Þ ¼ �2G�2M
expð��rÞ

r
: (98)

Combining these in (41b) yields a metric perturbation with
nonzero elements

h00 ¼ � 2GM

r

�
1þ expð��rÞ

3

�
;

hij ¼ � 2GM

r

�
1� expð��rÞ

3

�
�ij:

(99)

Thus, to first order, the metric for a point mass in
fðRÞ-gravity is [56,82,83]
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ds2 ¼
�
1� 2GM

r

�
1þ expð��rÞ

3

��
dt2

�
�
1þ 2GM

r

�
1� expð��rÞ

3

��
d�2; (100)

using d�2 ¼ dx2 þ dy2 þ dz2. This is not the linearized
limit of the Schwarzschild metric (although it is recovered
as a2 ! 0, � ! 1) [84]. This metric has already been
derived for the case of quadratic gravity, which includes
terms like R2 and R��R

�� in the Lagrangian [73,74,85,86].

In linearized theory our fðRÞ reduces to quadratic theory,
as to first order fðRÞ ¼ Rþ a2R

2=2.
Extending this result to a slowly rotating source with

angular momentum J, we then have the additional term
[77]

�h 0i ¼ � 2G

c2r3
�ijkJjxk; (101)

where �ijk is the Levi-Civita alternating tensor. The metric
is

ds2¼
�
1�2GM

r

�
1þexpð��rÞ

3

��
dt2þ4GJ

r3

�ðxdy�ydxÞdt�
�
1þ2GM

r

�
1�expð��rÞ

3

��
d�2;

(102)

where z is the rotation axis. This is not the first-order limit
of the Kerr metric (aside from as a2 ! 0, � ! 1).

In fðRÞ-gravity Birkhoff’s theorem no longer applies
[85–89]: the metric about a spherically symmetric mass
does not correspond to the equivalent of the Schwarzschild
solution. The distribution of matter influences how the
Ricci scalar decays, and consequently Gauss’ theorem is
not applicable. Repeating our analysis for a (nonrotating)
sphere of uniform density and radius L

�h 00 ¼ � 4GM

r
; �h0i ¼ �hij ¼ 0; (103)

as in GR, and for the point mass, but

Rð1Þ ¼ �6GM
expð��rÞ

r

�
�L coshð�LÞ � sinhð�LÞ

�L3

�

¼ �6GM
expð��rÞ

r
�2�ð�LÞ; (104)

defining �ð�LÞ in the last line.4 The metric perturbation
thus has nonzero first-order elements [86,88,89]

h00 ¼ �2GM½1þ expð��rÞ�ð�LÞ�;
hij ¼ �2GM½1� expð��rÞ�ð�LÞ��ij;

(105)

where we have assumed that r > L at all stages.5

Solving the full field equations to find the exact metric in
fðRÞ is difficult because of the higher-order derivatives that
enter the equations. However, we expect a solution to have
the appropriate limiting form as given above.
It has been suggested that since R ¼ 0 is a valid solution

to the vacuum equations, the BH solutions of GR should
also be the BH solutions in fðRÞ [31,33]. However, while
the Kerr solutions are solutions of the vacuum field equa-
tions, the presence of a source complicates the issue; it may
be that the end point of gravitational collapse is not the
Kerr solution, and so astrophysical BHs in fðRÞ-gravity
may not be the same as their GR equivalents. We have seen
that having a nonzero stress-energy tensor at the origin,
because of (28), forces R to be nonzero in the surrounding
vacuum, although it will decay to zero at infinity [90].
While one cannot generalize straightforwardly from our
simple �-function sources to complete BH solutions, be-
cause of the horizon in the BH spacetime, these solutions
suggest that astrophysical BHs could be different from the
Kerr solution.6 If astrophysical BHs are not described by
the Kerr metric, these weak-field metrics provide a reason-
able candidate for the alternative form.
If the astrophysical BHs in fðRÞ-gravity have a different

structure from their GR counterparts, it should be possible
to distinguish between theories by observing the BHs that
form. It is this possibility that we focus on in the next
section. Even in the event that the BH spacetimes do
coincide, we could still detect differences in the properties
of extended sources.

B. The weak-field metric

It is useful to transform the weak-field metric, (102), to
the more familiar form

d s2 ¼ Að~rÞdt2 þ 4GJ

~r
sin2�d	dt� Bð~rÞd~r2 � ~r2d�2:

(106)

The coordinate ~r is a circumferential measure, as in the
Schwarzschild metric, as opposed to r, used in preceding
sections, which is a radial distance (an isotropic coordi-
nate) [53,90]. To simplify the algebra we introduce the
Schwarzschild radius

rS ¼ 2GM: (107)

4�ð0Þ ¼ 1=3 is the minimum of �ð�LÞ.

