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The Raychaudhuri equation has seen extensive use in general relativity, most notably in the develop-

ment of various singularity theorems. In this rather technical article we shall generalize the Raychaudhuri

equation in several ways. First an improved version of the standard timelike Raychaudhuri equation is

developed, where several key terms are lumped together as a divergence. This already has a number of

interesting applications, both within the Arnowitt-Deser-Misner formalism and elsewhere. Second, a

spacelike version of the Raychaudhuri equation is briefly discussed. Third, a version of the Raychaudhuri

equation is developed that does not depend on the use of normalized congruences. This leads to useful

formulae for the ‘‘diagonal’’ part of the Ricci tensor. Fourth, a ‘‘two vector’’ version of the Raychaudhuri

equation is developed that uses two congruences to effectively extract ‘‘off-diagonal’’ information

concerning the Ricci tensor.

DOI: 10.1103/PhysRevD.83.104016 PACS numbers: 04.20.�q, 04.20.Cv

I. INTRODUCTION

The Raychaudhuri equation [1] has become one of the
standard workhorses of general relativity, particularly as
applied to the singularity theorems. For textbook presenta-
tions see for instance [2–5]. Some measure of the level of
interest the Raychaudhuri equation can be inferred from
the dedicated conference on this topic just five years ago
[6–16], as well as the fact that new research articles con-
tinue to appear to this day [17]. Nevertheless, we feel that
there are still some interesting ways in which the general
formalism can be extended. There are four specific ex-
tended versions of the Raychaudhuri equation we wish to
explore in this article:

(i) Single timelike unit vector field.
By collecting several terms in the usual formulation
into a divergence, we obtain a particularly useful
version that finds many applications in the derivation
and use of the Arnowitt-Deser-Misner (ADM) for-
malism and other situations.

(ii) Single spacelike unit vector field.
This situation is most typically ignored. We will
make a few hopefully clarifying comments.

(iii) Single non-normalized vector field.
This somewhat simplifies the Raychaudhuri equa-
tion, at the cost of no longer having nice positivity
properties.

(iv) Two non-normalized vector fields.
This allows us to probe the off-diagonal compo-
nents of the Ricci tensor.

These four extensions of the Raychaudhuri equation will
soon be seen to each be useful in their own way, and to

yield quite different information. We shall provide numer-
ous examples below.

II. SINGLE UNIT TIMELIKE VECTOR FIELD

This is the standard case. Let ua be a field of unit
timelike vectors (a congruence). This does not have to be
the 4-velocity of a physical fluid (though it might be), it
applies just as well to the 4-velocities of an imaginary
collection of ‘‘fiducial observers’’ (FIDOs). Then it is a
purely geometrical result (see, for example, Hawking and
Ellis [2], pp. 82–84, or Wald [3], or Carroll [4], or Poisson
[5], or even Wikipedia, (note that there are sometimes
minor disagreements of notation—typically just a factor
of 2 in odd places) that

d�

ds
¼ �Rabu

aub þ!2 � �2 � 1

3
�2 þra

�
dua

ds

�
: (1)

This is the standard form of the Raychaudhuri equation.
This first form of the standard Raychaudhuri equation is
written as a propagation equation for the expansion scalar
�. To set up the formalism, first consider the spatial pro-
jection tensor

hab ¼ gab þ uaub: (2)

This projection tensor has signature f0;þ1;þ1;þ1g.
Various shear and expansion related quantities are

�ab ¼ hacrðcudÞhdb; (3)

� ¼ gab�ab ¼ hab�ab ¼ rau
a; (4)

�ab ¼ �ab � 1
3hab�; �2 ¼ �ab�

ab � 0: (5)

Vorticity related quantities are

!ab ¼ hacr½cud�hdb; !2 ¼ !ab!
ab � 0: (6)

With these definitions we have the usual decomposition:
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ua;b ¼ !ab þ �ab þ 1

3
�hab � dua

ds
ub: (7)

See (for example) pp. 82–84 of Hawking and Ellis [2].
Equation (1) is Wald’s equation (9.2.11) [3], supplemented
with the raðdua=dsÞ term due to allowing a nongeodesic
congruence; you can deduce the presence of this term from
the second line in his (9.2.10) by not assuming geodesic
motion.

