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Prior to recombination photons, electrons, and atomic nuclei rapidly scattered and behaved, almost, like

a single tightly-coupled photon-baryon plasma. We investigate here the accuracy of the tight-coupling

approximation commonly used to numerically evolve the baryon and photon perturbation equations at

early times. By solving the exact perturbations equations with a stiff solver starting deep in the radiation-

dominated epoch, we find the level of inaccuracy introduced by resorting to the standard first-order tight-

coupling approximation. We develop a new second-order approximation in the inverse Thomson opacity

expansion and show that it closely tracks the full solution, at essentially no extra numerical cost. We find

the bias on estimates of cosmological parameters introduced by the first-order approximation is, for most

parameters, negligible. Finally, we show that our second-order approximation can be used to reduce the

time needed to compute cosmic microwave background angular spectra by as much as �17%.

DOI: 10.1103/PhysRevD.83.103521 PACS numbers: 98.80.�k, 98.80.Jk

I. INTRODUCTION

The cosmic microwave background (CMB) radiation
provides us with a picture of the Universe as it looked
when the first atoms formed, about 380 000 years after the
big bang. At that time, photons and baryonic matter practi-
cally ceased interacting and the Universe became transpar-
ent to radiation, allowing CMB photons to free-stream
through space. To extract accurate cosmological informa-
tion from CMB data it is crucial to understand the evolu-
tion of the photon-baryon plasma before decoupling. This
involves solving the Boltzmann equations for both photons
and baryons coupled by a Thomson-scattering collision
term [1–7]. However, the large value of the Thomson
opacity (��1

c ) before recombination renders these equa-
tions stiff, and hence difficult to solve numerically. This
difficulty is usually circumvented by making use of the so-
called ‘‘tight-coupling’’ approximation [1]. In this scheme,
an alternative (approximate) form of the equations is found
and used to find the solution by systematically expanding
the problematic terms to first order in �c. At late times,
once the Thomson opacity drops below a certain threshold,
one switches back to the exact equations to determine the
final answer.

Recently, it has been shown that uncertainties in the
cosmological recombination process may lead to a bias
in estimates of cosmological parameters [8–10]. Could the
tight-coupling approximation also result in such a bias and
affect the final result of modern Boltzmann codes such as
CAMB [11] or CMBFAST [12]? In this paper, we first inves-

tigate the accuracy of the tight-coupling approximation by
directly solving the exact set of equations at all times using
a stiff integration scheme. This necessitates calculating
more accurate cosmological initial conditions than has

been done in the past. While not efficient, solving the exact
equations allows us to determine the level of inaccuracy
introduced by resorting to the tightly-coupled limit at early
times. We then design a higher-order expansion scheme
and show that at second order in k�c and _�c, the final
solution very closely tracks that obtained by solving the
exact set of equations. We are then able to compute the bias
on cosmological parameter estimates introduced by resort-
ing to the first-order tight-coupling approximation and
show that it is indeed small for most cosmological parame-
ters. Finally, and most importantly, we describe how our
second-order expansion can be used to speed up the com-
putation of CMB power spectra without loss of overall
accuracy.

II. SOLUTION TO THE EXACT EQUATIONS

The first step in testing the validity of the tight-coupling
approximation is to evolve the exact set of equations from
early times. This requires the use of a differential equation
solver able to solve stiff systems with adaptive step sizes.
We utilize the LSODA [13] solver which is based on the
backward differentiation formula method. We find that the
stiff integrator can solve the exact Boltzmann equations
provided suitably accurate initial conditions are given.
Indeed, the usual initial conditions for the perturbation
variables used by modern Boltzmann codes are valid
only in the limit of perfect coupling between photons and
baryons [7,14]. In this limit, the dipole moments of the
photon and baryon distributions are exactly equal to each
other and the photon quadrupole moment vanishes.
However, in order to solve the exact equations at early
times, one needs to initialize the relative dipole moment
(usually called the slip) between the photons and baryons
and the photon quadrupole moment to nonzero values. We
describe our approach to this problem in the next subsec-
tion. We then verify the convergence of the solution
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obtained with the stiff integrator to ensure it is stable to
changes in the numerical tolerance and accuracy settings.

