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We study observational constraints on the assisted k-inflation models in which multiple scalar fields join

an attractor characterized by an effective single field �. This effective single-field system is described by

the Lagrangian P ¼ XgðYÞ, where X is the kinetic energy of �, � is a constant, and g is an arbitrary

function in terms of Y ¼ Xe��. Our analysis covers a wide variety of k-inflation models such as dilatonic

ghost condensate, Dirac-Born-Infeld field, and tachyon, as well as the canonical field with an exponential

potential. We place observational bounds on the parameters of each model from the WMAP 7yr data

combined with baryon acoustic oscillations and the Hubble constant measurement. Using the observa-

tional constraints of the equilateral non-Gaussianity parameter f
equil
NL , we further restrict the allowed

parameter space of dilatonic ghost condensate and Dirac-Born-Infeld models. We extend the analysis

to more general models with several different choices of gðYÞ and show that the models such as

gðYÞ ¼ c0 þ cpY
p (p � 3) are excluded by the joint data analysis of the scalar/tensor spectra and

primordial non-Gaussianities.
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I. INTRODUCTION

The cosmic acceleration in the early Universe—infla-
tion—has been the backbone of high-energy cosmology
over the past 30 years. In addition to addressing the horizon
and flatness problems plaguing big bang cosmology [1],
inflation generally predicts almost scale-invariant adiabatic
density perturbations [2] (see [3–5] for reviews). This
prediction is consistent with the observations of the cosmic
microwave background (CMB) temperature anisotropies
measured by the COsmic Background Explorer (COBE)
[6] and WMAP [7]. It is possible to distinguish between a
host of inflationary models by comparing the theoretical
prediction of the spectral index ns of curvature perturba-
tions and the tensor-to-scalar ratio r with observations, but
still the current observations are not sufficient to identify
the best model of inflation.

In the next few years, the measurement of CMB tem-
perature anisotropies by the Planck satellite [8] will bring
more high-precision data. In addition to the possible
reduction of the tensor-to-scalar ratio to the order of 0.01,
the nonlinear parameter fNL of primordial scalar non-
Gaussianities may be constrained by about 1 order of
magnitude better than the bounds constrained by the
WMAP group. This can potentially provide further impor-
tant information to discriminate between many inflation
models.

The conventional single-field inflation driven by a ca-
nonical scalar field � with a potential Vð�Þ predicts small
primordial non-Gaussianities with fNL of the order of
slow-roll parameters [9–11] (see [12] for early works).
However the kinetically driven inflation models (dubbed
‘‘k-inflation’’ [13]) described by the Lagrangian density
Pð�;XÞ, where X is the field kinetic energy, can give rise to
large non-Gaussianities with jfNLj � 1 [14,15]. This is

related to the fact that, for the Lagrangian including a
nonlinear kinetic term of X, the propagation speed cs is
different from 1 (in the unit where the speed of light c is 1)
[16–18]. Since the nonlinear parameter is approximately
given by fNL ��1=c2s , one has jfNLj � 1 for c2s � 1.
In the models motivated by particle physics such as

superstring and supergravity theories, there are many
scalar fields that can be responsible for inflation [4,5]. In
some cases, even if each field is unable to lead to cosmic
acceleration, the presence of many fields allows a possi-
bility for the realization of inflation through the so-called
assisted inflation mechanism [19]. In fact, multiple
(canonical) scalar fields with exponential potentials
Við�iÞ ¼ cie

��i�i evolve to give dynamics matching a

single field with the effective slope � ¼ ðPi¼11=�
2
i Þ�1=2

[19]. Since � is smaller than the individual �i, the
presence of multiple fields can lead to sufficient amount
of inflation [20].
If we take into account a barotropic perfect fluid

(density �m) in addition to the canonical scalar field (den-
sity ��) with the exponential potential Vð�Þ ¼ ce���,

there exists a so-called scaling solution along which the
ratio ��=�m is constant [21,22]. In the presence of non-

relativistic matter, the scaling solution is unstable for
�2 < 3, in which case another scalar-field-dominated so-
lution is a stable attractor [22]. If �2 < 2, the latter can be
used for inflation as well as dark energy. If we extend the
analysis to the models described by the general Lagrangian
Pð�;XÞ, then the condition for the existence of scaling
solutions restricts the form of the Lagrangian to be
P ¼ XgðYÞ, where � is a constant and g is an arbitrary
function in terms of Y ¼ Xe�� [23,24]. Provided �2 <
2@P=@X, there exists a scalar-field-dominated attractor
that can be responsible for inflation [25,26]. In fact, this
Lagrangian covers a wide class of inflationary models such
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as the canonical scalar field with the exponential potential
(gðYÞ ¼ 1� c=Y, i.e. P ¼ X � ce���) [27] and the
dilatonic ghost condensate model (gðYÞ ¼ �1þ cY, i.e.
P ¼ �X þ ce��X2) [23]. (See Refs. [28,29] for the origi-
nal ghost condensate model.)

In the presence of multiple scalar fields, it was shown
that the Lagrangian P ¼ P

n
i¼1 XigðYiÞ, where gðYiÞ is an

arbitrary function with respect to Yi ¼ Xie
�i�i , gives rise to

assisted inflation [25,30], as happens for the canonical field
with the exponential potential. In other words, in the
regime where the solutions approach the assisted infla-
tionary attractor, the system can be described by the effec-
tive single-field Lagrangian P ¼ XgðYÞ with Y ¼ Xe��

and the slope � ¼ ðPn
i¼1 1=�

2
i Þ�1=2. While the scalar

propagation speed is different from 1 in those models,
the scalar spectral index ns and the tensor-to-scalar r are
written in terms of the function gðYÞ and its derivatives
g0ðYÞ, g00ðYÞ. By specifying the functional form of gðYÞ,
the observables ns and r as well as the equilateral non-

Gaussianity parameter f
equil
NL can be expressed by the single

parameter � in the attractor regime. This property is useful
to place tight observational bounds on those models.