Though less common in the literature, it is sometimes
useful to rewrite the raðdua=dsÞ divergence term by writ-
ing aa ¼ dua=ds and noting [17]

raa
a ¼ habraab � uaubraab

¼ habraab þ uaðraubÞab
¼ habraab þ aaa

a

¼ habraab þ a2; (8)

where we are now guaranteed that a2 � 0 because aa is
spacelike. This now permits us to write

d�

ds
¼ �Rabu

aub þ!2 � �2 � 1

3
�2 þ habraab þ a2:

(9)

This second form of the standard Raychaudhuri equation
now focusses on the square of the 4-acceleration a.

Now consider the geometrical identity

d�

ds
¼ u � r� ¼ r � ð�uÞ � �r � u ¼ r � ð�uÞ � �2:

(10)

Using this identity we can also write the Raychaudhuri
equation in the slightly unusual ‘‘divergence’’ form

ra

�
�ua � dua

ds

�
¼ �Rabu

aub þ!2 � �2 þ 2

3
�2: (11)

This is our third form of the standard Raychaudhuri equa-
tion, now focussing on the spacetime divergence of a
suitable vector field.

Alternatively, rearranging the equation to rephrase it as a
statement about Ricci tensor components, we deduce

Rabu
aub ¼ !2 � �2 þ 2

3
�2 �ra

�
�ua � dua

ds

�
: (12)

This is our fourth form of the standard Raychaudhuri
equation, now focussing on the constraints one can place
on the Ricci tensor components. This minor extension/
modification/rephrasing of the usual Raychaudhuri equa-
tion is ‘‘close’’ to, but significantly more general than, a
key technical result used by Padmanabhan and Patel in
Refs. [18–20]. Much of the discussion below will focus on
this form of the Raychaudhuri equation.

Note that we have not yet said anything about any
possible implications either by or for the Einstein equa-
tions or the stress-energy tensor. This is deliberate.

The Raychaudhuri equation is in essence a purely geomet-
rical statement, at this stage a statement regarding the
behavior of an arbitrary timelike congruence. Only after
we have extracted as much purely geometric information
as possible will we turn to the implications regarding the
stress-energy tensor.

III. APPLICATIONS: TIMELIKE CONGRUENCES

We now consider several applications of the above
purely geometrical formalism—these applications basi-
cally amount to strategically choosing an appropriate time-
like congruence.

A. Vorticity-free congruence

Let �ðxÞ be an arbitrary scalar field and define a set of
FIDOs by

ua / ra�: (13)

Then normalizing we have

ua ¼ � ra�

kr�k ; (14)

and furthermore

!ab ¼ 0: (15)

The minus sign here is purely conventional, it guarantees
that the ua is ‘‘future pointing’’ in the direction of increas-
ing �. Conversely,

!ab ¼ 0 ) ua / ra�: (16)

This is guaranteed by the Frobenius theorem.
Then in this vorticity-free situation the extended non-

geodesic Raychaudhuri equation reduces to

d�

ds
¼ �Rabu

aub � �2 � 1

3
�2 þra

�
dua

ds

�
; (17)

or equivalently

Rabu
aub ¼ ��2 þ 2

3
�2 þra

�
��ua þ dua

ds

�
; (18)

or even

Rabu
aub ¼ ��ab�

ab þ �2 þra

�
��ua þ dua

ds

�
: (19)

But since ua is now hypersurface orthogonal we can use
the slices of constant� to define a spacelike foliation—the
scalar � serves (at least locally) as a ‘‘cosmic time’’
function. Then in terms of the extrinsic curvature Kab of
the constant � hypersurfaces we have, (using Misner,
Thorne, and Wheeler [21] sign conventions for the extrin-
sic curvature), the results:

�ab ¼ �Kab; � ¼ �K; (20)
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�ab ¼ �ðKab � 1
3KhabÞ; (21)

and

�2 ¼ 1
2½KabK

ab � 1
3K

2�: (22)

But then

Rabu
aub ¼ �KabK

ab þ K2 þra

�
Kua þ dua

ds

�
: (23)

This is effectively one of the key technical results used by
Padmanabhan and Patel in [18–20], but now we see that
this result is actually a special case of a considerably more
general result, Eq. (30). Indeed Eq. (23) can be viewed as a
relatively straightforward extension and then specializa-
tion of the Raychaudhuri equation.

