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We consider the measure problem in standard slow-roll inflationary models from the perspective of loop

quantum cosmology (LQC). Following recent results by Ashtekar and Sloan, we study the probability of

having enough e-foldings and focus on its dependence on the quantum gravity scale, including the

transition of the theory to the limit where general relativity (GR) is recovered. Contrary to the standard

expectation, the probability of having enough inflation, that is close to 1 in LQC, grows and tends to 1 as

one approaches the GR limit. We study the origin of the tension between these results with those by

Gibbons and Turok, and offer an explanation that brings these apparent contradictory results into a

coherent picture. As we show, the conflicting results stem from different choices of initial conditions for

the computation of probability. The singularity-free scenario of loop quantum cosmology offers a natural

choice of initial conditions, and suggests that enough inflation is generic.
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I. INTRODUCTION

The measure problem in cosmology has received some
attention since it was suggested that one should weigh,
over the space of classical solutions to the equations of
general relativity, those solutions that exhibit enough in-
flation to account for present observations [1]. An early
observation was that there exists a natural measure on the
phase space of the theory with respect to which one should
compute probabilities. Recently, Gibbons and Turok over-
came some early difficulties in the total normalization and
concluded that, for the simplest inflationary potentials in a
FRW universe, the probability of inflation was greatly
suppressed [2]. One potential difficulty with such calcula-
tions pertains to the choice of initial conditions. Since all
solutions to the equations of motion are singular in the past
(for expanding universes), one needs a prescription for
selecting initial conditions for those solutions. In [2] such
a prescription was put forward in terms of a ‘‘constant
density surface’’, roughly speaking, at the end of inflation.
Another possibility is given by defining a ‘‘cutoff’’, in the
form of a constant density surface at, say, the Planck scale,
as was early suggested in [3].

Yet another possibility is that a quantum theory of gravity
might be able to provide such a Planck surface in a natural
way. Such is the case of loop quantum cosmology [4], a
quantum framework closely related to loop quantum grav-
ity [5] that has been able to achieve robust results regarding
avoidance of big bang singularities [6,7] (See, for instance,
[8] for a recent survey). In LQC, all trajectories undergo a

bounce that replaces the initial singularity, attain a maxi-
mum critical density [7], and preserve semiclassicality
across the bounce [9], thanks to uniqueness results that
warranty the consistency of the theory [10]. Two key results
in themeasure problem have been obtained in LQC. First, it
has been shown that one could account for the dynamics of
the quantum universe by means of effective equations that
capture the main quantum gravity effects and that reduce to
the classical equations in the appropriate regime [11,12].
This was used in [11] to show that, for several inflationary
potentials, the characteristic ‘‘attractor behavior’’ of infla-
tionary dynamics [3,13,14] is recovered in the low energy
regime. Furthermore, Ashtekar and Sloan showed recently
that the natural measure of [2] can be finitely implemented
in LQC, and proposed a natural Planck scale surface on
which to compute probabilities [15]. Surprisingly, the
probability for having enough e-foldings was shown to be
close to 1, in contrast to the result of Gibbons and Turok that
was done for classical GR.1

In loop quantum cosmology, the underlying discreetness
of the quantum geometry manifests itself via a dimension-
ful parameter �. In the LQC literature it is standard to
choose the value of � such that the minimum quantum of
the area corresponds to that found in LQG [5,6]. But, if one
considers this as a free phenomenological parameter of the
theory, it is natural to ask whether in the limit � ! 0,
where the loop quantum geometric effects disappear, one
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1There have been several previous attempts to study the issue
of inflation within LQC. In [16] the natural measure of [2] was
considered but the effects of the bounce and superinflation were
ignored. In [17] the issue of the measure was not considered and
only a small part of the parameter space was explored.
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can recover the standard Wheeler-DeWitt quantum cos-
mology. This has been answered with different levels of
sophistication [6,7,18]. The authors of [6] showed that the
difference equations governing the LQC dynamics reduces
to the differential WDWequation in the large volume limit.
Later, in [7,18], the limit � ! 0 was studied and it was
shown that one does recover the standard WDW and the
GR limit in some regime. In the case of effective classical
equations, in this limit one recovers the equations of
general relativity.