In this paper we confront the assisted k-inflation sce-
nario described by the effective single-field Lagrangian
P ¼ XgðXe��Þ with the recent CMB observations by
WMAP [7] combined with baryon acoustic oscillations
(BAO) [31] and the Hubble constant measurement (HST)

[32]. We evaluate three observables ns, r, and f
equil
NL without

specifying the forms of gðYÞ, and we apply those results to
concrete models of inflation. We place observational con-
straints on a number of assisted inflation models such
as (A) canonical field with the exponential potential,
(B) tachyon [33], (C) dilatonic ghost condensate, and
(D) Dirac-Born-Infeld (DBI) field [34]. Since the effect
of the nonlinear term in X is important in models (C) and
(D), the primordial non-Gaussianity can reduce the pa-
rameter space constrained by the information of ns and r.

We shall also study other assisted inflation models such
as gðYÞ ¼ c0 þP

p�0cpY
p and the generalization of the

DBI model. Interestingly, the observational bound from the

equilateral non-Gaussianity parameter f
equil
NL combined

with ns and r can rule out some of those models.

II. BACKGROUND DYNAMICS
IN ASSISTED K-INFLATION

We start with the single-field k-inflation models de-
scribed by the action [13]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi�gM

p �
R

2
þ Pð�;XÞ

�
; (1)

where gM is a determinant of the metric g��, R is a scalar

curvature, P is a general function in terms of the scalar
field� and the kinetic term X ¼ �g��@��@��=2. We use

the unit Mpl ¼ 1, where Mpl ¼ ð8�GÞ�1=2 is the reduced

Planck mass (G is gravitational constant), but we restore
Mpl when the discussion becomes more transparent.

The pressure P and the energy density � of the field �
are given, respectively, by

P ¼ Pð�;XÞ; � ¼ 2XP;X � P; (2)

where P;X � @P=@X. We also define the equation of state

w�, as w� � P=� ¼ P=ð2XP;X � PÞ. The cosmic accel-

eration can be realized under the condition j2XP;Xj � jPj,
i.e. either (i) X is small, or (ii) P;X is small. The case

(i) corresponds to conventional slow-roll inflation driven
by a field potential, whereas the case (ii) corresponds to
kinetically driven inflation [13]. One of the examples in
class (ii) is the ghost condensate model [28,29] described
by the Lagrangian P ¼ �X þ X2=M4, in which case in-
flation occurs around X ¼ M4=2.
In Refs. [23,24] it was shown that the condition for the

existence of cosmological scaling solutions in the presence
of nonrelativistic matter restricts the Lagrangian of the
form

Pð�;XÞ ¼ XgðYÞ; Y � Xe��; (3)

where � is a constant and g is an arbitrary function in terms
of Y. This Lagrangian was derived by imposing that
��=�m ¼ constant and w� ¼ constant in the scaling re-

gime (where �� and�m are the density parameters of the

scalar field and nonrelativistic matter, respectively).
For the Lagrangian (3) there is another solution that can

be responsible for the cosmic acceleration. This corre-
sponds to the fixed point with the equation of state [25]

w� ¼ �1þ �2

3P;X

: (4)

The condition for the cosmic acceleration is w� <�1=3,

i.e. �2 < 2P;X. Moreover, this point is stable for �2 < 3P;X.

Under the condition �2 < 3P;X, the scaling solution is

unstable [25].
Let us consider the models with multiple scalar fields�i

(i ¼ 1; 2; � � � ; n) described by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi�gM

p �
R

2
þXn

i¼1

XigðXie
�i�iÞ

�
; (5)

where Xi ¼ �g��@��i@��i=2, �i’s are constants, and g is

an arbitrary function in terms of Yi ¼ Xie
�i�i . Since we

focus on inflation in the early Universe, we do not take into
account other matter sources in the action (5). In the flat
Friedmann-Lemaı̂tre-Robertson-Walker background with
a scale factor aðtÞ, the equations of motion are

3H2 ¼ Xn
i¼1

�i; (6)
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2 _H ¼ �Xn
i¼1

ðPi þ �iÞ; (7)

_� i þ 3Hð�i þ PiÞ ¼ 0; ði ¼ 1; 2; � � � ; nÞ; (8)

where H � _a=a is the Hubble parameter (a dot denotes a
derivative with respect to t), and

Pi ¼ XigðYiÞ; �i ¼ Xi½gðYiÞ þ 2Yig
0ðYiÞ�: (9)

Here and in the following, a prime represents a derivative
of the corresponding quantities, e.g., g0ðYiÞ ¼ dg=dYi.

In order to discuss the cosmological dynamics for the
theories described by the action (5), we introduce the
following quantities:

xi ¼
_�iffiffiffi
6

p
H
; yi ¼ e��i�i=2ffiffiffi

3
p

H
: (10)

The differential equations for the variables xi and yi are
given by

dxi
dN

¼ 3xi
2

�
1þXn

i¼1

gðYiÞx2i �
ffiffiffi
6

p
3

�ixi

�

þ
ffiffiffi
6

p
AðYiÞ
2

½�i��i
� ffiffiffi

6
p fgðYiÞ þ Yig

0ðYiÞgxi�; (11)

dyi
dN

¼ 3yi
2

�
1þXn

i¼1

gðYiÞx2i �
ffiffiffi
6

p
3

�ixi

�
; (12)

where N ¼ lna is the number of e-foldings, and

AðYiÞ ¼ ½gðYiÞ þ 5Yig
0ðYiÞ þ 2Y2

i g
00ðYiÞ��1; (13)

��i
¼ x2i ½gðYiÞ þ 2Yig

0ðYiÞ�: (14)

From Eqs. (11) and (12), we find that the fixed point
(dxi=dN ¼ 0 and dyi=dN ¼ 0) responsible for inflation
(yi � 0) satisfies

�ixi ¼
ffiffiffi
6

p ½gðYiÞ þ Yig
0ðYiÞ�

gðYiÞ þ 2Yig
0ðYiÞ ¼

ffiffiffi
6

p
2

�
1þXn

i¼1

gðYiÞx2i
�
:

(15)

Then the equation of state for each field, w�i
¼

gðYiÞ=½gðYiÞ þ 2Yig
0ðYiÞ�, reads

w�i
¼ Xn

i¼1

gðYiÞx2i ¼ �1þ
ffiffiffi
6

p
3

�ixi: (16)

We require that Eq. (15) is satisfied for all i ¼ 1; 2; � � � ; n.
Hence �ixi’s are independent of i, i.e.

