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We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general

relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark,

Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we

compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We

consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the

gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and

we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present.

We derive the specific approximate expression of the corresponding system of ordinary differential

equations, which are then solved with methods of celestial mechanics. We calculate the secular variations

of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show

how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion

parameters. All computations are performed under the assumptions of weak field and slow motion. To test

our predictions, we use the measurements of the Moon’s geodetic precession from lunar laser ranging data,

and the measurements of Mercury’s perihelion advance from planetary radar ranging data. These

measurements are then used to constrain suitable linear combinations of the torsion parameters.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) successfully
describes gravitational physics in the Solar System. Its
predictions have passed a wide variety of precision experi-
mental tests carried out in weak-field and slow-motion
regime with natural bodies and artificial satellites [1,2].
These tests include the measurement and verification of
(quoted in terms of relative experimental uncertainty):
Mercury’s perihelion advance at the 10�3 level through
planetary radar ranging [3]; the redshift of spectral lines of
a hydrogen-maser frequency standard at the 10�4 level
performed with the Gravity Probe A spacecraft [4]; the
deflection of light by solar gravity via very-long-baseline
(radio) interferometry at the 10�4 level [5]; the time-delay
by gravitational potential using the Viking spacecrafts at

Mars [6], and the Cassini mission at Saturn (the latter at the
10�5 level [7]); the equivalence principle at the 10�13

level, and the geodetic precession at about six parts in
10�3 with lunar laser ranging (LLR) of the Apollo and
Lunokhod retroreflectors [8]; frame dragging with satellite
laser ranging (SLR) of the LAGEOS satellites and with the
Gravity Probe B (GPB) mission (the former at the 10�1

level [9]); the latter is also expected to yield a very accurate
measurement of the geodetic precession.
The first three measurements above (perihelion preces-

sion, gravitational redshift and light deflection) are the
three classical tests originally proposed by Einstein to
verify his theory. The geodetic precession is a relativistic
three-body effect that was predicted [10] by de Sitter in
1916 and observed in 1988 by I. I. Shapiro et al. with an
accuracy of 2% using LLR data [11].
In the effort of improving the experimental measure-

ments and of possibly discovering new physics, several
extensions and modifications of GR have been developed.
One notable attempt is the parametrized post-Newtonian
(PPN) formalism, whose verification has been the object of

*r.march@iac.cnr.it
†Giovanni.Bellettini@lnf.infn.it
‡tauraso@mat.uniroma2.it
xSimone.Dellagnello@lnf.infn.it

PHYSICAL REVIEW D 83, 104008 (2011)

1550-7998=2011=83(10)=104008(19) 104008-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.104008


continuous and always improving experimental tests. No
deviation from GR has been found so far. However, in
presence of new physics beyond GR, it is natural to expect
and try to measure modifications of the Solar System
observables described above, which historically marked
the transition from Newtonian physics to relativistic
gravity.

In this paper we treat the modification of GR to include
spacetime torsion and motion along autoparallel orbits.
Then we use the measured Moon geodetic precession and
Mercury’s perihelion advance to test our predictions. In a
companion paper [12], we show how the constraints on
torsion provided by the measurement of the geodetic pre-
cession can be used also to constrain spacetime torsion with
the frame dragging experiments on LAGEOS satellites.

In the near future, improvements of the limits reported in
these two papers may be obtained from the analysis of
Mercury radar ranging (MRR) data taken since 1990 [1],
from the relentless analysis of more LLR data from more
ground stations, from the mm-level range precision pro-
vided by the new APOLLO station at Apache Point,
USA [13] (operational since 2007) and from the release
of the geodetic precession measurement by the GPB
Collaboration. In the midterm we expect a substantial ad-
vance from LLR with the deployment of second-generation
laser retroreflector payloads with robotic soft-landings on
the Moon, like the missions of the International Lunar
Network (ILN), or similar geophysical network, and like
JAXA’s Selene-2. We also expect that in the long term, more
stringent limits can be set with the approved BepiColombo
Mercury orbiter, an ESA Cornerstone mission.

II. THEORETICAL FRAMEWORK

An interesting generalization of GR includes a nonvan-
ishing torsion. A class of theories allowing the presence of
torsion is based on the extension of Riemann spacetime to
Riemann-Cartan spacetime. The latter has a richer geomet-
ric structure, since it is endowed with a metric g�� and a

connection ��
�� which is not the Levi-Civita connection.

A compatibility condition between g�� and ��
�� is re-

quired, namely, the covariant derivative of the metric ten-
sor must vanish identically. Under this assumption the
resulting connection turns out to be nonsymmetric, and
such a lack of symmetry gives origin to a nonvanishing
torsion tensor. We refer to Refs. [14,15] for the details.

In most torsion theories of gravity, the source of torsion
is the intrinsic spin of matter [14,16,17]. A recent review
on searches for the role of spin and polarization in gravity
can be found in [18]. Since the spins of elementary parti-
cles in macroscopic matter are usually oriented in a ran-
dom way, such theories predict a negligible amount of
torsion generated by massive bodies. As a consequence
spacetime torsion would be observationally negligible in
the Solar System.

However, in [19] Mao, Tegmark, Guth, and Cabi
(MTGC) argue that, if there are theories giving rise to
detectable torsion in the Solar System, they should be
tested experimentally. For this reason, in [19] a theory-
independent framework based on symmetry arguments is
developed, and it is determined by a set of parameters
describing the torsion and the metric. Here, by theory-
independent framework, we mean the following: the metric
and the connection are parametrized, around a massive
body, with the help of symmetry arguments, without ref-
erence to a torsion model based on a specific Lagrangian
(or even on specific field equations).
This framework can be used to constrain the above

mentioned parameters from Solar System experiments. In
particular, MTGC suggest that GPB is an appropriate
experiment for this task. In [19] the authors compute the
precession of gyroscopes and find the constraints that GPB
is able to place on the torsion parameters. In [20] Hehl and
Obukhov argue that measuring torsion requires intrinsic
spin, and criticize the approach of MTGC, since GPB
gyroscopes do not carry uncompensated elementary parti-
cle spin.
MTGC address also the question whether there exists a

specific gravitational Lagrangian which yields a torsion
signal detectable by the GPB experiment. As an example
they quote the theory by Hayashi and Shirafuji (HS) in [21]
where a massive body generates a torsion field. In such a
theory gravitational forces are due entirely to spacetime
torsion and not to curvature. The same property is shared
by teleparallel theories [22–26].
Then MTGC propose what they call the Einstein-

Hayashi-Shirafuji (EHS) Lagrangian, which is a linear
interpolation of GR and HS Lagrangians. The main feature
of the EHS theory is that it admits both curvature and
torsion.
The EHS model has been criticized by various authors.

Flanagan and Rosenthal show in [27] that the linearized
EHS theory becomes consistent only if the parameters in
the Lagrangian satisfy suitable relations that, in turn, make
the predictions coinciding with those of GR. In the paper
[28], Puetzfeld andObukhov derive the equations of motion
in the framework of metric-affine gravity theories, which
includes the HS theory, and show that only test bodies with
microstructure (such as spin) can couple to torsion. The
conclusion is that the EHS theory does not yield a torsion
signal detectable for GPB. For this reason, in [19] the EHS
Lagrangian is proposed just as a pedagogical toy model. In
the present paper we will not treat the EHS model.
As also remarked by Flanagan and Rosenthal in [27], the

failure of constructing the specific EHS Lagrangian does not
rule out the possibility that there may exist other torsion
theories which could be usefully constrained by Solar
System experiments. Such torsion models should fit in the
above mentioned theory-independent framework, similarly
to a parametrized post-Newtonian framework including
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torsion. We remark that the parametrized formalism of
MTGC does not take into account the intrinsic spin of matter
as a possible source of torsion, and in this sense it cannot be
a general torsion framework. However, it is adequate for the
description of torsion aroundmacroscopic massive bodies in
the Solar System, such as planets, being the intrinsic spin
negligible when averaged over such bodies.

For this reason we think it is worthwhile to continue the
investigation of observable effects in the Solar System of
nonstandard torsion models within the MTGC parame-
trized formalism, under suitable working assumptions. In
particular, our aim is to extend the GPB gyroscopes com-
putations made in [19] to the case of motion of planets and
satellites.

In the present paper we compute, as an effect of space-
time torsion, the corrections both to the precession of the
pericenter of a body orbiting around a central mass, and to
the orbital geodetic precession. We describe the torsion by
means of three parameters t1, t2, t3. Our computations
show that a complete account of the precessions requires
a parametrization of torsion up to an approximation order
higher than the one considered in [19].

We consider the motion of a test body in a spherically
symmetric field, and the motion of a satellite (either the
Moon or LAGEOS) in the gravitational field of the Sun and
the Earth. Since we use a parametrized framework without
specifying the coupling of torsion to matter, we cannot
derive the equations of motion of test bodies from the
gravitational field equations. Therefore, in order to com-
pute effects of torsion on the orbits of planets and satellites,
we will work out the implications of the assumption that
the trajectory of a test body is either an autoparallel curve
or a geodesic. Such trajectories do not need to coincide
when torsion is present. The computations will be carried
out under the assumption of weak field and slow motion of
the test body.

We will assume that the motion of the satellite is ob-
tained by superimposing the fields of the Sun and the Earth,
both computed as if these bodies were at rest. Observe that
these assumptions are satisfied to a sufficient order of
approximation in classical general relativity.