5Inside the source Rð1Þ ¼ �ð6GM=L3Þ½1� ð�Lþ 1Þ�
expð��LÞ sinhð�rÞ=�r�.
6There is currently no proof of the uniqueness of the Kerr

solutions as the end state of gravitational collapse in fðRÞ,
although there does exist a similar result for the closely related
Brans-Dicke theory [91–94].
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In the linearized regime, we require that the new radial
coordinate satisfies

~r 2 ¼
�
1þ rS

r

�
1� expð��rÞ

3

��
r2 (108)

~r ¼ rþ rS
2

�
1� expð��rÞ

3

�
: (109)

This can be used as an implicit definition of r in terms of ~r.
To first order in rS=r [90]

Að~rÞ ¼ 1� rS
~r

�
1þ expð��rÞ

3

�
: (110)

We see that the functional form of g00 is almost unchanged
upon substituting ~r for r; however r is still in the
exponential.

To find Bð~rÞ we consider, using (109),

d~r

~r
¼ d ln~r ¼

�
1þ�rSr expð��rÞ=6~r

1þ ðrS=2~rÞ½1� expð��rÞ=3�
�
dr

r
:

(111)

Thus

d ~r2¼ ~r2

r2

�
1þ�rSrexpð��rÞ=6~r

1þðrS=2~rÞ½1�expð��rÞ=3�
�
2
dr2: (112)

The term in braces is ½Bð~rÞ��1. We assume that in the weak-
field

"� rS
r

(113)

is small. Then the metric perturbations from Minkowski
are small. Expanding to first order [90]

Bð~rÞ ¼ 1þ rS
~r

�
1� expð��rÞ

3

�
��rS expð��rÞ

3
:

(114)

In the limit � ! 1, where we recover GR, Að~rÞ and Bð~rÞ
tend to their Kerr (Schwarzschild) forms.

In the following sections we will use these weak-field
metrics (in both coordinates) with astrophysical and labo-
ratory tests of gravity to place constraints on fðRÞ.

VII. EPICYCLIC FREQUENCIES

One means of probing the nature of a spacetime is
through observations of orbital motions [28]. We will con-
sider the epicyclic motion produced by perturbing a circu-
lar orbit. There are two epicyclic frequencies associated
with any circular-equatorial orbit, characterizing perturba-
tions in the radial and vertical directions respectively [95].
We will start by deriving a general result for any metric of

the form of (106), and then specialize to our fðRÞ solution.
Wewill work in the slow-rotation limit, keeping only linear
terms in J.
An orbit in a spacetime described by (109) has as con-

stants of motion: the orbiting particle’s rest mass, the
energy (per unit mass) of the orbit E, and the
z-component of the angular momentum (per unit mass)
Lz. Using an over-dot to denote differentiation with respect
to an affine parameter, which we identify as proper time �,

E ¼ A _tþ 2GJ

~r
sin2� _	; (115)

Lz ¼ ~r2sin2� _	� 2GJ

~r
sin2� _t: (116)

We will consider perturbations of circular-equatorial or-
bits; orbits such that _~r ¼ €~r ¼ _� ¼ 0 and � ¼ 
=2. The
timelike geodesic equation can be written in the covariant
form

du�

d�
¼ 1

2
ð@�g��Þu�u�; (117)

where u� is the 4-velocity. For a circular-equatorial orbit,
setting� ¼ ~r gives the frequency of the orbit!0 ¼ d	=dt
as

!0 ¼ �GJ

~r3
	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0

~r
þ

�
2GJ

~r3

�
2

s
; (118)

in which a dash denotes d=d~r and the þ=� sign denotes
prograde/retrograde orbits. The definition of proper time
gives

_t ¼
�
Aþ 4GJ!0

~r
� ~r2!2

0

��1=2
: (119)

We now have both _t and _	 ¼ !0 _t as functions of ~r;
substitution into (115) and (116) allows us to find the
energy and angular momentum in terms of ~r.
From the HamiltonianH ¼ g��u

�u� we can obtain the

general equation of motion for massive particles, using the
substitutions

_t ¼ E

A
� 2GJ

A~r3
Lz; (120)

_	 ¼ 2GJE

A~r3
þ Lz

~r2sin2�
; (121)

where we have linearized in J, as appropriate for the slow-
rotation limit. With these replacements, the general time-
like geodesic equation takes the form

_~r 2 þ ~r2

B
_�2 ¼ E2

AB
� 4GJELz

AB~r3
� 1

B

�
1þ L2

z

~r2sin2�

�
¼ Vð~r; �; E; LzÞ: (122)
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To compute the epicyclic frequency we imagine the orbit is
perturbed by a small amount, while E and Lz are un-
changed.7 For radial perturbations ~r ¼ �rð1þ �Þ, where �r
is the radius of the unperturbed orbit, the orbit undergoes
small oscillations with frequency

_t 2�2
rad ¼ � 1

2

@2V

@~r2









�r;�¼
=2
: (123)

Small vertical perturbations � ¼ 
=2þ � oscillate with
frequency

_t 2�2
vert ¼ � 1

2

Bð �rÞ
�r2

@2V

@�2









�r;�¼
=2
: (124)

We will denote Að �rÞ � �A, Bð �rÞ � �B, A0ð �rÞ � �A0, etc.; dif-
ferentiating the potential from (122) we find

_t2�2
rad¼�E2

� �A02
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�
�A00
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�
(125)

¼ L2
z

�r3 �B

� �A00
�A0 �

2 �A0
�A
þ3

�r

�
þ6GJELz

�A �B �r4

� �A00
�A0 þ

4

�r

�
; (126)

_t�vert ¼ Lz

�r2
: (127)

To simplify (125), we have used conditions imposed by
setting V and @V=@~r equal to zero for circular, equatorial
orbits. These results hold for anymetric of the general form
(106), subject to the slow-rotation condition, which we
have used to linearize in J at various stages.