The purpose of this article is to explore the relation
between loop quantum cosmology and general relativity,
as we take the limit � ! 0, regarding the measure problem
in slow-roll inflation. More precisely, we would like to
understand the apparent tension between the results of
Gibbons and Turok, with those of Ashtekar and Sloan. If
one starts with the analysis of [15], that was done for a
fixed value of � (of the order of the Planck scale), and one
takes the limit � ! 0, one might expect to recover the
results of Gibbons and Turok. As we shall show in detail
this expectation is not realized. Indeed, quite the opposite
occurs. As the value of the discreetness parameter is
decreased, the probability of having enough inflation
increases and approaches one in the limit. One would
then be forced to conclude that in the general relativity
limit of loop quantum cosmology, the probability of having
enough inflation is (almost) 1, in stark contrast with the
analysis of Gibbons and Turok.

What is then the source of this apparent tension? As we
shall argue, the tension is resolved once one analyzes in
detail the assumptions underlying both calculations. The
difference turns out to be due to the initial conditions one
imposes on the corresponding ‘‘constant density surface’’.
In the Gibbons and Turok analysis this is taken near the end
of inflation, well below the Planck scale, whereas in the
LQC calculation one is taking it at the scale set by the
parameter � (which in the Ashtekar and Sloan analysis is
close to the Planck scale). In the limit � ! 0 the energy
density at which the initial conditions are defined in LQC
diverges, so one comes closer to the big bang singularity as
one approaches the GR limit. It is this difference that
accounts for the conflicting conclusions.

The structure of the paper is as follows. In Sec. II we
give a brief review of the effective description for loop
quantum cosmology of a k ¼ 0 FRW cosmology with a
scalar field. In Sec. III we present the calculation of the
probability for having N e-foldings or more in LQC. We
pay special attention to the discreetness parameter of LQC
and the limit when it vanishes. Next, we give an argument
based on global properties of the dynamics and the
Liouville measure to understand the results of both
[2,15]. We end in Sec. IV with a discussion. Throughout
the paper we use Planck units, where G ¼ ℏ ¼ c ¼ 1,
(rather than 8�G ¼ 1, a convention sometimes used in
cosmology).

II. EFFECTIVE DYNAMICS IN
LOOP QUANTUM COSMOLOGY

Let us now give a brief review of the effective formalism
in LQC. The effective Hamiltonian that one obtained from
loop quantum cosmology for a k ¼ 0 FRW model is [12]

H eff ¼ � 3

8��2�2
vsin2��þ �v (1)

where v is the volume and, on equations of motion, � ¼
�H, where H is the Hubble parameter. From the previous
Hamiltonian the effective Friedmann equation becomes

sin2��

�2�2
¼ 8�

3
� (2)

or, equivalently

H2 ¼ 8�

3
�

�
1� �

�crit

�
(3)

where the density is given by � ¼ _�2=2þ Vð�Þ. Here
�crit ¼ 3=ð8��2�2Þ, the critical density, is the density of
the scalar field at the bounce. All trajectories undergo a
bounce for which the density becomes exactly �crit. In the
low density regime, namely, when �� � 1 or� � �crit we
approach classical general relativity. Note that the quantum
geometry scale � sets the scale for the critical density. With

the standard value taken in the LQC literature � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ffiffiffi
3

p
��

q
‘Pl and the Barbero-Immirzi parameter � �

0:237 chosen to be compatible with the Hawking-
Bekenstein entropy [19], the critical density is �crit �
0:41�Pl [7]. (Recall that these are the Planck units we are
using: ‘2Pl ¼ Gℏ ¼ 1, and �Pl ¼ 1.) As we decrease the

parameter �, the critical density increases, so the ‘‘classical
limit’’ is attained in the limit when the critical density
diverges.
The equation of motion for the scalar field � yield the

standard Klein Gordon equation, which is

€�þ 3H _�þ V;� ¼ 0: (4)

For the simplest potential, namely V ¼ m2�2=2, we have
solved the equations of motion for various values of the
critical density and for convenience, plotted them in Fig. 1.

