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The role of the dilaton field and its coupling to matter may result in a dilution of dark matter (DM) relic

densities. This is to be contrasted with quintessence scenarios in which relic densities are augmented, due

to modification of the expansion rate, since the Universe is not radiation dominated at DM decoupling.

The dilaton field, besides this, affects relic densities through its coupling to dust which tends to decrease

relic abundances. Thus two separate mechanisms compete with each other resulting, in general, in a

decrease of the relic density. This feature may be welcomed and can help the situation if direct dark matter

experiments point towards small neutralino-nucleon cross sections, implying small neutralino annihilation

rates and hence large relic densities, at least in the popular supersymmetric scenarios. In the presence of a

diluting mechanism, both experimental constraints can be met. The role of the dilaton for this mechanism

has been studied in the context of the noncritical string theory but in this work we follow a rather general

approach assuming that the dilaton dominates only at early eras long before big bang nucleosynthesis.

DOI: 10.1103/PhysRevD.83.103523 PACS numbers: 98.80.�k, 95.35.+d, 98.80.Cq

I. INTRODUCTION

The nature and origin of the dark matter (DM) of our
Universe is one of the big mysteries of modern cosmology,
whose resolution is still pending. Analyzing the data cu-
mulated from various observations over the past 12 years it
is found that 96% of the Universe energy budget today
consists of unknown entities, 23% of which is dark matter
and 73% dark energy (DE), or vacuum energy, which is
responsible for the current acceleration of the Universe.
These data include observations of the Universe accelera-
tion, using type-Ia supernovae [1], measurements of cos-
mic microwave background [2,3] anisotropies, baryon
oscillation [4], and weak lensing data [5]. The aforemen-
tioned results follow from best-fit analyses of various
astrophysical data to the standard cosmological model
(�CDM) which can successfully describe the evolution
of our Universe. The model is based on a Friedmann–
Robertson–Walker (FRW) cosmology, involving cold
DM, at a 23%, baryonic matter at 4%, and a positive
cosmological constant �> 0 that is put in an ad hoc
manner in an attempt to describe the vacuum energy
density.

Supersymmetry provides one of the leading DM candi-
dates, the neutralino which is still lacking experimental
verification. Its thermal abundance, calculated in the con-
text of the simplest supersymmetry models (minimal
supersymmetric model embedded in minimal supergravity
[6]), is severely restricted by cosmic microwave back-
ground data. In the near future, by incorporating data
from collider experiments, such as the LHC [7], these
models may be possibly ruled out. However, the existence
of scalar fields in the primordial Universe, which contrib-
ute to the energy density, may play a dramatic role and

upset the whole scenery. The quintessence [8] has been
invoked in an attempt to explain the vacuum energy, in the
sense that the energy it carries today is the vacuum energy
measured in astrophysical observations. Its existence af-
fects the relic abundances if the Universe is not radiation
dominated during DM decoupling. In fact, DM relic den-
sity is predicted to be enhanced [9], and in some cases this
enhancements reaches �106 or so [10]; for a review, see
for instance [11]. In general, modifications of the expan-
sion rate and departures from the standard cosmological
scenarios may have dramatic consequences for the DM
relic density [12,13] and the observed amount of DM puts
constraints on possible modifications of the Universe ex-
pansion at early eras [14]. A particular class is the tracking
quintessence scenario in which the quintessence field is in
a kination-dominated phase at early eras [15]. In this
context the predictions for the gravitino and axino DM
are considered in [16] while in [17] the predictions for the
neutralino DM relic, in the popular supersymmetric
schemes, is discussed in the light of the constraints arising
from the observed e� spectrum by PAMELA [18] and
Fermi-LAT observations [19].
In some string-inspired scenarios, with time-dependent

dilaton-� sources [20], whose evolution is dictated by
nonequilibrium string dynamics [21], the amount of ther-
mal neutralino relic abundance is diluted by a factor of
Oð10Þ, relative to that calculated within the �CDM mini-
mal supergravity cosmology, and such models are found to
survive the stringent tests of LHC [22]. The dilution is due
to the appearance of a frictionlike term on the right-hand
side of the appropriate Boltzmann equation. This term
also plays a significant role in other considerations studied
in [23].
In this paper we argue that the mechanism for the

