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We analyze the dynamics of trapped matter shells in spherically symmetric inhomogeneous �-CDM

models. The investigation uses a generalized Lemaı̂tre-Tolman-Bondi description with initial conditions

subject to the constraints of having spatially asymptotic cosmological expansion, initial Hubble-type flow,

and a regular initial density distribution. We discuss the effects of shell crossing and use a qualitative

description of the local trapped matter shells to explore global properties of the models. Once shell

crossing occurs, we find a splitting of the global shells separating expansion from collapse into, at most,

two global shells: an inner and an outer limit trapped matter shell. In the case of expanding models, the

outer limit trapped matter shell necessarily exists. We also study the role of shear in this process, compare

our analysis with the Newtonian framework, and give concrete examples using density profile models of

structure formation in cosmology.
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I. INTRODUCTION

Studies of nonlinear structure formation in cosmology,
namely spherical top hat collapse models, often assume
that there is no influence of the cosmological background
on a finite domain which has disconnected from the back-
ground dynamics (see e.g. [1–4]).

We have looked at this problem in more detail in Ref. [5]
and found local conditions under which such separation
could be justified for inhomogeneous cosmological models.
In particular, we have studied the possibility for perfect fluid
solutions to exhibit locally defined separating shells between
collapsing and the expanding (cosmological) regions.

The simplest examples given in [5] were set in an
inhomogeneous universe of dust with a positive cosmo-
logical constant and the nature of the dust spherical shells
allowed the system to be entirely determined from its
initial conditions, at least, until the eventual occurrence
of shell crossing.

However, shell crossings or caustics are expected to
happen in these settings with more general initial
conditions than in [5] and an interesting question is

whether our previous results are robust with respect to
the occurrence of shell crossing. This is the main concern
in this paper, which can be regarded a natural follow-up of
our previous work [5].
Shell crossing in spherical symmetry has already been

studied in several past works, although in contexts different
from the one of the present paper. For Lemaı̂tre-Tolman-
Bondi (hereafter LTB) spacetimes, shell-crossing condi-
tions were established by Hellaby and Lake [6] in terms of
the metric data and more recently rewritten by Sussman in
terms of quasilocal scalars [7,8]. Gonçalves [9], has shown
that shell crossing exists for �-LTB spacetimes with
charge. In [10], it has been shown that shell crossing occurs
for a large class of initial conditions in models of formation
of voids and some cases of fluids with pressure gradients.
There were also several works about the strength of

shell-crossing singularities, with the general conclusion
that it is a weak singularity in the sense of Tipler [11].
This then raised the question of the continuity of the metric
across these singularities and, very interestingly, solutions
of dynamical extension through shell-crossing singularities
of LTB have been proved to exist, by Nolan [12], while the
case including a cosmological constant and electric
charges has been discussed by Gonçalves [9].
A complementary treatment was given by Nunez et al.

[13] for metric extensions through shell crossing based on
the interactions between shells, which translate in a
conservation relation between mass and momenta, for
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timelike massive shells. Physically, this conservation rela-
tion summarizes the microphysics of the fluid, however for
dust, only purely gravitational interaction occurs between
crossing shells; hence, the rest mass of each shell is
conserved [14].

Here, we shall not deal with the problem of metric
extensions after shell crossing and, motivated by the above
results, we shall assume the validity of the field equations in
between shell-crossing events and the continuity of the
radial coordinates. Our main concern here will be to study
the effects of shell crossing on the existence and stability of
separating shells in spherical symmetry. In this paper, we
shall also discuss the role of shear in the formation of shells
which separate expanding from collapsing regions, we shall
compare our results with Newtonian cases and give a con-
crete example of initial data which develops shell crossing
and exhibits separating shells in a �-dust model.

The models considered in this paper obey the following
properties: (a) spherically symmetric dust (the rest mass of
infinitesimal pressureless shells is conserved under shell
crossing) with a cosmological constant in the generalized
LTB (GLTB) system; (b) Lagrangian treatment of the
radial coordinates (assume there are metric extensions
through shell crossings); (c) asymptotic spatial cosmologi-
cal behavior (Friedmann-Lemaı̂tre-Robertson-Walker,
hereafter FLRW, at spatial infinity); (d) initial Hubble-
type flow (outgoing initial velocities); (e) regular initial
density distribution (no finite mass for infinitely thin shell,
and no singularity or zero density at the center).

The paper is organized as follows: in Sec. II we recall the
conditions for the existence of matter trapped shells and
study the role of shear on the existence of those shells in
�-LTB models. Section III is devoted to the study of the
effect of shell crossing in �-LTB models. In particular, we
perform a dynamical analysis and separate this study into a
local and global effects. We give concrete examples in
Sec. IV before presenting the final conclusions.

II. TRAPPED MATTER SHELLS IN �-CDM

A. Conditions for the existence of trapped matter shells

In this section, we briefly recall some results of our
previous paper [5] which did not consider shell crossings.

The GLTB system proposed in Refs. [5,15] has the
following simple form for the case of a �-dust model
where P0 ¼ 0 and P ¼ Pdust ¼ 0 (here we set G¼1¼c,
�> 0, � is the lapse function, rðT; RÞ the areal radius, and
E the energy1 of spatial hypersurfaces)

ds2 ¼ ��ðt; RÞ2dt2 þ ð@RrÞ2
1þ Eðt; RÞ dR

2 þ r2d�2: (1)

The Bianchi identities projected along and orthogonal to
the timelike flow n ¼ @t yield (P is the pressure, � the

density, the prime 0 denotes @R, a dot _ stands for @t, and �
is the expansion along the flow)

_� ¼ �ð�þ PÞ�; (2)

� P0

�þ P
¼ �0

�
¼ 0 ) �dt ¼ dt� ) � ¼ 1; (3)

and the Einstein field equations (M is the Misner-Sharp
mass [16], defined as M ¼ R

R
0 4��r

2r0dR)2

_Er0 ¼�2 _r
1þE

�þP
P0 ¼�2

1þE

�þP
P0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ1

3
�r2þE

s
(4)

) _E¼0; E¼EðRÞ; unless there is shell crossing; (5)

_M¼� _r4�Pr2¼�4�Pr2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ1

3
�r2þE

s
¼0 (6)

) M ¼ MðRÞ; unless there is shell crossing; (7)

_r 2 ¼ 2
M

r
þ 1

3
�r2 þ E: (8)

Time derivation of Eq. (8) gives a Raychaudhuri equation
related to the generalized Tolman-Oppenheimer-Volkoff
(gTOV) function of Ref. [5]:

gTOV ¼ M

r2
��

3
r ¼ �€r: (9)

The dynamical analysis detailed in Ref. [5] yields the
motion of separated noncrossing shells in their respective
effective potential,

E ¼ VðrÞ � � 2M

r
��

3
r2; (10)

where the unstable saddle point, for which gTOV ¼ 0,
gives a local separating shell (see [5], Figs. 1 and 2, and
repeated in Fig. 1), in the case when the shell’s energy
reaches its critical value. This separating (or ‘‘cracking,’’
by analogy with Herrera et al. [17]) shell is characterized by

rlim ¼
ffiffiffiffiffiffiffiffi
3M

�

3

s
; (11)

Elim ¼ �ð3MÞ2=3�1=3 ¼ ��r2lim; (12)

while the energy follows

E ¼ _r2 þ VðrÞ: (13)

Definition 1.—Local trapped matter shells in�-LTB are
defined in GLTB coordinates as the locus R? such that

1Actually, 3R ¼ �2 ðErÞ0
r2

so E is related to the 3-curvature.