Gravitational-wave constraints

We are interested in whether or not the deviation arising
from the fðRÞ correction would be observable. In principle,
the deviations will be observable if the orbit looks suffi-
ciently different from orbits in the Kerr metric.8 To quan-
tify the amount of difference, we need to identify orbits

between the two spacetimes, and for circular-equatorial
orbits there is a natural way to do this: by identifying orbits
with the same frequency !0, since this is a gauge-invariant
observable quantity [96]. The quantity

�ð!0;�Þ ¼ �ð!0;�Þ ��ð!0;� ! 1Þ (128)

characterizes the rate of increase in the phase difference
between the fðRÞ trajectory and the Kerr trajectory with the
same frequency and spin parameter.9 A physical effect is in
principle observable if it leads to a significant phase shift in
a gravitational waveform over the length of an observation.
Thus, a simple criterion for the fðRÞ theory to be distin-
guishable from GR would be that Tobs�> 2
, for obser-
vation period Tobs. This is a significant oversimplification,
since we have assumed that only the orbital frequency has
been matched to a Kerr value, while small changes in the
other parameters such as the BH mass and spin, the orbital
eccentricity and inclination, and so on, could mimic the
effects of an fðRÞ deviation. On the other hand, we are also
keeping the orbital frequency fixed whereas we will ob-
serve inspirals, and this tends to break the parameter
degeneracies. Since we are interested in extreme-mass-
ratio systems, for which the inspiral proceeds slowly, it is
likely that we are being overoptimistic, so these results can
be considered upper bounds on what could be measurable.
A fuller analysis accounting for parameter correlations and
inspiral is beyond the scope of this paper.
The time scale of the systems we are considering is set

by the BHmass, and the quantitiesM!0 andM� are mass-
independent. A duration of a typical EMRI observation
with LISAwill be of the order of a year, and so the criterion
for detectability becomes

GM� ¼ 9:8� 10�7

�
M

106M�

��
yr

Tobs

�
: (129)

In Fig. 1 we show the region of �-!0 parameter space in
which fðRÞ gravity could be distinguished from GR, as
defined by this criterion. Each curve represents a particular
choice for GM�, and the region below the curve is detect-
able in an observation characterized by that choice forM�.
Equation (129) indicates that the curve GM� ¼ 10�6 is
what would be achieved in a one-year observation for a
106M� mass BH. The curves GM� ¼ 10�5=10�7 are the
corresponding results for a 107=105M� mass BH, while
the curve GM� ¼ 3� 10�7 represents what would be
achieved in a three-year observation and so on. We show
results for two different choices of spin, a ¼ J=ðGM2Þ ¼ 0
and a ¼ 0:5, and it is clear that there is not too much
difference between the two; although the vertical epicyclic
frequency is only measurable for a � 0 since it coincides

7It is not possible for the orbit to be perturbed without
changing the energy or angular momentum. However, these
corrections are quadratic in the amplitude of the perturbation,
and so we can ignore them at linear order.

8Here we assume that the end point of gravitational collapse is
not the Kerr solution, and that the weak-field fðRÞ metric is a
reasonable approximation to the true astrophysical BH solution.
If it were Kerr, the epicyclic frequencies would not differ
between fðRÞ and GR.

9By comparing the trajectory to the � ! 1 limit of the
trajectory rather than the exact Kerr result ensures that we are
taking the same slow-rotation limit in both cases, and will not be
dominated by OðJ2Þ corrections.
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with the orbital frequency for a ¼ 0 because of the spheri-
cal symmetry of the potential. The results for the radial
epicyclic frequency do not differ hugely between a ¼ 0
and a ¼ 0:5 in this weak-field metric approximation. We
note also that we show results only for prograde orbits. For
a � 0, we can also compute results for retrograde orbits,
and these differ from the prograde results but only by a
small amount which is almost indistinguishable on the
scale of these plots.

Our conclusion from Fig. 1 is that, broadly speaking, we
would be able to distinguish spacetimes with GM� & 1,
for a 106M� BH this corresponds to � & 10�9 m�1.
Somewhat larger values are accessible at higher frequen-
cies, but this conclusion must be treated somewhat cau-
tiously, as the inspiral would pass through that region fairly
quickly, and those orbits correspond to relatively small
values of the orbital radius at which the approximations
that we made deriving the weak-field metric begin to break
down. For this criterion, the radial epicyclic frequency is
always a more powerful probe than the vertical epicyclic
frequency. This is to be expected, since the latter is gen-
erally smaller in magnitude and so fewer cycles accumu-
late over a typical observation.