dilution of DM relic abundances is more general and can
hold in other instances too, having its basis on more*alahanas@phys.uoa.gr
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general features of the dilaton dynamics prevailing in early
eras, independently of the noncriticality of the underlying
string theory. In order to model the dilaton behavior, we
assume the existence of exponential-type potentials occur-
ring in a wide class of quintessence scenarios or super-
gravity models or arising in string theories from quantum
corrections. The presence of such a dilaton field, which
dominates over radiation long before nucleosynthesis, af-
fects the predictions for relic abundances in a dramatic
way. In fact the conventional calculations get smaller by
factors as small as Oð10�2Þ, in some cases, allowing,
therefore, for smaller annihilation cross sections in the
popular supersymmetric schemes employed in literature.
This may alter the potential of discovering supersymmertry
at collider experiments since the parameter space allowed
by the cosmological data moves to regions that would be
otherwise forbidden. As far as other ways of discovering
DM are concerned (for reviews, see [24]), the small cross
sections required to explain the cosmological data may
affect the predictions for direct [25] and indirect
[18,19,26] DM searches (for a review, see [27]).

II. SETTING UP THE MODEL

Omitting radiation and matter contributions, the equa-
tions of motion for a time-dependent dilaton are

€�þ3H _�þV 0ð�Þ¼0;

3H2¼
_�2

2
þVð�Þ;

2 _H¼�ð%�þp�Þ¼� _�2:

(1)

In these equations, the field � is dimensionless and the
potential carries dimension mass2. The first of these equa-
tions is not independent but is derived from the other two.
In order to model the dependence of the dilaton as a
function of lna, where aðtÞ is the cosmic scale factor, we
assume a linear in lna form during early eras, which can
follow from exponential-type potentials V � e�k�. Such
potentials are inspired by quintessence scenarios and they
can also occur in string theories as perturbative or non-
perturbative corrections. The dilaton is then given by

� ¼ c ln

�
a

aI

�
þ�I; (2)

where c is a constant and aI � aðtIÞ is the cosmic scale
factor at the maximal reheating temperature reached after
inflation, denoted by TI, which occurred at the time tI. This
holds in epochs t < tX in which the dilaton dominates over
radiation and matter, during DM decoupling which oc-
curred earlier than big bang nucleosynthesis (BBN). We
know that BBN took place when lnðaBBN=a0Þ ’ �22:5,
corresponding to TBBN ’ 1 MeV, and DM decoupling oc-
curred at a temperature between TDM ’ 5–20 GeV, as
dictated by interpreting DM to have supersymmetric
nature, corresponding to a value of lnðaDM=a0Þ between

’ �31:5 and ’ �33:0. At times tX radiation also starts
contributing to the energy-matter density and at BBN must
overwhelm the dilaton’s energy. Therefore, a reasonable
region for which (2) holds is set by a � aX with
lnðaX=a0Þ ’ �25 or smaller.
Beyond tX the dilaton is assumed to receive an almost

constant value. The constancy of � when hadrons are
nonrelativistic is rather mandatory if we do not want the
diluting mechanism to affect the abundances of the known
hadrons and especially nucleons. This pushes the bound on
aX, defined earlier, to even lower values. In fact, the
couplings of a dilaton to matter density is through the

appearance of dissipative terms �ð%m � 3pmÞ _�, which
modifies the continuity equation for matter, and such terms
are vanishing when hadrons are relativistic, that is at
temperatures higher than about Th � 1 GeV, correspond-
ing to lnðah=a0Þ � �30. Below Th, however, hadrons are
nonrelativistic and the dilaton couples to hadrons as

�%m
_�. Therefore, in this temperature regime the dilaton

has to be almost constant in order to suppress its coupling
to hadronic matter. A reasonable value is Th ¼ �QCD, with

�QCD ’ 260 MeV the characteristic QCD scale, which

pushes the bound set on aX to lnðaX=a0Þ ’ �28:4;
although larger values for Th, corresponding to smaller
values of lnðaX=a0Þ are not excluded. Such values for Th

are within the range that the coupling of the dilaton to
supersymmetric matter is nonvanishing, and this may have
dramatic effects for the DM relic abundances as we shall
see.1

For t < tX the time derivative of � is related to the

expansion rate by _� ¼ cH, and when this is plugged into
the third of Eqs. (1) it can be solved for the expansion rate
H yielding

H�1 ¼ H�1
I þ c2

2
ðt� tIÞ: (3)