2In case of shell crossing, _E can be nonzero as r0 ¼ 0 and M
gets changed by the loss or gain of the mass from infinitesimal
shell crossings, so E ¼ Eðt; RÞ and M ¼ Mðt; RÞ, in that case.
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�

3
þ a � _r

r
¼ 0 and Ln

�
�

3
þ a

�
�

�
_r

r

�� ¼ 0: (14)

h
This definition follows from Eqs. (3.11) and (3.16) of [5]
applied to dust with �.

In �-LTB, conditions (14) are reached by shells at
time infinity which are characterized by Eqs. (8) and (12)
so that (see footnote 2) Eðt ¼ 1; R?Þ ¼ Elimðt ¼ 1; R?Þ
(defining R?) i.e.,

3

�
�

3
þa

�
2¼2

MðR?Þ
r3ðT;R?Þ

þ1

3
��ð3MðR?ÞÞ2=3�1=3

r2ðT;R?Þ
: (15)

So, since here the Misner-Sharp mass M and energy E
of each shell is conserved in time (without shell crossing),
and E is thus set by initial MðRÞ and _riðRÞ profiles, one
can characterize local trapped matter, or limit, shell by
the intersections E ¼ Elim (see [5] for details). Global
shells emerge from the neighborhood behavior around
those intersections which local study we give in
Secs. III A and III C.

Before studying the occurrence of shell crossing, wewill
now examine more carefully the role of shear in these
settings.

B. The role of shear in the existence
of trapped matter shells

In Ref. [5], we derived the relation between expansion
and shear [see Eq. III.10] and found that, in the presently
studied model, the shear could be put in the form

a¼� 1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 2M

r þ �
3 r

2
q �

��
E0

r0
� 2E

r

�
þ 2

r

�
M0

r0
� 3M

r

��
:

(16)

In the latter equation the terms within the brackets
measure the departures from the profiles E ¼ �EðtÞr2 and
M ¼ �MðtÞr3 that one would expect from a homogeneous,
uniformly curved models. Indeed, in FLRW models
E ¼ �kr2 and M / �ðtÞr3. Moreover, we should stress
that Eq. (16) yields the shear in terms of nonlocal (integral)
quantities (E and M). We can now evaluate the expansion
and shear at the limit shell defined by setting Eqs. (8) and
(9) to zero at time infinity in Ref. [5], which, with the
conservation of E andM, is simply defined by Eqs. (8) and
(12). Combining those equations yields

E0 ¼ � 2M0

rlim
: (17)

First on the limit shell we can write, setting E ¼ Elim,

a ¼ �
n
2M0

r0
�
1
r � 1

rlim

�
þ 2�

r2
lim

r

�
1� rlim

r

�o

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
3

�
2
r3
lim

r þ r2 � 3r2lim

�r : (18)

With the definition of mass issued from Eq. II.27 of
Ref. [5] in GLTB coordinates so

M0 ¼ 4��r2r0; (19)

we then express the shear of the limit shell as

alim ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3
�

r
rlim

�
3

vuuut 1� 4��ðrÞ
�

�
r

rlim

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ r

rlim

q ; (20)

FIG. 1 (color online). Effective potential kinematic analysis (left) and phase space analysis (right) from [5]. The kinematic analysis
for a given shell of constant M and E depict the fate of the shell, depending on E relative to Elim. It either remains bound (E< < Elim)
or escapes and cosmologically expands (E> > Elim). There exists a critical behavior where the shell will forever expand, but within a

finite, bound radius (E ¼ Elim, r � rlim). The maximum occurs at rlim ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M=�3

p
. The corresponding phase space behavior follows,

the scales are set by the value of rlim ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M=�3

p
while the actual kinematic of the shell is given by E.

3Erratum: Equation (3.14) of [5] has a sign typo. It should read

gTOV ¼ �r

�
Ln

�
�

3
þ a

�
þ

�
�

3
þ a

�
2
�
:
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which in the limit of time infinity simplifies into

alim1 ¼ ��� 4��ðrlimÞ
3

ffiffiffiffi
�

p : (21)

This quantity does not vanish in general. Since at that locus
we have � ¼ 3ð _rr � aÞ, the expansion then reads

�lim ¼�
ffiffiffiffiffiffiffiffiffiffiffiffi
3��
r

rlim

�
3

vuuut
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�3

r

rlim
þ
�
r

rlim

�
3

s
þ
1� 4��ðrÞ

�

�
r

rlim

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ r

rlim

q
1
A;

(22)

which in the limit of time infinity simplifies into

�lim1 ¼ ��� 4��ðrlimÞffiffiffiffi
�

p : (23)

We shall now use a particular form of initial data in order to
study in more detail the role of shear in the appearance of
the diving shell. In the examples below, we shall assume
M> 0, � > 0, �> 0, and E< 0 around the origin.

So, consider analytic initial data for �-LTB as in
[18,19]:4

MðRÞ ¼ R3
X1
i¼0

miR
i; m0 > 0

EðRÞ ¼ R2
X1
i¼0

EiR
i; E0 < 0

(24)

then, from the expressions above, we derive

alimðRÞ¼��1=2

�
1

3
� 2

32=3

�
m1=3

0 þ 2m1

m2=3
0

R

þ
�
3m2

m2=3
0

� m2
1

m5=3
0

�
R2þOðR3Þ

��

rlimðRÞ¼
�
3

�

�
1=3

�
m1=3

0 Rþ m1

3m2=3
0

R2þOðR3Þ
�

ElimðRÞ¼�32=3�1=3

�
m2=3

0 R2þ 2m1

3m1=3
0

R3þOðR4Þ
�

(25)

also, for the rescaling rðt0; RÞ ¼ R, we get an expression
for the initial shear distribution as (see also [20])

aðt0; RÞ ¼ �E1 þ 2m1

6A
R

� 1

6

�
2E2 þ 4m2

A
� ðE1 þ 2m1Þ2

2A3

�
R2 þOðR3Þ

with AðRÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þ�=3þ 2m0

p
.

It is interesting to see that for a fixed shell R near the
center, bigger M (i.e. bigger m3) means smaller initial
shear but bigger jElimj and rlim for that shell. On the other

hand, since bigger initial shear implies smaller jElimj
(i.e. smaller departures from Elim ¼ 0) and smaller rlim,
one can argue that, at least around the origin (and for the
above initial data), shear contributes to the appearance of
cracking limit shells. This is in agreement with the results
of Herrera et al. [17]. We summarize this result as follows.
Result 1.—Consider a neighborhood U of the origin

where the �-LTB initial data can be written as (24).
Then, bigger values of the initial shear jaðt0; RÞj in U,
imply smaller jElimj and favor the occurrence of trapped
matter shells in U. h
For data which is asymptotically Friedmann at infinity

we take functions which, at infinity, can be expanded in the
form:5

MðRÞ ¼ Xþ1

i¼1

miR
3=i; EðRÞ ¼ Xþ1

i¼1

EiR
2=i

withm1 � 0 and E1 � 0. By taking asymptotic expansions
we find

rlimðRÞ¼
�
3

�

�
1=3

�
m1=3

1 Rþ m2

3m2=3
1

�
1

R

�
1=2þO

�
1

R

��

ElimðRÞ¼�32=3�1=3

�
m2=3

1 R2þ2

3

m2

m1=3
1

R1=2

þ2

3

m3

m1=3
1

þO

�
1

R1=4

��
(26)

while the initial shear is

aðt0; RÞ ¼ � E2

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3E1 þ�þ 6m1

p 1

R
þO

�
1

R4=3

�
:

So, again, bigger values of the initial shear jaðt0; RÞj near
infinity imply smaller jElimj and favor the occurrence of
trapped matter shells.
We shall return to this issue in Sec. IV where we study

other examples in more detail.