VIII. SOLAR SYSTEM AND LABORATORY TESTS

A. Post-Newtonian parameter �

The parametrized post-Newtonian (PPN) formalism was
created to quantify deviations from GR [1,2]. It is ideal for
Solar System tests. The only parameter we need to con-
sider here is �, which measures the space-curvature pro-
duced by unit rest mass. The PPN metric has components

g00 ¼ 1þ 2U; gij ¼ �ð1þ 2�UÞ�ij; (130)

where for a point mass

UðrÞ ¼ GM

r
: (131)

The metric must be in isotropic coordinates [2,53]. The
fðRÞ metric (100) is of a similar form, but there is not a
direct correspondence because of the exponential.10 It has
been suggested that this may be incorporated by changing
the definition of the potential U [40,57,90,99], then

� ¼ 3� expð��rÞ
3þ expð��rÞ : (132)

As � ! 1, the GR value of � ¼ 1 is recovered. However,
the experimental bounds for � are derived assuming that it
is a constant [2]. Since this is not the case, we will rederive
the post-Newtonian, or Oð"Þ, corrections to photon trajec-
tories for a more general metric. We define

d s2 ¼ PðrÞdt2 �QðrÞðdx2 þ dy2 þ dz2Þ: (133)

To post-Newtonian order, this has nonzero connection
coefficients

�0
0i ¼

P0xi

2r
; �i

00 ¼
P0xi

2r
;

�i
jk ¼

Q0ð�ijx
k þ �ikx

j � �jkx
iÞ

2r
:

(134)

The photon trajectory is described by the geodesic
equation

d2x�

d�2
þ ��

��

dx�

d�

dx�

d�
¼ 0; (135)

FIG. 1 (color online). Region of parameter space in which fðRÞ theories can be distinguished from GR when the central BH has spin
a ¼ 0 (left panel) or a ¼ 0:5 (right panel). Each curve corresponds to a particular specification of the detectability criterion given in
(129) in the text, as identified in the key. Dashed lines correspond to measurements of the vertical epicyclic frequency, while solid lines
represent measurements of the radial epicyclic frequency. The region below the curve could be distinguishable in a LISA observation
with that detectability value.

10Our fðRÞ theory is equivalent to a Brans-Dicke theory with a
potential and parameter !BD ¼ 0 [97,98]. We cannot use the
familiar result � ¼ ð1þ!BDÞ=ð2þ!BDÞ [1] as this was derived
for Brans-Dicke theory without a potential [2].
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for affine parameter �. The time coordinate obeys

d2t

d�2
þ �0

��

dx�

d�

dx�

d�
¼ 0; (136)

so we can rewrite the spatial components of (135) using t as
an affine parameter [2]

d2xi

dt2
þ

�
�i

�� � �0
��

dxi

dt

�
dx�

dt

dx�

dt
¼ 0: (137)

Since the geodesic is null we also have

g��

dx�

dt

dx�

dt
¼ 0: (138)

To post-Newtonian accuracy these become

d2xi

dt2
¼ �

�
P0

2r
�Q0

2r









dxdt








2

�
xi þ P0 �Q0

r
x � dx

dt

dxi

dt
;

(139)

0 ¼ P�Q









dxdt








2

: (140)

The Newtonian, or zeroth-order, solution of these is propa-
gation in a straight line at constant speed [2]

xiN ¼ nit; jnj ¼ 1: (141)

The post-Newtonian trajectory can be written as

xi ¼ nitþ xipN (142)

where xipN is the deviation from the straight line.

Substituting this into (139) and (140) gives

d2xpN

dt2
¼ � 1

2
rðP�QÞ þ n � rðP�QÞn; (143)

n � dxpN
dt

¼ P�Q

2
: (144)

The post-Newtonian deviation only depends upon the dif-
ference P�Q. From (100)

PðrÞ �QðrÞ ¼ � 4GM

r
¼ �4UðrÞ: (145)

This is identical to in GR. The result holds not just for a
point mass, we see, using (41b),

PðrÞ �QðrÞ ¼ h00 þ hii ðno summationÞ
¼ �h00 þ �hii; (146)

and since �h�� obeys (44) exactly as in GR, there is no

difference. We conclude that an appropriate definition for
the post-Newtonian parameter is

� ¼ g00 þ gii
2U

� 1 ðno summationÞ: (147)

Using this, our fðRÞ solutions have � ¼ 1. This agrees with
the result found by Clifton [58].11 Consequently,
fðRÞ-gravity is indistinguishable from GR in this respect
and is entirely consistent with the current observational
value of � ¼ 1þ ð2:1	 2:3Þ � 10�5 [1,5]. We must use
other experiments to put constraints upon fðRÞ.

B. Planetary precession

We can also use the epicyclic frequencies derived in
Sec. VII for the classic test of planetary precession in the
Solar System. Radial motion perturbs the orbit into an
ellipse. The amplitude of our perturbation � gives the
eccentricity e of the ellipse [100]. Unless !0 ¼ �rad the
epicyclic motion will be asynchronous with the orbital
motion: there will be precession of the periapsis. In one
revolution the ellipse will precess about the focus by

$ ¼ 2


�
!0

�rad

� 1

�
(148)

where !0 is the frequency of the circular orbit, given in
(118). The precession is cumulative, so a small deviation
may be measurable over sufficient time. Taking the non-
rotating limit, the epicyclic frequency is