In this and the following equations, the subscript I denotes
quantities evaluated at tI. For the expansion rate solving
H ¼ _a=a, and using (3), we get

a ¼ aI

�
c2HI

2
ðt� tIÞ þ 1

�
2=c2

; (4)

and therefore the time dependence of the dilaton in this era
is

� ¼ 2

c
ln

�
c2HI

2
ðt� tIÞ þ 1

�
þ�I: (5)

1We are aware of the fact that a constant dilaton in this range
cannot account for a change ��=�� 10�5 over cosmological
time scales of the fine structure constant. Interpreting the con-
stancy of the dilaton as small quantum fluctuations �� � 1 puts
a lower limit on the couplings of the dilaton to matter approach-
ing the capability of Eötvos-like experiments.
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Knowing the dilaton and the Hubble rate from the
second of Eqs. (1), the form of the potential can be derived:

Vð�Þ ¼
�
6� c2

2

�
H2

I e
�cð���IÞ: (6)

This holds in the region where the dilaton depends linearly
on lna, as in shown in Eq. (2), that is for values of the
cosmic scale factor a < aX. If the maximum reheating
temperature attained is TI ¼ 109 GeV, then the value of
the cosmic scale factor at tI is lnðaI=a0Þ ’ �50:86 where
a0 ¼ aðttodayÞ denotes its value today.2 Therefore, the re-

gion of applicability of Eq. (2) is for values of a satisfying
lnða=aIÞ � B, where B is set by B ¼ lnðaX=a0Þ þ 50:86,
that is a number �20 or so depending on the value of aX.
At the end point aX, for which lnðaX=aIÞ ¼ B, the potential
is exponentially suppressed,

V � exp½�cð�X ��IÞ� � expð�Bc2Þ; (7)

independently of the sign of the constant c, provided the
value of jcj is not exceedingly small. Since we have in
mind a positive potential which drops as the Universe
expands, the constant c should be bounded by c2 � 6 as
is evident from (6). As we shall see shortly, dominance of
the dilaton energy over radiation is achieved for c2 > 4,
and therefore the value of the potential at aX, given by
Eq. (7), is very much suppressed before nucleosynthesis,
that is for times earlier than tBBN corresponding to
lnðaBBN=a0Þ ’ �22:5.

The ratio of the kinetic to the potential energy of the
dilaton field in the regime t < tX is constant. This follows

from the second of Eqs. (1) and the fact that _� ¼ cH, due
to Eq. (2). In fact,

Vð�Þ
�� _�2

2

�
¼ 6

c2
� 1: (8)

This yields a ratio of dilaton to radiation energy density
given by

�̂�

�̂r

¼ m2
P

�̂0
r

1

1� c2=6

�
a

a0

�
4
Vð�Þ: (9)

In this we have reinstated dimensions, and hatted densities
carry dimension energy4. The zero subscripts denote the
corresponding quantities today. Equation (9) can be also
cast in the form

�̂�

�̂r

¼ 3H2
0m

2
P

�̂0
r

�
H2

I

H2
0

��
aI
a0

�
4
�
a

aI

�
4�c2

(10)

if one expresses the potential (6) in terms of the cosmic
scale factor a. Since a > aI, this ratio decreases for values
of 4< c2.
The behavior of the dilaton and the potential as functions

of lnða=a0Þ are shown in Fig. 1 for particular values of the
slope c, in the range 4< c2 < 6, and lnðaX=a0Þ ¼ �28:4.
Without loss of generality, the value �X of the dilaton at
the end of the dilaton-dominance period has been taken as
vanishing. Actually, physics results depend on the differ-
ence ���I so a nonvanishing value for �X corresponds
to a different initial condition �I for the dilaton field. The
ratio of the potential energy, at the end of the dilaton-
dominated era, to the same energy at reheating temperature
drops by at least 40 orders of magnitude.
Because dilaton energy dominates over radiation energy

in this regime, the value of the Hubble rate at reheating
temperature is constrained by Eq. (10). In order to quantify
this, suppose the dilaton to radiation energy density, at a
given reheating temperature TI, is�

�̂�

�̂r

���������I
¼ 10p: (11)

Then Eq. (10) yields

HI=H0 ¼
�
0:703

h0

�
� 1042þp=2 (12)

if TI ¼ 109 GeV. If inflation is responsible for the genera-
tion of the power spectrum of the curvature scalar Ps and
tensor PT perturbations, then an upper bound on the infla-
tionary potential, and hence on the corresponding Hubble
rate at the end of inflation HI, can be derived [28].
Assuming that tensor perturbations are small in compari-

son with the scalar ones, the bound imposed onHI isHI �
�ffiffi
2

p mPP
1=2
s which in turn yields HI � 2:65� 1014 GeV.