III. SHELL CROSSING AND TRAPPED
MATTER SHELLS

A. Sufficient conditions for shell crossing

In terms of the comoving coordinates of metric (1), shell
crossing is defined as a surface for which @Rr ¼ 0 and the
density diverges.6 In geometrical terms, at shell crossing
there is a discontinuity both in the extrinsic curvature Kij

and in the spacetime metric. For the spacetimes considered
here, those discontinuities are finite and the magnitude of

4This data ensures that the solution approaches FLRW at the
origin which is therefore regular.

5Note that we only assume this data form at infinity and not
around the origin. Otherwise, we would have a nonregular
origin.

6There can exist cases where @Rr ¼ 0 and the density does not
diverge. At those regular extrema, the extrinsic curvature is
discontinuous while the metric is continuous and finite [6,21].
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the jump in Kij can be read from the expressions derived in

[14,22].
Hellaby and Lake [6] (see also [23]) have derived nec-

essary and sufficient conditions for the occurrence of shell
crossing in LTB, in terms of the free initial data. Other
works have used other types of conditions which are
sufficient to avoid shell crossing7 and therefore imply
@Rr � 0. For example, in the case of LTB, Landau and
Lifshitz [24] simply assume @Rr > 0 and, in [25], Hellaby
and Lake impose the condition for a simultaneous big bang
in their local analysis around the initial singularity.

Here, we shall take a different point of view and write
sufficient conditions for the occurrence of shell crossing in
terms of the local behavior ofM and E in the neighborhood
of some intersection, when it exists, of the energy E with
the critical energy Elim. In order to do that we first observe
that two local configurations are possible in the neighbor-
hood of the intersection: either E0 >E0

lim or E0 <E0
lim.

In the case E0 > E0
lim, shells just inside the intersection

radius will have a lowerE than their respectiveElim andwill
therefore be trapped in closed trajectories, following the
dynamical analysis presented in Fig. 1. In that case, shells
just outside the intersection will display higher E than their
respective Elim and will accordingly be free to escape to
infinity on unbound trajectories. That shell distribution will
lead to the separation of neighboring shells, those inside the

intersection being bound to a finite region while those
outside will escape to infinity. This case does not entail
neighboring shell crossings and is presented on Fig. 2.
On the contrary, in the case E0 <E0

lim, shells just inside

the intersection will have a higher E than their respective
Elim and will accordingly be free to escape to infinity on
unbound trajectories, whereas shells just outside the inter-
section will display a lower E than their respective Elim and
will therefore be trapped in closed trajectories. Because of
the configuration of that shell distribution, shell crossings
of neighboring shells occur: those inside the intersection
escaping to infinity will have to cross those outside which
are bound to a finite region. This case is presented on
Fig. 3. We summarize this result as follows
Result 2.—Let � ¼ E� Elim and consider a �-LTB

spacetime where there is R? such that �jR?
¼ 0. Then, a

sufficient condition for the existence of shell crossing is
�0jR?

< 0. h

We point out that, for � ¼ 0, our condition leads to
E0 < 0, which is the condition implicitly considered

in [6,23].8 In that case, we simply obtain E0
lim ¼

�8��r2r0ð �3MÞ1=3 ¼ 0. In this sense, our sufficient

FIG. 2 (color online). Overcoming local configuration of E
intersecting Elim. Phase space and effective potential trajectories
from dynamical analysis of [5] give the local qualitative behav-
ior, emphasized on the radial axis. Inner shells on bound trajec-
tories and outer shells on unbound paths forecast no shell
crossing locally. Considering Elim as corresponding to the
Newtonian zero radial velocity axis in [26,27], this configuration
is analogous to, e.g., Fig. 1 of [31].

FIG. 3 (color online). Undercoming local configuration of E
intersecting Elim. Phase space and effective potential trajectories
from dynamical analysis of [5] give the local qualitative behav-
ior, emphasized on the radial axis. Outer shells on bound
trajectories and inner shells on unbound paths will lead to local
shell crossing. Considering Elim as corresponding to the
Newtonian zero radial velocity axis in [26,27], this configuration
is similar to, e.g., Fig. 2b of [26].

7A comment on the occurrence of caustics when using a
synchronous reference frame can be found in Ref. [24]
(Sec. 97). We must notice though that the latter assumes that
the strong energy condition holds, whereas in our present case
the cosmological constant evades that assumption.

8For LTB with � ¼ 0, we recall that the necessary and
sufficient conditions for no-shell crossing in [6] are

T0
B � 0; E0 	 0; M0 	 0;

where TB is the bang time, while the necessary and sufficient
conditions for no-shell crossing in [23] are

T0
B � 0; E0 > 0; M0 	 0:

Therefore, if one of these conditions fails then there will be shell
crossing.
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condition generalizes, for � � 0, the result of Ref. [6,23].9

We also note that their condition on bang times tbðRÞ is
t0bðRÞ � 0, while we can also allow for t0bðRÞ> 0 as long as
tbðRÞ is less than the initial time t0 considered here.

There is an interesting analogy between our shell-
crossing condition and a similar condition in Newtonian
theory. In fact, the Newtonian approach used in [26,27]
considers kinematic configurations in velocity-radius two-
dimensional phase space which lead to one-(and three-)
dimensional Zel’Dovich pancakes (see Refs. [27–29]
for the classical cosmological spherical context). Their
behavior is similar to the local evolutions of the
dynamical configurations in Figs. 2 and 3. While in
[26,27] the authors take the radial axis to separate collaps-
ing and expanding kinematics, here we take Elim locally as
a deformed radial axis.

B. Hypotheses and dynamical analysis

Since part of our analysis is based on the E� Elim

diagram, it is useful to clarify the constraints introduced
by the set of hypotheses we propose.

1. Regular density distribution

A regular density distribution is motivated by standard
cosmological models ([10,28], for example). In the weak
energy condition, the density remains positive so the mass
profile is initially always monotonously increasing, thus
Elim, from Eq. (12), is initially always monotonously
decreasing,

@M

@R
	 0 ) @Elim

@R
� 0: (27)

The regularity implies finiteness of the mass and nonzero
values for the density at the center. This constrains their
logarithmic slope in the following manner: suppose a value
�� for the slope of the density in the center (� / r��), then
the mass shall behave accordingly as r3��. Finiteness of the
mass implies then� � 3 andnovacuum in the center implies
� 	 0, from the density.