�2
rad ¼ !2

0

�
1� 3rS

�r
� �ð�; rS; �rÞ

�
; (149)

defining the function

� ¼ rS

�
1

�r
þ�

�
expð��rÞ

3
þ �2 �r2 expð��rÞ

3þ ð1þ��rÞ expð��rÞ
�

�
1� rS

�r
þ rS

�
1

�r
þ�

�
expð��rÞ

3

�
: (150)

This characterizes the deviation from the Schwarzschild
case: the change in the precession per orbit relative to
Schwarzschild is

�$ ¼ $�$S (151)

¼ 
�; (152)

using the subscript S to denote the Schwarzschild value. To
obtain the last line we have expanded to lowest order,
assuming that � is small.12 Since � 
 0, the precession
rate is enhanced relative to GR.
Table I shows the orbital properties of the planets. We

will use the deviation in perihelion precession rate from the
GR prediction to constrain the value of � , and hence� and
a2. All the precession rates are consistent with GR predic-
tions (�$ ¼ 0) to within their uncertainties. Assuming
that these uncertainties constrain the possible deviation

11Clifton [58] also gives PPN parameters � ¼ 1, �1 ¼ 0, �3 ¼
0 and �4 ¼ 0, all identical to in GR.
12There is one term in � that is not explicitly Oð"Þ. Numerical
evaluation shows that this is <0:6 for the applicable range of
parameters.
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from GR, we can use them as bounds for the fðRÞ correc-
tions. Table II shows the constraints for � and a2 obtained
by equating the uncertainty in the precession rate��$ with
the fðRÞ correction, and similarly using twice the
uncertainty 2��$. The tightest constraint is obtained
from the orbit of Mercury. Adopting a value of � 
 5:2�
10�10 m�1, the cutoff frequency for the Ricci mode is 

0:16 s�1. Therefore it could lie in the upper range of the
LISA frequency band [13,14] or in the Laser
Interferometer Gravitational-Wave Observatory/Virgo fre-
quency range [8–10]. The constraints are not as tight as
those which could be placed using gravitational-wave ob-
servations. However, as we will see in Sec. VIII C, it is
possible to place stronger constraints on� using laboratory
experiments.

C. Fifth-force tests

From the metric (100) we see that a point mass has a
Yukawa gravitational potential [82,83,86]

VðrÞ ¼ GM

r

�
1þ expð��rÞ

3

�
: (153)

Potentials of this form are well studied in fifth-force tests
[1,3,4] which consider a potential defined by a coupling
constant � and a length-scale � such that

VðrÞ ¼ GM

r

�
1þ � exp

�
� r

�

��
: (154)

We are able to put strict constraints upon our length-scale
�R, and hence a2, since our coupling constant �R ¼ 1=3 is
relatively large. This can be larger for extended sources:
comparison with (105) shows that for a uniform sphere
�R ¼ �ð�LÞ 
 1=3.
The best constraints at short distances come from the

Eöt-Wash experiments, which use torsion balances
[103,104]. These constrain �R & 8� 10�5 m. Hence we
determine ja2j & 2� 10�9 m2. A similar result was ob-
tained by Näf and Jetzer [83]. This would mean that the
cutoff frequency for a propagating scalar mode would be
* 4� 1012 s�1. This is much higher than expected for
astrophysical objects.
Fifth-force tests also permit �R to be large. This degen-

eracy can be broken using other tests; from Sec. VII we
know that the large range for �R is excluded by planetary
precession rates. This is supported by a result of Näf

TABLE I. Orbital properties of the eight major planets and Pluto. We take the semimajor orbital axis to be the flat-space distance r,
not the coordinate ~r. The eccentricity is not used in calculations, but is given to assess the accuracy of neglecting terms Oðe2Þ.

Semimajor axis [101] Orbital period [101] Precession rate [102] Eccentricity [101]

Planet r=1011 m ð2
=!0Þ=yr �$	 ��$=mas yr�1 e

Mercury 0.57909175 0.24084445 �0:040	 0:050 0.20563069

Venus 1.0820893 0.61518257 0:24	 0:33 0.00677323

Earth 1.4959789 0.99997862 0:06	 0:07 0.01671022

Mars 2.2793664 1.88071105 �0:07	 0:07 0.09341233

Jupiter 7.7841202 11.85652502 0:67	 0:93 0.04839266

Saturn 14.267254 29.42351935 �0:10	 0:15 0.05415060

Uranus 28.709722 83.74740682 �38:9	 39:0 0.04716771

Neptune 44.982529 163.7232045 �44:4	 54:0 0.00858587

Pluto 59.063762 248.0208 28:4	 45:1 0.24880766

TABLE II. Bounds calculated using uncertainties in planetary perihelion precession rates. �
must be greater than or equal to the tabulated value, ja2j must be less than or equal to the
tabulated value.

Using ��$ Using 2��$

Planet �=10�11 m�1 ja2j=1018 m2 �=10�11 m�1 ja2j=1018 m2

Mercury 52.6 1.2 51.3 1.3

Venus 25.3 5.2 24.6 5.5

Earth 19.1 9.1 18.6 9.6

Mars 12.2 22 11.9 24

Jupiter 2.96 380 2.87 410

Saturn 1.69 1200 1.63 1200

Uranus 0.58 9800 0.56 11000

Neptune 0.35 28000 0.33 31000

Pluto 0.26 49000 0.25 55000
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and Jetzer [83] obtained using the results of Gravity Probe
B [6].