In the ð�; _�Þ plane, the surfaces of constant density are

ellipsoids defined by � ¼ _�2=2þm2�2=2. All trajecto-
ries approach the ‘‘critical density surface’’, the ellipse
bounding the phase diagram where the bounce occurs
and touch it tangentially. Something that one might expect
and that was checked in [11], is that near the origin of the
plane, where the density is small compared to the critical
one, the LQC trajectories and the classical one should
coincide. This can be seen in Fig. 1. As one decreases �
the critical density increases and the maximum ellipse

defined by _�2
B=2þm2�2

B=2 ¼ �crit becomes larger. The
classical limit (GR) can be approached as � ! 0. One has
to note however, that this limit is somewhat discontinuous
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[7,18], since all LQC trajectories bounce, for all values of
�, while there is no bounce in GR. In this particular sense,
the GR ‘‘limit’’, and correspondingly the big bang, corre-
sponds to an ‘‘infinitely large ellipsoid’’, or the point at

infinity in the ð�; _�Þ plane (see Fig. 2).

III. PROBABILITY FOR SLOW-ROLL
INFLATION IN LQC

This section has two parts. In the first one, we calculate
the probability for slow-roll inflation in LQC and consider

the limit when the discreetness parameter tends to zero.
In the second part, we use qualitative aspects of the dy-
namics to gain a deeper understanding of the results.

A. Probability

Let us now evaluate the probability for inflation as done
in [15], keeping track of the dependence on �. Without
loosing generality, for the remainder of the article we shall

focus on the sector of the solution space for which _� is
nonnegative. Then, the Liouville measure d� when pulled
back to the surface with constant � or equivalently with
constant �, has the form[15]

d� ¼ ffiffiffi
8

p
��vð�� Vð�ÞÞd�dv: (5)

We further choose, as in [15], the surface of constant �
(and �) at the bounce, and we get

d� ¼
ffiffiffiffiffiffiffi
3�

p
�

vB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�BdvB (6)

where�B is the value of scalar field at the bounce, vB is the
volume of the Universe at the bounce and FB ¼
Vð�BÞ=�crit. This is the measure that will be used for
computing the probability of havingN ormore e-foldings.
The number of e-foldings during inflation, N , can be

written as

N ¼
Z tend

to

Hdt ¼
Z �end

�o

H
_�
d� (7)

where to, �o, tend, and �end are the time and value of the
scalar field at the onset and at the end of inflation, respec-

tively. We can use the slow-roll conditions, Vð�Þ � _�=2

and V;� � €�, together with Equation (4) to approximate

N :

N � �
Z �end

�o

3H2

V;�

d�

¼ 2�

�
1��2

o þ�2
end

2�2
max

�
ð�2

o ��2
endÞ (8)

where�max is the maximum value the scalar field can attain
and is given by �max ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�crit

p
=m. For large values ofN ,

the value of the scalar field at the end of inflation is much
smaller than its value at the onset of inflation. Thus, for large
(but finite) N we can neglect some terms and get

N � 2�

�
1� �2

o

2�2
max

�
�2

o: (9)

It should be noted that this is a slight overestimation of
the value of N but this does not constitute a problem for
our analysis. From this last equation, we can find the value

�N
o of the scalar field at the onset of inflation, for a given

value of N as

FIG. 2. Here we are plotting trajectories for three different
values of the critical density �crit. In each case, we have a
boundary of the trajectories in the ð _�;�Þ plane, corresponding
to the bounce, that are depicted as ellipsoids. The smallest
ellipsoid can be taken as the LQC one, and the larger ones are
closer to the GR limit. The ‘‘critical’’ curves that separate the
region of enough e-foldings, as determined by the LQC scale,
are then plotted for the three different values of the critical
density �crit. One can see that, as the critical density increases,
the intersection with the ellipsoid of critical density comes closer
to the _� axis.