2. Initial Hubble-type flow

This simplifies the initial velocity profile into one that
only admits outgoing radial velocities (positive _r), in the
fashion of expanding initial conditions in a Hubble flow,
although less restrictive. As a consequence of this and the
previous condition, the profiles in the center always re-
spect, in initial conditions, the hierarchy E< Elim, which is
crucial for the emergence of a bound core. In this case

Elim ¼ �ð3MÞ2=3�1=3 

R!0

R2�ð2=3Þ� ! 0 as � � 3;

E ¼ _r2 � 2M

R
��

3
R2 


R!0
� R2�� ! 0;

since _r 

R!0

R ! 0 so the _r2 and �
3 R

2 both tend to zero as R2

and are thus dominated by the � 2M
R term for � > 0. Thus

around the center,

E

Elim

’
R!0

2

32=3R

�
M

�

�
1=3 


R!0

2

32=3�1=3
R�ð�=3Þ > 1

) E< Elim; for � > 0; Elim < 0:

In the peculiar case of a constant central density (� ¼ 0),
we have M 


R!0

4�
3 �0R

3, _r 

R!0

@R _r0R ¼ HcR, so E¼
ðH2

c � 8�
3 �0��

3ÞR2 ¼ ðH2
c � 8�

3 ð�0þ��ÞÞR2. In that case,

the Hubble-type flow needs to remain moderate in the
center to respect the constraint

@R _r0 < 4�ð�2=3
0 ð2��Þ1=3 þ 2

3ð�0 þ ��ÞÞ:
In the rest of the paper, we assume the conditions for
E< Elim in the center are met.

3. Asymptotic spatial cosmological behavior

If we restrict our explorations to asymptotically cosmo-
logical (FLRW) solutions, this implies that at radial infinity
the mass and velocity initial profiles, constraining the
energy and Elim profiles for all time, shall obey

M !
R!1

4�

3
�bR

3 with
3M

4�R3
!

R!1�b¼�bðtÞ
)Elim !

R!1�ð4��bÞ2=3�1=3R2;

_riðRÞ !
R!1HiR)E !

R!1�KR2: (28)

We note that the value of the curvature K of the asymptotic
FLRW solution compared with the equivalent

ð4��bÞ2=3�1=3 FLRW critical curvature will determine,
together with the central constraint E< Elim, the occur-
rence of, at least, one intersection of E and Elim of the
E0 > E0

lim kind, not inducive of shell crossing (see

Sec. III A).
Definition 2.—Supposing there exists n 2 N shells ver-

ifying Eq. (15), we order them by initial radius and denote
them R?i, i 2 ½1; n�,
(i) R?out � R?n the outermost intersections E ¼ Elim of

the initial profiles
(ii) R?in � R?1 the innermost initial intersections

E ¼ Elim of the initial profiles. h

4. Local mass conservation and Lagrangian frame

Since in our system the cosmological constant is inert by
definition and dust purely interacts gravitationally, we
assume, as in [14], that the rest mass of each crossing
infinitesimal shell is conserved. The shell-crossing event
can thus be viewed as an infinitesimal exchange of the
relative positions and integrated masses while each shell
conserves its own velocity.
As shell masses M and energies E are conserved be-

tween shell-crossing events, Eq. (8) will govern the motion

9Although our interest is in the neighborhood of radius where
� ¼ 0, our analysis can be extended to other locations.
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of individual shells. Keeping initial R ¼ rð0; RÞ as
Lagrangian labels, we can follow the dynamics of the
shells using the simple prescription obtained above without
the need to reorder the radial labels as would require a
metric extension. Instead, we keep the initial labels all
throughout and follow each shell’s evolution using
Eq. (8) and the shell-crossing prescription of Sec. III B 4,
as e.g. in Refs. [26,28].

C. Local effects of shell crossing on trapped
matter shells

In this section, we will detail how a test crossing shell
affects locally the values of E and Elim around trapped
matter shells.

Since each shell conserves its infinitesimalmass, the local
effect of an elementary crossing of a system’s shell by a test,
neighboring, shell will just exchange their nonlocal mass in
the exchange of their positions.10 As a consequence, their
values of E and Elim will also change. The change of E, in
Eq. (4), is allowed by the shell-crossing event.

A shell crossed at some r� by an infinitesimal mass �M
(�M > 0 for inward crossing, <0 for outward crossing)
will see its values shifted as follows (the reciprocal is true
for the crossing shell with ��M):

Eþ� ¼ E� 2�M

r�
; (29)

Elimþ� ’ Elim þ 2

3

�M

M
Elim: (30)

Thus, for an inward (respectively outward) crossing,
both E and Elim will decrease (respectively increase).
Their relative separation, crucial around intersections,
will follow

�� ’ 2�M

�
1

rlim
� 1

r�

�
; (31)

which generalizes the conditions from [6,23] (see
Result 2). The sign of this shift is determined by the
initial position rðt0; RÞ ¼ R ¼ ri of shells with respect to
their rlim.

Bound shells can never cross their respective rlim and
shells with E ¼ Elim reach their rlim at infinity in time.
Thus, crossing events involving one bound shell satisfy�

1
rlim

� 1
r�

�
< 0. However, once escaping shells go beyond

their respective rlim, they experience the opposite relative
effect on their ��. Thus, it is possible to have a crossing of
two escaping shells beyond their respective rlim that pro-
duce shifts in the opposite direction. However, once
beyond their rlim, even drastic changes cannot put shells
on closed orbits linked with the center as they would
correspond to points on the outer side of the effective

potential [Fig. 1(a)]. Since intersections E ¼ Elim take
place in the neighborhood of bound shells (those with E
under their Elim), we can restrict ourselves to consider local
shell crossing in r� < rlim.
To first order, for inward-going crossing shells, we have

��< 0, as illustrated on Figs. 4 and 7, while outward-
going shells have ��> 0, see Figs. 5 and 6. As a conse-
quence, the limit shell defined by the intersection shifts
forward (respectively backward) for the two cases of local
configurations. The resulting cases are overcoming inward

FIG. 4 (color online). Effect of an ingoing, infinitesimal test
shell crossing on the energy and critical energy profiles, around
the local initial configuration for the overcoming of Elim by E.
The initial intersection shell becomes bound on such perturba-
tions and the local intersection shell shifts outwards in radius.

FIG. 5 (color online). Effect of an outgoing, infinitesimal shell
crossing on the energy and critical energy profiles, around the
local initial configuration for the undercoming of Elim by E. The
initial intersection shell becomes unbound on such perturbations
and the local intersection shell shifts outwards in radius.

10In this process the other shells of the system, not involved,
will remain unaffected and conserve their masses.
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crossings and undercoming outward crossings (respec-
tively overcoming outward crossings and undercoming
inward crossings) and are illustrated on Figs. 4 and 5
(respectively 6 and 7).

To simplify the qualitative study of the system, we will
first consider a prescription where both M and E are
conserved, in Secs. III D 1 and III D 2. We will then drop
this assumption and include the evolution of trapped matter
shells’ neighborhoods, building from infinitesimal shell
crossing as described below in Sec. III D 3 to ascertain
the qualitative evolution of the system, in Sec. III D 4.

D. Global effect of shell crossing on limit trapped
matter shells

1. Simplest model with shell crossing

In order to study the simplest set of initial conditions
where shell crossing occurs, given the constraints of
Sec. III B from Result 2, we shall consider a model with
a single undercoming configuration. The topological con-
straints coming from the two-dimensional E vs R dia-
grams,11 together with the choice of an open background
at infinity12 leads to initial conditions for E and Elim with
three intersections (see Fig. 8), the middle one verifying
Result 2. We thus have a model with R?1 ¼ R?in, R?2 and
R?3 ¼ R?out defined in its initial conditions. We can now
consider the inner system, also called the system, to be
circumscribed by R?out. Unbound shells inside this system
are in position to escape it and, hence, define a remarkable
shell outside the system:
Remark 1.—The inner or nonbound shells of initial

conditions in E and Elim induce a few remarkable features
defined as follows:
(i) We will consider all shells inside R?out as the initial

inner system.
(ii) We will denote by Emax the maximum value of

nonbound E in the set of shells inside R?out or
outside of it but with horizontal tangent, i.e. Emax ¼
maxfE: ððE0 ¼ 0Þ _ ð0<R� R?outÞÞ ^ ðE	 ElimÞg.