�1x1 ¼ � � � ¼ �ixi ¼ � � � ¼ �nxn � �x: (17)

This property also holds for Yi and w�i
:

Y1 ¼ � � � ¼ Yi ¼ � � � ¼ Yn � Y; (18)

w�1
¼ � � � ¼ w�i

¼ � � � ¼ w�n
� w�: (19)

From Eq. (15) it follows that

�x ¼
ffiffiffi
6

p ½gðYÞ þ Yg0ðYÞ�
gðYÞ þ 2Yg0ðYÞ (20)

¼
ffiffiffi
6

p
2

�
1þ gðYÞx2�2

Xn
i¼1

1

�2
i

�
: (21)

If we choose

1

�2
¼ Xn

i¼1

1

�2
i

; (22)

then Eq. (21) yields

�x ¼
ffiffiffi
6

p
2

½1þ gðYÞx2�: (23)

This shows that, along the inflationary fixed point, the
system effectively reduces to that of the single field with
the Lagrangian P ¼ XgðYÞ with Y ¼ Xe��. Since the sum
of the density parameters��i

¼ x2i ½gðYiÞ þ 2Yig
0ðYiÞ� sat-

isfies the relation
P

n
i¼1 ��i

¼ 1, we have

x2½gðYÞ þ 2Yg0ðYÞ� ¼ 1: (24)

From Eq. (20) it then follows that x ¼ �=ð ffiffiffi
6

p
P;XÞ, where

we have used P;X ¼ gðYÞ þ Yg0ðYÞ. The field equation of

state (16) is given by

w� ¼ �1þ �2

3P;X

: (25)

From Eq. (22) we find that the effective slope squared �2

is smaller than �2
i of each field. Even when the cosmic

acceleration does not occur with a single field, it is possible
to realize inflation in the presence of multiple fields. The
above discussion shows that assisted inflation occurs for
the multifield k-inflation models described by the action
(5). In the regime where the solutions approach the assisted
inflationary attractor satisfying the condition �2 < 2P;X,

the multifield system reduces to that of the effective single
field. In the following we shall study the effective single-
field system described by the Lagrangian (3) with the slope
� given in Eq. (22). As we mentioned in the Introduction,
this analysis covers a wide variety of assisted inflation
models.

III. INFLATIONARY OBSERVABLES

It is possible to distinguish between a host of inflationary
models by considering the spectra of primordial density
perturbations generated during inflation. For the calcula-
tions including primordial non-Gaussianities it is conve-
nient to use the ADM metric [35] of the form
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ds2 ¼ �½ð1þ �Þ2 � a�2ðtÞe�2Rð@c Þ2�dt2 þ 2@ic dtdxi

þ a2ðtÞðe2R�ij þ hijÞdxidxj; (26)

where �, c , and R are scalar perturbations, and hij are

tensor perturbations. We do not take into account vector
perturbations because they rapidly decay during inflation.

In the metric (26) we have gauged away a field E that
appears as a form E;ij inside the last parentheses. This fixes

the spatial part of the gauge-transformation vector 	�. We
also choose the uniform-field gauge such that the inflaton
fluctuation �� vanishes (�� ¼ 0), which fixes the time
component of 	�.

Integrating the action (1) by parts for the metric (26) and
using the background equations of motion, the second-
order action for the curvature perturbation can be written
as [16]

S2 ¼
Z

dtd3xa3Q

�
_R2 � c2s

a2
@iR@iR

�
; (27)

where Q � 
=c2s , and


 � � _H

H2
; c2s � P;X

P;X þ 2XP;XX

: (28)

The conditions for the avoidance of ghosts and Laplacian
instabilities correspond to Q> 0 and c2s > 0, respectively,
which are equivalent to


 > 0 and c2s > 0: (29)

For the Lagrangian including a nonlinear term in X
(i.e. P;XX � 0Þ, the scalar propagation speed cs is different
from 1.

The equation for the Fourier mode of R follows from
the action (27). For the modes deep inside the Hubble
radius we choose the integration constants of the solution
of R to recover the Bunch-Davies vacuum state. After the
perturbations leave the Hubble radius (csk & aH, where k
is a wave number), the curvature perturbation is frozen, so
that the scalar power spectrum is given by [16]

P s ¼ 1

8�2M2
pl

H2

cs

; (30)

which is evaluated at csk ¼ aH. The scalar spectral index
is

ns � 1 � d lnP s

d lnk

��������csk¼aH
¼ �2
� �� s; (31)

where

� � _


H

; s � _cs

Hcs
: (32)

Here we have assumed that the field propagation speed
slowly changes in time, such that jsj � 1.