As in de Sitter’s original paper [10], we characterize the
motion using the orbital elements of the osculating ellipse.
In terms of these orbital elements, the equations of motion
then reduce to the Lagrangian planetary equations. We
calculate the secular variations of the longitude � of the
node and of the longitude ~! of the pericenter of the satellite.
The computed secular variations show how the corrections
to the orbital de Sitter effect depend on the torsion parame-
ters t1, t2, t3. In addition we calculate the secular variation
of the longitude of the pericenter of a body orbiting around a
central mass, and also in this case we find the corresponding
dependence on t1, t2, t3. The data from the LLR and MRR
measurements are then used to constrain the relevant linear
combinations of the torsion parameters.

Eventually, we consider the geodesic trajectories, and
we find that torsion parameters cannot be constrained by
Solar System experiments.
The paper is organized as follows. In Sec. III we briefly

recall the notion of spacetime with torsion. In Sec. IV we
recall from [19] how to parametrize the metric and torsion
tensors under the assumption of spherical symmetry, and
we extend the parametrization up to a higher order of
approximation. In Sec. V the connection up to the required
order is given. In Sec. VI we analyze the equations of
autoparallel trajectories and we derive the related system
of ordinary differential equations to second order. The
expression of the system clearly reveals the perturbation
due to torsion with respect to the de Sitter equations. In
Sec. VII we calculate the correction due to torsion to the
precession of pericenter. In Sec. VIII we calculate the
correction due to torsion of Kepler’s third law. In Sec. IX
we investigate the motion of a satellite in the gravitational
field of the Sun and the Earth and we compute what we can
call the perturbative forces due to torsion. In Sec. X we
derive the time evolution of the orbital elements of the
satellite, using the classical perturbation theory of celestial
mechanics, particularly the Gauss form of the Lagrange
planetary equations. In Sec. XI we calculate the secular
variations of the orbital elements of the satellite. In
Sec. XII we give multiplicative torsion biases relative to
the GR predictions. In Sec. XIII we report the constraints
on the parameters of our torsion model from LLR and
MRR, which is one of the main goals of this paper. In
Sec. XIV we analyze shortly the geodesic trajectories. In
Sec. XV we summarize the future prospects of the LLR
and MRR measurements and we discuss the implications
of proposed and approved space missions for the search
reported in this paper. Eventually, in the Appendix we
confirm using a different formalism the computation lead-
ing to (7.11), and we show that, in the autoparallel scheme,
torsion produces an effect on the precession of pericenter
which was not taken into account in [29].

III. SPACETIME WITH TORSION

We briefly recall the basic notions of Riemann-Cartan
spacetimes [14,15]. A spacetime equipped with a
Lorentzian metric g�� and a connection ��

�� compatible

with the metric is called a Riemann-Cartan spacetime.
Compatibility means that r�g�� ¼ 0, where r denotes

the covariant derivative. We recall, in particular, that for
any vector field v�

r�v
� � @�v

� þ ��
��v

�:

The connection is determined uniquely by g�� and by the

torsion tensor

S��
� � 1

2
ð��

�� � ��
��Þ

as follows:
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��
�� ¼

�
�
��

�
� K��

�; (3.1)

where f�g is the Levi-Civita connection, and
K��

� � �S��
� � S��� � S��� (3.2)

is the contortion tensor. In the particular case when ��
�� is

symmetric with respect to �, � the torsion tensor vanishes.
In the present paper we will consider the case of non-
symmetric connections ��

��.

The Riemann tensor of the connection (3.1) is given by

R�
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��:

(3.3)

The particular case of vanishing torsion tensor corresponds
to Riemann spacetime of GR, while the particular case of
vanishing Riemann tensor corresponds to the Weitzenböck
spacetime [21].

IV. PARAMETRIZATIONS OF METRIC AND
TORSION IN SPHERICAL SYMMETRY

Throughout this paper we use the gravitational units
where c ¼ 1 and G ¼ 1. In the following we consider
a spherically symmetric body of mass m. Introducing
spherical coordinates ðr; �; �Þ, we parametrize the metric
and torsion tensors in a region of space (out of the body)
where the dimensionless quantity �m � m=r � 1 (i.e., r is
large in comparison with the Schwarzschild radius of
the body). As it will be shown in the sequel, such an
approximation is accurate enough for the purpose of our
computations.1

We recall that parametrized post-Newtonian calcula-
tions [30] show that a complete account of the pericenter
precession must involve second order parameters in �m (for
instance the PPN parameter 	). Therefore, assuming
spherical symmetry, we parametrize the metric tensor
g�� to second order. Under the assumption of spherical

symmetry the line element has the following general ex-
pression in spherical coordinates:

ds2 ¼ �hðrÞdt2 þ fðrÞdr2 þ �ðrÞr2½d�2 þ sin2�d�2�:
(4.1)

We can choose �ðrÞ ¼ 1, and to second order in m=r we
have

hðrÞ ¼ 1þH
m

r
þ I

m2

r2
;

fðrÞ ¼ 1þF
m

r
þL

m2

r2
;

(4.2)

where H , F , I , L are dimensionless parameters. The
metric is then expressed in nonisotropic spherical coordi-
nates. In the computations of trajectories that we will make
in the following, only the function hðrÞ is required to the
second order in �m, while for fðrÞ the first order approxi-
mation is sufficient.
We follow the notation of [19] for the parametrization of

the metric tensor: the parametrization (4.2) reduces to first
order in �m to the one used in [19]. In the case of a PPN
metric we have ([31], Sec. 3.4.1):

H ¼ �2; F ¼ 2
; I ¼ 2ð	� 
Þ: (4.3)

In the present paper all the others PPN parameters [30] are
assumed to be negligible.
When spacetime torsion is present, our calculations

show that a complete account of the precessions must
involve a parametrization of the torsion tensor S��

� up to

second order in �m.
We now follow the spherical symmetry arguments used

by [19]: to do this, it is convenient to parametrize the
nonvanishing components of the torsion tensor in isotropic
rectangular coordinates ðt; x1; x2; x3Þ. We have

S0i
0 ¼ P ðr0Þ xi

ðr0Þ2 ;

Sjk
i ¼ Qðr0Þ x

j�ki � xk�ji

ðr0Þ2 ; i; j; k 2 f1; 2; 3g; (4.4)

where r0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1Þ2 þ ðx2Þ2 þ ðx3Þ2p
, P ðr0Þ, Qðr0Þ are arbi-

trary dimensionless functions, and �ij is the Kronecker’s

symbol. If we consider such functions as depending on the
dimensionless small quantity m=r0, for the purposes of our
computations (see Sec. V) it is sufficient to Taylor expand
them up to the second order, hence we write

P ðr0Þ ¼ t1
m

2r0
þ~t3

m2

ðr0Þ2 ; Qðr0Þ ¼ t2
m

2r0
þ~t4

m2

ðr0Þ2 ; (4.5)

where t1, t2, ~t3, ~t4 are dimensionless constants. In the
particular case of first order approximation, the above
formulas yield the parametrization used in [19].
In order to transform (4.4) to nonisotropic spherical

coordinates in which the metric (4.1) is expressed, it is
convenient to first transform to isotropic spherical coordi-
nates ðr0; �; �Þ. We have for the nonvanishing components
of the torsion tensor

Str0
t ¼ t1

m

2ðr0Þ2 þ ~t3
m2

ðr0Þ3 ;

Sr0�
� ¼ Sr0�

� ¼ t2
m

2ðr0Þ2 þ ~t4
m2

ðr0Þ3 :
(4.6)

We now further transform (4.6) to nonisotropic spherical
coordinates. To the required second order of accuracy, the
transformation takes the form ðt; r0; �; �Þ ! ðt; r; �; �Þ

1For example, considering the field of the Sun of mass m and
the Earth and Mercury as test bodies at a distance r of the
order of their orbit semimajor axes, one gets, respectively,
�m � 2� 10�8 and �m � 5� 10�8.
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with r ’ r0ð1þ F
2

m
r0Þ. The resulting expression of the com-

ponents (4.6) of the torsion tensor in such coordinates is

Str
t ¼ t1

m

2r2
þ t3

m2

r3
;

Sr�
� ¼ Sr�

� ¼ t2
m

2r2
þ t4

m2

r3
:

(4.7)

The constants t3 and t4 are related to t1, t2, ~t3 and ~t4 as
follows:

t3 ¼ ~t3 �F
2
t1; t4 ¼ ~t4 �F

2
t2: (4.8)

Therefore from (3.1) and (3.2) it follows that ��
��

becomes an explicit function of t1, t2, t3, t4, and the
remaining four parameters involved,

��
�� ¼ ��

��ðt1; t2; t3; t4;H ;F ; I ;L; r; �; �Þ:
Since the metric and the torsion are constructed so that
the compatibility condition r�g�� ¼ 0 is satisfied, then

the metric parameters are independent of the torsion
parameters.

V. THE CONNECTION UP TO SECOND ORDER

Using (3.1) and (3.2), the nonvanishing components of
the connection in spherical symmetry, approximated to
second order in �m ¼ m=r, read as follows:

�t
tr ¼

�
t1 �H

2

�
m

r2
þ

�
H 2

2
� I þ 2t3

�
m2

r3
;

�t
rt ¼ �Hm

2r2
þ

�
H 2

2
� I

�
m2

r3
;

�r
tt ¼

�
t1 �H

2

�
m

r2

þ
�
HF
2

� I þ t1ðH �F Þ þ 2t3

�
m2

r3
;

�r
rr ¼ �Fm

2r2
þ

�
F 2

2
�L

�
m2

r3
;

�r
�� ¼ �rþ ðF þ t2Þm� ðF 2 þ t2F þL� 2t4Þm

2

r
;

�r
�� ¼ �rsin2�þ ðF þ t2Þmsin2�

� ðF 2 þ t2F þL� 2t4Þm
2

r
sin2�;

��
r� ¼ ��

r� ¼ 1

r
;

��
�r ¼ ��

�r ¼
1

r
� t2

m

r2
� 2t4

m2

r3
;

��
�� ¼ � sin� cos�;

��
�� ¼ ��

�� ¼ cos�

sin�
: (5.1)

In the computations of trajectories that we will make in the
sequel only the components �r

tt, �
t
tr, �

t
rt are required to

the second order in �m, while for the remaining compo-
nents the first order approximation is sufficient. The second
order of approximation is used in Sec. VI for �r

tt, and in
the Appendix for �t

tr, �
t
rt. It follows that the parametersL

and t4 (differently from I and t3) will not appear in the next
sections, and consequently they will not be considered in
the sequel of the paper.