(iii) Rmax is the largest value for which E ¼ Emax,
i.e. Rmax ¼ maxfR: EðRÞ ¼ Emaxg.

FIG. 6 (color online). Effect of an outgoing, infinitesimal shell
crossing on the energy and critical energy profiles, around the
local initial configuration for the overcoming of Elim by E. The
initial intersection shell becomes unbound on such perturbations
and the local intersection shell shifts inwards in radius.

FIG. 8 (color online). Open background with arbitrary central
mass distribution and a single local undercoming intersection. It
always gives protected inner shells as well as unmodified cos-
mological expansion, when keeping integrability despite shell
crossing. Shell crossing entails no fundamental modification.

FIG. 7 (color online). Effect of an ingoing, infinitesimal test
shell crossing on the energy and critical energy profiles, around
the local initial configuration for the undercoming of Elim by E.
The initial intersection shell becomes bound on such perturba-
tions and the intersection shell shifts inwards in radius.

11For example, in the center, we have (E< Elim). See Fig. 8.
12This means E ���!

R!1 � kFLRWR2 with kFLRW < 0 and

Elim ���!
R!1 � ð4��bÞ2=3�1=3R2.
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(iv) Rfree is the furthest shell outside R?out with
increasing E ¼ Emax, when it exists, i.e. Rfree ¼
maxfR: ðR	 R?outÞ ^ ðE¼ EmaxÞ ^ ðE0ðRÞ> 0Þg.

(v) We will note Efree the value of E, when it exists, as
Efree ¼ Eðt ¼ t0; RfreeÞ. h

With the above definitions, we will now examine the
effects of shell crossing on trapped matter shells.

2. Limit trapped matter shells in the integrable
dynamical system

In a model where both M and E are conserved through
shell crossings, we can extend the analysis of [5], as each
shell’s dynamics remains integrable and is governed by the
Lagrangian Eq. (8).13 In this case, the qualitative dynami-
cal behavior of the system is entirely determined from the
shape of its initial conditions in a E and Elim vs R diagram.

As we will see in Sec. III D 4, when including the full
effects of shell crossing on E and Elim, the key properties of
trapped matter shells will be obtained in the limit t ! 1.
Since in this section,M and E are assumed to be conserved
with time, all the properties deduced here will remain
unchanged in that limit. We will therefore express our
results in the limit t ! 1, using definitions which evolve
from Remark 1 and are detailed in Appendix A.

From Fig. 8, we can see that all the bound shells will
remain under rlim?out ¼ rlimðR?outÞ, while all unbound
shells of the inner system will escape it.14 Thus, consider-
ing that bound shells will eventually turn around and orbit
back and forth between the center and their turnaround
radius, we find that all shells inside rðt; RÞ ¼ rlim?out will
be crossed from both sides (interior and exterior).15 Only
the shell R?out will remain uncrossed from outside shells.
This leads to the following definition.

Definition 3.—The outer limit trapped matter shell
Rt?out1 verifies Definition 1 in the limit t ! 1, in addition
to being the outermost such shell which locally is not shell-
crossing inducive,16 i.e.,

Rt?out1¼fR: maxfR?1g^ðE0ðt!1Þ>E0
limðt!1ÞÞg:

h
Note, from Definition 2, that R?out verifies Definition 3,

defines Rt?out, if E
0 > E0

lim, and verifies Rt?out ¼ Rt?out1 in

the limit t ! 1.
Remark 2.—In �-LTB with asymptotic cosmological

evolution (FLRW at radial infinity) and initial Hubble-
like flow (outwards going) for which shell crossing occurs,

the outer limit trapped matter shell is a surface S with the
following properties:
(i) The matter exterior to S follows trapped geodesics,

remaining in that exterior.
(ii) The matter inside S can expand and collapse pro-

tected from the crossing of outside shells.
(iii) S is the shell with largest R for which the energy E

intersects the critical energy Elim, from bound to
unbound shells. h

The condition for existence of Rt?out1 follows from the
properties of Rt?out, so we obtain the following result.
Result 3.—Sufficient conditions for the existence of an

outer limit trapped matter shell are:

(i) The FLRW curvature of the background kFLRW <

ð4��bÞ2=3�1=3, or
(ii) Rt?out exists, or
(iii) the local configuration around R?out is such that

E0
?out >E0

lim?out.

Proof.—kFLRW<ð4��bÞ2=3�1=3)EðR!1Þ>ElimðR!
1Þ so the last intersection EðRÞ ¼ ElimðRÞ is such that
E0 > E0

lim from a corollary to Bolzano-Weierstrass theorem

and Definition 3 is verified. h
We show, in Fig. 8, a diagram with data such that the

inner limit trapped matter shell Rt?out is at R?out. The
exterior of the system will include all the unbound shells
escaping to infinity. However, the dynamics from Eq. (8)
allows us to study under what conditions the unbound
system’s shells will never cross shells located in the exte-
rior of the system.17 Take two different shells R1 <R2,
eventually crossing each other at a given radius18 r�, and
with the outer shell more open than the inner shell (i.e.
E1 < E2 for M1 <M2):

E1 ¼ v2
1 �

�

3
r2� � 2M1

r�
; with E1 < E2; (32)

E2 ¼ v2
2 �

�

3
r2� � 2M2

r�
and M1 <M2; (33)

) �v2 ¼ �Eþ 2�M

r�
> 0 and (34)

�v2 

r�!1�E> 0 ) 8t; v2

2 > v2
1: (35)

Then shells with E1 < E2 and M1 <M2 will always re-
main in the same radial order and the shell with E ¼ Emax

will then escape all other system’s shells. It then appears
that, when Rfree exists, all shells with E> Efree will never
be crossed by any shell inside Rfree. The counterpart to
Definition 3 can thus be formulated by defining first Emax.
In turn, the condition for the existence of Emax is that

13The final fate of each shell will always remain on horizontal
lines and their gravitational nature, whether bound or unbound
will also remain the same throughout their history.
14This is indicated on Fig. 8 by horizontal arrows.
15This includes the R?in and R?2 shells, locally considered
trapped matter shells.
16Recall that R?1 is defined by solutions in initial R of Eq. (15)
taken at t ! 1.

17Their escape velocity at infinity should never exceed that of
exterior shells.
18This radius is allowed to tend to radial infinity.
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E 	 Elim, in the limit t ! 1. Thus, Remark 1 can be
adapted here as follows.19

Definition 4.—Suppose Emax1 exists and is defined, in
the initial conditions, as

Emax1¼maxfEjðt!1Þ: ððE0 ¼0Þ_ð0<R�R?out1ÞÞ
^ðE	ElimÞðt!1Þg: (36)

Then, inner limit trapped matter shells are defined as the
locus Rfree1 such that

Rfree1 ¼ maxfR: ðR 	 R?out1Þ ^ ðE ¼ Emax1Þt!1
^ ðE0ðt ! 1; RÞ> 0Þg: (37)

h
Remark 3.—In �-LTB with asymptotic cosmological

evolution (FLRW at radial infinity) and initial Hubble-
like flow (outwards going) for which shell crossing occurs
(and Emax1 is defined), the inner limit trapped matter shell
is a surface S with the following properties:

(i) The matter interior to S follows trapped geodesics
which remain in that interior.