This results in the following upper bound for the ratio
HI=H0:

HI=H0 <
1:24

h0
� 1056:

Then on account of (12) an upper bound on p is derived,

p < 28:5: (13)

This merely indicates that the ratio of the dilaton to radia-
tion energy density (11) can be indeed large for reasonable
values of the initial conditions set at TI, consistent with the
bounds put on HI.
From Eq. (10), the ratio �̂�=�̂r can be expressed in

terms of its value at TI through

�̂�

�̂r

¼
�
�̂�

�̂r

���������I

�
a

aI

�
4�c2

; (14)

and if this ratio at TI is as given in Eq. (11), the corre-
sponding ratio at the end of the dilaton-dominance period
is

2We have in mind the minimal supersymmetric standard
model (MSSM) whose sparticle mass spectrum is in the TeV
range. Under these circumstances, at the temperature TI super-
symmetric as well as standard model particles are all relativistic
and the effective number of degrees of freedom is geff ¼ 228:75,
independent of the precise sparticle mass spectrum. This results
in the value lnðaI=a0Þ ’ �50:86 quoted above.
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�
�̂�

�̂r

���������X
¼ 10p

�
aX
aI

�
4�c2 ¼ 10pþNð4�c2Þ: (15)

In this equation, the constant N is given by

N ¼ logðeÞðb� rÞ ¼ 0:4344ðb� rÞ; (16)

with b and r given by b ¼ lnðaX=a0Þ and r ¼ lnðaI=a0Þ,
respectively. The first is an input while the second is
determined by the input value of the reheating temperature
TI. For instance for TI ¼ �109 GeV the constant r is given
by r ¼ �50:86� ln� in a model with the content of the
MSSM and mass spectrum much lighter than TI. N is a
number between 8.20 and 11.16, when lnðaX=a0Þ is taken
within the range �32:0 – � 25:0, and the value of �
specifying the reheating temperature is of the order of
unity or so. At the end of the dilaton-dominance era the
dilaton-to-radiation energy ratio drops from its initial value
to

�
�̂�

�̂r

���������X
¼ 10p

0
: (17)

The power p0 must be smaller than p but still large enough
to guarantee that the above ratio is much larger than unity,
so that the bulk of the total energy is carried by the dilaton
in the regime aI < a < aX. From Eqs. (15) and (17) we
deduce that

c2 ¼ 4þ p� p0

N
; (18)

and therefore the dropoff of the ratio �̂�=�̂r yields that c
2

is larger than 4. Combined with its upper bound c2 < 6
discussed earlier, one concludes that c2 lies in the rather
narrow range 4< c2 < 6. One can also utilize the relation
(18), in combination with the bound c2 < 6, to derive the
following bound on p� p0:

p� p0 < 2N:

Because N is a number of order �10, the above upper
bound set on p� p0 leaves much room for values of the
powers p, p0 to guarantee that the dilaton energy indeed
overwhelms radiation energy in the whole regime aI <
a < aX, as is assumed in this scenario.

III. DILUTION OF DM ABUNDANCES

Concerning the calculation of relic densities, omitting
the collision terms, the energy-matter density obeys the
following equation:

d�

dt
þ 3Hð�þ pÞ �

_�ffiffiffi
2

p ð�� 3pÞ ¼ 0; (19)

where the last term is the coupling of the dilaton to the
density.3

FIG. 1 (color online). The dilaton (left) and the potential (right) as functions of lnða=a0Þ. The ratio of the dilaton’s kinetic energy to
its potential energy density stay constant and thus the fast exponential dropoff of the dilaton potential indicates that the dilaton-to-
radiation energy ratio has been suppressed before nucleosynthesis.

3The division by
ffiffiffi
2

p
is due to the normalization of the dilaton

whose kinetic energy appears as �kin
� ¼ _�2

2 ; see the second of
Eq. (1).
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Obviously, for radiation the last term drops and hence
when matter is relativistic this term is absent. This holds at
a temperature T 	 m where m is the mass of the particle
under consideration. Including the collision terms in
Eq. (19) results in the following equation for the number
density:

dn

dt
þ 3Hnþ hv�iðn2 � n2eqÞ �

_�ffiffiffi
2

p n ¼ 0: (20)

This is suitable for describing the evolution of the number
density during periods for which the particle is nonrelativ-
istic and pressure practically vanishes. During eras in
which the particle is relativistic, the last term drops,
since the last term in Eq. (19) drops too, and in this case
(20) receives the well-known form of the Boltzmann
equation, [29].