VI. EQUATIONS OFAUTOPARALLEL
TRAJECTORIES

The precise form of the equations of motion of bodies in
the gravitational field depends on the way the matter
couples to the metric and the torsion in the Lagrangian
(or in the gravitational field equations). Here we consider
the parametrized framework of Sec. IV without specifying
a coupling of torsion to matter, hence without specifying
the field equations.
In a Riemann-Cartan spacetime there are two different

classes of curves, autoparallel and geodesic curves, respec-
tively, which reduce to the geodesics of Riemann space-
time when torsion is zero [14]. Autoparallels are curves
along which the velocity vector is transported parallel to
itself by the connection ��

��. Geodesics are curves which

are extremals of the length functional, and along which the
velocity vector is transported parallel to itself by the Levi-
Civita connection. In GR the two types of trajectories
coincide while, in general, they may differ in the presence
of torsion. They are identical when the torsion is totally
skew-symmetric [14], a special condition which is not
satisfied within our parametrization.
The equations of motion of bodies in the gravitational

field follow from the field equations, as a consequence of
the Bianchi identities. The method of Papapetrou [32] can
be used to derive the equations of motion of a test body
having internal structure, such as for instance a small
extended object that may have either rotational angular
momentum or net spin. In standard torsion theories the
trajectories of test bodies with internal structure, in gen-
eral, are neither autoparallels nor geodesics [14,15,33],
while structureless test bodies, such as spinless test parti-
cles, follow geodesic trajectories.
In our computations of orbits of either a planet or a

satellite (considered as a test body), we will neglect its
internal structure. In a theory-independent framework we
cannot derive the equations of motion from the gravita-
tional field equations. Therefore we need some working
assumptions on the trajectories of structureless test bodies:
we will investigate the consequences of the assumption
that the trajectories are either autoparallels or geodesics.
Assuming the trajectory to be a geodesic is natural and
consistent with standard torsion theories. However, we will
see in Sec. XIV that the geodesics are the same as in the
PPN framework. Hence new predictions related to torsion
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may arise only when considering the autoparallel trajecto-
ries, which will turn out to explicitly depend on torsion
parameters. In the following we give some motivations
which make worthwhile the investigation of autoparallel
trajectories.

In the paper [34], Kleinert and Pelster argue that the
closure failure of parallelograms in the presence of torsion
adds an additional term to the geodesics which causes
structureless test bodies to follow autoparallel trajectories.
Kleinert et al. also argue in [34,35] that autoparallel
trajectories are consistent with the principle of inertia.
Hehl and Obukhov in [20] criticized the approach of
Kleinert et al., since the equations of autoparallel trajec-
tories have not been derived from the energy-momentum
conservation laws. Kleinert investigates this issue in [36]
where the autoparallel trajectories are derived from the
gravitational field equations via the Bianchi identities, in
the case when torsion is derived from a scalar potential (see
[15] for a discussion of such a kind of torsion).

In the papers [37,38], using a reformulation of the theory
of Brans-Dicke in terms of a connection with torsion [39],
Dereli, Tucker et al. suggest that the autoparallel trajectory
of a spinless test particle is a possibility that has to be taken
into account. In [37] the results of the investigation of
autoparallel trajectories are applied to the computation of
the orbit of Mercury. In [40,41] the equations of autopar-
allel trajectories are derived from the gravitational field
equations and Bianchi identities, in the special case of
matter modeled as a pressureless fluid, and torsion ex-
pressed solely in terms of the gradient of the Brans-
Dicke scalar field.

The above mentioned results show that there is an
interest in the autoparallels in spacetime with torsion,
which make worthwhile their investigation in the present
paper. The system of equations of autoparallel trajectories
of a test body reads as

d2x�

d�2
þ ��

��

dx�

d�

dx�

d�
¼ 0; (6.1)

where � is the proper time [42]. Notice that only the
symmetric part 12 ð��

�� þ ��
��Þ of the connection enters in

(6.1); in addition, the totally antisymmetric part of S���

cannot be measured from (6.1).
The trajectory of a test body has to be a timelike curve.

Since the connection is compatible with the metric the
quantity g��

dx�

d�
dx�

d� is conserved by parallel transport.

The tangent vector dx�

d� to the trajectory undergoes parallel

transport by the connection along the autoparallel.
Therefore, an autoparallel that is timelike at one point
has this same orientation everywhere, so that the trajectory
is strictly contained in the light cone determined by g��, in

a neighborhood of every of its points. Hence the compati-
bility of the connection with the metric ensures that auto-
parallels fulfil a necessary requirement for causality.

The Eqs. (6.1) can be rewritten as

d2x�

dt2
¼ �

�
��

�� � �0
��

dx�

dt

�
dx�

dt

dx�

dt
(6.2)

for � 2 f1; 2; 3g. In our units ðdx�dt Þ2 and d2x�

dt2
are of the order

of �m.
We use for x� spherical coordinates ðr; �; �Þ.

Substituting in (6.2) the expression of ��
�� given in

Sec. V one gets, to the order �2m of accuracy,

€r ¼ �m

r2
þA

m

r2
þB

m2

r3
þ C

m

r2
_r2 þ ðrþDmÞ _�2

þ ðrþDmÞsin2� _�2;

€� ¼
�
� 2

r
þ E

m

r2

�
_r _�þ sin� cos� _�2;

€� ¼
�
� 2

r
þ E

m

r2

�
_r _��2 cot� _� _�;

(6.3)

where

A ¼ �t1 þH
2

þ 1;

B ¼ �HF
2

þ I � t1ðH �F Þ � 2t3;

C ¼ t1 �H þF
2
;

D ¼ �F � t2:

E ¼ t1 þ t2 �H :

In order to take into account relativistic corrections, the
right-hand sides of (6.3) must be at least of second order in
�m; this is guaranteed if �

r
tt is developed to second order in

�m, while it is enough to develop the remaining compo-
nents of the connection to the first order.
System (6.3) to lowest order becomes

d ~v

dt
¼ �

�
t1 �H

2

�
m

r2
êr; (6.4)

where êr is the unit vector in the radial direction. Imposing
the Newtonian limit it follows [see also [19], Eq. (23)]

t1 �H
2

¼ 1; (6.5)

hence A ¼ 0.
We now transform (6.3) in rectangular coordinates x ¼

r sin� cos�, y ¼ r sin� sin�, z ¼ r cos�. Writing x1, x2, x3

for x, y, z we get
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€x� ¼ �m
x�

r3
þBm2 x

�

r4
þ Em

_x� _r

r2
þDm

x�

r3
�2

þ 3

2
Fm

x�

r3
_r2; � ¼ 1; 2; 3;

�2 � X3
�¼1

ð _x�Þ2:
(6.6)

Note that in case of no torsion (i.e., t1 ¼ t2 ¼ t3 ¼ 0) and
when F ¼ 2 and I ¼ 0 system (6.6) reduces to the equa-
tions of motion of general relativity in the weak-field
approximation.

VII. PRECESSION OF PERICENTER

From the second equation in (6.3) it follows that if � and
_� vanish at one time then � is identically zero. Therefore,
assuming plane motion, the system (6.6) can be written in
the form

€x ¼ �m

r3
xþ Fx; €y ¼ �m

r3
yþ Fy;

where ðFx; FyÞ is the perturbation with respect to the

Newton force,

Fx ¼ Bm2 x

r4
þ Em

_x _r

r2
þDm

x

r3
�2 þ 3

2
Fm

x

r3
_r2;

Fy ¼ Bm2 y

r4
þ Em

_y _r

r2
þDm

y

r3
�2 þ 3

2
Fm

y

r3
_r2;

(7.1)

and now �2 ¼ _x2 þ _y2.
The vector ðFx; FyÞ can be decomposed in the standard

way along two mutually orthogonal axes as

S ¼ x

r
Fx þ y

r
Fy; T ¼ @ðx=rÞ

@u
Fx þ @ðy=rÞ

@u
Fy: (7.2)

Here S is the component along the instantaneous radius
vector, T is the component perpendicular to the instanta-
neous radius vector in the direction of motion, where u is
the argument of latitude. Then, substituting (7.1) into (7.2)
gives

S ¼ B
m2

r3
þ Cm

_r2

r2
þDm _u2; T ¼ Em

_r _u

r
: (7.3)

Let us now recall [43,44] that, using the method of
variation of constants,

r ¼ að1� e2Þ
1þ e cosv

; (7.4)

where a is the semimajor axis of the satellite orbit, e is the
eccentricity, v is the true anomaly, and

_r ¼ r2e sinv

að1� e2Þ _v; r2 _v ¼ na2ð1� e2Þ1=2; (7.5)

n ¼ 2=U, U the period of revolution. Recall that, in the
Newtonian approximation, n2 ¼ m=a3 from Kepler’s third
law. Following the standard astronomical notation, we let