A further step one can take when dealing with such
congruences is to note that the vorticity-free condition
ua ¼ �ra�=kr�k implies the purely geometrical result

a a ¼ habrb lnkr�k: (24)

(See for instance [22], where essentially the same result
was derived in a fluid dynamics context. The result is
however much more general in scope, applying to any
vorticity-free congruence regardless of whether or not it
arises from fluid motion.) In this situation one now has

raa
a ¼ habrarb lnkr�k þ �ru lnkr�k þ a2: (25)

While the last term is guaranteed non-negative, not much
can be said about the first two terms, at least not at this
stage.

B. ADM formalism

By definition, in any stably causal spacetime there is a
globally defined ‘‘cosmic time’’ function tðxÞ such that dt
is always timelike. Then on the one hand the constant-t
slices are always spacelike and can be used to set up an
ADM decomposition of the metric, while on the other hand
u ¼ �ðdtÞ]=kdtk is a vorticity-free unit timelike congru-
ence, so that the results of the previous subsection apply.
(As usual, dt] denotes the vector obtained form the one-
form dt by ‘‘raising the index,’’ similarly u[ will denote the
one-form obtained from the vector u by ‘‘lowering the
index.’’)

Consequently the extended Raychaudhuri equation can
now be cast in the form

Rt̂ t̂ ¼ �KabK
ab þ K2 þra

�
Kua þ dua

ds

�
: (26)

This result complements and reinforces the information
one obtains from the Gauss equations—see, for example,
Misner, Thorne, and Wheeler [21] pp. 505–520, or Rendall
[23] pp. 23–24. The Gauss equations (for a spacelike
hypersurface) are

ð4ÞRabcd ¼ ð3ÞRabcd þ KacKbd � KadKbc: (27)

Contracting once

ð4ÞRab ¼ ð3ÞRab � ð4ÞRacbdu
cud þ trðKÞKab � ðK2Þab:

(28)

Contracting a second time

ð4ÞR ¼ ð3ÞR� 2ð4ÞRabu
aub þ K2 � trðK2Þ: (29)

But now, since ð4ÞRabu
aub has been given to us via the

extended Raychaudhuri equation, we easily see that for a
spacelike hypersurface

ð4ÞR ¼ ð3ÞRþ trðK2Þ � K2 � 2ra

�
Kua þ dua

ds

�
: (30)

Traditional derivations of this result are sometimes some-
what less than transparent, and viewing Eq. (30) as an
extension of the timelike Raychaudhuri equation is the
cleanest derivation we have been able to develop. To see
some of the deeper connections with the ADM formalism
read (for example) Sec. 21.6 on pp. 519–520 of Misner,
Thorne, and Wheeler [21]; note especially Eq. (21.88). See
also exercise. (21.10) on p. 519. Also note the discussion
by Padmanabhan and Patel in Refs. [18–20]. Also, we
should warn the reader that Wald uses an opposite sign
convention for the extrinsic curvature. See specifically
Wald [3] Eq. (10.2.13) on p. 256.

C. Static spacetimes

Let us now take the discussion in a rather different
direction, and assume that the spacetime is static. That is,
there exists a hypersurface-orthogonal Killing vector ka

that is timelike at spatial infinity. Because it is hypersurface
orthogonal then ka / ra�, and so ua ¼ ka=kkk is a set of
FIDOs of the type considered in the previous section. But
since ka is also a Killing vector we have kða;bÞ ¼ 0 and so

(temporarily setting kkk ¼ e’ for calculational simplicity)
obtain the quite standard result that in this situation

uða;bÞ ¼ rðafke�’gbÞ ¼ e�’ðkða;bÞ � kðbraÞ’Þ
¼ �e�’kðbraÞ’ ¼ �uðbraÞ’ ¼ �uðb’;aÞ

¼ �uða’;bÞ: (31)

Hence

�ab ¼ 0 ) Kab ¼ 0 ) K ¼ 0: (32)

That is, in static spacetimes the extrinsic curvature of the
time-slices is zero (in addition to the congruence being
vorticity free). The Raychaudhuri equation then specializes
to the particularly simple geometrical result

Rabu
aub ¼ ra

�
dua

ds

�
: (33)

This is essentially the technical result we used in our
derivation of an entropy bound for static spacetimes
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[24,25], though in those articles we had derived it from an
old result due to Landau and Lifshitz [26]. (The original
Landau–Lifshitz result is obtained via a straightforward
but tedious series of index manipulations, with little geo-
metrical insight.)