For the theories described by the action (1), the tensor
perturbation hij satisfies the same equation of motion as

that for a massless scalar field. Taking into account two
polarization states, the spectrum of hij and its spectral

index are given, respectively, by [16]

P t ¼ 2H2

�2M2
pl

; (33)

nt � d lnP t

d lnk

��������k¼aH
¼ �2
: (34)

The tensor-to-scalar ratio is

r � P t

P s

¼ 16cs
 ¼ �8csnt: (35)

The non-Gaussianity of the curvature perturbation is
known by evaluating the vacuum expectation value of the
three-point correlation function hRðk1ÞRðk2ÞRðk3Þi,
where RðkiÞ is the Fourier mode with a wave number ki
(i ¼ 1, 2, 3). We write the bispectrum in the form

hRðk1ÞRðk2ÞRðk3Þi ¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ	
ðP sÞ2Bðk1; k2; k3Þ, where ki ¼ jkij. In k-inflation one can
take a factorizable shape function B ¼ ð2�Þ4ð9fNL=10Þ 	
½�1=ðk31k32Þ � 1=ðk31k33Þ � 1=ðk32k33Þ � 2=ðk21k22k23Þ þ 1=
ðk1k22k33Þ þ ð5 perm:Þ�, where the permutations act on the

last term in parentheses [36,37]. For the equilateral tri-
angles (k1 ¼ k2 ¼ k3), the nonlinear parameter is given by
[14,15,18]

fequilNL ¼ 5

81

�
1

c2s
� 1� 2�

�

�
� 35

108

�
1

c2s
� 1

�
þ 55

36




c2s

þ 5

12

�

c2s
� 85

54

s

c2s
; (36)

where

� � XP;X þ 2X2P;XX ¼ H2
=c2s ; (37)

� � X2P;XX þ 2

3
ðX3P;XXXÞ ¼ �

6

�
1

c2s
� 1þ 2

3





X

s

c2s

�
;

(38)

and 
X � �ð _X=H2Þð@H=@XÞ. In the last equality of
Eq. (38) we have used _X ¼ �6Hc2sX
X=
, which follows
from the background equation of the field � [14]. Our sign

convention of fequilNL coincides with that in the WMAP 7yr
paper [7]. The observational bound on the equilateral non-
linear parameter constrained by the WMAP 7yr data is

� 214< fequilNL < 266 ð95%C:L:Þ: (39)

Let us consider the case in which the multiple fields join
the effective single-field attractor characterized by the
conditions (20)–(24). From Eqs. (23) and (24) we obtain

�2 ¼ 6½gðYÞ þ Yg0ðYÞ�2
gðYÞ þ 2Yg0ðYÞ : (40)
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By choosing a specific function gðYÞ and solving Eq. (40),
we can determine Y in terms of � (i.e. Y is constant). The
slow-roll parameter 
 and the scalar propagation speed
squared c2s are


 ¼ 3½gðYÞ þ Yg0ðYÞ�
gðYÞ þ 2Yg0ðYÞ ; (41)

c2s ¼ gðYÞ þ Yg0ðYÞ
gðYÞ þ 5Yg0ðYÞ þ 2Y2g00ðYÞ ; (42)

which are functions of Y only. Then one has 
 ¼ constant
and c2s ¼ constant on the inflationary attractor, thereby
leading to � ¼ 0, s ¼ 0, and �=� ¼ ð1=c2s � 1Þ=6.
From Eqs. (31) and (34)–(36), the four inflationary observ-
ables reduce to

ns � 1 ¼ �2
 ¼ nt; (43)

r ¼ 16cs
 ¼ 8csð1� nsÞ; (44)

f
equil
NL ¼ � 275

972

�
1

c2s
� 1

�
þ 55

36




c2s
; (45)

where 
 and c2s are given in Eqs. (41) and (42). Since 
 is
constant along the inflationary attractor, there are no run-
nings for scalar and tensor perturbations.

Since Y is known in terms of � for given gðYÞ, all the
observables in Eqs. (43)–(45) can be expressed by � (or 
).
Observationally one can place the bounds on the parameter
� for each model. In the following we shall proceed to the
observational constraints on assisted k-inflation models.

IV. OBSERVATIONAL CONSTRAINTS ON FOUR
MODELS OF ASSISTED INFLATION

In this section we study the observational constraints on
a number of assisted inflation models by choosing specific
forms of gðYÞ. These models include (A) canonical
field with an exponential potential [gðYÞ ¼ 1� c=Y],

(B) tachyon [gðYÞ ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
=Y], (C) dilatonic ghost

condensate [gðYÞ ¼ �1þ cY], and (D) DBI field

[gðYÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
=Y � c=Y], where c is constant.

In the model (A) one has c2s ¼ 1, so that the non-

Gaussianity is small enough (fequilNL ¼ 55
=36 � 1) to sat-
isfy the observational bound (39). We can constrain either
� or 
 by carrying out the CMB likelihood analysis with
respect to ns, r, and nt. In the tachyon model (B), the scalar
propagation speed cs does not equal 1, but the difference
from 1 is required to be small. Hence the situation is
similar to that in model (A).

For models (C) and (D), cs can be much smaller than 1,
while satisfying the condition 
 � 1. In such cases, it is
possible to place tight bounds on the models from the
primordial non-Gaussianities in addition to those coming
from ns, r, and nt.

A. Canonical field with an exponential potential

The canonical field with the exponential potential de-
scribed by the Lagrangian P ¼ X� ce��� corresponds to
the choice

gðYÞ ¼ 1� c=Y: (46)

In this case, one has c=Y ¼ 6=�2 � 1, 
 ¼ �2=2, and
c2s ¼ 1. Inflation occurs for �2 � 1, i.e. X � ce���.
The inflationary observables are

ns � 1 ¼ nt ¼ ��2; (47)

r ¼ 8�2; (48)

f
equil
NL ¼ 55�2=72: (49)

Using the Cosmological Monte Carlo (COSMOMC) code
[38], we carry out the likelihood analysis with the
WMAP7yr data combined with BAO and HST. As we
show in Fig. 1, the likelihood analysis in terms of ns, nt,
and r gives the following bound:

0:086< �< 0:228 ð95%C:L:Þ: (50)

The Harrison-Zel’dovich (HZ) spectrum (ns ¼ 1 and
r ¼ 0) is disfavored from the data. Under the bound (50),

one has f
equil
NL � 1, such that the non-Gaussianity con-

straint (39) is satisfied.