~! be the longitude of the pericenter, and u ¼ vþ ~!.
We also recall the following planetary equation of
Lagrange in the Gauss form ([44], Ch. 6, Sec. 6):

d ~!

dt
¼ ð1� e2Þ1=2

nae

�
�S cosvþ T

�
1þ r

að1� e2Þ
�
sinv

�
:

(7.6)

Notice that, since S and T are of the order �2m, we have that
d ~!
dt is of the order �3=2m . We are therefore allowed to make

the approximation

_u ’ _v: (7.7)

Inserting (7.3) into (7.6), making also use of (7.4), (7.5),
and (7.7) and Kepler’s third law, we have

d ~!

dt
¼ � Bm2

n2a4eð1� e2Þ ð1þ e cosvÞ cosv _v

� Cem
að1� e2Þ sin

2v cosv _v

� Dm

aeð1� e2Þ ð1þ e cosvÞ2 cosv _v

þ Em
að1� e2Þ sin

2vð2þ e cosvÞ _v: (7.8)

According to perturbation theory, we now regard the orbi-
tal elements on the right-hand side of (7.8) as approxi-
mately constants. Therefore, integrating with respect to t,
we obtain

� ~! ¼ � Bm

aeð1� e2Þ
�
sinvþ e

2
vþ e

4
sinð2vÞ

�

� Cem
3að1� e2Þ sin

3v� Dm

aeð1� e2Þ
�
sinvþ ev

þ e

2
sinð2vÞ þ e2 sinv� e2

3
sin3v

�

þ Em
að1� e2Þ

�
v� 1

2
sinð2vÞ þ e

3
sin3v

�
:

(7.10)

Correction to the precession of pericenter
due to torsion

Secular terms appear in � ~!. Using the expressions for
B, D and E, such secular contributions are

ð� ~!Þsec ¼
�
�H þF

2
þ 2t2 þ t21 �

I
2
þ t3

�
m

að1� e2Þv:
(7.11)

If t1 ¼ t2 ¼ t3 ¼ 0, using (4.3) then we find

ð� ~!Þsec ¼ ð2þ 2
� 	Þ m

að1� e2Þv; (7.12)

which gives the precession of pericenter in terms of PPN
parameters, as it can be found in [[30], Chapter 7,
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formula (7.54)]. Moreover, when H ¼ �2, F ¼ 2 and
I ¼ 0 (i.e., 	 ¼ 
 ¼ 1) we find the usual expression of
ð� ~!ÞGRsec given by general relativity. In the case of Mercury,
such a precession amounts to 42:98 arcsec=century.

Our formula for � ~!sec differs from the formula

ð� ~!Þsec ¼ F
2
ð� ~!ÞGRsec ; (7.13)

found by Mao et al. in [29], formula (C10). Equation
(7.13) does not reproduce the PPN result (7.12) when the
torsion parameters vanish, though it reproduces the GR
result in the particular case H ¼ �2 and F ¼ 2. In the
Appendix we compute the precession of pericenter follow-
ing the method used in [29], obtaining again expression
(7.11).

The precession of the pericenter in a reformulation of the
Brans-Dicke theory in terms of a connection with torsion
has also been computed in [37] by using autoparallel
trajectories.

VIII. CORRECTION TO KEPLER’S THIRD LAW

In this section we compute the relativistic correction of
Kepler’s third law for Earth motion, in the presence of
torsion. This result will be used in the sequel, for the
computation of the satellite geodetic precession. We note
that such a correction was not necessary in the previous
computation of the precession of pericenter at the required
order of accuracy.

We introduce the following coordinates. We take a
system of rectangular coordinates centered at the Sun.
The triplet ð�;�; �Þ denotes the Earth’s coordinates in
this system, and we assume that the ecliptic plane coin-
cides with the plane � ¼ 0; we assume that the eccentricity
is zero, so that the Earth’s orbit is given by

� ¼ � cosL; � ¼ � sinL; � ¼ 0;

where � and L denote the radius of the orbit and the
longitude of the Earth, respectively. Therefore, system
(6.3), using � ¼ =2 and _� ¼ 0, yields

� m

�2
þB

m2

�3
þ ð�þDmÞ _L2 ¼ 0; (8.1)

where m, here and in the sequel, denotes the mass of the
Sun, supposed spherically symmetric. It follows that
_L ¼ �0, where �0 is constant, and that

m

�3 ¼ �2
0

1� ðF þ t2Þ m�
t1 � H

2 �B m
�

¼ �2
0

1� ðF þ t2Þ m�
1�B m

�

; (8.2)

where we have used the Newtonian limit condition (6.5).
Since the semimajor axis of the Earth’s orbit is large with
respect to the Schwarzschild radius of the Sun, we have
m=�� 2� 10�8 � 1. Since in our units c ¼ 1, we also
have that �2

0 � 1. It follows that, up to second order,

Eq. (8.2) becomes

m

�3 ¼ �2
0

t1 � H
2

�
1� ðt1 � H

2 ÞðF þ t2Þ �B

t1 � H
2

m

�

�

¼ �2
0

�
1� ðF þ t2 �BÞm

�

�
: (8.3)

This approximation will be used for the computation of the
satellite geodetic precession in the next section.

IX. MOTION OF A SATELLITE IN THE FIELD OF
THE SUN AND THE EARTH

In this section we investigate the motion of a satellite
(either the Moon or LAGEOS) in the gravitational field of
the Sun and the Earth in presence of torsion. The coordi-
nates ð�;�; �Þ have been defined in Sec. VIII. The triplet
ðX; Y; ZÞ denotes the satellite’s coordinates, and we set

�2 � X2 þ Y2 þ Z2:

The satellite’s coordinates with respect to the Sun will be
written as

X ¼ �þ x; Y ¼ �þ y; Z ¼ � þ z;

where ðx; y; zÞ are the coordinates of the satellite with
respect to the Earth. We use the standard coordinates trans-
formation [43,44] used in Celestial Mechanics

x ¼ rðcosu cos�� sinu sin� cosiÞ;
y ¼ rðcosu sin�þ sinu cos� cosiÞ;
z ¼ r sinu sini;

(9.1)

where r is the distance between the Earth and the satellite,
u is the argument of the latitude, � is the longitude of the
node, and i is the orbital inclination.
We suppose that the Earth is spherically symmetric. The

semimajor axes of the Moon and LAGEOS orbits around
the Earth are small in comparison with �, so that in our
computations we will neglect the powers of r=� greater
than one.2 Hence, also m=� � 1.
We will assume that the motion of the satellite is ob-

tained by superimposing the fields (i.e., the connections as
described in Sec. V) of the Sun and the Earth, both com-
puted as if these bodies were at rest. More precisely we
assume

g�� ¼ ðg��Þ0 þ ðg��Þ01 S��
� ¼ ðS��

�Þ0 þ ðS��
�Þ01;
(9.2)

where
(i) ðg��Þ0 and ðS��

�Þ0 are the metric and the torsion

tensors, as given in Sec. IV, taking into account the
Sun only, supposed at rest;

(ii) ðg��Þ01 and ðS��
�Þ01 are the metric and the torsion

tensors taking into account the Earth only; these

2For the Moon and LAGEOS we have r=�� 2:6� 10�3 and
r=�� 8:5� 10�3 respectively.
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tensors are given at each time by the expressions in
Sec. IV, computed as if the Earth were at rest (at that
time).

Observe that these assumptions are satisfied to a suffi-
cient order of approximation in classical general relativity
[10,45] if all the terms that give rise to periodic perturba-
tions are neglected (we are interested only in secular
effects). We also note that a rigorous justification of the
validity of (9.2) would probably require an extension of the
parametrized torsion model to the case of three interacting
bodies, which is beyond the scope of the present paper.

As a consequence we have

d2x�

dt2
¼

�
d2x�

dt2

�
0

1
þ

�
d2X�

dt2

�
0
�

�
d2��

dt2

�
0
;

where we write x1, x2, x3 for x, y, z. Similarly we write X1,
X2, X3 for X, Y, Z, and �1, �2, �3 for �, �, � . Moreover

(i) ðd2x�
dt2

Þ01 is the left-hand side of (6.2) with the coeffi-

cients of the connection computed using ðg��Þ01 and
ðS��

�Þ01;
(ii) ðd2X�

dt2
Þ0 is the left-hand side of (6.2) with the coef-

ficients computed using ðg��Þ0 and ðS��
�Þ0;

(iii) ðd2��

dt2
Þ0 is the left-hand side of (6.2) with the coef-

ficients computed using ðg��Þ0 and ðS��
�Þ0.