D. Stationary spacetime—Killing congruence

What can we now do for stationary, as opposed to
static spacetimes? (This distinction is relevant to ‘‘rotating
spacetimes,’’ for example, Kerr spacetimes versus
Schwarzschild spacetimes. See for instance [27–30].)
The (asymptotically) timelike Killing vector k ¼ @t [that
is, ka ¼ ð1; 0; 0; 0Þa] is no longer hypersurface orthogonal.
Nevertheless we can still define the timelike Killing con-
gruence

ua ¼ ka

kkk : (34)

This timelike congruence corresponds to a class of FIDOs
[not ZAMOs, not zero angular momentum observers] that
sit at fixed spatial coordinate position [31,32]. This time-
like congruence, even though it is not hypersurface or-
thogonal, still satisfies Eq. (31). So even though there is
no longer any interpretation of the shear in terms of an
extrinsic curvature, we still have

�ab ¼ 0; (35)

whence both

�ab ¼ 0; and � ¼ 0: (36)

Therefore,

Rabu
aub ¼ !2 þra

�
dua

ds

�
: (37)

However, unless further assumptions are made, we cannot
do much with the !2 term. Generically (again temporarily
setting kkk ¼ e’ for calculational simplicity) we have

u½a;b� ¼ �r½afke�’gb� ¼ e�’ðk½a;b� � k½arb�’Þ

¼ k½a;b�
kkk � u½arb�’: (38)

This implies

!ab ¼ hachbd
k½c;d�
kkk ; (39)

whence

Rabu
aub ¼ þhachbdk½a;b�k½c;d�

kkk2 þra

�
dua

ds

�
: (40)

Unfortunately this does not simplify any further, and with-
out further assumptions for the timelike Killing congru-
ence on a stationary spacetime we should just be satisfied
by the inequality

Rabu
aub � ra

�
dua

ds

�
: (41)

E. Stationary axisymmetric spacetimes

In a stationary axisymmetric spacetime one could also
consider the vorticity-free congruence of Sec. III A. (Not
the Killing congruence of Sec. III D.) Because of the
axisymmetry the congruence u ¼ �ðdtÞ]=kdtk must then
be a linear combination of the two Killing vectors, kt ¼ @t
and k� ¼ @�, in which case the expansion scalar is zero:

� ¼ r � u ¼ 0. In this case Eq. (18) reduces to

Rabu
aub ¼ ��2 þra

�
dua

ds

�
; (42)

which implies, for the natural vorticity-free congruence on
an stationary axisymmetric spacetime

Rabu
aub � ra

�
dua

ds

�
: (43)

It is this particular inequality that we used in Ref. [32] to
place an entropy bound on rotating fluid blobs. (Note that
the direction of the inequality has changed between
Eqs. (41) and (43) but that is merely due to the fact that
we are using different timelike congruences.)

IV. SINGLE UNIT SPACELIKE VECTOR FIELD

In counterpoint, in this section we now let va be a field
of unit spacelike vectors. The projection tensor becomes

hab ¼ gab � vavb: (44)

In contrast to the timelike situation the projection tensor is
now of indefinite signature f�1;þ1;þ1; 0g. One can still
formally define the quantities �ab, �, �ab, and !ab, (now
constructed using the spacelike vector field va), but they no
longer have the same physical interpretation in terms of
shear and vorticity. Furthermore since the projection tensor
has indefinite signature we now cannot guarantee either
�2 � 0 or !2 � 0. On the other hand, the Raychaudhuri
equation itself is formally unaffected. That is, the funda-
mental Eqs. (1), (9), (11), and (30), continue to hold as they
stand.
If we now consider a vorticity-free spacelike congru-

ence, it will be hypersurface orthogonal to a timelike
hypersurface. (That is, the normal to the hypersurface is
spacelike, while the tangent space to the hypersurface can
be chosen to have a basis of one timelike and two spacelike
tangent vectors.)
In this situation we can without loss of generality set

v ¼ ðd�Þ]=kd�k. Then !ab ! 0, while in terms of the
extrinsic curvature �ab ! �Kab as for vorticity-free time-
like congruencies. Thus, Eq. (23) is formally unaffected
and can now be cast in the form

Rn̂ n̂ ¼ �KabK
ab þ K2 þra

�
Kva þ dva

ds

�
: (45)