A. Initial conditions

To find suitable initial conditions to the system of exact
equations, we expand each perturbation variable in powers
of k� and � � �c=�

�ð�; �Þ ¼ X
m;n

ðC�Þmnðk�Þm�n (1)

and substitute the result in the system of coupled differen-
tial equations (see Appendix A). Here, k is the Fourier
wave number, � is conformal time, and �ð�; �Þ stands for
any of the following perturbation variables: �c; ��; ��;

F�2; �b; Sb � �b � ��; ��; ��; F�2; � (our notation closely

follows that of [7]). We then match coefficients of like
powers of k� and � to obtain a set of linear equations for the
series coefficients ðC�Þmn. We then solve these linear
equations to find a global series solution, demanding that
the tightly-coupled solutions (adiabatic or isocurvature)
are retrieved in the limit � ! 0. In principle, one could
try to solve the full recursion relation and obtain a closed-
form expression for the ðC�Þmn. In practice however, find-
ing the first few terms of the series is sufficient to set
accurate initial conditions. Using this method, we obtain
the leading-order contribution to the initial value of the slip
between baryons and photons for the adiabatic mode

Sbð�Þ��bð�Þ���ð�Þ¼ �1Rb

6ð1�R�Þ!k4�4�þOð�2Þ; (2)

where �l ¼ 1� lðlþ 2ÞK=k2 is a normalization constant,

R� � 	�=ð	� þ 	�Þ, Rb � 	b=	m, and! ¼ H0�m=
ffiffiffiffiffiffiffi
�r

p
.

The leading-order contribution of the photon quadrupole
moment of the adiabatic mode is

F�2ð�Þ ¼
�
16

9
þ ð8R� � 5Þ!�

3ð2R� þ 15Þ
�

4k2�2�

ð4R� þ 15Þ þOð�2Þ: (3)

We list the initial conditions for all of the relevant pertur-
bation variables in Appendix B.

B. Convergence of the stiff integration

We verify the convergence of the stiff integrator by
running several computations with increasing accuracy
and comparing the resulting angular power spectra. In
CAMB, the desired accuracy is usually selected by choosing

the appropriate ‘‘accuracy boost factors’’ which control,
among other things, the Fourier mode sampling of the
CMB anisotropy sources, the time step of the integrator,
the number of multipoles kept in photon and neutrino
hierarchies and the sampling of the final angular power
spectrum. See Ref. [15] for a complete list. Here, we
increase the accuracy boost factors to verify for conver-
gence but we also vary independently the tolerance of the
stiff integrator to single out any error that is introduced by

the solver itself. Throughout this section, we use as a
benchmark model the WMAP seven-year cosmological
parameter best-values [16]. Figure 1 shows the fractional
change in both CTT

l and CEE
l as a function of the multipole

moment l as the relative tolerance of the integrator is
increased by an order of magnitude from 10�6 to 10�7.
The average fractional change in the angular power spectra
is approximately 3� 10�7, hence showing that the inte-
gration process has converged. Figure 2 shows the frac-
tional change in both CTT

l and CEE
l as the three CAMB

accuracy boost factors are increased from 5 to 6. We see
that the Cl computed with the stiff integrator have an
accuracy of 0.01% or better with the accuracy boost factors
set to 5. We shall use this spectrum as our benchmark for
testing the accuracy of our second-order tight-coupling
approximation scheme, which we now present in the next
section.

FIG. 1 (color online). Fractional change in CTT
l and CEE

l versus
multipole moments as the relative tolerance of the stiff integrator
is varied from 10�6 to 10�7. Here the CAMB accuracy boost
factors are set equal to 5. The average change is 3:5� 10�7 for
CTT
l and 3:3� 10�7 for CEE

l .