FIG. 1. Three sets of trajectories are plotted for different
values of the critical density. Note that near the origin, all
trajectories approach the attractor.
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�N
o� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8N �2�2m2=3
p Þ

q
ffiffiffiffiffiffiffi
8�

p
��m

: (10)

In the GR limit, that is, in the � � 0 limit, we expect

that �N
o� be equal to � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N =2�
p

.
Let us now see how we can find�o

B which is the value of
the scalar field at the bounce that evolves under the dynam-
ics to �o� as the starting point of inflation. According to

Eq. (4), if at the bounce �o
B > 0 then €�B < 0 (and _�> 0).

Similarly, if �o
B < 0 then €�B > 0 (and _�B > 0). In the

second case, after some time, €� becomes zero and after
that it will be negative, but near the onset of inflation it
becomes zero again. Near the start of inflation at the time for

which _� ¼ 0, the value of the scalar field is larger than�o
B.

After that, _� becomes negative and the value of the scalar

field starts to decrease but very soon after _� ¼ 0, the infla-
tionary era starts and the scalar field at the onset of inflation
remains larger than the value of the scalar field at the bounce
(�o

B < �o�).
Furthermore, because of the uniqueness of the solutions,

�o is a monotonic function of �B and since �o is always
greater than �B, then it is an increasing function of �B.

Given this, we can write the probability of having in-
flation with N e-folding or more as the quotient of the
volume on the space of solutions occupied by solutions
with N or more e-foldings divided by the total volume.
Since the measure does not depend on volume v and the
range of this coordinate is infinite, both terms are un-
bounded. However, we can very easily get rid of these
spurious infinities by an appropriate renormalization (or
gauge fixing [20]). One possibility is to restrict the domain
of the volume integral to the interval v 2 ð1; 2Þ (in Planck
units). With this choice, the volume integrals in the quo-
tient cancel each other and we get

PN ¼
R�N

a

��max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�B þ R�max

�N
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�BR�max

��max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�B

¼ 1�
R�N

b

�N
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�BR�max

��max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FB

p
d�B

; (11)

where�N
a and�N

b are the minimum and maximum value

of � at the bounce that cause inflation with N e-folding,
respectively, and �max is the maximum value of �B and is
equal to 3=2��m

ffiffiffiffi
�

p
. Then

PN ¼ 1� arcsinð2��m�N
b

ffiffiffiffi
�

p
=3Þ � arcsinð2��m�N

a

ffiffiffiffi
�

p
=3Þ � 2��m

ffiffiffiffi
�

p
=3ð�N

b ��N
a Þ

2ð�=2� 1Þ : (12)

We have plotted in Fig. 1 the dynamical trajectories for
three values of �. As one can see, when � becomes small,
the trajectories (for finite values) are almost parallel. Then,

in the limit � ! 0 we can approximate �N
b ��N

a by

�N
oþ ��N

o� and since �N
o� are finite, then the difference

between �N
b and �N

a is finite. From the above discussion

and Eq. (12), for a finite N we see that the probability
is a decreasing function of � (2��m

ffiffiffiffi
�

p
�b=3 and

2��m
ffiffiffiffi
�

p
�a=3< 1) and when � goes to zero we have

that arcsinð2��m�N
b

ffiffiffiffi
�

p
=3Þ � 2��m�N

b

ffiffiffiffi
�

p
=3 (and

equivalently for �N
a ) and therefore the probability in

Eq. (12) goes to 1. This is the first result of this paper.
Let us now understand qualitatively why the probability

increases as the LQC parameter decreases. As the analysis
presented here and that of [15] shows, for a given value of