Note however that we can no longer guarantee the non-
negativity of KabKab. Furthermore, because v is now a
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spacelike normal to a timelike hypersurface there is a key
sign flip in the Gauss equations, which now read

ð4ÞRabcd ¼ ð3ÞRabcd � KacKbd þ KadKbc: (46)

Contracting twice

ð4ÞR ¼ ð3ÞRþ 2ð4ÞRabu
aub þ trðK2Þ � K2: (47)

Therefore for a timelike hypersurface we have

ð4ÞR ¼ ð3ÞR� trðK2Þ þ K2 þ 2ra

�
Kva þ dva

ds

�
: (48)

In summary, for spacelike congruences the
Raychaudhuri equation itself is formally unaffected
(though the projection tensor is slightly different and we
can no longer rely on the non-negativity of �2 and !2).
However applications of the Raychaudhuri equation, spe-
cifically anything involving the Gauss equations for em-
bedded hypersurfaces, typically exhibit a limited number
of sign flips.

V. SINGLE NON-NORMALIZED VECTOR FIELD

Let us now consider an non-normalized vector field ua,
either spacelike, timelike, or null. What if anything can we
say about the quantity

Rabu
aub ¼ ??? (49)

Following and modifying the discussion of Wald [3],
see. (E.2.28) on p. 464:

Rabu
aub ¼ Rc

acbu
aub ¼ �ua½rarb �rbra�ub

¼ �raðuarbu
bÞ þ ðrau

aÞðrbu
bÞ

þ rbðuarau
bÞ � ðrbu

aÞðrau
bÞ

¼ rað�uarbu
b þ ubrbu

aÞ þ ðr � uÞ2
� ðrbuaÞðraubÞ

¼ r � fðu � rÞu� ðr � uÞug þ ðr � uÞ2
� ðrbuaÞðraubÞ: (50)

In obvious notation, using � ¼ r � u, this can be cast as

Rabu
aub ¼ r � fruu� �ug þ �2 �rðaubÞrðaubÞ

þ r½aub�r½aub�: (51)

This result can be viewed as yet another generalization of
the standard Raychaudhuri equation. The advantage of this
particular formula is that we have not carried out any
projections, and have not even committed ourselves to
the nature of the congruence, be it spacelike, timelike, or
null. One disadvantage is that because of the Lorentzian
signature of spacetime we cannot (at least not without
further assumptions) guarantee either

rðaubÞrðaubÞ � 0??? (52)

or

r½aub�r½aub� � 0??? (53)

Two specific applications come readily to mind:
(i) For any Killing vector ua ¼ ka we have rðaubÞ ¼ 0,

and consequently � ¼ 0. Therefore for any Killing
vector whatsoever we have the particularly pleasant
result

Rabk
akb ¼ r � frkkg þ r½akb�r½akb�: (54)

(ii) For any one arbitrary exact one-form u ¼ d�,
even a locally exact one-form, we have r½aub� ¼
0, while � ¼ r2� and rðaubÞrðaubÞ ¼ �;a;b�

;a;b.

Therefore, for any locally exact one-form whatso-
ever we have

Rabðd�Þaðd�Þb¼r�frd�d��ðr2�Þd�g
þðr2�Þ2��;a;b�

;a;b: (55)

In fact, � could simply be one of the spacetime
coordinates (defined on some suitable local coordi-
nate patch) in which case this version of the
Raychaudhuri equation turns into a statement about
the diagonal components of the Ricci tensor in a
coordinate basis

R��¼r�frd�d��ðr2�Þd�gþðr2�Þ2
��;a;b�

;a;b: (56)

More boldly, if one chooses � to be a harmonic
coordinate, (r2� ¼ 0), and this can always be done
locally, then we have

R�� ¼ r � frd�d�g ��;a;b�
;a;b: (57)

In summary, this extension of the Raychaudhuri
equation to non-normalized vector fields has given
us some useful computational formulae for the di-
agonal part of the Ricci tensor.

VI. TWO NON-NORMALIZED VECTOR FIELDS

We shall now ask if it is possible to extract any useful
information by considering two different (non-normalized)
congruences simultaneously.