(ii) The matter exterior to S expands, protected from the
crossing of inside shells.

(iii) S is the shell outside the system (defined with
R?out1) with energy equal to that of the highest E
of nonbound shells, and starting inside of the system,
or outside of it but with horizontal tangent. h

The conditions for existence of Rfree1 combine the ex-
istence of Emax1 with constraints on the background:

Result 4.—Sufficient conditions for the existence of an
inner limit trapped matter shell are (a) the existence of
Emax1 and (b) the existence of Efree1:

(a)
(i) There exists initially a nonbound, system shell,

or a nonbound shell with horizontal tangent:
9R: ð0<R � R?out _ E0 ¼ 0Þ ^ EðRÞ 	 ElimðRÞ, or

(ii) R?out1 exists, or
(iii) There exist at least one R?i

(b)
(i) Emax1<EðR!1Þ, or
(ii) 9R:R	R?out1^Eðt!1;RÞ¼Emax1^E0ðRÞ>0
Proof.—(a)
(i) If we have R such that ð0< R � R?out _ E0 ¼ 0Þ ^

EðRÞ> ElimðRÞ, then, either it is a maximum so Emax

exists and, by time evolution of its neighborhood,
Emax1 exists, or, by continuity, in the case when it is
not a shell with E0 ¼ 0 (local maximum), there is a
shell with larger E which satisfies Remark 1 for Emax

and thus one in its neighborhood satisfying
Definition 5 for Emax1.

(ii) If R?out1 exists, it is not bound at time infinity and is
inside the system; therefore, even if it is the only
unbound system shell, it can at least define Emax1.

(iii) If there is only one R?, then it is R?out by
Definition 2. We are then in the case (ii) above as
this guarantees the existence of R?out1.

(b) Since:
(1) Emax1 is, by definition, the largest value of E reached

at time infinity by inner or outer local maxima shells,
(2) uncrossed outer shells have their E conserved,
(3) asymptotic cosmological conditions render E

monotonous near infinity,
(4) evolution of the inner shell Rmax1 follows Eq. (35),
(5) the energy profile is continuous,

therefore, E?out1 � Emax1 and by continuity, since
Emax1 <EðR!1Þ, exterior shells will obey E 2
½E?out1; Eðt ! 1; R ! 1Þ½⫆½Emax1; Eðt ! 1; R ! 1Þ½,
thus there exists at least one shell at time infinity with
E ¼ Emax1.
Moreover, for the outermost exterior shell Rxmax1 ¼

maxfR: R 	 R?out1; EðRÞ ¼ Emax1g with E ¼ Emax1,
since Emax1 < EðR ! 1Þ, by continuity, all shells outside
of it will verify E> Emax1. Therefore E0ðRxmax1Þ> 0 and
Rxmax1 ¼ Rfree1 is fulfilling Definition 4. h
We show a diagram in Fig. 8 where we indicate the outer

limit trapped matter shell for which Rfree ¼ Rfree1, in the
model where both E and M are conserved between shell
crossings. We thus have found, for that model, that extend-
ing the analysis of [5] in the context of shell crossing leads
to the emergence of two remarkable shells: an inner limit
trapped matter shell and an outer limit trapped matter shell.
From their definitions 3 and 4, we can deduce other prop-
erties depending on the background cosmological model,
namely:
From Result 3, any background with E> Elim will admit

an outer limit trapped matter shell. This includes some
closed models and all flat and open models.
FromResult 4, and under the assumptions of this section,

any closed background in our models cannot foster an inner
limit trapped matter shell as the finite value of Emax1 is
always larger than its energy at radial infinity. Conversely,
open models always have an inner limit trapped matter
shell (see the example of Sec. IV) and only flat models
with moderate enough energy fluctuations [i.e. for which
Emax < 0 ¼ EðR ! 1Þ] can allow the existence of an inner
limit trapped matter shell. In summary:
Summary 1.—Consider a �-LTB spacetime with

asymptotic cosmological evolution (FLRW at radial infin-
ity) and initial Hubble-like flow (outwards going) for
which shell crossing occurs. Then:
(i) The global limit trapped matter shell found in the no-

shell crossing�-LTB examples of [5] is split, if shell
crossing occurs, into at most, two global shells,
namely an inner limit trapped matter shell and an
outer limit trapped matter shell.

19The following can be formulated also in terms of gauge
invariant Lie derivatives, expansion and shear, as seen in
Appendix B.
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(ii) For open or flat expanding spacetimes,
(a) there exists always an outer limit trapped matter

shell at Rt?out1.
(b) The inner limit trapped matter shell exists in flat

backgrounds for sufficiently small initial veloc-
ities inside the system limited by R?out1.

(iii) For closed spacetimes, outer limit trapped matter

shells are present if kFLRW < ð4��bÞ2=3�1=3 and
inner limit trapped matter shells cannot be defined
if shell crossing occurs, with our definitions.

(iv) In the �-CDM examples of global limit trapped
matter shells found in [5], inner and outer limit
trapped matter shells reduce to one single surface.

Proof.—
(i) Direct from Definitions 3 and 4 and Result 2 which

leads to shell crossings at some R?.
(ii)

(a) From Result 3.
(b) Direct from Result 4, as open and flat expanding

spacetimes admit EðR ! 1Þ 	 0. Some flat
spacetimes can exhibit Efree1 > 0 while their
E ���!
R!10. For those cases, Definition 4 is never

verified.
(iii) Using Result 3, for closed spacetimes,E ���!

R!1�1�
Efree1, so from Result 4, Definition 4 is never
verified.

(iv) Applying Definitions 3 and 4 to configurations
where there is only one intersection R? ¼ R?1 ¼
R?out verifying E0 > E0

lim, no shell crossing occurs.

Thus, all E values are constant over time so
R?out ¼ Rt?out1, and given the open background,
Efree ¼ E?out, so Rfree1 ¼ R?out ¼ Rt?out1. h

In this section, we have assumed that E and M were
conserved through shell crossings. In the next section, we
drop this assumption and investigate whether our previous
results remain true.

3. Global effect of shell crossing

Since the sign of � ¼ E� Elim determines the binding
property of the system, it is useful to give the final values of
E and Elim for each shell, labeled i, in terms of the initial Ri

and Mi, reaching areal radius r after crossing shells, with

MðrðR; tÞ; tÞ ¼ Mi þ
Z

dMin �
Z

dMout ¼ Mi þ �Mi;

where the index ‘‘in’’ refers to inward crossing, ‘‘out’’ to
outward crossing, j to the shells crossing shell i.