�crit, there is an interval ð�N
a ; �N

b Þ, in the ‘‘kinematically

dominated regime’’ (where the energy density at the
bounce is mainly due to the kinetic energy), where there
are not enough e-foldings. This interval, as we have esti-
mated before, depends on �. In Fig. 2 we have plotted, for
three values of �crit, the ‘‘critical trajectories’’ for which
the transition occurs. That is, these trajectories have an
almost identical behavior at small densities, so they inflate
in the same fashion, and touch the bounce surface at the

points �N
a and �N

b . If we now follow them to higher

densities ‘‘back in time’’, what one sees from the graph is

that as � decreases, and �crit increases, the intersection

points tend to the _� axis. The relative size of the interval

ð�N
a ; �N

b Þ in the total allowed interval ð��max; �maxÞ
also goes to zero as �crit ! 1.2 Since the integrand does
not diverge, this already implies that the quotient vanishes
and the probability goes to 1.
Note also that this result is independent of the precise

value of N (as long as it is large enough for our approxi-
mation to be valid). Does this mean that we can take the
limit N ! 1 and also have probability 1? In order to
answer this one should exercise some care. For any finite
value of N , the probability will tend to 1 as we make �
smaller for two reasons. The first one is that the dynamics of
the effective equations is such that those trajectories that do
not have enough inflation get ‘‘funneled’’, for large enough

values of the critical density, into the interval ð�N
a ; �N

b Þ
that remains bounded, while the total interval for � grows
with �crit. This only happens because we are taking the
bounce surface as the reference surface where the probabil-
ity is computed. Furthermore, the measure is such that
relative volume we associate to those trajectories is very

2Recall that �max is obtained from the value of the potential at
the bounce �crit ¼ Vð�maxÞ. In our case �max ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�crit

p
=m, so

the interval in which the scalar field can take values also diverges
as �crit ! 1.
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small and becomes zero in the � ! 0 limit. This does not
mean that we can fix � and, say, take the limitN ! 1.

A final remark is in order. In our analysis, as plotted in
Fig. 2, the criteria for how much inflation there is coincides
with that of [15]. That is, we start with the critical density
of LQC (of the order of the Planck density), which gives an
initial condition from which to measure e-foldings, and
find those trajectories—in theories with a different �—for
which the dynamics at low densities coincide, where in-
flation actually occurs. This is also in the spirit of [3],
which suggested to take initial conditions at the Planck
scale. Our strategy has to be contrasted with a possible
alternative that involves going closer to the big bang, as we
decrease �, and use that as initial condition in the e-folding
counting. The problem with this choice is that, as one
approaches the big bang that has zero volume, the number
of e-foldings diverges for all trajectories, so even the
question of which trajectories have enough inflation be-
comes meaningless, since every trajectory would have an
infinite number of e-foldings.

B. Comparison

Let us now come to the question of how we can reconcile
the results of Gibbons and Turok [2] on the one side and
those of Ashtekar and Sloan [15] on the other. The first
possible objection is: How can we compare two results that
are taken on two different theories, GRon one side andLQC
on the other? As we have seen before, one can in fact
approximate very well the low density GR trajectories by
(low density) LQC effective trajectories. Thus, the region of
interest in the Gibbons and Turok analysis, �GT=�crit � 1,
which is for trajectories near the end of inflation (and there-
fore, around the constant density surface in our Fig. 2), one
can take the LQC effective trajectories without any prob-
lems as a very good approximation to the GR dynamics.
This allows us to ‘‘embed’’ the low density GR dynamics in
the effective LQC description with very good accuracy.

With this assumption, we can now compare the two
results within the effective LQC description. We have
two constant density surfaces, as depicted in Fig. 3. The
external ellipsoid corresponds of course to the critical
density �crit at scale �, while the small one corresponds
to the density �GT as chosen by Gibbons and Turok.3 One
puzzling fact about the huge discrepancy in results is that
both analysis use the natural Liouville measure (properly
normalized) to compute the probability on constant density
surfaces. One important property of the Liouville measure
is that it is invariant under the dynamical evolution. So,
how come we arrive to two very different conclusions?