The contribution of the term ðd2x�
dt2

Þ01 gives a secular preces-
sion of the perigee which has been computed in Sec. VII.
The other terms represent the perturbing effect of the Sun.
Since all the perturbations here considered are small
enough to allow us to superimpose them linearly, in what
follows we compute the perturbing effect of the Sun only.
With these assumptions, using the Newtonian limit (6.5)
the right-hand members of (6.6) give

€x � þ R� ¼ kAA
� þ kBB

� þ kCC
� þ kDD

�

for � ¼ 1; 2; 3;
(9.3)

where

R� ¼ m

�
X�

�3
� ��

�3

�
;

A� ¼ m2

�
X�

�4
� ��

�4

�
;

B� ¼ m

� _� _X�

�2
� _� _��

�2

�
;

C� ¼ m

�X�
P
�
ð _X�Þ2

�3
�

��
P
�
ð _��Þ2

�3

�
;

D� ¼ m

�
X� _�2

�3
� �� _�2

�3

�
;

and for notational convenience we set

kA ¼B; kB ¼ E; kC ¼D; kD ¼ 3F
2

: (9.4)

The left-hand side of (9.3) contains the ordinary Newtonian
perturbing function N�, which also requires a correction

N̂�, according to the computations in Sec. VIII. This will
be made clear in Sec. X.
The components R� and A�, approximated to the first

order with respect3 to r=� and _r=�, read as follows (where
we write Rx, Ry and Rz for R

1, R2 and R3 respectively, and

similarly for A, B, etc.):

Rx ¼ m

�3
ðx� 3xcos2LÞ þ PRx

;

Ry ¼ m

�3
ðy� 3ysin2LÞ þ PRy

;

Rz ¼ m

�3
zþ PRz

;

(9.5)

Ax ¼ m2

�4
ðx� 4xcos2LÞ þ PAx

;

Ay ¼ m2

�4
ðy� 4ysin2LÞ þ PAy

;

Az ¼ m2

�4
zþ PAz

:

(9.6)

Here the terms PR� , PA� denote a finite sum of addenda
with the following property; each addendum is of the form
fðsinLÞn1ðcosLÞn2 , where n1 þ n2 is odd and f is a factor
independent of L. Such terms will give periodic contribu-
tions to the perturbations of the orbital elements: therefore
they will be neglected in the computation of secular
perturbations.
The components B�, C� and D�, approximated to the

first order with respect to r=�, _r=�, and taking into account
also the terms in r _r=�2, read as follows:

Bx ¼ m _L

�
ð _Lx� _yÞsin2Lþ PBx

;

By ¼ m _L

�
ð _Lyþ _xÞcos2Lþ PBy

;

Bz ¼ PBz
;

(9.7)

Cx ¼ m _L

�
ð _Lxþ ð�3 _Lxþ 2 _yÞcos2LÞ þ PCx

;

Cy ¼ m _L

�
ð _Lyþ ð�3 _Ly� 2 _xÞsin2LÞ þ PCy

;

Cz ¼ m _L2

�
zþ PCz

;

(9.8)

3From formula (10.10) below expressing _r, it follows
j _rj � rj _vj

1�e , so that _r is at least small as _v, hence j _r=�j is smaller
than r=�.
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Dx ¼ PDx
; Dy ¼ PDy

; Dz ¼ PDz
: (9.9)

Also here the terms PB� , PC� and PD� have the same
structure of PR� and PA� , thus giving periodic perturba-
tions of the orbital elements.

X. COMPUTATION OF ORBITAL ELEMENTS VIA
PERTURBATION THEORY

In this section we introduce the tools from Celestial
Mechanics needed to compute the secular perturbations
of the orbital elements. In the following the orbital ele-
ments, the true anomaly v and the argument of latitude u
will be referred to the satellite’s orbit around Earth.

Using the Newtonian limit condition (6.5) and the cor-
rection to Kepler’s third law (8.3) we have

R� ¼ N� � kNN̂
� for � ¼ 1; 2; 3; (10.1)

where

Nx ¼ �2
0xð1� 3cos2LÞ þ PNx

;

Ny ¼ �2
0yð1� 3cos2LÞ þ PNy

;

Nz ¼ �2
0zþ PNz

;

(10.2)

N̂x ¼ m�2
0

�
xð1� 3cos2LÞ þ PN̂x

;

N̂y ¼ m�2
0

�
yð1� 3sin2LÞ þ PN̂y

;

N̂z ¼ �m�2
0

�
zþ PN̂z

;

(10.3)

and

kN ¼ F þ t2 � kA: (10.4)

Again the termsPN� andPN̂� give periodic contributions to
the perturbations of the orbital elements.

In Eq. (10.1) R� is decomposed into the ordinary
Newtonian perturbing function N� plus a relativistic cor-

rection �kNN̂
�, which depends also on torsion.

Equations (9.3) can be rewritten as

€x � þ N� ¼ F� for � ¼ 1; 2; 3; (10.5)

where F� is the perturbation with respect to the Newton
force, and it is given by

F� ¼ kNN̂
� þ kAA

� þ kBB
� þ kCC

� þ kDD
�:

Recalling also (9.1), the perturbation ðFx; Fy; FzÞ can be

decomposed in the standard way along three mutually
orthogonal axes as

S ¼ x

r
Fx þ y

r
Fy þ z

r
Fz;

T ¼ @ðx=rÞ
@u

Fx þ @ðy=rÞ
@u

Fy þ @ðz=rÞ
@u

Fz;

sinuW ¼ @ðx=rÞ
@i

Fx þ @ðy=rÞ
@i

Fy þ @ðz=rÞ
@i

Fz:

(10.6)

Here S is the component along the instantaneous radius
vector, T is the component perpendicular to the instanta-
neous radius vector in the direction of motion, andW is the
component normal to the osculating plane of the orbit
(collinear with the angular momentum vector).
Recalling from Sec. VIII that _L ¼ �0, L ¼ �0t, we re-

place W, S, and T with the averages

�0

2

Z 2=�0

0
Wdt;

�0

2

Z 2=�0

0
Sdt;

�0

2

Z 2=�0

0
Tdt;

respectively. Taking these averages has the following con-
sequences: (i) it eliminates the dependence of W on the
trigonometric functions of L, hence the periodic terms in
(9.5), (9.6), (9.7), (9.8), and (9.9) disappear; (ii) the remain-
ing terms, contributing to the secular effects, are multiplied
by a factor depending on �0.
In order to compute the components S, T and W of the

perturbation, using the method of variation of constants
[43,44] we write

_x ¼ _rðcosu cos�� sinu sin� cosiÞ
þ r _uð� sinu cos�� cosu sin� cosiÞ;

_y ¼ _rðcosu sin�þ sinu cos� cosiÞ
þ r _uð� sinu sin�þ cosu cos� cosiÞ;

_z ¼ _r sinu siniþ r cosu sini;

in order to eliminate _x�.
We recall that u ¼ vþ ~!�� (where ~! is the longi-

tude of the pericenter), which allows to make again the
approximation _u ¼ _v, and we make use of the area law
x _y� y _x ¼ r2 _v cosi in order to simplify the computations.
We decompose

W ¼ WA þWB þWC þWN̂;

with obvious meaning of the notation.
We have

WA ¼ 2kA
m2

�4
z cosi;

WB ¼ kB
m�0

2�
ð��0z cosiþ _vz� _r cosu siniÞ;

WC ¼ kC
m�0

�

�
3

2
�0z cosi� _vzþ _r cosu sini

�
;

WN̂ ¼ kN
m�2

0

�

3

2
z cosi:

(10.7)

Rearranging terms it follows
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W ¼ m�2
0

�

�
2kA � kB

2
þ 3kC

2
þ 3kN

2

�
z cosi

þm�0 _v

�

�
kB
2
� kC

�
zþm�0

�

�
� kB

2
þ kC

�
_r cosu sini:

When H ¼ �2, F ¼ 2 and I ¼ 0 (i.e., 	 ¼ 
 ¼ 1) and
t1 ¼ t2 ¼ t3 ¼ 0, we find

WGR ¼ 3m�0

�
z _v� 3m�0

�
_r cosu sini:

When the satellite is the Moon, we have _r sini ¼ OðeiÞ
which is negligible. In this case WGR corresponds to the
formula found by de Sitter in [[10], (95)].

Now we compute the Gaussian component S of the
perturbation. Analogously we decompose

S ¼ SA þ SB þ SC þ SN̂:

We have

SA ¼ �kA
m�2

0

r�
ðr2 � 2z2Þ;

SB ¼ kB
m�0

2r�
½r2ð�0 � _v cosiÞ � �0z

2�;

SC ¼ kC
m�0

r�

�
r2
�
��0

2
þ _v cosi

�
þ 3

2
�0z

2

�
;

SN̂ ¼ kN
m�2

0

2r�
ð�r2 þ 3z2Þ:

(10.8)

Rearranging terms it follows

S¼m�0

r�

��
�kAþkB

2
�kC

2
�kN

2

�
�0r

2þ
�
�kB

2
þkC

�
_vr2 cosi

þ
�
2kA�kB

2
þ3

2
kCþ3

2
kN

�
�0z

2

�
:

WhenH ¼ �2, F ¼ 2 and I ¼ 0 and t1 ¼ t2 ¼ t3 ¼ 0,
we find

SGR ¼ �3
m�0 _v

�
r cosi:

When the satellite is the Moon if we approximate cosi ’ 1
then SGR corresponds to the formula found in [[10], (95)].

Similarly we decompose

T ¼ TA þ TB þ TC þ TN̂:

We have

TA ¼ 2kA
m2

�4
z cosu sini;

TB ¼ kB
m�0

2�
ð��0z cosu siniþ _r cosiÞ;

TC ¼ kC
m�0

�

�
3

2
�0z cosu sini� _r cosi

�
;

TN̂ ¼ 3

2
kN

m�2
0

�
z cosu sini:

(10.9)

Rearranging terms it follows

T ¼ m�0

�

��
2kA � kB

2
þ 3

2
kC þ 3

2
kN

�
�0z cosu sini

þ
�
kB
2
� kC

�
_r cosi

�
:

WhenH ¼ �2, F ¼ 2 and I ¼ 0 and t1 ¼ t2 ¼ t3 ¼ 0,
we find

TGR ¼ 3
m�0

�
_r cosi:

When the satellite is the Moon if we approximate cosi ’ 1
then TGR corresponds to the formula found in [[10], (95)].
As for the computation of the precession of pericenter in

Sec. VII, we use the formulae

r ¼ að1� e2Þ
1þ e cosv

; _r ¼ aeð1� e2Þ _v sinv

ð1þ e cosvÞ2 : (10.10)

We also recall the following planetary equations of
Lagrange in the Gauss form [[44], Ch. 6, Sec. 6]:

d�

dt
¼ 1

na2ð1� e2Þ1=2 siniWr sinu;

d ~!

dt
¼ ð1� e2Þ1=2

nae

�
�S cosvþ T

�
1þ r

að1� e2Þ
�
sinv

�

þ 2sin2
i

2

d�

dt
; (10.11)

where n ¼ 2=U, U the period of revolution of the satel-
lite around Earth.
We make the computations up to the first order with

respect to the eccentricity e, and we use the following
formula for the true anomaly [[44], formula (2.6.7)]

vðtÞ ¼ nðt� �Þ þ 2e sin½nðt� �Þ� þOðeÞ; (10.12)

where � is the satellite time of perigee passage.

