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In this article we study the mechanical stability of spherically symmetric thin shells with charge, in

Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the

symmetry, for shells around vacuum and shells surrounding noncharged black holes.
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I. INTRODUCTION

Since the leading works by Darmois and Israel [1]
introducing the formalism for surface layers, the study of
thin-shell characterization and dynamics in general rela-
tivity have received increasing attention. The Lanczos
equations [1,2] which relate the surface energy-momentum
tensor of a shell with the geometry at both sides of it—or,
more precisely, with the jump of the extrinsic curvature
tensor across it—have been widely applied within different
frameworks. Apart from cosmological applications, the
Darmois-Israel formalism has become the central tool for
the study of the dynamics and matter characterization of
highly symmetric configurations. The linearized stability
analysis of spherical shells was carried out by several
authors (see [3–6] and references therein). The formalism
was applied to bubbles, shells around stars and black holes,
and in the construction of thin-shell wormholes (with
spherical, plane, and also cylindrical throats; see for ex-
ample [7–14] and references therein). Besides, thin shells
are associated to gravastars, for which the stability was also
studied [15].

In order to avoid the infinite self energies of charged
point particles in Maxwell description of the electromag-
netic field, Born and Infeld introduced in 1934 a nonlinear
theory of electrodynamics [16]. The corresponding spheri-
cally symmetric solution for the metric of a charged object
was first obtained in 1935 by Hoffmann [17]. It was shown,
however, that Hoffmann’s solution does not provide a
suitable classical model for the electron, but it corresponds
to a black hole. The interest in nonlinear electrodynamics
was renewed because Born-Infeld type actions appeared in
low energy string theory [18]. Spherically symmetric black
holes in Born-Infeld electrodynamics coupled to Einstein
gravity were studied in recent years by several authors
[19–21]. Also, the stability of thin-shell wormholes has
been recently considered [22].

In this work, we address the mechanical stability
of spherical shells under perturbations preserving the

symmetry within the frameworks of Einstein-Maxwell
and Einstein-Born-Infeld theories. We first adapt the for-
malism to the form most suitable for our purposes. Then
we perform the mathematical construction of shells start-
ing from the Reissner-Nordström solution and from the
corresponding extension of this metric for Born-Infeld
electrodynamics. Finally, we analyze in detail the cases
of charged bubbles, and charged layers around noncharged
black holes. In what follows we adopt units such that
c ¼ G ¼ 1.

II. SPHERICAL SHELLS: FORMALISM

For the study of spherically symmetric shells we follow
the standard approach [1–8] in which the matter layer
appears as a result of cutting and pasting two manifolds
M1 andM2 to construct a new geodesically complete one
M. We start from the metrics

ds21;2 ¼ �f1;2ðr1;2Þdt21;2 þ f�1
1;2 ðr1;2Þdr21;2

þ r21;2ðd�2 þ sin2�d’2Þ; (1)

and we paste them at the spherical surface � defined by
r1;2 ¼ a. The manifold M is given by the union of the

inner part (r1 � a) ofM1 and by the outer part (r2 � a) of
M2. The line element is continuous across � as the
coordinates in each side are chosen to satisfy f1ðaÞdt21 ¼
f2ðaÞdt22. For the study of the stability of our construction,
we let the radius a to be a function of the proper time �
measured by an observer on the surface. The induced
metric on � is unique, and it has the form

ds2� ¼ �d�2 þ a2ð�Þðd�2 þ sin2�d’2Þ: (2)

The coordinates of the embedding are X�
1;2 ¼

ðt1;2; r1;2; �; ’Þ while the coordinates at the surface � are

�i ¼ ð�; �; ’Þ. The relation between the geometry and the
matter on the surface is given by the Lanczos equations
[1,2]

� ½Kij� þ gij½K� ¼ 8�Sij; (3)
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where gij is the induced metric on �, Kij is the extrinsic

curvature, K is its trace, and Sij is the surface energy-

momentum tensor; the brackets denote the jump of a given
quantity q across the surface: ½q� ¼ q2j� � q1j�. It is clear
that ½gij� ¼ 0, i.e. the geometry is continuous across � as

required by the thin-shell formalism [2]. If ½Kij� ¼ 0 we

speak of � as a boundary surface, while if ½Kij� � 0 we

have a thin shell at �, where a layer of matter is present.
The general form of the components of Kij at each side of

the shell is given by

K1;2
ij ¼ �n1;2�

�
@2X�

1;2

@�i@�j þ ��
��

@X�
1;2

@�i

@X�
1;2

@�j

����������
; (4)

where n1;2� are unit normals (n�n� ¼ 1) to the surface. If

we define H ðr1;2Þ ¼ r1;2 � að�Þ ¼ 0, we have

n1;2� ¼
��������g��

@H
@X�

1;2

@H

@X�
1;2

��������
�1=2 @H

@X�
1;2

; (5)

where the unit normals at both sides of � are oriented
outwards from the origin. The normal to � is unique and
points from region 1 to region 2 as required by the sign
convention adopted in Eq. (3). For the particular form (1)
of the metric, Eqs. (3)–(5) give the following components
of the surface energy-momentum tensor:

S�� ¼ �	 ¼ 1

4�a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðaÞ þ _a2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðaÞ þ _a2

q �
; (6)

S�� ¼ S’’ ¼ p

¼ �	

2
þ 1

16�

�
2 €aþ f02ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðaÞ þ _a2

p � 2 €aþ f01ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðaÞ þ _a2

p
�
: (7)

We have adopted the usual notation in which the prime
represents d=dr, and the dot stands for d=d�. The equa-
tions above, or any of them plus the conservation equation

dða2	Þ
d�

þ p
da2

d�
¼ 0; (8)

which is valid because of the form of the metric,1 deter-
mine the evolution of the shell radius as a function of the
proper time. They are the starting point for the analysis of
the mechanical stability of thin shells. We now consider
small perturbations preserving the symmetry around a
static solution of the equations above. Our procedure is
similar to the treatment in Refs. [3–6,8].2 Provided the

equation of state p ¼ pð	Þ, the conservation equation
can be formally integrated [8] to give 	 ¼ 	ðaÞ. After
some algebraic manipulations, from Eq. (6) we then obtain

_a 2 þ VðaÞ ¼ 0; (9)

where

VðaÞ¼f1ðaÞþf2ðaÞ
2

�ð2�a	Þ2�
�
f1ðaÞ�f2ðaÞ

8�a	

�
2

(10)

is commonly understood as a potential, given the analogy
between Eq. (9) and the energy of a point particle with
only 1 degree of freedom. Defining SðaÞ ¼ ðf1ðaÞ þ
f2ðaÞÞ=2, RðaÞ ¼ ðf1ðaÞ � f2ðaÞÞ=2 and mðaÞ ¼ 4�a2	,
the potential has the form

VðaÞ ¼ S� 1

4

�
m

a

�
2 �

�
a

m

�
2
R2: (11)

For a perturbative treatment of the stability of static solu-
tions it is enough with the analysis of the first and second
derivatives of the potential at a radius a0 for which _a ¼ 0.
Equilibrium satisfies Vða0Þ ¼ 0 and V0ða0Þ ¼ 0, and
stability requires V 00ða0Þ> 0. After evaluating the deriva-
tives and some algebraic manipulations, the condition for
stability gives

m

4a0

�
m

a0

�00 þ a0
m

�
a0
m

�00
R2 <�ða0Þ � �2ða0Þ; (12)

where

�ða0Þ ¼ a0
m

�
S0 � 2

a0
m

�
a0
m

�0
R2 � 2

�
a0
m

�
2
RR0

�
(13)

and

�ða0Þ ¼ S00

2
�

��
a0
m

�0�2
R2 � 4

a0
m

�
a0
m

�0
RR0

�
�
a0
m

�
2½R02 þ RR00�: (14)

In these expressions m, S, and R are given as functions
of a0 and the primes stand for derivatives with respect
to a0. From the conservation equation (8) we have
	0 ¼ �2ð	þ pÞ=a0, then ðm=a0Þ0 ¼ �4�ð	þ 2pÞ, so
we obtain

�
m

a0

�00 ¼ �4�	0ða0Þð1þ 2
Þ; (15)

and

�
a0
m

�00 ¼2

�
a0
m

�
3
��

m

a0

�0�2þ4�

�
a0
m

�
2
	0ða0Þð1þ2
Þ; (16)

where 
 ¼ p0ða0Þ=	0ða0Þ. From the definition of m we
have

1In other terms, the shell is transparent [4].
2In Ref. [4], Eqs. (17) and (18) [and the results derived from

them] are not correct, because p0=	0 is present in both sides of
Eq. (15) through the second derivative of the surface mass of the
shell, but it only appears in one side of Eqs. (17) and (18). The
same applies to Eq. (47) of Ref. [6]. The correct result is shown
(using a different notation) in Eq. (5.19) of Ref. [5].
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	0ða0Þ ¼ 1

4�a0

��
m

a0

�0 � m

a20

�
; (17)

so that the condition for stable equilibrium can be put in the
form

�ða0Þ<�ða0Þ � �2ða0Þ; (18)

where

�ða0Þ ¼ 2

�
a0
m

�
4
��

m

a0

�0�2
R2 þ 1

a0

�
m

4a0
�

�
a0
m

�
3
R2

�

�
�
m

a20
�

�
m

a0

�0�ð1þ 2
Þ: (19)

In what follows, the analysis is carried out in terms of the
parameter 
, which in the case that 0<
 � 1 can be
interpreted as the square of the velocity of sound on the
shell.