There are two key observations to understand this ap-
parent tension. The first one pertains to the question of

whether the time evolution invariance of the Liouville
measure implies that the probability is also invariant. On
a first view, one might imagine that the probability has to
be invariant since one is just measuring the relative phase
space volume of those trajectories with N e-foldings or
more, relative to the total volume in phase space. Now, the
technical step that allowed to normalize the phase space
volume (the total phase space volume is infinite) in [2,15]
was to realize that there is an invariance in the space of
classical solutions by rescaling the physical volume. This
invariance has its origin in the fact that, instead of describ-
ing the whole Universe, one has to restrict attention to a
fiducial region R in space (the spatial volume of the whole
Universe in k ¼ 0 FRW is infinite, so one needs to consider
a region with a finite volume). Since this choice is arbitrary,
one can in principle chose a smaller/larger region for which
we assign a smaller/larger volume, but the physics should
be unchanged. When one takes care of this ambiguity,
either by taking an appropriately chosen ‘‘interval in v’’
as was done in the previous part, or by an appropriate
gauge fixing [15,20], one still has to be careful about the
possible change in physical volume during the dynamical
evolution that would also induce a change in relative
volume in phase space.
Let us see how this comes about. Invariance of the

Liouville measure means that the volume in phase space
is preserved. Let focus our attention in the quadrant in the
space of solutions, with coordinates ðvB;�BÞ, defined by
1 � vB � 2 and ��max � �B � �max, and follow it
through its dynamical evolution. If we now take another
‘‘gauge fixing’’ at a lower energy density, say �1

(see Fig. 3), we immediately notice that the range in � is
much smaller. Since the total volume of the quadrant we

FIG. 3. For a fixed value of �crit, we plot the exterior, critical
density surface and a surface of constant density �GT � �crit

(not drawn to scale, of course) on the ð _�;�Þ plane. Trajectories
with a uniform distribution at the LQC bounce ellipsoid are
plotted. Note that trajectories for which there is enough inflation
get funneled into a small region in the smaller �GT ellipse. Near
this surface, the GR and LQC dynamics almost coincide.

3The figure is not to scale, since we are asking that �GT �
�crit. The relative densities in the figure were taken to illustrate
our point.
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are following has to be the same (due to the dynamical
invariance of the Liouville measure), the range in v has to
increase, as it indeed does, since most solutions inflate. The
crucial point here is to realize that the change in volume
�v ¼ v1 � vB from the bounce to the �1 surface depends
on the value of �. Thus, the line, say, vBð�BÞ ¼ 1 at the
bounce gets mapped, in general to a curve v1ð�1Þ that is no
longer constant as a function of �1. That is, each solution
has a different change in physical volume depending on the
value of the scalar field at the bounce. But, if one is only
keeping track of the change in the ‘‘phase space coordi-
nate’’ � when computing the probability, then the relative
volume in phase space, as measured by only �, can indeed
change. Since this is precisely what one means by proba-
bility in the analysis of [2,15] and here, we are led to
conclude that the probability indeed depends on the surface
on which it is computed. Since this argument did not use
any particular detail of the LQC dynamics, this ambiguity
in the probability depending on the choice of constant
density surface is also present in general relativity. Let us
now see what further assumptions are made in both
calculations.

The second observation is the following. When comput-
ing the probability of having N e-foldings, one has to
assume an a priori probability distribution Pð�;vÞ of the
classical trajectories, and then integrate this probability
distribution with respect to the corresponding measure. In
[15], the authors consider the most natural choices, namely,
the probability is computed on the critical density surface
(i.e., the bounce) using, as the integration measure, the
Liouville measure. By invoking Laplace’s ‘‘principle of
indifference’’ as in [2], they consider a uniform distribution
on the space of trajectories (labeled by ð�; vÞ) and per-
formed an appropriate gauge fixing with respect to the
volume rescaling freedom available, in the same spirit we
have done here. We have illustrated this scenario in Fig. 3,
where we plotted trajectories uniformly distributed in �
along the critical density surface. If we now follow these
trajectories along the dynamical evolution we notice that,
when they intersect the � ¼ �GT surface, they are no
longer uniformly distributed; quite the opposite is true.
Because of the global properties of the dynamics, the
trajectories are funneled into the ‘‘attractor’’ on the plane