XI. PRECESSION OF ORBITAL ELEMENTS IN
THE PRESENCE OF TORSION

Using the expressions of S, T and W computed in the
previous section and integrating (10.11) we find secular
terms in the expressions of �� and � ~!. According to
perturbation theory, we regard the orbital elements as
approximately constant in the computation of such
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integrals. Since u ¼ vþ ~!��, we can make use of the
approximation _u ’ _v. Moreover we use the formula

na2ð1� e2Þ1=2 ¼ r2 _v, and (10.12).
Let us first consider the computations for the node �.

Substituting the decomposition (10.7) of W into the ex-

pression of d�dt in (10.11), one has to compute the following

three types of integrals:

I ¼
Z zr sinu

na2ð1� e2Þ1=2 dt; II ¼
Z z _vr sinu

na2ð1� e2Þ1=2 dt;

III ¼
Z r _r sinu cosu

na2ð1� e2Þ1=2 dt:

The integrals I and II yield periodic terms plus the follow-
ing secular contributions:

I sec ¼ sini

n

�
t� v

2n

�
; IIsec ¼ sini

t

2
;

where t is time. The integral III yields only periodic terms.
In conclusion, it turns out that the secular contributions

to the variation of the node � are

ð��Þsec ¼ m�2
0

�

�
2kA � kB

2
þ 3kC

2
þ 3kN

2

��
t� v

2n

�
cosi

n

þm�0

�

�
kB
2
� kC

�
t

2
: (11.1)

Since v ¼ ntþ periodic terms in v, inserting (9.4) and
(10.4) into (11.1) we obtain

ð��Þsec ¼ 1

2

m�0

�

�
�H

2
þF þ t1

2
þ 3t2

2

� �0

2n
cosi

�
H
2

ðH þF Þ � I � t1F

þ t1 þ t2 þ 2t3

��
t:

(11.2)

Using the Newtonian limit (6.5) and setting

C1 � 1�H
2

þ 2F þ 3t2;

C2 � 1þH
2

þH 2

2
�F � I þ t2 þ 2t3;

(11.3)

we obtain

ð��Þsec ¼ 1

4

m�0

�

�
C1 � C2

�0

n
cosi

�
t: (11.4)

When torsion is zero, that is t1 ¼ t2 ¼ t3 ¼ 0, if we let
F ¼ 2
, I ¼ 2ð	� 
Þ and H ¼ �2 (PPN formalism)
we obtain

ð��Þsec ¼ 1

2

m�0

�
ð1þ 2
Þt� 1

2

m�0

�
ð1� 	Þ�0

n
cosi t:

(11.5)

The first term on the right-hand side of (11.5) determines
the usual geodetic precession effect. The second term is
consistent with the computations in [[46], Eq. (48A)],
when the satellite is the Moon, so that we can approximate
cosi ’ 1.
Letting 
 ¼ 	 ¼ 1 we find the usual formula of

geodetic precession in general relativity found by
de Sitter [see [10], Eq. (97)],

ð��ÞGRsec ¼ 3m�0

2�
t:

We recall that when the satellite is the Moon, this preces-
sion amounts to 1:92 arcsec=century.
Now we consider the computations for the perigee. The

contribution of the Gaussian component S to the variation
� ~! of the perigee is given by the integral

� ð1� e2Þ1=2
nae

Z
S cosvdt: (11.6)

Substituting the decomposition (10.8) of S into the above
integral, one has to compute the following three types of
integrals:

IS ¼
Z

r cosvdt; IIS ¼
Z

r _v cosvdt;

IIIS ¼
Z z2

r
cosvdt:

We evaluate such integrals for small values of the eccen-
tricity e and, taking into account that e appears at the
denominator of (11.6), we expand the integral up to the
second order in e. This is accomplished by expanding r in
(10.10) with respect to e, and inserting (10.12) in the
resulting expression. Then each of the integrands of IS,
IIS, IIIS turns out to be a sum of products of simple
trigonometric functions, from which secular terms and
periodic terms can be separated. Such integrals then yield
the following secular contributions:

I Ssec ¼ �3
2aeð1� e2Þt; IISsec ¼ �1

2aeð1� e2Þv;
and

IIISsec ¼�3
8aeð1� e2Þsin2i½3sin2ð ~!��Þþ cos2ð ~!��Þ�t:

(11.7)

In order to evaluate the integral IIIS, since z ¼ r sinu sini,
we have made use of the relation u ¼ vþ ~!�� to
express the trigonometric functions of u.
The contribution of the Gaussian component T to the

variation � ~! of the perigee is given by the integral

ð1� e2Þ1=2
nae

Z
T

�
1þ r

að1� e2Þ
�
sinvdt:

Substituting the decomposition (10.9) of T into the above
integral, one has to compute the following two types of
integrals:
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I T ¼
Z �

1þ r

að1� e2Þ
�
z cosu sinvdt;

IIT ¼
Z �

1þ r

að1� e2Þ
�
_r sinvdt:

As in the previous case, we evaluate such integrals for
small values of the eccentricity e. Moreover, we will
use the expression in (10.10) for _r and the relation u ¼
vþ ~!��.

Then each of the integrands of IT , IIT turns out to be a
sum of products of simple trigonometric functions, and we
can extract the following secular contributions:

I Tsec ¼ 7

8
aeð1� e2Þ sini½sin2ð ~!��Þ � cos2ð ~!��Þ�t;

IITsec ¼ aeð1� e2Þv:
In conclusion, the secular contribution to the variation of
the perigee ~! is

ð� ~!Þsec ¼ 1

2

m�0

�

�
kB
2
�kC

�
tþ3

2

m�2
0

n�

�
�kAþkB

2

� kC
2
�kN

2

�
tþ1

2

m�2
0

n�
½5sin2isin2ð ~!��Þ

� ð1� cosiÞ�
�
2kA�kB

2
þ3

2
kCþ3

2
kN

�
t: (11.8)

Inserting (9.4) and (10.4) into (11.8) we obtain

ð� ~!Þsec
¼ 1

2

m�0

�

�
�H

2
þF þ t1

2
þ 3t2

2

�
t

þ 3

4

m�2
0

n�
ð�H �F � I þ t1 þ t2 þ 2t3 þ t1H Þt

� 1

4

m�2
0

n�
½5sin2isin2ð ~!��Þ � ð1� cosiÞ�

�
�
H
2

ðH þF Þ � I � t1F þ t1 þ t2 þ 2t3

�
t:

Using (6.5) and (11.3) we get

ð� ~!Þsec
¼ 1

4

m�0

�

�
C1 þ C2

�0

n
½4� cosi� 5sin2isin2ð ~!��Þ�

�
t:

(11.9)

When torsion is zero, in the PPN formalism we obtain

ð� ~!Þsec¼ 1

2

m�0

�
ð1þ2
Þtþ3

2

m�0

�
ð1�	Þ�0

n
t

�1

2

m�2
0

n�
½5sin2isin2ð ~!��Þ�ð1�cosiÞ�ð1�	Þt:

(11.10)

The first term on the right-hand side of (11.10) determines
the usual geodetic precession effect. The second term is
consistent with the computations in [[46], Eq. (48A)],
when the satellite is the Moon, so that we can approximate
cosi ’ 1 (and the third term becomes negligible).
Letting 
 ¼ 	 ¼ 1 we find C1 ¼ 6, C2 ¼ 0, hence the

usual formula of geodetic precession in general relativity
found by de Sitter (see [[10], Eq. (97)]),

ð� ~!ÞGRsec ¼ 3m�0

2�
t:

Both in ð��Þsec and in ð� ~!Þsec there appears the term
1

4

m�0

�

�
1�H

2
þ 2F þ 3t2

�
t;

which is independent of n and thus of the details of the
satellite’s motion. This term can therefore be interpreted as
the geodetic precession effect when torsion is present.