0 0.05 0.1 0.15 0.2 0.25 0.3

λ

FIG. 1. One-dimensional marginalized probability distribution
of the parameter � for the model P ¼ X � ce��� constrained by
the joint data analysis of WMAP 7yr, BAO, and HST. We use the
theoretical expression of ns, r, and nt given in Eqs. (47) and (48).
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B. Tachyon

A tachyon field ’ with a potential Vð’Þ corresponds to
the Lagrangian P ¼ �Vð’Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~X

p
, where ~X �

�g��@�’@�’=2 [33]. Choosing the function

gðYÞ ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
=Y; (51)

where Y ¼ Xe�� ¼ ~X, one can show that the Lagrangian

P ¼ XgðYÞ reduces to the form P ¼ �4c=ð�2’2Þ	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~X

p
. Hence the tachyon potential Vð’Þ / ’�2 leads

to assisted inflation. The cosmological dynamics in the
presence of the inverse power-law tachyon potential have
been discussed in the papers in Ref. [39].

For the choice (51), it follows that 
 ¼ 3Y and c2s ¼
1� 2Y, where Y is related to � via �2 ¼ 6cY=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
.

The inflationary observables are

ns � 1 ¼ nt ¼ �6Y; (52)

r ¼ 48Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
; (53)

fequilNL ¼ 3905

972

Y

1� 2Y
: (54)

Since we require Y � 1 to realize the nearly scale-
invariant scalar spectrum, the non-Gaussianity is sup-

pressed to be small (f
equil
NL � 1). The relation between r

and ns is given by r ¼ 8ð1� nsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p ’ 8ð1� nsÞ,
which, in the limit that Y ! 0, is the same as that for the
canonical field with the exponential potential. This prop-
erty comes from the fact that tachyon inflation is driven by
the potential energy rather than the field kinetic energy.
The joint CMB likelihood analysis combined with BAO
and HST gives the bound

1:7	 10�3 < Y < 7:7	 10�3 ð95%C:L:Þ: (55)

Then c2s ¼ 1� 2Y is indeed close to 1.

C. Dilatonic ghost condensate

The dilatonic ghost condensate model is described by
the Lagrangian P ¼ �Xþ ce��X2, i.e.

gðYÞ ¼ �1þ cY: (56)

In this case we have


 ¼ 3ð2cY � 1Þ
3cY � 1

; c2s ¼ 2cY � 1

6cY � 1
; (57)

where cY is known by solving Eq. (40), i.e.

2cY � 1 ¼ fð�Þ; fð�Þ � 1

8

�
�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 þ 16

3
�2

s �
:

(58)

In Eq. (58) we have chosen the solution with cY > 1=2
to avoid the appearance of ghosts [23]. The inflationary
observables are given by

ns � 1 ¼ nt ¼ � �2

fð�Þ ; (59)

r ¼ 8�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð�Þ½3fð�Þ þ 2�p ; (60)

f
equil
NL ¼ � 275

486

�
1þ 1

fð�Þ
�
þ 55

72

�2

fð�Þ
�
3þ 2

fð�Þ
�
: (61)

In the limit that � ! 0, one has fð�Þ ’ �=2
ffiffiffi
3

p ! 0

and hence fequilNL ! �1. Using the WMAP 7yr bound

f
equil
NL >�214, we obtain the constraint � > 8:4	 10�3

(95% C.L.).

In the region �2 � 1 one has fð�Þ ’ ffiffiffi
3

p
�=6, ns ’

1� 2
ffiffiffi
3

p
�, and r ’ 8 � 31=4�3=2, which give the relation

r ’ ð2 ffiffiffi
6

p
=3Þð1� nsÞ3=2. In this model the tensor-to-scalar

ratio is smaller than the order of 0.1, so that the allowed
region of � is mainly determined by ns. The CMB like-
lihood analysis in terms of ns, nt, r shows that � is con-
strained to be 4:0	 10�3 < �< 1:5	 10�2 (95% C.L.);
see Fig. 2. Combining this with the non-Gaussianity con-
straint, it follows that

8:4	 10�3 < �< 1:5	 10�2 ð95%C:L:Þ: (62)

0 0.005 0.01 0.015 0.02 0.025

λ

FIG. 2. One-dimensional marginalized probability distribution
of the parameter � in the dilatonic ghost condensate model
constrained by the joint data analysis of WMAP 7yr, BAO,
and HST. We also show the bound on � coming from the
WMAP 7yr constraint of the equilateral non-Gaussianity pa-

rameter, f
equil
NL >�214, as well as the bound on � corresponding

to the constraint fequilNL >�100.
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If the future observations constrain the non-Gaussianity

parameter at the level f
equil
NL >�100, it will be possible to

exclude the dilatonic ghost condensate model (see Fig. 2).
Moreover the precise measurement of the scalar index ns
can reduce the allowed range of � further.

D. DBI field

The DBI field � is characterized by the Lagrangian

P ¼ �fð�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fð�ÞX

q
þ fð�Þ�1 � Vð�Þ; (63)

where fð�Þ and Vð�Þ are functions of �. If we choose

gðYÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
=Y � c=Y; (64)

the Lagrangian P ¼ XgðYÞ reduces to (63) with
fð�Þ ¼ e�� and Vð�Þ ¼ ðcþ 1Þe���. Hence the DBI
field with the exponential potential Vð�Þ ¼ ðcþ 1Þe���

leads to assisted inflation.
For the function (64), it follows that


 ¼ 3Y

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p þ 1
; c2s ¼ 1� 2Y: (65)

If c & 1, one has 
 � 1 and c2s ’ 1 for Y � 1. This case is
similar to tachyon inflation in which cosmic acceleration is
driven by the field potential. One can also realize 
 � 1
under the following condition:

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p � 1: (66)

If c � 1, then it is possible to satisfy (66) even for the
values of Y close to 1=2. In fact this is the ultrarelativistic
regime of the DBI inflation in which the � factor

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ _�2

q
is much larger than 1. Even in this

‘‘fast-roll’’ regime, the presence of the potential is impor-
tant to satisfy the condition (66).