For the number-to-entropy density ratio, Y ¼ n=s,
Eq. (20) takes on the form

dY

dx
¼ �ðxÞmhv�i

�
45GN

�
geff

��1=2
�
hþ x

3

dh

dx

�
ðY2 � Y2

eqÞ
þ SðxÞY: (21)

In this, x stands for x ¼ T=m where T is the photon gas
temperature related to the radiation density �r, which
includes all relativistic particles at a given epoch, through

�r ¼ �2

30
geffðTÞT4;

and GN is Newton’s constant. In (21) the quantity h stands
for the entropic degrees of freedom related to the entropy
density through s ¼ 2�3T3hðTÞ=45.

The prefactor �ðxÞ appearing in Eq. (21) is given by

�ðxÞ ¼
�
1þ �m

�r

þ ��

8�GN�r

��1=2
; (22)

while the source SðxÞ, in the same equation, is

SðxÞ ¼ � �0ffiffiffi
2

p
x

�
1þ x

3h

dh

dx

�
: (23)

In the expression for �ðxÞ above, �r, �m, and �� are the

radiation, matter, and dilaton energy densities, respec-
tively. Recall that we use a dilaton density having dimen-
sions m2

p; see Eq. (1). Note that no cosmological term

contributes to Eq. (22) since such a term is absent at DM
decoupling and long after it. In conventional treatments the
prefactor �ðxÞ is unity since the DM freeze-out is assumed
to take place in the radiation dominated era. However, in
the presence of the dilaton energy term this is smaller than
unity and the density Y decreases slower, as temperature
drops, than in the conventional cases where �ðxÞ ¼ 1. In

the source term SðxÞ, given by Eq. (23), the quantity �0 is
the derivative of the dilaton with respect to lnða=a0Þ, and
if this is negative then the source acts in the opposite
direction of �ðxÞ tending to decrease the density Y faster
as x decreases.
It should be noted that for simplicity we have assumed

the lowest order, in �0, contributions to the form factors

e�c ð�Þ and Zð�Þ associated with the scalar curvature R
and dilaton kinetic terms of the effective action, in the
string frame, and hence the simple expressions for the
_�-dependent terms of Eqs. (19) and (20). Also the dila-
tonic charge has been assumed to be vanishing. However,
the couplings of the dilaton to matter may evolve in time
with the dilaton itself and depend on the particle species in
a nonuniversal way. Therefore, other options are available
which in the string theory arise from loop corrections or
nonperturbative string effects [30,31]. In such cases the

coupling of matter to _� in the continuity equation (19),
which is mainly controlled by c 0ð�Þ � dc =d�, is not a
constant. Besides there is an additional contribution to the
continuity equation that depends on the dilatonic charge, if
the latter is assumed nonvanishing [30–32]. Including these

effects will give rise to modified _�-dependent terms in
Eqs. (19) and (20) resulting in a source SðxÞ in Eq. (23) that
is multiplied by �c 0ð�Þ, provided the dilatonic charge of
dark matter is taken as vanishing. This will still tend to
decrease the density Y, as x decreases, if c 0ð�Þ> 0 in the
regime following dark matter decoupling. In particular, if
c 0ð�Þ> 1 the dilution of the relic density is enhanced, in
comparison with that caused by the source term as it
appears in Eq. (23), or gets smaller if c 0ð�Þ< 1.
Certainly, in order to further study the effects of this term
one needs a better understanding of how to handle the
corrections to c ð�Þ arising from the underlying string
dynamics. For definiteness in this work, and in order to
quantify the effect of the dilution of the abundance of dark
matter, we assume a gravi-dilaton effective action in the
lowest order in the string slope �0.
The effects of the presence of the factors �ðxÞ and SðxÞ,

as given by Eqs. (22) and (23), is shown in Figs. 2 and 3
where we plot the density as a function of the temperature,
actually x ¼ T=mLSP, for particular supersymmetry
(SUSY) inputs. Equation (21) has been integrated numeri-
cally, which yields more accurate results than the approxi-
mate solutions employed in [20]. The displayed figures
correspond to a supergravity model with inputs given
by m0 ¼ 1100:0 GeV, M1=2 ¼ 1200:0 GeV, and A0 ¼
0 GeV. We have taken tan� ¼ 40 and the parameter � is
taken positive, �> 0. The value of b � lnðaX=a0Þ, setting
the onset of the epoch after which the dilaton is constant
(� ¼ 0), has been taken �28:4 corresponding to a tem-
perature �QCD ¼ 260 GeV as we have already discussed.