Using definition 12 and integrating Eq. (29) over all
crossing shells, we get

ElimðrÞ¼ElimðRiÞ�
��

1þ�Mi

Mi

�
2=3�1

�
3Mi

rlimðRiÞ ; (38)

EðrÞ¼EðRiÞ�8�

�Z
drj;in�

Z
drj;out

��ðrjÞr2j
r�iðrjÞ ; (39)

where r�i is a crossing radius. Because of their qualita-
tively simple shell-crossing histories, we can look at the
changes for three peculiar shells, singled out on Fig. 8:
the innermost limit shell, the outermost limit shell, and the
maximum E shell initially lying in the interior of the out-
ermost limit shell.
The innermost limit shell will only be crossed by more

bound shells exterior to it, so �M1 > 0 and

EðrðR?1ÞÞ ¼ EðR?1Þ � 8�
Z

drj;in
�ðrjÞr2j
r�1ðrjÞ : (40)

Since

1

3

�
�M1

M1

�
2 þ

�
2

3

�M1

M1

�
3
> 0 (41)

,
��

1þ �M1

M1

�
2=3 � 1

�
<

2

3

�M1

M1

(42)

and

� 1

r�1ðrjÞ<� 1

max½r�1ðrjÞ�<� 1

rlimðR?1Þ ; (43)

as the innermost limit shell becomes a bound shell, we get
that

�½E�Elim�1<2�M1

�
1

rlimðR?1Þ�
1

max½r�1ðrjÞ�
�
<0: (44)

Thus, the innermost limit shell will globally shift outwards,
following the qualitative analysis of Fig. 4.
In turn, the outermost limit shell will be only crossed by

all the unbound shells interior to it, so

EðrðR?outÞÞ ¼ EðR?outÞ þ 8�
Z

drj;out
�ðrjÞr2j
r�outðrjÞ

� EðR?outÞ þ 2
�Mout

hr�outiðR?outÞ ; (45)

where�Mout is the positive mass loss of the outermost limit
shell and hr�i is a reduced crossing radius. Note that, by
construction, Mout>MðR?out;t!1Þ¼Mout��Mout>0.
Now, supposing the density distribution remains finite,

we can decompose the crossing of the outermost limit shell
by all escaping inner shells into a series of infinitesimal
shell crossings. Thus, following Eq. (31) we get

d½E� Elim� ¼ �8�drj;out�ðrj;outÞr2j;out
�

�
1

rlimðM?outðt�jÞÞ �
1

r�outðrj;outÞ
�
: (46)

As all shells cross outwards20 and

20Note that R?out starts as a marginally bound shell well inside
its limit radius.
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1

hr�outiðR?outÞ >
1

rlimðhr�outiÞ 	
1

rlimðR?outÞ ; (47)

then, in this case, we have

�½E�Elim�out¼2�Mout

�
1

hr�outiðR?outÞ�
1

rlimðR?outÞ
�
>0:

(48)

Thus, the outermost limit shell will shift relatively inwards,
following the qualitative analysis of Fig. 6.

Finally, the maximum E shell initially inside R?out, or
with horizontal tangent (its initial radius is Rmax), will be
only crossed inwards by all the shells starting with radii
above it and having an E below EðRmax; t ! 1Þ, at the
moment of crossing. This shell will then follow

�½E�Elim�max< 2�Mmax

�
1

rlimðRmaxÞ�
1

max½r�maxðrjÞ�
�

< 0; (49)

similarly as for the innermost limit shell.
We summarize the main result of this section as follows.
Result 5.—Consider a �-LTB spacetime where shell

crossing exists. Then the metric and extrinsic curvature
are discontinuous and the discontinuity in E is given by
(29). Furthermore, at R?out, �½E� Elim�out > 0 and, at
Rmax, �½E� Elim�max < 0. h

4. Qualitative analysis of limit trapped matter shells

In this section, we argue that the results contained in
Summary 1 remain true for the case whereM and E are not
conserved through shell crossing.

We discussed the behavior of the outermost limit shell
R?out and of the outward escaping highest energy inner
shell Rmax in Sec. III D 3. As those determine the two
separating shells Rt?out1 and Rfree1 studied above, their
modifications by shell crossing will indicate that the effec-
tive limit shells are just displaced but obey the same
general properties. We illustrate this on the open back-
ground example (Fig. 8), for which we separated the study
of each limit shell.

In Fig. 9, we represent the construction of using the
qualitative evolution of R?out and its neighboring shells
from Eq. (48).

In Fig. 10, using the qualitative evolution of Emax and its
neighboring shells from Eq. (49), we represent the con-
struction of the inner trapper matter shell for open initial
conditions. The subsequent modifications proceed from
those qualitative changes and do not modify the formula-
tions of the results from their counterparts in the model
where both E and M are conserved between shell
crossings.

In the case where E and M are not conserved, the effect
of shell crossing on R?out given by Eq. (48) implies only
that Rt?out1 < Rt?out without qualitative changes and

Definition 3 is verified. In turn, the effect of shell crossing
on Rfree depends on the effect on Efree from Eq. (49) and
by the monotonous increase of E near infinity and only
implies that Rfree1 <Rfree.
Therefore, the findings of Sec. III D 2, extending the

analysis of [5] in the context of shell crossing, are only
quantitatively modified as full shell-crossing effects only

FIG. 9 (color online). Illustration, on an open background with
arbitrary central mass distribution, of the effect of shell crossing
on the inner global limit shell previously defined as the outer-
most local limit shell. The time variation of the locus of the
outermost local limit shell leads to defining it as the time-infinity
outermost limit shell: this is shown on the extrapolated time-
infinity energy profiles and linked to the initial energy profile by
a connecting curve. The global inner limit shell is then just
shifted inwards, compared with the integrable analysis.

FIG. 10 (color online). Illustration, on an open background
with arbitrary central mass distribution, of the effect of shell
crossing on the outer global limit shell previously defined as the
outer shell with same energy function as the inner shells’
maximum. The time variations of the inner shells’ maximum
energy function from shell crossings lead to defining it as the
outer shell with same energy as the time-infinity inner shells’
maximum energy function E: this is shown with the highest of
extrapolated time infinity Es of inner shells peaks. The global
outer limit shell is then just shifted inwards, compared with the
integrable analysis.
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displace inwards both the inner and outer limit trapped
matter shells: the initial outermost intersection of E
and Elim gets unbound and the system at infinity gets
consequently reduced in Lagrangian initial radius. In turn,
the maximum energy of the inner regions gets lowered, so
the inner limit trapped matter surface is also drawn in-
wards. This displacement modifies only marginally the
conclusions obtained in Sec. III D 2, namely: (i) the
splitting of the local trapped matter shell is maintained
when those shells exist. (ii) Open, flat, and closed models

with existing Rt?out [with kFLRW < ð4��bÞ2=3�1=3] all
retain an Rt?out1, and (iii) the modification of the maxi-
mum energy of the inner regions allows just more asymp-
totic cosmological flat models to keep their inner limit
trapped matter shell, if the shift from Emax tends to
Emax1 < 0.

Therefore, from the sufficient conditions for inner and
outer limit trapped matter shells (Results 3 and 4), the
results contained in Summary 1 remain true in the case
where M and E are not conserved through shell crossing.

IV. EXAMPLES: NFW PROFILES WITH ONE
UNDERCOMING INTERSECTION

In [5], we studied examples of trapped matter shells
using cosmological models with a Navarro, Frenk, and
White (NFW) density profile [30] and a simple parabolic
E profile. Here we adapt those profiles in order to present
one intersection withElim of the undercoming type as in the
local configuration of Fig. 3, and thus ensure, at the local
level, the appearance of shell crossing.