ð�; _�Þ and, therefore, effectively acquire a new ‘‘probabil-

ity distribution’’ ~Pð�Þ on the � ¼ �GT surface.4

If we were to compute the probability of inflation on the
Gibbons and Turok surface, but weighted with the induced

distribution ~Pð�Þ, we would of course get the same result
of Ashtekar and Sloan, given our previous discussion.

What Gibbons and Turok did instead was to assume a
uniform distribution Pð�Þ on the � ¼ �GT surface. With
respect to the uniform distribution, the phase space volume
of inflating solutions is very small and the probability is
therefore, very close to zero. Had we chosen to compute
the probability on a surface with even lower density, the
result would even be smaller. This constitutes the main
difference between both calculations.5

Furthermore, we can now understand why the probabil-
ity found by Gibbons and Turok is so small. If we look at
the region of Fig. 2 for which there is not enough inflation
(in between the critical curves) on the LQC critical density
surface, and follow those trajectories as in Fig. 3, we see
that those trajectories occupy now a much larger region on
the � ¼ �GT ellipsoid. In other words, the trajectories for
which there is enough inflation get funneled into a small
region in the � ¼ �GT surface that, when integrated with
respect to the uniform distribution Pð�Þ of [2], give a very
small contribution to the probability. One could also con-
sider the opposite situation in which one starts with a
uniform distribution on the GT surface and ‘‘evolve
back’’ in time to the bounce surface. In that case, the
dynamics will ‘‘expel’’ the trajectories in such a way that
the probability distribution P0ð�Þ induced on the bounce
surface is concentrated on the region where there is not
enough inflation. If one integrates that probability distri-
bution with respect to the Liouville measure the resulting
probability is very close to zero, as found by Gibbons and
Turok in [2].6

IV. DISCUSSION

Let us summarize our results. We have reanalyzed the
treatment of the simplest inflationary model from the per-
spective of loop quantum cosmology. By using an effective
equation we studied the structure of the space of classical
solutions with the aim of answering the question: How
probable is it to achieve enough e-foldings? In particular
we have considered this question keeping the discreetness
parameter of loop quantum cosmology as a free parameter.
When the parameter vanishes, one expects the dynamics to
reduce to the standard, general relativity behavior. The first
result is that, as previously shown in [15], the probability
for enough inflation is very close to 1 when the discreetness
parameter � is of the order of the Planck scale. We then
considered the dependence of the probability as one

4We can view this induced probability distribution as a way of
keeping track of the relative change in phase space volume due
to the dynamics that induces a differentiated change in physical
volume v for different trajectories. Namely, the distribution is
given by ~Pð�Þ ¼ vGTð�Þ, in terms of the volume vGT, as a
function of � on the Gibbons-Turok constant density surface.

5Note that Linde had pointed out that the assumption of
Gibbons and Turok to take uniform initial conditions at the
end of inflation might be the source of their negative result
[14], but the mechanism he outlined is different from ours, since
he was not taking the Liouville measure into account.