A. Motivation

To motivate this particular extension of the
Raychaudhuri equation, recall that many decades ago
Landau and Lifshitz had shown that in any stationary
spacetime [26] (see. Sec. 105, Eq. (105.22); for a recent
application of this result see [24,25]):

R0
0 ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

g0a�i
a0Þ: (58)
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(Here a 2 f0; 1; 2; 3g; i 2 f1; 2; 3g.) But because the metric
is stationary (t independent) we can also write this as

R0
0 ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @bð ffiffiffiffiffiffiffiffiffiffi�g4
p

g0a�b
a0Þ: (59)

To begin converting this into a coordinate-free statement,
note that

R0
0 ¼ Ra

bðdtÞað@tÞb ¼ Ra
bðdtÞakb: (60)

Here we have had to use both the timelike Killing vector k,
for which ka ¼ ð@tÞa ¼ ð1; 0; 0; 0Þa, and the one-form dt,
for which ðdtÞa ¼ ð1; 0; 0; 0Þa. Then by direct computation
we see

g0a�b
a0 ¼ gca�b

adðdtÞckd
¼ �b

cdðdtÞckd
¼ �b

cdk
cðdtÞd

¼ f@dkb þ �b
cdk

cgðdtÞd
¼ ðrdk

bÞðdtÞd
¼ ðdtÞdðrdk

bÞ: (61)

But then

R0
0 ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @bð ffiffiffiffiffiffiffiffiffiffi�g4
p

g0a�b
a0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffi�g4
p @bð ffiffiffiffiffiffiffiffiffiffi�g4

p ðdtÞdðrdk
bÞÞ ¼ rbfðdtÞdðrdk

bÞg:
(62)

So the Landau–Lifshitz result is equivalent to the statement
that in any stationary spacetime

Ra
bðdtÞakb ¼ rbfðdtÞdðrdk

bÞg ¼ r � ðrdt]kÞ: (63)

So some linear combination of Ricci tensor components is
given by a pure divergence. Note that two different vector
fields are involved. This observation naturally leads to the
question: Is it possible to come up with a variant of the
Raychaudhuri equation that depends on two congruences
ua and va? Something of the form

Rabu
avb ¼ ??? (64)

We shall see how this is done below.
For now, let us mention that

ðrdk
bÞðdtÞd ¼ ðrdkbÞðdtÞd ¼ �ðrbkdÞðdtÞd

¼ �rbfkdðdtÞdg þ kdrbðdtÞd
¼ �rbf1g þ kdrbrdt ¼ kdrbrdt

¼ kdrdrbt: (65)

So the Landau-Lifshitz result can also be written in the
alternative form

Ra
bðdtÞakb ¼ rbfkdrdrbtg ¼ r � ðrkdt

]Þ: (66)

Finally, note that

ðrdk
bÞðdtÞdðdtÞb ¼ ðrdkbÞðdtÞdðdtÞb ¼ 0; (67)

so the vector rdt]k ¼ rkdt
] is perpendicular to dt].

B. Construction

Following and modifying the discussion of Wald [3], see
Eq. (E.2.28) on p. 464:

Rabu
avb ¼ Rc

acbu
avb ¼ �ua½rarb �rbra�vb

¼ �raðuarbv
bÞ þ ðrau

aÞðrbv
bÞ

þ rbðuarav
bÞ � ðrbu

aÞðrav
bÞ

¼ rað�uarbv
b þ ubrbv

aÞ þ ðr � uÞðr � vÞ
� ðrbuaÞðravbÞ: (68)

With minor notational changes and given the symmetry of
the Ricci tensor this can also be written as

Rabu
avb ¼r�fðu �rÞv�ðr�vÞugþðr�uÞðr�vÞ

�ðrbuaÞðravbÞ; (69)

and

Rabu
avb ¼r�fðv �rÞu�ðr�uÞvgþðr�uÞðr�vÞ

�ðrbuaÞðravbÞ: (70)

Furthermore (in obvious notation) this can again be rewrit-
ten as

Rabu
avb¼r� fruv��vugþ�u�v�rðaubÞrðavbÞ

þr½aub�r½avb�; (71)

and

Rabu
avb¼r� frvu��uvgþ�u�v�rðaubÞrðavbÞ

þr½aub�r½avb�: (72)

Note the similarities to the single-congruence case, and
note particularly the presence of a divergence term general-
izing the standard Raychaudhuri equation. To check the
equivalence of these two formulae note

ðruv� �vuÞ � ðrvu� �uvÞ
¼ ½ruvþ �uv� � ½rvuþ �vu�
¼ r � ½u � v� v � u�
¼ r � ½u ^ v�: (73)

That is, the difference of these two currents is the diver-
gence of a two-form, which makes it automatically closed.