To do so, we use a fourth order polynomial in the
canonical Lagrange form, to provide for the behavior in
the intersecting region that we cut off with an exponential
so that an open FLRW term dominates at infinity. We chose

the profile to be 0 at the origin and at a characteristic radius
R0 set near the last possible intersection point with the
NFW Elim given by Eq. (4.21) of [5],

R0 � R�1; ElimðR�1Þ ¼ �1;

so as to secure the crossings in the physical region. The
remaining three points of interpolation are chosen to be set
alternately below and above the Elim curve inside the
region set by 0 and R0. The form is set by

EðRÞ ¼
	
m1

x

x1

x� x2
x1 � x2

x� x3
x1 � x3

x� 1

x1 � 1

þm2

x

x2

x� x1
x2 � x1

x� x3
x2 � x3

x� 1

x2 � 1

þm3

x

x3

x� x1
x3 � x1

x� x2
x3 � x2

x� 1

x3 � 1
þ �1x



e�x

� k1R2 �0x
2

ðx2 � 1Þ�0 þ 1
; (50)

where x ¼ R=R0, we have denoted the three intermediate
points as x1, x2, and x3, the values of the polynomial at
those points by m1, m2, and m3, �1 is a small constant
making sure we have the freedom to fit EðR0Þ ¼ Eð0Þ ¼ 0
where the polynomial itself is built to vanish, �0 is a small
constant making sure the polynomial dominates in the
interesting range but allowing the curvature at radial in-
finity to be set by a Friedmann-type k1. The form (50)
automatically vanishes at 0. We chose the polynomial
values such that at those points, E is alternately below,
above, and again below Elim, the last one making sure it
remains above �1:

EðR0Þ¼0¼�1e
�1�k1R2

0�0; )�0¼ �1
k1R2

0e
; (51)

EðR1Þ¼gElimðR1Þ¼ ðm1þ�1x1Þe�x1 �k1R2
0

�0x
4
1

ðx21�1Þ�0þ1
¼ðm1þ�1x1Þe�x1 � �1x

4
1

e�ð1�x21Þ �1
k1R2

0

)m1¼gElimðR1Þex1 þ�1x1

�
x31e

x1

e�ð1�x21Þ �1
k1R2

0

�1

�
; (52)

EðR2Þ¼ElimðR2Þ
g

¼ðm2þ�1x2Þe�x2 �k1R2
0

�0x
4
2
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4
2
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; (53)

EðR3Þ¼ElimðR3Þ�ðElimðR3Þþ1Þð1��Þ¼ ðElimðR3Þþ1Þ��1¼ðm3þ�1x3Þe�x3 �k1R2
0

�0x
4
3

ðx23�1Þ�0þ1

¼ðm3þ�1x3Þe�x3 þ �1x
4
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k1R2
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: (54)
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We illustrate this in Figs. 11 and 12 after choosing the
values of the density profile identical to those in [5].
The cutoff leaves the region under R0 almost unaffected
by the Friedmann term, so the value of k1 is not very
relevant there but we set it to �1.

We summarize the result of this section as:
Result 6.—ForNFW density and initial data given by (50)

–(54), the �-LTB spacetime has three shells R? such that
EjR?

¼ ElimjR?
. Furthermore, for this data, there is shell

crossing and R?out�R?out1<0 and Rfree�Rfree1<0. h

V. CONCLUSIONS

We have studied the effects of shell crossing on the
existence of trapped matter shells in �-LTB spacetimes.
In particular, we have considered initial conditions such
that: (i) our models approach a FLRW solution at radial
infinity and have an initial outgoing Hubble-type flow;
(ii) the shell crossing of dust remains pressureless and
the mass of infinitely thin shells remains finite.

We have shown that the local trapped matter shells
discussed in Ref. [5] split in two shells: one outer limit
trapped matter shell and one inner limit trapped matter
shell.

We have established sufficient conditions for the exis-
tence of such shells in �-LTB spacetimes, in terms of

initial data for which shell crossing occurs. Furthermore,
we have derived a number of properties for those shells
using a qualitative approach inspired in Newtonian-like
frameworks of cosmological kinematical models, as in
[26,27].
We have also studied the role of shear in these settings

and concluded, as in [17], that shear favors the emergence
of trapped matter shells.
Finally, we have given concrete examples where shell

crossing occurs and the inner and outer limit trapped matter
shells emerge, using NFW data.
As potential applications of our models we note that

(i) because of mass conservation and integrability in the
absence of shell crossing at the boundary, the background
asymptotic conditions remain FLRW over all time.
Therefore, this gives an interesting setting to study the
extendability of Birkhoff’s theorem to cosmological ex-
panding backgrounds; (ii) extensions of this work to un-
smooth distributions of mass should be possible and might
give support to current structure formation analyses using
the spherical top hat collapse model, in the case of
�-CDM.
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APPENDIX A: TIME-INFINITY DEFINITIONS

Definition 5.—The inner or nonbound shells of initial
conditions in E and Elim, in the limit t ! 1, induce a few
remarkable features defined as follows:

(i) R?1 � R?iðt ! 1Þ is the intersection number i be-
tween Eðt ! 1Þ ¼ Elimðt ! 1Þ taken at time infin-
ity but singled out by its radius in the initial profile of
E; in particular, we note R?out1 � R?nðt ! 1Þ for
the outermost intersection and Rt?out1 � R?out1
when we add the condition ðE0ðt ! 1Þ>
E0
limðt ! 1ÞÞ.

(ii) We will note Emax1 the maximum value taken
at time infinity, but singled out in the initial
profile, of nonbound E in the set of shells inside
R?out1 or outside but with initial horizontal
tangent, i.e. Emax1¼fE;maxðEðt!1ÞÞ^ððE0¼0Þ_
ð0<R�R?out1ÞÞ^ðE	ElimÞg.

(iii) Rmax1 is the largest value for which E ¼ Emax1, i.e.
Rmax1 ¼ maxfR; EðRÞ ¼ Emax1g.

(iv) Rfree1, if it exists, is the furthest shell outside
R?out1 with an increasing E at E ¼ Emax1,

i.e. Rfree1 ¼maxfR; ðR	 R?out1Þ ^ ðE¼ Emax1Þ^
ðE0ðRÞ> 0Þg.

(v) Wewill noteEfree1 the value ofE, if it exists, such as
Efree1 ¼ EðT ¼ 0; Rfree1Þ. h

APPENDIX B: GAUGE INVARIANT DEFINITIONS
FOR INNER LIMIT TRAPPED MATTER SHELLS

We can rewrite E in terms of gauge invariant quantities
with Eqs. (9), (8), (14), (12), and (11):

Ln

�
�

3
þ a

�
�

�
_r

r

�� ¼ 1

r2

�
rlim
r

Elim � E

�
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Elim � R2Ln

�
�

3
þ a

�

¼ r2
�
Elimrlim

r3
�Ln

�
�

3
þ a

��
;

so the condition of existence for Emax, that E 	 Elim,
translates into the initial condition with the inequality

L n

�
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�
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þ 1

R2
ðElim � EÞ
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or at time infinity into
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We get then Rmax and Emax from
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:

Taken at t ! 1, this translates into

Rmax1¼max
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:

Thus, Definition 4 can be rewritten as follows.
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Definition 6.—Suppose that Emax1 defined as

Emax1¼max

	
r2
�
Elimrlim

r3
�Ln

�
�

3
þa

����������ðt!1Þ
; ððE0 ¼0Þ_ð0<R�R?out1ÞÞ^

�
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;

(B1)

exists. Then, inner limit trapped matter shells are defined, in the models considered with GLTB coordinates,
as the locus Rfree1 such that

Rfree1 ¼ max

	
R; ðR 	 R?out1Þ ^

�
�

3
þ a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: (B2)
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