XII. TORSION BIASES

In this section, similarly to [19], we define multiplicative
torsion biases relative to the GR predictions. These torsion
biases will be used to put constraints on torsion parameters
from Solar System experiments.
For the case of precession of the satellite orbital ele-

ments we define

b� � ð��Þsec
ð��ÞGRsec

; b ~! � ð� ~!Þsec
ð� ~!ÞGRsec

: (12.1)

From (11.4) and (11.9) it follows

b� ¼ 1

6

�
C1 � C2

�0

n
cosi

�
;

b ~! ¼ 1

6

�
C1 þ C2

�0

n
½4� cosi� 5sin2isin2ð ~!��Þ�

�
;

(12.2)

where the constants C1 and C2 are defined in (11.3).
For the purpose of comparison of Solar System experi-

ments with the predictions from the present torsion theory,
we will assume that all metric parameters take the same
form as in PPN formalism, according to (4.3). We have

C1 ¼ 2þ 4
þ 3t2; C2 ¼ 2� 2	þ t2 þ 2t3; (12.3)

and from (12.2) we obtain

b� ¼ 1

3
ð1þ 2
Þþ t2

2
� �0

3n
cosi

�
1�	þ t2

2
þ t3

�
;

b ~! ¼ 1

3
ð1þ 2
Þþ t2

2
þ �0

3n
½4� cosi� 5sin2isin2ð ~!��Þ�

�
�
1�	þ t2

2
þ t3

�
: (12.4)

Note that the torsion correction to the geodetic precession
in (12.4) (namely the term 1

3 ð1þ 2
Þ þ t2
2 ) differs from the
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corresponding one found for gyroscopes in [[19], Eq. (47)]
by a numerical factor of order of unity.

When the satellite is the Moon, we have cosi ¼
1þOði2Þ, sin2i ¼ Oði2Þ, and we may approximate

b� ¼ 1

3
ð1þ 2
Þ þ t2

2
� �0

3n

�
1� 	þ t2

2
þ t3

�
;

b ~! ¼ 1

3
ð1þ 2
Þ þ t2

2
þ �0

n

�
1� 	þ t2

2
þ t3

�
:

(12.5)

Similarly, considering now � ~! as the precession of peri-
center computed in Sec. VII, we have

B ~! � ð� ~!Þsec
ð� ~!ÞGRsec

¼ 1

3

�
1þH 2

4
þF

2
� I

2
þ 2t2 þ t3

�
:

(12.6)

In the case of a PPN metric we find

B ~! ¼ 1
3ð2þ 2
� 	þ 2t2 þ t3Þ: (12.7)

XIII. CONSTRAINING TORSION WITH THE
MOON AND MERCURY

Here we compare the predicted torsion biases to experi-
mental measurements in order to set limits on the torsion
parameters.

Recent limits on various components of the torsion
tensor, obtained in a different torsion model based on the
fact that background torsion may violate effective local
Lorentz invariance, have been obtained in [47]. See also
[48], where constraints on possible new spin-coupled in-
teractions using a torsion pendulum are described.

A. Moon: geodetic precession

The GR test of the geodetic precession, evaluated with
LLR data and expressed as a relative deviation from the
value expected in GR, is Kgp ¼ �0:0019	 0:0064 [8]. In

our torsion theory this is to be compared with the first two
terms on the right-hand side of Eq. (12.4):

jb̂ ~! � 1j ¼ j 1
3
ð1þ 2
Þ þ t2

2
� 1j

¼ j 2
3
ð
� 1Þ þ t2

2
j< 0:0064;

(13.1)

where, taking into account the last sentence at the end of
Sec. XI, we define

b̂ ~! � 1

3
ð1þ 2
Þ þ t2

2
:

Using the Cassini measurement 
�1¼ð2:1	2:3Þ�10�5,
we can neglect this term compared to the experimental
uncertainty on Kgp and get the following constraint on t2:

2jb̂ ~! � 1j ¼ jt2j< 0:0128: (13.2)

The meaning of the constraint on the torsion parameter t2 is
the following. Using the value ð� ~!ÞGRsec ¼ 1:92 arcsec/cen-
tury for the geodetic precession of the Moon’s orbit in GR,
the geodetic precession in the presence of torsion is

ð� ~!Þsec ¼
�
1þ 2

3
ð
� 1Þ þ t2

2

�
1:92 arcsec=century:

If the parameter t2 had a value larger than 0.0128, this
would imply that the precession of the Moon’s perigee
would be (neglecting the contribution of 
� 1)

ð� ~!Þsec > ð1þ 0:0064Þ1:92 arcsec=century;

which would be inconsistent with LLR data. If t2 <
�0:0128 we would have an analogous inconsistency. To
give the reader a further feeling of the effect of a nonzero
value of t2 in terms of orbit displacement, we provide the
following, extreme example. The 1:92 arcsec=century pre-
cession amounts to a perigee displacement of about
3 meters per lunar orbit period (about 27 days). A value
t2 ¼ 1 would imply (neglecting the contribution of

� 1) a geodetic precession in the presence of torsion of
about 4.5 meters/lunar orbit period.
The relentless accumulation of LLR data, the mm

range accuracy of the APOLLO station, the start or restart
of LLR operation of additional ILRS4 stations (like
MLRO, the Matera Laser Ranging Observatory in Italy)
will provide continuous further improvements of the Kgp

test and therefore, of this limit on t2. Future improvements
are possible also with current data and stations, by further
developing and refining the current orbital software
packages.

B. Mercury: Perihelion advance

The perihelion advance of Mercury has been measured
with planetary radar ranging by Shapiro et al. in 1989 [3].
They found it to be consistent with its GR value with a
relative standard error of 10�3. In the PPN framework, this
can be used to ‘‘infer that 	 ¼ 1 to within a standard error
of �ð	Þ ¼ 0:003’’ (quoted from [3]).
According to our torsion model, in the case of the PPN

metric with the torsion bias given by (12.7), we get for
Mercury the 1 standard deviation limit:

jB ~! � 1j ¼ 1
3j2
� 	� 1þ 2t2 þ t3j< 0:001;

j2
� 	� 1þ 2t2 þ t3j< 0:003;

jð2
� 2Þ þ ð1� 	Þ þ 2t2 þ t3j< 0:003:

(13.3)

Using the Cassini measurement 
�1¼ð2:1	2:3Þ�10�5,
we can neglect this term compared to the experimental
uncertainty on the perihelion advance and get the
constraint:

4International Laser Ranging Service; see http://ilrs.gsfc
.nasa.gov/.
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j1� 	þ 2t2 þ t3j< 0:003: (13.4)

The limits (13.2) and (13.4) on the values of t2 and
ð1� 	Þ þ t3 are represented graphically in Fig. 1.

Combining the LLR and MRR constraints one gets on t3
the following limit:

j1� 	þ t3j< 0:0286: (13.5)

If we assume the Nordtvedt effect [49], and that the
Nordtvedt parameter �N ¼ 4	� 
� 3, then the mea-
sured value [8] is 	 ¼ 1þ ð1:2	 1:1Þ � 10�4, which
makes 	� 1 negligible compared to the experimental
uncertainty on the perihelion advance. The constraint
then becomes

j2t2 þ t3j< 0:003: (13.6)

In this latter case, combining the LLR and MRR con-
straints one gets on t3 the following limit:

jt3j< 0:0286: (13.7)

The meaning of the constraints on the torsion parameter
t3 is the following. Using the value ð� ~!ÞGRsec ¼
42:98 arcsec=century for the precession of Mercury’s peri-
helion in GR, the precession of the perihelion in the
presence of torsion is (neglecting the contribution of

� 1):

ð� ~!Þsec ¼ ½1þ 1
3ð1� 	þ 2t2

þ t3Þ�42:98 arcsec=century:

If the linear combination (1� 	þ 2t2 þ t3) had a value
larger than 0.003, this would imply that the precession of
Mercury’s perihelion would be

ð� ~!Þsec > ð1þ 0:001Þ42:98 arcsec=century; (13.8)

which would be inconsistent with MRR data. If the
parameter t2 takes the lowest value consistent with LLR
data, i.e., if t2 ¼ �0:0128, then a value of the parameter t3
larger than (0:0286þ 	� 1) would imply the inconsis-
tency of (13.8) with MRR data. If 	� 1 is neglected, then
simply t3 > 0:0286 would be inconsistent with the data.
Eventually, if ð1� 	þ 2t2 þ t3Þ<�0:003 we would
have analogous inconsistencies.
We stress that the perihelion advance measurement used

here is based on data taken between 1966 and 1990. As
pointed out by Will ([1], page 38) ‘‘analysis of data taken
since 1990 could improve the accuracy.’’ Therefore, the
above constraints on spacetime torsion can be improved
already now, with existing data, while waiting that
Mercury is reached by new spacecrafts, like, in particular,
ESA’s BepiColombo.

XIV. EQUATIONS OF GEODESICS

In this section we consider the particular case of geode-
sic trajectories. The system of equations of geodesics
trajectories reads as

d2x�

d�2
þ

�
�
��

�
dx�

d�

dx�

d�
¼ 0:

The resulting system of equations of motion is given by
(6.3) with t1 ¼ t2 ¼ t3 ¼ 0. Such a system to lowest order
becomes

d ~v

dt
¼ H

2

m

r2
êr:

Imposing the Newtonian limit [see also [19], Eq. (25)], it
follows that

H ¼ �2:

Hence all the precession formulae are the same as in the
PPN formalism given in (7.12), (11.5), and (11.9).
Therefore, if a satellite’s orbit is assumed to be a geodesic,
then the measurements of satellite experiments cannot be
used to constrain the torsion parameters.

XV. DISCUSSION OF THE RESULTS AND
FUTURE PROSPECTS

This work is an investigation of the effects of spacetime
torsion on the orbits of satellites and planets, based on a
model with several parameters evolved from the one by
MTGC. Because of the presence of a set of parameters, it
must be tested with a combination of experiments designed
to measure different physical effects and observables.
In this case, no single experiment provides a complete
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FIG. 1. Constraints on t2 and the linear combination
ð1� 	Þ þ t3 from LLR and MRR, indicated by the arrows.
For example, the hatched area is the region excluded by LLR
only. General relativity corresponds to 	� 1 ¼ t2 ¼ t3 ¼ 0
(black dot).