The construction and the stability analysis presented
above are also valid for wormholes as long as the outer
part of both manifolds is taken, and the minus sign inside
the parenthesis in Eqs. (6) and (7) is replaced by a plus
sign. In particular, ifM1;2 are equal copies of the geometry

defined by Eq. (1) with r � a the results of Refs. [8–11,22]
can be recovered.

III. CHARGED SHELLS: CONSTRUCTION
AND STABILITY

We now study thin shells in Einstein-Maxwell and
Einstein-Born-Infeld theories. The field equations of
Einstein gravity coupled to Born-Infeld nonlinear electro-
dynamics have the vacuum spherically symmetric solution
[19,21] given by the metric

ds2¼�fðrÞdt2þf�1ðrÞdr2þr2ðd�2þsin2�d’2Þ; (20)

with

fðrÞ ¼ 1� 2M

r
þ 2

3b2

�
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ b2Q2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffijbQj3p
r

F

�
arccos

�
r2 � jbQj
r2 þ jbQj

�
;

ffiffiffi
2

p
2

��
; (21)

where Fð�; kÞ is the elliptic integral of the first kind,3 and
the electric and magnetic inductions

DðrÞ ¼ QE

r2
; (22)

BðrÞ ¼ QM sin�: (23)

As usual, M> 0 stands for the Arnowitt-Deser-Misner
mass, and Q2 ¼ Q2

E þQ2
M is the sum of the squares of

the electric QE and magnetic QM charges. With the units

adopted above,M,Q and b have dimensions of length. The
parameter b indicates how much Born-Infeld electrody-
namics differs from Maxwell theory. In the limit b ! 0,
the Reissner-Nordström metric is obtained:

fðrÞ ¼ 1� 2M

r
þQ2

r2
: (24)

The metric given by Eqs. (20) and (21) is also asymptoti-
cally Reissner-Nordström for large values of r. The ge-
ometry is singular at the origin [21], as it happens with the
Schwarzschild and Reissner-Nordström cases. The zeros of
the function fðrÞ correspond to the horizons, which must
be found numerically. For a given value of the constant b,
when the charge is small, 0 � jQj=M � �1, the function
fðrÞ has only one zero and there is a regular event horizon.
For intermediate values of charge, �1 < jQj=M < �2, fðrÞ
has two zeros; then, as it happens for the Reissner-
Nordström geometry, an inner horizon and an outer regular
event horizon exist. When jQj=M ¼ �2, there is one de-
generate horizon. Finally, if the values of charge are large,
jQj=M > �2, the function fðrÞ has no zeros and a naked
singularity appears. The values of jQj=M where the num-

ber of horizons change, �1 ¼ ð9jbj=MÞ1=3½Fð�; ffiffiffi
2

p
=2��2=3

and �2, which must be obtained numerically from the
condition fðrhÞ ¼ f0ðrhÞ ¼ 0, are increasing functions of
jbj=M. In the Reissner-Nordström limit (b ! 0) it is easy
to see that �1 ¼ 0 and �2 ¼ 1.
We start our construction from Eq. (20), with the metric

function given by Eq. (21) or Eq. (24); as it was stated
above, the geometry consists in the inner part of manifold
M1 and the outer part of manifold M2. In all cases we
restrict our analysis to normal matter, so that the weak
energy condition, i.e. 	 � 0 and 	þ p � 0, is fulfilled.
We first consider shells around vacuum (bubbles), in which
we take the outer manifold with mass M2 and charge Q2,
and the inner one with mass M1 ¼ 0 and charge Q1 ¼ 0.
The radius a0 is chosen larger than the horizon radius of the
outer manifold (so that the singularity and the event hori-
zon of the original manifold are both removed). The second
kind of configuration that we analyze are charged shells
around noncharged black holes, so the inner geometry has
massM1 and no charge, and the outer one has massM2 and
charge Q2. In this case, besides demanding that a0 is
greater than the horizon radius of the outer manifold, we
also have to take a0 > 2M1. A necessary condition (but not
sufficient in the case of charged shells) for fulfilling the
weak energy condition is that 0 � M1 <M2. As pointed
out above, when the parameter 
 is within the range
0<
 � 1, it can be interpreted as the square of the
velocity of sound on the shell. If 
> 1 this interpretation
is not valid, because it would mean a speed greater than the
velocity of light, implying the violation of causality. Matter
with 
< 0 is not common (though not impossible, e.g.