For the particular SUSY inputs, the lightest supersymmet-
ric particle (LSP) bino has a massmLSP ¼ 527:2 GeV, and
the point b ¼ �28:4 corresponds on the x axis to a value
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x ’ 0:0005. For comparison, except the ordinary case sce-
nario, where both the source S and the � factor are absent
(red solid line), the cases where both � and S are open
(green dashed-dotted line), or when only the � factor is
present (blue short-dashed line) are also shown. The very
thin dashed line, that rapidly drops, is the corresponding
equilibrium density. In the most interesting case, where
both terms are switched on, the density is monotonically
decreasing after decoupling due to the appearance of the
source term. The rapid change around x ’ 0:0005, corre-
sponding to b ¼ �28:4, where dilaton reaches its con-
stancy, is shown in Figs. 2 and 3. In the specific example
shown, the relic density is diluted by a factor of �50, as
can be seen by comparing today’s density values for the
conventional case (red solid line) and the case where both �
factor and the source term are present (green dashed line).
In the first case, the relic density predicted is �LSPh

2
0 ¼

6:059, while in the second case the relic density is consid-
erably reduced, falling in the WMAP allowed range
�LSPh

2
0 ¼ 0:1116. In general, for given b ¼ lnðaX=a0Þ,

one can obtain reduction factors in the range Oð5–50Þ,
the smaller (larger) corresponding to lighter (heavier) neu-
tralino masses.

IV. CONCLUSIONS

In this paper we have shown that the dilaton dynamics
during early eras, long before nucleosynthesis, in conjunc-
tion with its coupling to dark matter, may have dramatic
consequences for the predicted dark matter relic density.
Modeling the dilaton evolution to be that dictated by
exponential-type potentials V � e�k�, occurring in quin-
tessence scenarios and string theory, the ordinary predicted
DM density may be diluted by large factors ranging from
Oð5Þ to Oð50Þ. This dilution mechanism is consistent with
the absence of dilaton couplings to ordinary matter (had-
rons), in the continuity equations, but it affects DM relics
since a dilaton dominates over radiation during and after
DM decoupling. This allows for LSP annihilation cross
sections, in the popular supersymmetric schemes, that are
smaller by an order of magnitude or more. This, however,
may imply smaller inelastic cross sections of the neutralino
LSP with nucleons putting farther the potential of discov-
ering supersymmetric DM at proposed direct detection
experiments [25]. As far as indirect detection experiments
are concerned, indirect searches of dark matter through
antimatter production has stirred much interest in the last
three years. The PAMELA data [18] in combination with
that provided by Fermi-LAT [19] and HESS [26] may be
conditionally explained as DM annihilations in the galactic
halo that generates the produced antiparticle flux [33]. In
the case under consideration, the smaller annihilation cross
sections, required to satisfy WMAP data, makes even more
difficult the possibility that antimatter fluxes observed
in the cosmic ray are relevant to annihilation of the
neutralino LSP in the galactic halo. In conventional

FIG. 3 (color online). The same as in Fig. 2 with x ¼ T
mLSP

from
0.1 to values corresponding to cosmic microwave background
temperature today.

FIG. 2 (color online). The LSP dark matter number density-to-
entropy density ratio q ¼ n

T3h
as a function of x ¼ T

mLSP
in a

particular supergavity model. The values of �, S denote the
status of the � factor and the source, respectively, (✓ for open,
� for switched-off). For comparison, the corresponding equi-
librium density q0ðxÞ has been also drawn.
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supersymmetric models, the situation can be rescued at
the cost of considering large boost factors. However,
even in this case, DM annihilation appears to be a rather
remote explanation for interpreting the aforementioned
data, and other more conservative explanations exist,
as for instance antimatter produced by pulsars or super-
novae [34].

A complete phenomenological study of supersymmetric
models addressing all these issues is in progress, and the
results will appear in a forthcoming publication [35].
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