While the laboratory bound on �R may be strict com-
pared to astronomical length-scales, it is still much greater
than the expected characteristic gravitational scale, the
Planck length lP. We might expect for a natural quantum
theory that a2 �Oðl2PÞ; however l2P ¼ 2:612� 10�70 m2,
thus the bound is still about 60 orders of magnitude greater
than the natural value. The only other length-scale that we
could introduce would be defined by the cosmological
constant �. Using the concordance values [47]
� ¼ 1:26� 10�52 m�2; we see that ��1 � ja2j. It is
intriguing that if we combine these two length-scales we

find lP=�
1=2 ¼ 1:44� 10�9 m2, which is of the order of

the current bound. This is likely to be a coincidence, since
there is nothing fundamental about the current level of
precision. It would be interesting to see if the measure-
ments could be improved to rule out a Yukawa interaction
around this length-scale.

IX. SUMMARYAND CONCLUSIONS

We have examined the possibility of testing fðRÞ type
modifications to gravity using future gravitational-wave
observations and other measurements. We have seen that
gravitational radiation is modified in fðRÞ-gravity as the
Ricci scalar is no longer constrained to be zero and, in
linearized theory, there is an additional mode of oscillation,
that of the Ricci scalar. This is only excited above a cutoff
frequency, but once a propagated mode is excited, it will
carry additional energy-momentum away from the source.
The two transverse GW modes are modified from their GR
counterparts to include a contribution from the Ricci scalar
[see (41a)], which will allow us to probe the curvature of
the strong-field regions from which GWs originate.
However, further study is needed in order to understand
how the GWs behave in a region with background curva-
ture, in particular, when R is nonzero.

From linearized theory we have deduced the weak-field
metrics for some simple mass distributions and found they
are not the BH solutions of GR. Additionally, Birkhoff’s
theorem no longer applies in fðRÞ-gravity. If the end point
of gravitational collapse is not the Kerr solution, LISA
observations of extreme-mass-ratio inspirals will be sensi-
tive to small differences in the precession frequencies of
orbits, as small differences lead to secular dephasings that
accumulate over the 100 000 waveform cycles LISA will
observe. By computing epicyclic frequencies for the weak-
field, slow-rotation metric we were able to estimate the
constraints that might come from such observations. These
indicated that deviations would only be detectable when
ja2j * 1017 m2, assuming an extreme-mass-ratio binary
with a massive BH of mass �106M�. We also discussed
constraints that could be placed from Solar System obser-
vations of planetary precessions and from laboratory ex-
periments. While the LISA constraints would beat those

from Solar System observations (which presently give
ja2j & 1:2� 1018 m2), considerably stronger constraints
have already been placed from fifth-force tests.13 Using
existing results from the Eöt-Wash experiment, we can
constrain ja2j & 2� 10�9 m2. For this range of a2, we
would not expect the propagating Ricci mode to be excited
by astrophysical systems as the cutoff frequency is too
high. But, even in the absence of excitation of the Ricci
mode, gravitational radiation in fðRÞ-gravity is still modi-
fied through the dependence of the transverse polarizations
on the Ricci scalar.
Although the constraints from astrophysical observa-

tions will be much weaker than this laboratory bound,
they are still of interest since they probe gravity at a
different scale and in a different environment. It is possible
that fðRÞ-gravity is not universal, that it is different in
different regions of space or at different energy scales.
We could regard the fðRÞ model as an approximate effec-
tive theory, and argue that the range of validity of a
particular parameterization is limited to a specific scale.
For example, we could imagine that the effective theory in
the vicinity of a massive BH, where the curvature is large,
is different from the appropriate effective theory in the
Solar System, where curvature is small; or fðRÞ could
evolve with cosmological epoch so that it varies with
redshift. The limit on a2 from gravitational-wave observa-
tions will depend upon the BH mass, orbital radius and
observation time, but it is clear that if the laboratory bound
is indeed universal there should be no detectable deviation:
observation of a deviation would thus prove not only that
GR failed, but that the effective a2 varied with
environment.
One method of obtaining a variation is via the chame-

leon mechanism, where fðRÞ-gravity is modified in the
presence of matter [105–107]. In metric fðRÞ-gravity this
is a nonlinear effect arising from a large departure of the
Ricci scalar from its background value [40]. The mass of
the effective scalar degree of freedom then depends upon
the density of its environment [57,108]. In a region of high
matter density, such as the Earth, the deviations from
standard gravity would be exponentially suppressed due
to a large effective�; while on cosmological scales, where
the density is low, the scalar would have a small�, perhaps
of the order H0=c [105,106]. The chameleon mechanism
allows fðRÞ-gravity to pass laboratory, or Solar System,
tests while remaining of interest for cosmology. In the
context of gravitational radiation, this would mean that
the Ricci scalar mode could freely propagate on cosmo-
logical scales [109]. Unfortunately, since the chameleon
mechanism suppresses the effects of fðRÞ in the presence

13The LISA constraint relies upon the assumption that the
weak-field metric does describe the exterior of a BH; there is
no such caveat on the Solar System constraint since the weak-
field metric is undoubtedly applicable for the spacetime exterior
to the Sun.
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of matter, this modewould have to be excited by something
other than the acceleration of matter. Additionally, since
electromagnetic radiation has a traceless energy-
momentum tensor it cannot excite the Ricci mode.14 To
be able to detect the Ricci mode we must observe it well
away from any matter, which would cause it to become
evanescent: a space-borne detector such as LISA could be
our only hope.