C. Generalizing the Landau–Lifshitz result

Let us now take u ¼ k to be any Killing vector, and
furthermore let v[ be an arbitrary (locally) exact one-form.
Then v ¼ ðd�Þ] where �ðxÞ is an arbitrary scalar.
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Furthermore rðaubÞ ¼ rðakbÞ ¼ 0, and so we see �u ¼ 0.
Finally, r½avb� ¼ r½arb�� ¼ 0, so from Eq. (71) we have

Rabk
arb� ¼ r � frkd�� ðr2�Þkg; (74)

while from Eq. (72) we have

Rabk
arb� ¼ r � frd�]kg: (75)

These two equations nicely generalize the Landau–Lifshitz
result to any arbitrary Killing vector and any arbitrary
(locally) exact one form d�, not just dt. (That these two
formulae are equivalent follows from the discussion in the
previous section above.) Note the (standard) Landau–
Lifshitz result corresponds to the special case ka ! ð@tÞa
and � ! t.

Now choose a coordinate system adapted to the Killing
vector k. Let k ¼ @K define a Killing coordinate K, so that
all geometrical objects are independent of the coordinate
K. Let � also be viewed as a coordinate, relabel it as xa,
possibly distinct from K, and with no claim that xa neces-
sarily corresponds to a Killing vector. Then

RK
a ¼ r � frðdxaÞ]@Kg: (76)

Unwrapping the covariant derivatives we see

RK
a ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @bð ffiffiffiffiffiffiffiffiffiffi�g4
p

gac�b
cKÞ: (77)

If we now let the index i range over every coordinate
except the Killing coordinate K then, because all geomet-
rical objects are independent of the coordinate K, we have

RK
a ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

gac�i
cKÞ: (78)

This last equation, while ultimately based on our two-
congruence extension of the Raychaudhuri Eq. (71), is
now very much in Landau–Lifshitz form, but is definitely
considerably more powerful than the original Landau-
Lifshitz result.

D. Landau-Lifshitz in axial symmetry

In stationary axisymmetric spacetimes considerably
more can be said: Since in a stationary spacetime with
axial symmetry we have a second azimuthal Killing vector
ka ! ð@�Þa, and could also consider � ! �, then there

are three additional Landau-Lifshitz like results:

R�
t ¼ Rabð@�Þarbt ¼ r � frdt]@�g; (79)

Rt
� ¼ Rabð@tÞarb� ¼ r � frd�]@tg; (80)

and

R�
� ¼ Rabð@�Þarb� ¼ r � frd�]@�g: (81)

Let the indices A, B 2 ft; �g then we can collect these
results (four of them altogether) in a single equation

RA
B ¼ r � frðdxBÞ]@Ag: (82)

Unwrapping the covariant derivatives

RA
B ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @bð ffiffiffiffiffiffiffiffiffiffi�g4
p

gBa�b
aAÞ: (83)

If we now let the index i range over every coordinate
except the two Killing coordinates t and �, then

RA
B ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

gBa�i
aAÞ: (84)

Making this all very explicit, there are now four Landau-
Lifshitz like results in total. They are

Rt
t ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

gta�i
atÞ; (85)

Rt
� ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

g�a�i
atÞ; (86)

R�
t ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

gta�i
a�Þ; (87)

R�
� ¼ 1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

g�a�i
a�Þ: (88)

Furthermore, recall that in stationary axisymmetric space-
times we can always choose coordinates to block diago-
nalize the metric: gab ¼ gAB � gij. But then

gBa�i
aA ¼ gBC�i

CA ¼ gBCgij�jCA ¼ � 1

2
gBCgij@jgCA:

(89)

So finally we have the relatively compact result

RA
B ¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffi�g4
p @ið ffiffiffiffiffiffiffiffiffiffi�g4

p
gBCgij@jgCAÞ: (90)

This can be rearranged in a number of different ways. As
an illustration we point out

RAB ¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffi�g4
p @ið ffiffiffiffiffiffiffiffiffiffi�g4

p
gij@jgABÞ

þ 1

2
gij@igACg

CD@jgDB: (91)

We again see that our two-congruence extension of the
Raychaudhuri equation has given us additional useful in-
formation regarding the Ricci tensor which might be diffi-
cult to extract by other means.