CONSTRAINING SPACETIME TORSION WITH THE MOON . . . PHYSICAL REVIEW D 83, 104008 (2011)

104008-15



answer, but experiments with the best accuracy and the
broadest parameter sensitivity may find the first reliable
hint of torsion. The notable example is the geodetic pre-
cession, which can be measured using three very different
instrumental techniques: LLR, GPB’s gyroscopes and
future BepiColombo’s radio science and accelerometer
payloads. This makes constraining torsion with the geo-
detic precession robust against the effect of experimental
systematic errors.

For completeness, we quote here that the constraints on
torsion provided by the measurement of the geodetic pre-
cession turn out to be useful also in constraining spacetime
torsion with the frame dragging experiments on LAGEOS
satellites. We remark that the torsion corrections to the
Lense-Thirring effect for LAGEOS and GPB contain dif-
ferent sets of torsion parameters. We refer to the compan-
ion paper [12] for the details.

Future prospects

Before the end of the decade, robotic missions on
the lunar surface could deploy new scientific payloads
which include laser retroreflectors and thus extend the
LLR reach for new physics in three ways: (i) using a
significantly improved 2nd generation retroreflector de-
sign; (ii) increasing by a factor about 2 the geometric lever
arm of LLR with missions to the lunar poles or limb;
(iii) combining LLR payloads with transponders (at least
two) for same-beam microwave interferometry (SBI) ca-
pable of additional accurate measurements of lunar rota-
tions and librations [50] (during the lifetime of the
transponders).

In particular, the single, large, fused-silica retroreflector
design developed by the University of Maryland and
INFN-LNF [51] will improve over the performance of
current Apollo arrays by a factor 100 or more, thus remov-
ing the dominant contribution to the LLR error budget.
Such a contribution is of the order of 2 cm. It is due to
the multiretroreflector structure of the arrays coupled to the
librations and rotations of the Moon with respect to the
Earth. The functionality of this specific new design, which
inherits and is evolved from the successful Apollo 11, 14,
and 15 experience, is being validated by thermal-vacuum-
optical testing in laboratory-simulated space conditions
at the INFN-LNF ‘‘Satellite/lunar laser ranging
Characterization Facility (SCF)’’ [52–54].

Other instruments, like the seismometer and the heat-
flow probe, will provide important information to evaluate
the LLR systematic errors related to the environmental
conditions of the lunar surface and subsurface layers of
the lunar regolith.

After the end of this decade, results from the
BepiColombo Mercury orbiter, an ESA Cornerstone mis-
sion equipped with a high-accuracy radio science and
accelerometer payloads to test GR, is expected to improve
the classical test of the perihelion advance [55,56]

(42:98 arcsec=century). The latter measurement can be
cross-checked by new MRR data taken simultaneously
with BepiColombo’s ranging data (possibly, by the same
ground stations). In addition, we note that in the past a
Mercury orbiter like BepiColombo has been considered
also for yet another independent measurement of the geo-
detic precession [57,58] (20:50 arcsec=century; to be com-
pared to the 1:92 arcsec=century for the Moon). Mercury’s
special role in the search for new physics effects, and for
spacetime torsion, in particular, is due to the relatively
large value of its eccentricity and to its short distance to
the Sun.
In conclusion, using current LLR and MRR data we

have set constraints on the dimensionless torsion parameter
t2 and the linear combination ð1� 	Þ þ t3 at the 10�2

level. In the future, LLR, MRR, GPB and, ultimately,
BepiColombo together can exclude nonzero values of t2
and t3 with accuracies significantly below 1%.
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APPENDIX

In this appendix we compute the precession of peri-
center using the method in Appendix C of the online
version [29].
The � ¼ t component of (6.1) is

d2t

d�2
þ ð�t

tr þ �t
rtÞ drd�

dt

d�
¼ 0;

which yields

d2t

d�2
þ

�
t1 �H þ ðH 2 � 2I þ 2t3Þmr

�
m

r2
dr

d�

dt

d�
¼ 0;

from which one finds

d

d�

�
exp

�Z
c ðrÞdr

�
dt

d�

�
¼ 0;

where

c ðrÞ �
�
t1 �H þ ðH 2 � 2I þ 2t3Þmr

�
m

r2
:

It follows the conservation law

k � exp

�
�
�
t1 �H þ 1

2
ðH 2 � 2I þ 2t3Þmr

�
m

r

�
dt

d�

¼ const: (A1)

The � ¼ � component of (6.1) when � ¼ =2 is

d2�

d�2
þ ð��

r� þ ��
�rÞ

dr

d�

d�

d�
¼ 0;
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which yields

d2�

d�2
þ

�
2

r
� t2

m

r2

�
dr

d�

d�

d�
¼ 0;

where we can neglect the term with the factor �2t4
m2

r3
. It

follows the conservation law

h � r2
d�

d�
exp

�
t2
m

r

�
¼ const: (A2)

Notice that k2 � 1 and h2 are of the order �m. Since the
parameter � is the proper time we have

ds2

d�2
¼ g��

dx�

d�

dx�

d�
¼ �1;

from which, for a test body in the equatorial plane
� ¼ =2 it follows

�
�
1þH

m

r
þ I

m2

r2

��
dt

d�

�
2 þ

�
1þF

m

r

��
dr

d�

�
2

þ r2
�
d�

d�

�
2 ¼ �1:

(A3)

Observe that the term with the factor I is missing in [[29],
(C23)].

Using (A1) and (A2) and the identity dr=d� ¼
ðdr=d�Þðd�=d�Þ, from (A3) it follows�
dr

d�

�
2¼r4expð2t2mr Þ

h2ð1þF m
r Þ

�
�
�1þ k2ð1þH m

rþIm2

r2
Þ

expf�2½t1�H þ1
2ðH 2�2Iþ2t3Þmr �mr g

� h2

r2expð2t2mr Þ
�
: (A4)

We now need to expand the right-hand side of (A4) up to
the order �m, since the left-hand side is of order Oð1Þ. The
right-hand side is divided by h2, therefore we need to
develop the quantity in f� � �g up to the order �2m. Since
k2 � 1 is of the order �m, it is enough to develop the
exponential in front of f� � �g up to the order �m. Taking
into account that h2 is of order �m, we have�
dr

d�

�
2 ¼ r4

h2

�
1þð2t2�F Þm

r

��
�1þk2þk2ð2t1�H Þm

r

þk2½2t1ðt1�H ÞþH 2�Iþ2t3�m
2

r2
�h2

r2

þ2t2h
2m

r3

�
: (A5)

From (A5), setting u � 1=r, we obtain the differential
equation of the orbit

d2u

d�2
þ u ¼ m

2h2
½k2ð�H �F þ 2t1 þ 2t2Þ þF � 2t2�

þ 3

2
Fmu2 þ k2

h2
Am2u; (A6)

where

A � HF þH 2 � I � 2t1ðH þF Þ þ 2t21 þ 4t1t2

� 2t2H þ 2t3; (A7)

where we have neglected the term containing u3, which is
of the order �2m.

We stress that the term k2

h2
Am2u, neglected in the com-

putations of [19], is of order �m, as well as the term
3
2Fmu2. Note also that A ¼ 0 in the case of GR, and that

A ¼ 2ð2� 
� 	Þ in the case of PPN.
Using (6.5) and the above mentioned order of magnitude

of k2 it follows

d2u

d�2
þ

�
1� A

h2
m2

�
u ¼ m

h2
þ 3

2
Fmu2: (A8)

In (A8) we have neglected terms independent of u, origi-
nated by the expansion of k2 inside ½� � �� in (A6), which
have no effect on the precession of the pericenter.
If we neglect the last addendum on the right-hand side of

(A8), and we set

c1 � m

h2
; �1 � 3

2
Fm; �2 � A

h2
m2; (A9)

the solution u0 of the corresponding linear equation is

u0ð�Þ ¼ c1
1� �2

f1þ e cos½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð���0Þ�g;

where e and �0 are constants of integration. If we
neglect �2 with respect to 1, the above solution gives an
elliptical orbit with eccentricity e and semi-latus rectum

p ¼ að1� e2Þ ¼ 1��2

c1
. Substituting u20 in place of u2 in

(A8), the solution u of the corresponding linearized equa-
tion is u ¼ u0 þ u1, where

u1ð�Þ ¼ �1c
2
1

ð1� �2Þ2
�
1þ e2=2

1� �2

þ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð���0Þ

� sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð���0ÞÞ � 1

1� �2

e2

6

� cosð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð���0ÞÞ
�
:

If the eccentricity of the orbit is small (i.e., e2 � e) and we

neglect the (small) additive constant
�1c

2
1

ð1��2Þ2
1þe2=2
1��2

which

does not contribute to the precession of the pericenter,
we have

uð�Þ ’ c1
1� �2

�
1þ e½cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2

p ð���0ÞÞ

þ c1�1

ð1� �2Þ3=2
ð���0Þ sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ð���0ÞÞ�
�
:
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Taking into account that c1�1

ð1��2Þ3=2 ð���0Þ is of order �m
and that �2 is of order �m, we find

uð�Þ ’ c1
1� �2

�
1þ e cosð���0 � c1�1ð���0Þ

� �2

2
ð1þ 3c1�1Þð���0ÞÞ

�

’ c1
1� �2

�
1þ e cos

�
ð���0Þ

�
1� c1�1 � �2

2

���
:

This is the equation of an elliptic orbit whose pericenter
precedes according to

ð� ~!Þsec ¼ 2

�
1

1� c1�1 � �2

2

� 1

�
’ 2

�
c1�1 þ �2

2

�
:

(A10)

Substituting (A7) and (A9) into (A10) we obtain Eq. (7.11).
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