 ¼ �1 in the Casimir effect between the plates). In such a
case, clearly the interpretation of 
 as the squared velocity
of sound is no longer admissible. In what follows we

3Fð�; kÞ ¼ R�
0 ð1 � k2sin2Þ�1=2d ¼ Rsin�

0 ½ð1 � z2Þ �
ð1 � k2z2Þ��1=2dz (See Ref. [23]).
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consider any value of 
, but we are more interested in the
results corresponding to 0<
 � 1.

The interpretation of the stability results from Eq. (18) is
not straightforward, so we present them graphically. In

Einstein-Maxwell theory the stability regions are shown
in Fig. 1, while the results within the framework of
Einstein-Born-Infeld theory are shown in Fig. 2; we con-
sider a large deviation from Maxwell electrodynamics by
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FIG. 1. Stability regions (grey) for charged shells satisfying the weak energy condition in Einstein-Maxwell theory, around vacuum
(M1 ¼ 0, Q1 ¼ 0) shown in the upper row figures, and around a black hole (M1=M2 ¼ 0:5, Q1 ¼ 0) shown in the lower row figures.
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FIG. 2. Stability regions (grey) for charged shells satisfying the weak energy condition in Einstein-Born-Infeld theory with b ¼ 1,
around vacuum (M1 ¼ 0, Q1 ¼ 0) shown in the upper row figures, and around a black hole (M1=M2 ¼ 0:5, Q1 ¼ 0) shown in the
lower row figures.
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setting the Born-Infeld constant b ¼ 1. The figures corre-
spond to some representative cases which illustrate the
dependence of the stability regions—for matter satisfying
the weak energy condition—in terms of the parameters and
the constant b; in particular, for the case of shells surround-
ing black holes we show the results corresponding to
M1=M2 ¼ 0:5. For comparison, the noncharged shells re-
sults previously studied in Ref. [3] are also displayed in the
figures. In both theories, the qualitative behavior is differ-
ent if the charge is under or beyond the critical value (from
which the horizon of the outer original manifold vanishes).
If the charge is under the critical value, stable configura-
tions are possible only for positive 
, while if the charge is
equal or above the critical value, negative values of 
 are
compatible with stability. In all cases, there are values of
a0=M2 for which stable configurations are possible with
0<
 � 1. Within this range of 
, if the charge is below
the critical value the largest interval of a0=M2 for which
the shell is stable corresponds to 
 ¼ 1, as it was obtained
for noncharged shells in Ref. [3]. In both electrodynamics,
when the charge is under the critical value, shells around
black holes present slightly smaller regions of stability
than bubbles; and the stability regions become larger as
the charge increases.4 If the charge is equal or beyond the
critical value, for a given 
 bubbles can be stable for
smaller radii a0=M2 than shells around black holes, and
for fixed a0=M2 bubbles are stable for a smaller range of
the parameter 
 than shells around black holes. The stabil-
ity regions corresponding to bubbles and shells around

black holes have similar forms in Maxwell and Born-
Infeld electrodynamics. The main difference between the
two theories is the value of the critical charge (which is a
growing function of b) where the form of the stability
regions change, as pointed out above.

IV. SUMMARY

We have studied the stability of charged spherical shells
within the frameworks of Einstein gravity coupled to
Maxwell and to Born-Infeld electrodynamic theories. The
starting point has been the mathematical construction of a
shell from two spherically symmetric geometries associ-
ated to different masses and charges. For both bubbles
(shells around vacuum) and shells around noncharged
black holes we have considered linearized perturbations
preserving the symmetry. The analysis has been carried out
by drawing the stability regions in terms of the shell radius
a0 and 
 ¼ p0ða0Þ=	0ða0Þ, for different values of mass and
charge. In both theories, the presence of the charge seems
to enlarge the stability regions for both bubbles and shells
around black holes. The stability regions for bubbles ap-
pear to be larger than those of shells around black holes if
the charge is under the critical value, while the reverse is
true for charges above the critical value. According to the
results displayed, shells in both electromagnetic theories
show a similar behavior. We have shown that charged
layers with 0<
 � 1 can be stable for suitable values
of the parameters.
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