The inflationary observables are

ns � 1 ¼ nt ¼ � 3ð1� c2sÞ
ccs þ 1

; (67)

r ¼ 24csð1� c2sÞ
ccs þ 1

; (68)

fequilNL ¼ � 55

1944

ð10ccs � 71Þ
ðccs þ 1Þ

�
1

c2s
� 1

�
; (69)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
. These observables depend not only

on cs (or Y) but also on the coefficient c associated with the
field potential. For larger c it is possible to satisfy the
observational constraints of ns, r, and nt with smaller cs,
because the denominators of Eqs. (67) and (68) get larger.
In fact, Fig. 3 shows that, for larger c, the one-dimensional
marginalized probability distribution of � tends to shift to
the regions of smaller cs. In Fig. 3 the propagation speed cs
close to 1 is not favored because ns and r are close to the

HZ spectrum. The models with very small cs are also
disfavored because of the large deviation from the HZ
spectrum.

In Fig. 4 we plot the non-Gaussianity parameter f
equil
NL

given in Eq. (69) versus the scalar propagation speed cs for

−2.5 −2 −1.5 −1 −0.5 0

log
10

 c
s

(i)(ii)(iii)

FIG. 3. One-dimensional marginalized probability distribution
of the field propagation speed cs (with the logarithmic scale) in
the DBI model constrained by the observational data of WMAP
7yr, BAO, and HST. The three solid lines correspond to the cases
(i) c ¼ 102, (ii) c ¼ 103, and (iii) c ¼ 104. We also show the

bound derived from the non-Gaussianity constraint f
equil
NL >

�214 in the limit ccs � 1.
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FIG. 4. The equilateral non-Gaussianity parameter f
equil
NL ver-

sus the scalar propagation speed cs in the DBI model for
(i) c ¼ 102, (ii) c ¼ 103, and (iii) c ¼ 104. For c ¼ 102, the
scalar propagation speed is constrained by the WMAP 7yr upper

bound f
equil
NL < 266, whereas for c ¼ 103 and c ¼ 104, it is

constrained by the lower bound fequilNL >�214.
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three different values of c. For c ¼ 102, we obtain the
bound cs > 3:2	 10�2 from the WMAP 7yr upper limit

f
equil
NL < 266. On the other hand, the WMAP 7yr lower

limit fequilNL >�214 gives the bounds cs > 3:1	 10�2

and cs > 3:6	 10�2 for c ¼ 103 and c ¼ 104,
respectively.

As we see in Fig. 3, the CMB likelihood analysis in
terms of ns, r, and nt places the constraints on cs, as
0:48< cs < 0:84 (95% C.L.) for c ¼ 102 and 0:06< cs <
0:35 (95% C.L.) for c ¼ 103. If c & 103, the non-
Gaussianity does not provide additional constraints
on cs to those derived by the likelihood analysis in
Fig. 3. If c * 103, the non-Gaussianity plays an important
role to restrict the allowed parameter space of cs further. In
particular, for c ¼ 104, there are almost no allowed regions
to satisfy all the observational constraints (see Fig. 3).
Hence the models with c * 104 are excluded by the analy-
sis including non-Gaussianities.

V. MORE GENERAL MODELS

So far we have studied the observational constraints on
four assisted inflation models. Among them the dilatonic
ghost condensate and the DBI models can be tightly con-
strained by taking into account the bound coming from the
primordial non-Gaussianity. This is associated with the fact
that both 
 and c2s can be much smaller than 1 in those
models. In this section we shall extend the analysis to more
general functions of gðYÞ.

In the dilatonic ghost condensate model, the numerators
of 
 and c2s in Eq. (57) vanish at cY ¼ 1=2, whereas their
denominators are nonzero finite values. In the DBI model,
the numerator of 
 in Eq. (65) does not vanish in the
ultrarelativistic regime (Y 
 1=2), whereas c2s � 1. In
the DBI case, it is possible to have 
 � 1 as long as the
denominator of 
 is much larger than its numerator [which
is satisfied under the condition (66)]. Since these models
are qualitatively different, we classify the assisted k-
inflation models into two classes in the following
discussion.

A. Class (i)

Let us first study the models in which inflation occurs
around Y ¼ Y0, where Y0 satisfies

gðY0Þ þ Y0g
0ðY0Þ ¼ 0: (70)

As in the case of the dilatonic ghost condensate, we con-
sider the models in which the numerators of 
 and c2s in
Eqs. (41) and (42) vanish, whereas the denominators
are nonzero. Since Y ¼ Y0 corresponds to the exact
de Sitter solution, we perform the linear expansion of the
variables 
ðYÞ and c2sðYÞ by setting Y ¼ Y0 þ �Y with
j�Y=Y0j � 1. It then follows that


ðYÞ ’ 
0ðY0Þ�Y ¼ 6

Y0

�
1þ Y0g

00ðY0Þ
2g0ðY0Þ

�
�Y; (71)

c2sðYÞ ’ c20s ðY0Þ�Y ¼ 1

2Y0

�Y: (72)

This shows that the ratio c2s=
 is approximately constant in
the regime j�Y=Y0j � 1:

c2s



’ 1

12

�
1þ Y0g

00ðY0Þ
2g0ðY0Þ

��1
: (73)

Expanding Eq. (40) at Y ¼ Y0, we have

ð�YÞ2 ¼ Y0g
0ðY0Þ

6½2g0ðY0Þ þ Y0g
00ðY0Þ�2

�2: (74)

As long as g0ðY0Þ> 0, there exists a solution with �Y > 0.
The conditions (29) for the avoidance of ghosts and
Laplacian instabilities translate into

g0ðY0Þ> 0; (75)

Y0g
00ðY0Þ>�2g0ðY0Þ: (76)

In the ghost condensate model described by the
function gðYÞ ¼ �1þ cY, the second derivative g00ðYÞ
automatically vanishes, which gives c2s=
 ¼ 1=12. In this
model, the variable � is observationally bounded as