As the chameleon mechanism is inherently nonlinear, it
is difficult to discuss in terms of our linearized framework.
Treating fðRÞ as an effective theory, we could incorporate
the effects of matter by taking the coefficients fang to be
functions of the matter stress-energy tensor (or its trace). In
this case, the results presented here would hold in the event

that the coefficient a2 is slowly varying, such that it may be
treated as approximately constant in the region of interest.
The linearized wave equations, (28) and (44), retain the
same form in the case of a variable a2, the only alteration

would be that a2R
ð1Þ replaces Rð1Þ as subject of the Klein-

Gordon equation. In particular, the conclusion that � ¼ 1
is unaffected by the possibility of a variable a2.
An interesting extension to the work presented here

would be to consider the case when the constant term in
the function fðRÞ, a0, is nonzero. We would then be able to
study perturbations with respect to (anti-)de Sitter space.
This is relevant because the current �CDM paradigm
indicates that we live in a universe with a positive cosmo-
logical constant [47,111]. Such a study would naturally
complement an investigation into the effects of background
curvature on propagation.
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[14] K. Danzmann and A. Rüdiger, Classical Quantum Gravity
20, S1 (2003).

[15] D. Psaltis, Living Rev. Relativity 11, 9 (2008), http://
www.livingreviews.org/lrr-2008-9 .

14The standard transverse polarizations of gravitational radia-
tion have an energy-momentum tensor that averages to be trace-
less, although this may not be the case locally [110]; the
contribution to the gravitational averaged energy-momentum
tensor from a propagating Ricci mode does have a nonzero
trace, see (86). In any case it is doubtful that gravitational
energy-momentum could act as a source for detectable radiation.

LINEARIZED fðRÞ GRAVITY: GRAVITATIONAL . . . PHYSICAL REVIEW D 83, 104022 (2011)

104022-17

http://www.livingreviews.org/lrr-2006-3
http://www.livingreviews.org/lrr-2006-3
http://dx.doi.org/10.1016/j.ppnp.2008.08.002
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1007/s11214-009-9524-7
http://dx.doi.org/10.1007/s11214-009-9524-7
http://www.livingreviews.org/lrr-2003-5 
http://www.livingreviews.org/lrr-2003-5 
http://dx.doi.org/10.1126/science.256.5055.325
http://dx.doi.org/10.1126/science.256.5055.325
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/1742-6596/203/1/012074
http://dx.doi.org/10.1088/0264-9381/19/7/321
http://dx.doi.org/10.1103/PhysRevD.81.102001
http://dx.doi.org/10.1103/PhysRevD.81.102001
http://lisa.gsfc.nasa.gov/Documentation/ppa2.08.pdf
http://lisa.gsfc.nasa.gov/Documentation/ppa2.08.pdf
http://dx.doi.org/10.1088/0264-9381/20/10/301
http://dx.doi.org/10.1088/0264-9381/20/10/301
http://www.livingreviews.org/lrr-2008-9
http://www.livingreviews.org/lrr-2008-9


[16] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller, I.
Mandel, C. J. Cutler, and S. Babak, Classical Quantum
Gravity 24, R113 (2007).

[17] F. D. Ryan, Phys. Rev. D 52, 5707 (1995).
[18] F. D. Ryan, Phys. Rev. D 56, 1845 (1997).
[19] W. Israel, Phys. Rev. 164, 1776 (1967).
[20] W. Israel, Commun. Math. Phys. 8, 245 (1968).
[21] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[22] S.W. Hawking, Commun. Math. Phys. 25, 152

(1972).
[23] D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).
[24] R. O. Hansen, J. Math. Phys. (N.Y.) 15, 46 (1974).
[25] N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022

(16) (2004).
[26] K. Glampedakis and S. Babak, Classical Quantum Gravity

23, 4167 (2006).
[27] L. Barack and C. Cutler, Phys. Rev. D 75, 042003 (2007).
[28] J. R. Gair, C. Li, and I. Mandel, Phys. Rev. D 77, 024035

(2008).
[29] G. Lukes-Gerakopoulos, T. A. Apostolatos, and G.