6One should note that, as previously discussed, in order to
make the distinction of which trajectories have enough
e-foldings, one has to introduce a cutoff for the initial condition.
Here we have adopted the LQC scale as a natural unambiguous
choice.
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decreases the parameter and it approaches the general
relativity limit. As we have shown, the probability in-
creases and approaches 1 as one reaches the limit. Next,
we studied the global properties of the system to under-
stand the underlying reason for the discrepancy of these
results and those of [2] in which the probability of enough
inflation was computed to be close to zero, within general
relativity. What we found is that this discrepancy is due to
the differences in the underlying assumptions in both
calculations. As it turns out the probability as computed
in both [2,15] depends very strongly on the constant den-
sity surface where it is calculated. While Ashtekar and
Sloan assume a uniform distribution of classical trajecto-
ries at the naturally defined surface available due to the
universal existence of the bounce, Gibbons and Turok take
it at an arbitrarily defined surface at the end of inflation.
Given the large difference in scales involved and due to the
global properties of the dynamics and the probability mea-
sure, these two assumptions have strikingly different con-
sequences. During the evolution from the bounce to the
Gibbons-Turok scale, most of the trajectories that undergo
enough inflation—contributing significantly to the proba-
bility—get funneled into a small region at the later scale,
that has a correspondingly small contribution to the proba-
bility. This is the origin of the apparent tension.

We have thus found two very different results even for
GR. On the one hand the Gibbons-Turok result involves
several, somewhat ad hoc, assumptions given that there is
no preferred choice of scale on GR. On the other hand,
there is the limit of LQC when the discreetness parameter
vanishes. In this later case we have, for each scale, calcu-
lations based on unambiguous and natural choices that
provide a well-defined result, even when the GR limit of
LQC is nonsmooth. Thus even when in the � ! 0 limit one
is approaching arbitrarily close to the singularity, the
probability of having N e-foldings—as measured from
the Planck scale down—can be given some meaning. As
we have seen, the result that in the GR, � ! 0 limit, the
probability goes to 1 for any finite value ofN , seems to be
generic. Whether this result is physically meaningful is,
however, a completely different issue. In the situation in
which � is taken well below the Planck scale, we are
implicitly assuming that the classical equations are still
valid. This is, perhaps, too strong an assumption. One
generically expects quantum effects to dominate near and
below the Planck scale. This is precisely what LQC pro-
vides for us via its effective equations.

Let us end with a series of remarks.
(1) Given that these two results are based on assump-

tions that yield completely opposite predictions, one
might then ask what is the physically reasonable
assumption to make? How can we justify one choice
over the other? Is there a ‘‘canonical’’ choice of
initial condition? In loop quantum cosmology we
know that the bounce is generic for inflationary

potentials [21], and the effective equations are a
very good approximation to the dynamics of semi-
classical states [12]. Since every such effective tra-
jectory goes through a bounce, selecting the surface
of constant density, at the bounce, seems a rather
natural choice. One should emphasize then that
there does not exist a similar surface that is preferred
in the classical GR case. As we have seen, the
probability does depend in a rather dramatic way
on the choice of such a surface. Without any extra
input, the LQC choice seems to be the most natural.

(2) Even if one does not regard loop quantum cosmol-
ogy as a fundamental theory, one can still view its
effective dynamics and choice of surface as in [15]
as a procedure to regulate the classical calculation.
The bounce provides then the preferred cutoff sur-
face envisioned by the authors of [3], but in an
unambiguous fashion. From this perspective, what
is amazing is that one can remove the regulator and
obtain a finite answer. Furthermore, this ‘‘canonical
answer’’ indicates that inflation with enough
e-foldings is generic even in this particular way of
approaching the GR limit.

(3) As we have seen from our analysis here, the reason
for the LQC result stems from the choice of surface
where to compute the probability and not directly
from any effect from the quantum geometry under-
lying LQC. In fact, as we remove the parameter
encoding the quantum geometric effects, the proba-
bility of inflation increases.7

(4) In our analysis we have used qualitative aspects of
the global dynamics of the system. Therefore, our
arguments and conclusions are insensitive to
changes in the free parameters of the model. That
is, our results are rather robust.

One should keep in mind that these results are purely
classical. It is to be expected that quantum effects might
provide a more realistic distribution on the space of classi-
cal trajectories. Some proposals have been put forward, but
in the context of particular states and only for those trajec-
tories satisfying WKB conditions [22]. One could imagine
that semiclassical states in LQCmight provide an improved
distribution from which one might get a ‘‘quantum cor-
rected’’ estimation of the probability for enough inflation.
This matter should certainly be studied in detail.
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