� < 1:5	 10�2 (95% C.L.), in which case �Y=Y0 ¼
�=ð2 ffiffiffi

3
p Þ< 4:3	 10�3. Hence it is a good approximation

to use the linear expansion given above. In fact we have
carried out the CMB likelihood analysis by employing the
relation c2s=
 ¼ 1=12 and confirmed that the observational
bound on � is very similar to that given in Eq. (62).
We study the following more general models

gðYÞ ¼ c0 þ
X
p�0

cpY
p; (77)

where cp are constants. The power p can be an integer or

some real number. From Eq. (73), the ratio c2s=
 is given by

c2s



’ 1

6

P
pcpY

p�1
0P

pðpþ 1ÞcpYp�1
0

: (78)

For the single power p, i.e. gðYÞ ¼ c0 þ cpY
p, Eq. (78)

reduces to

c2s



’ 1

6ðpþ 1Þ : (79)

The conditions (75) and (76) give pcp > 0 and

pðpþ 1Þcp > 0, respectively, which demand that

p >�1. More precisely, we require cp < 0 for

�1< p< 0 and cp > 0 for p > 0. In Fig. 5 we plot the

line (79) in the ð
; c2sÞ plane for five different values of
p ð¼ �0:5; 0:5; 1; 2; 3Þ. The ghost condensate model cor-
responds to p ¼ 1 with the tangent c2s=
 ¼ 1=12.
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We carry out the CMB likelihood analysis for the mod-
els gðYÞ ¼ c0 þ cpY

p with p ¼ �0:5, 0.5, 1, 2, 3 by

employing the linear expansion given above. The observa-
tional constraints shown in Fig. 5 with the bold lines are
derived by using the theoretical values of ns, r, and nt given
in Eqs. (43) and (44) with the relation (79). In the ð
; c2sÞ
plane, we also plot the border corresponding to the WMAP

7yr lower bound f
equil
NL ¼ �214. The region above this

border satisfies the observational constraint of non-
Gaussianity. From Fig. 5, we find that there is no viable
parameter space for p � 3 satisfying all the observational
constraints. As long as the bold lines plotted in Fig. 5 are

above the border corresponding to f
equil
NL ¼ �214, the mod-

els with p < 3 can be compatible with the observational

data. If future observations can place the bound on f
equil
NL

larger than�80, the models with p > 1=2 can be ruled out
(see Fig. 5).

Let us also discuss the case in which the function gðYÞ is
the sum of different powers of p. For example we consider
the model

gðYÞ ¼ c0 þ c1Y þ c�1Y
�1: (80)

This corresponds to the dilatonic ghost condensate in the
presence of the exponential potential, i.e. P ¼ c0X þ
c1e

��X2 þ c�1e
���. Substituting Eq. (80) into Eq. (70),

we obtain Y0 ¼ �c0=ð2c1Þ. The conditions (75) and (76)
translate into c1ð1� 4c1c�1=c

2
0Þ> 0 and c1 > 0, respec-

tively. Since Y0 ¼ �c0=ð2c1Þ> 0, we require that

c0 < 0; c1 > 0; 4c1c�1=c
2
0 < 1: (81)

From Eq. (78), we have

c2s



¼ 1

12

�
1� 4c1c�1

c20

�
: (82)

If c�1 > 0, then the tangent of the line (82) gets smaller
relative to that in the ghost condensate model. Figure 5
shows that the allowed parameter space tends to be nar-
rower for smaller c2s=
. The existence of a viable parameter
demands the following condition:

c1c�1

c20
& 0:1: (83)

The effect of the negative exponential potential V ¼
�c�1e

��� (with c�1 > 0) needs to be suppressed to be
consistent with the bound (83). In contrast, the tangent
of the line (82) gets larger than 1=12 when c�1 < 0. The
effect of the positive exponential potential V ¼ �c�1e

���

(with c�1 < 0) makes it easier to satisfy the observational
constraints.

B. Class (ii)

In the DBI model, inflation occurs in the ultrarelativistic
regime (Y 
 1=2) under the condition (66). In this case, the
denominator of 
 in Eq. (65) is much larger than its
numerator. Since the linear expansion around Y ¼ 1=2 is
not possible in such cases, we need to treat this class of
models separately. Let us take the function of the form

gðYÞ ¼ � c

Y
½1þ fðYÞ�; (84)

in which case Eqs. (41) and (42) give


 ¼ � 3Yf0ðYÞ
1þ fðYÞ � 2Yf0ðYÞ ; (85)

c2s ¼ f0ðYÞ
f0ðYÞ þ 2Yf00ðYÞ : (86)

In the DBI model with fðYÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p
=c, we can realize

inflation in the regime jf0ðYÞj ¼ 1=½jcj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y

p � � 1 and
fðYÞ � 1 with Y 
 1=2, so that 
 � 1.
We study the models (84) with

fðYÞ ¼ ð1� 2YÞm=c: (87)

From Eqs. (85) and (86), we have


 ¼ 6mY

cð1� 2YÞ1�m þ 1þ 2ð2m� 1ÞY ; (88)

c2s ¼ 1� 2Y

1� 2ð2m� 1ÞY : (89)

 0

 0.001

 0.002
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 0.004

 0.005

 0.006

 0  0.01  0.02  0.03  0.04
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2

ε

FIG. 5. The thin lines show the relations between 
 and c2s for
the models gðYÞ ¼ c0 þ cpY

p with (i) p ¼ �0:5, (ii) p ¼ 0:5,

(iii) p ¼ 1, (iv) p ¼ 2, and (v) p ¼ 3, in the regime 
 � 1. The
bold lines correspond to the observational constraints (95% C.L.)
on each model derived from the joint data analysis of WMAP
7yr, BAO, and HST. We also plot the boundary coming from

f
equil
NL >�214 as well as the curves corresponding to f

equil
NL ¼

�50 and f
equil
NL ¼ �80.
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We consider the case in which inflation occurs for the
values of Y slightly smaller than 1=2, while satisfying
the condition cð1� 2YÞ1�m � 1. Since we require

 ’ 3m=½cð1� 2YÞ1�m�> 0 and c2s ’ ð1� 2YÞ=
½2ð1�mÞ�> 0, we have either 0<m< 1 with c > 0 or
m< 0 with c < 0. The following relation also holds be-
tween cs and 
:

c2ð1�mÞ
s ’ 3m

c½2ð1�mÞ�1�m

1



: (90)

In Fig. 6 we plot the curve (90) in the ð
; c2sÞ plane for
four different values of m ( ¼ 0:3, 0.5, 0.7, 0.9). The
left and right panels correspond to the cases c ¼ 103 and
c ¼ 104, respectively. We also show the observational
bounds constrained by ns, r, and nt (plotted as the bold

lines) as well as the curves corresponding to fequilNL ¼ �214

and f
equil
NL ¼ �50.