Contopoulos, Phys. Rev. D 81, 124005 (2010).
[30] M. Kesden, J. Gair, and M. Kamionkowski, Phys. Rev. D

71, 044015 (2005).
[31] D. Psaltis, D. Perrodin, K. R. Dienes, and I. Mocioiu,

Phys. Rev. Lett. 100, 091101 (2008).
[32] N. Yunes and L. C. Stein, arXiv:1101.2921 [Phys Rev. D

(to be published)].
[33] E. Barausse and T. P. Sotiriou, Phys. Rev. Lett. 101,

099001 (2008).
[34] L. C. Stein and N. Yunes, Phys. Rev. D 83, 064038 (2011).
[35] E. Berti, A. Buonanno, and C.M. Will, Phys. Rev. D 71,

84025 (2005).
[36] S. Alexander, L. S. Finn, and N. Yunes, Phys. Rev. D 78,

066005 (2008).
[37] S. Alexander and N. Yunes, Phys. Rep. 480, 1 (2009).
[38] C. F. Sopuerta and N. Yunes, Phys. Rev. D 80, 064006

(2009).
[39] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[40] A. De Felice and S. Tsujikawa, Living Rev. Relativity 13,

3 (2010), http://www.livingreviews.org/lrr-2010-3.
[41] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.

Phys. 4, 115 (2007).
[42] S. Capozziello and M. Francaviglia, Gen. Relativ. Gravit.

40, 357 (2007).
[43] A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[44] A. Vilenkin, Phys. Rev. D 32, 2511 (1985).
[45] A. A. Starobinskii, Sov. Astron. Lett. 9, 302 (1983), http://

adsabs.harvard.edu/abs/1983SvAL....9..302S.
[46] A. A. Starobinskii, Sov. Astron. Lett. 11, 133 (1985),

http://adsabs.harvard.edu/abs/1985SvAL...11..133S.
[47] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M.R.

Greason, M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut,
E. Komatsu, D. Larson, M. Limon, S. S. Meyer, M. R.
Nolta, N. Odegard, L. Page, K.M. Smith, D. N. Spergel,
G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright,
Astrophys. J. Suppl. Ser. 192, 14 (2011).

[48] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R.
Nolta, C. L. Bennett, B. Gold, M. Halpern, R. S. Hill, N.
Jarosik, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, L.
Page, K.M. Smith, D.N. Spergel, G. S. Tucker, J. L.

Weiland, E. Wollack, and E. L. Wright, Astrophys. J.
Suppl. Ser. 192, 16 (2011).

[49] A. A. Starobinsky, JETP Lett. 86, 157 (2007).
[50] R. Isaacson, Phys. Rev. 166, 1263 (1968).
[51] R. Isaacson, Phys. Rev. 166, 1272 (1968).
[52] L. D. Landau and E.M. Lifshitz, The Classical Theory of

Fields, Course of Theoretical Physics Vol. 2 (Butterworth-
Heinemann, Oxford, 1975), 4th ed.

[53] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W.H. Freeman, New York, 1973).

[54] H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)
http://adsabs.harvard.edu/abs/1970MNRAS.150....1B.

[55] M. Park, K.M. Zurek, and S. Watson, Phys. Rev. D 81,
124008 (2010).

[56] S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76,
104019 (2007).

[57] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, Phys.
Rev. D 76, 063505 (2007).

[58] T. Clifton, Phys. Rev. D 77, 024041 (2008).
[59] Q. Exirifard and M. Sheik-Jabbari, Phys. Lett. B 661, 158

(2008).
[60] D. Lovelock, Aequationes mathematicae 4, 127

(1970).
[61] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[62] D. Lovelock, J. Math. Phys. (N.Y.) 13, 874 (1972).
[63] T. Sotiriou and S. Liberati, Ann. Phys. (N.Y.) 322, 935

(2007).
[64] T. P. Sotiriou and S. Liberati, J. Phys. Conf. Ser. 68,

012022 (2007).
[65] E. Barausse, T. P. Sotiriou, and J. C. Miller, Classical

Quantum Gravity 25, 062001 (2008).
[66] E. Barausse, T. P. Sotiriou, and J. C. Miller, Classical

Quantum Gravity 25, 105008 (2008).
[67] J.W. York, Jr., Phys. Rev. Lett. 28, 1082 (1972).
[68] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752

(1977).
[69] M. S. Madsen and J. D. Barrow, Nucl. Phys. B323, 242

(1989).
[70] E. Dyer and K. Hinterbichler, Phys. Rev. D 79, 024028

(2009).
[71] A. Guarnizo, L. Castañeda, and J.M. Tejeiro, Gen.

Relativ. Gravit. 42, 2713 (2010).
[72] T. Koivisto, Classical Quantum Gravity 23, 4289 (2006).
[73] H.-J. Schmidt, Astron. Nachr. 307, 339 (1986).
[74] P. Teyssandier, Astron. Nachr. 311, 209 (1990).
[75] G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005).
[76] C. Corda, Int. J. Mod. Phys. A 23, 1521 (2008).
[77] M. P. Hobson, G. Efstathiou, and A. Lasenby, General

Relativity: An Introduction for Physicists (Cambridge
University Press, Cambridge, 2006).

[78] S. Capozziello, C. Corda, and M. F. De Laurentis, Phys.
Lett. B 669, 255 (2008).

[79] C. Corda, Int. J. Mod. Phys. D 18, 2275 (2009).
[80] R.M. Wald, General Relativity (University Of Chicago

Press, Chicago, 1984).
[81] M. E. Peskin and D.V. Schroeder, An Introduction to

Quantum Field Theory (Westview Press, Boulder,
Colorado, 1995).

[82] S. Capozziello, A. Stabile, and A. Troisi, Mod. Phys. Lett.
A 24, 659 (2009).
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