VII. EINSTEIN EQUATIONS
AND STRESS ENERGY

We have very carefully avoided use of the Einstein
equations up to this stage, to emphasize that the
Raychaudhuri equations are in essence purely geometrical,
relating components of the Ricci tensor to information
about vector congruences. If we now wish to see the
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connections to the stress-energy tensor, let us first write the
Einstein equations in the form

Rab ¼ 8�½Tab � 1
2Tgab�: (92)

Now, assuming ua is a normalized unit timelike vector, it is
always possible to decompose the stress energy in the form

Tab ¼ �uaub þ phab þ uaqb þ qaub þ �ab; (93)

where � is the comoving energy density, p is the isotropic
pressure, qa is the energy flux, and �ab is the anisotropic
stress. We have

qaua ¼ 0; �abub ¼ 0; �abhab ¼ 0; (94)

whence

T ¼ ��þ 3p; (95)

and so

Rabu
aub ¼ 4�ð�þ 3pÞ: (96)

So whenever one is dealing with a timelike congruence ua,
the Raychaudhuri equation either gives information about
or uses information about the combination �þ 3p, and
this is the combination of stress-energy components in-
volved in the weak energy condition.

Now suppose one instead has a normalized spacelike
unit vector va. One can always choose a unit timelike
vector ua that is orthogonal to this spacelike vector and
again decompose the stress energy as above. Then

Rabv
avb ¼ 4�ð�� pþ 2�abv

avbÞ: (97)

That is, whenever one is dealing with a spacelike unit
congruence va, the Raychaudhuri equation either gives
information about or uses information about the combina-
tion �� p in conjunction with the specific v-vcomponent
�abv

avb of the anisotropic stress.
The cross term when one combines orthonormal space-

like and timelike unit vectors is

Rabu
avb ¼ �8�ðqavaÞ: (98)

That is, in this situation the Raychaudhuri equation either
gives information about or uses information about the
quantity of energy flux qa in the direction va.

In all of these three cases you can either use information
about the stress-energy tensor to provide information about
the congruences, (typically leading to singularity theorems
of some sort), or can use information about the congruen-
ces to provide information about the Ricci tensor, and
hence the stress energy.

VIII. PERFECT FLUID MOTION

In this penultimate section, let us make even stronger
assumptions about the matter content. Assume we are
dealing with a perfect fluid so that

Tab ¼ �uaub þ phab; (99)

Assume further that the fluid is barotropic, so that we have
� ¼ �ðpÞ. Then the Euler equation is

a a ¼ � habrbp

�þ p
(100)

If we now define

HðpÞ ¼
Z p

0

dp

�ðpÞ þ p
; (101)

then

a a ¼ �habrbH: (102)

Under these conditions

raa
a ¼ �habrarbH � �ruH þ a2: (103)

So once one has a specific model for the physics underlying
nongeodesic motion, one can sometimes decompose the
terms appearing in the Raychauhuri equation a little fur-
ther. In fact in the current context, if vorticity-free motion
is additionally assumed, this yields the relativistic
Bernoulli equation in the form [22]

H ¼ � lnkr�k: (104)

IX. DISCUSSION AND CONCLUSIONS

In this somewhat technical article we have developed
several useful and novel extensions of the usual
Raychaudhuri equation. The main theme has been to relate
various linear combinations of components of the Ricci
tensor to divergences of suitably defined fluxes. [See for
instance Eq. (30).] Sometimes this allows us to derive old
results in a simpler and cleaner manner, sometimes one
obtains new results, such as the non-normalized
Raychauhuri-like equation (51) and the generalized
Landau-Lifshitz type results in Eqs. (84). One potentially
far-reaching result is the ‘‘two-congruence’’ extension of
the Raychauduri equation presented in Eqs. (71) and (72)
We have worked with timelike congruences, spacelike

congruences, and non-normalized congruences, in all cases
being able to say considerably more (and sometimes much
more) than the standard Raychaudhuri equation would
imply. If we furthermore invoke the Einstein equations
we can then relate various linear combinations of compo-
nents of the stress-energy tensor to divergences of suitably
defined fluxes.
Despite the long (55 year) history of the Raychaudhuri

equation, it still has the potential to lead to new
surprises.
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