When c ¼ 103, there exists some allowed parameter
space for the models with m � 0:7 (including the DBI
model with m ¼ 0:5), but for m � 0:9, the WMAP 7yr
bound of the non-Gaussianity excludes the parameter re-
gion constrained by the linear perturbations. For larger c
the theoretical curves in Fig. 6 shift to the regions
with smaller cs, so that the constraint from the non-
Gaussianity tends to be more important. For c ¼ 104 the
right panel of Fig. 6 shows that the models withm � 0:5 do
not have the viable parameter space satisfying all the
current observational constraints. If future observations
can reach the level of the lower limit of the non-

Gaussianity with jfequilNL j ¼ Oð10Þ, then it is possible to
place tighter constraints further (see the curves in Fig. 6

corresponding to fequilNL ¼ �50).

VI. CONCLUSIONS

We have studied the observational constraints on as-
sisted k-inflation models in which the multiple scalar fields
join an effective single-field attractor described by the
Lagrangian P ¼ XgðYÞ with Y ¼ Xe��. The canonical
field with the exponential potential P ¼ X � ce��� (i.e.
gðYÞ ¼ 1� c=Y) is one of the simplest examples giving
rise to assisted inflation. The effective slope � along the

inflationary attractor is given by � ¼ ðPi¼11=�
2
i Þ�1=2,

which is smaller than the slopes �i for each exponential
potential. The same structure holds for the k-inflation
models with the Lagrangian P ¼ XgðYÞ for arbitrary func-
tions of gðYÞ.
Along the effective single-field attractor, the inflationary

observables are in general given by Eqs. (43)–(45). In
Sec. IV we have confronted four models of assisted in-
flation with the recent observations of CMB combined
with BAO and HST. For the canonical field with the
exponential potential, the effective slope � is constrained
to be 0:086< �< 0:228. The tachyon field needs to have a
small kinetic energy relative to its potential energy for the
realization of inflation, in which case the observational
bound on the variable Y is given by Eq. (55). Since the
field propagation speed cs is close to 1 in this case,
the primordial non-Gaussianity remains small for the
tachyon model.
In the dilatonic ghost condensate model, the non-

Gaussianity provides additional constraints to those de-
rived by the spectra of scalar and tensor perturbations. As

we see in Fig. 2, the WMAP 7 yr limit f
equil
NL >�214

reduces the allowed parameter space of the parameter �.

If the lower bound on fequilNL reaches the level of �100 in
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FIG. 6. The thin curves show the relation between 
 and c2s for the models (84) with (87). The left and right panels correspond to
c ¼ 103 and c ¼ 104, respectively, with (i) m ¼ 0:3, (ii) m ¼ 0:5, (iii) m ¼ 0:7, and (iv) m ¼ 0:9. The bold curves represent the
observational constraints (95% C.L.) derived from the CMB likelihood analysis in terms of ns, r, and nt. We also plot the borders

corresponding to the WMAP 7yr bound f
equil
NL >�214 as well as f

equil
NL ¼ �50.
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future observations, it will be possible to rule out the
dilatonic ghost condensate model. In the DBI model, the
level of the non-Gaussianity depends on the field propaga-
tion speed cs as well as on the constant c associated with

the energy scale of the potential. For larger c, jfequilNL j tends
to increase, so that the models can be constrained by the
additional information coming from the non-Gaussianity.
In fact, the DBI model with c * 104 is excluded by the
WMAP 7yr data.

We have extended the analysis to more general functions
gðYÞ by classifying the assisted k-inflation models into two
classes. The first class consists of the models in which
inflation occurs around Y ¼ Y0, satisfying the condition
gðY0Þ þ Y0g

0ðY0Þ ¼ 0. The representative models of this
class are gðYÞ ¼ c0 þP

p�0cpY
p, which includes the

dilatonic ghost condensate. From the CMB likelihood
analysis combined with the non-Gaussianity bound,
we have found that the single-power models gðYÞ ¼
c0 þ cpY

p with p � 3 are ruled out. The second class

consists of the models with the speed limit of the field,
which includes the DBI model as a specific case. We
have carried out the CMB likelihood analysis for the
functions gðYÞ ¼ �ðc=YÞ½1þ ð1� 2YÞm=c� (m< 1) and
showed that the models with larger m and c tend to be
observationally disfavored by taking into account the
non-Gaussianity bound.

In this paper we have evaluated the inflationary
observables under the assumption that the solutions are
on the assisted attractor described by the effective
single field. In order to end inflation, the solutions need
to exit from this regime. This can be achieved by treating
the validity of our Lagrangian P ¼ XgðYÞ only within
some limited range of field values. With some suitable
modification of the Lagrangian, it is possible to lead to
the graceful exit of inflation [13]. Another possibility is
that k-inflation ends with a phase transition as in hybrid
inflation [29]. It will also be of interest to study the case
where the observed CMB anisotropies correspond to the
epoch before the multiple fields join the inflationary
attractor. In this case, the trajectory in field space is
curved, so that isocurvature perturbations can contribute
to adiabatic perturbations [40]. We leave these issues for
future work.
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