FIG. 2 (color online). Fractional change in CTT
l and CEE

l versus
multipole moments as the three CAMB accuracy boost factors are
increased from 5 to 6. The maximum change is about 1� 10�4

for CEE
l and 6� 10�3 for CTT

l .
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III. SECOND-ORDER SCHEME

In the usual tight-coupling approximation, the photon
and baryon dipole moments are obtained by solving the
two exact equations [17]

_�� ¼ R

1þ R
k2
�
1

4
�� � �1

F�2

2

�

þ 1

1þ R

�
k2c2s�b � _a

a
�b � _Sb

�
; (4)

_�b ¼ 1

1þ R

�
k2c2s�b � _a

a
�b

�

þ R

1þ R

�
k2
�
1

4
�� � �1

F�2

2

�
þ _Sb

�
; (5)

where a stands for the scale factor and dots represent
derivatives with respect to conformal time. The exactness
of the solution to the above equations of motion depends
strongly on the accuracy at which we can determine both
_Sb and F�2. Current CMB Boltzmann codes use a first-

order expansion in �c to approximate the photon-baryon
slip and the photon quadrupole moment. Here, we propose
a method to obtain the second-order corrections in �c to
these quantities. See [18] for a related expansion in the
context of magnetogenesis.

A. Photon-Baryon slip

Our starting point is the exact equation for the slip
obtained from combining Eq. (A8) and the time derivative
of Eq. (A8) [17]:

_Sb ¼ 1

1þ 2 _a
a

�c
1þR

��
_�c
�c

� _a

a

2

1þ R

�
Sb

þ �c
1þ R

�
� €a

a
�b � €Sb � k2

_a

a

�
1

2
�� � �1F�2

�

þ k2
�
c2s _�b � 1

4
_�� þ �1

_F�2

2

���
: (6)

Usually, one sets €Sb ¼ F�2 ¼ _F�2 ¼ 0 and neglect the

prefactor on the right-hand side of Eq. (6) since they
contribute terms of order �2c and higher. However, to obtain
an equation for the photon-baryon slip valid at second
order in �c, an approximation for €Sb, F�2, and _F�2 accurate

to first order in �c is necessary.
The second derivative of the photon-baryon slip is com-

puted by taking the time derivative of the right-hand side of
Eq. (6). Here, we neglect terms proportional to d3Sb=d�

3

and €F�2. We then use the time derivative of Eqs. (A7)–(A9)

to eliminate the second derivatives of �� and �b. €h is

eliminated by using the i-i component of the perturbed
Einstein equation

€hþ2
_a

a
ð2k
�6 _�Þ�2k2�1�¼�8�Ga2

X
i

3	iwi�i; (7)

where 
 ¼ ð _hþ 6 _�Þ=2k is the shear. We further eliminate
_�� using Eq. (A8) and set F�2 ¼ _F�2 ¼ 0 since they

contribute terms of order �2c to €Sb. We finally substitute
the time-evolution equations for the parameters R, c2s , �c,
and _a=a � H :

_R ¼ �H ð1� 3c2sÞR; _c2s ¼ �H c2s

€�c ¼ 2 _H �c þ 2H _�c;
€H ¼ �3H _H �H 3:

Now armed with an expression for €Sb, we substitute it into
Eq. (6) and solve algebraically for _Sb. The result is given in
Appendix C.

B. Photon quadrupole moment

To obtain an expression for F�2 and _F�2 accurate to

second order in �c, we use the recursion relation between
higher photon multipole moments [7]

_F�l ¼ k

2lþ 1
½lF�ðl�1Þ � ðlþ 1Þ�lF�ðlþ1Þ� � 1

�c
F�l; (8)

which is valid for l � 3. We begin by setting F�5 ¼ 0 and

solve Eq. (8) with l ¼ 4 for F�4. We then take the deriva-

tive with respect to proper time, setting €F�4 ¼ 0. We

finally solve the resulting equation for _F�4 and substitute

back the result in Eq. (8). This last equation leads to an
expression for F�4 valid to fourth order in �c (remembering

that F�3 / k2�2c and that _�c / �c=�):

F�4 ’ 4

9
k�cF�3ð1� _�cÞ � 4

9
k�2c _F�3 þOð�5cÞ: (9)

Substituting the above in Eq. (8) evaluated at l ¼ 3 and
using a similar procedure, we obtain an expression for F�3

valid to fourth order in �c

F�3 ’ 3

7
k�cF�2ð1� _�c þ _�2cÞ � 3

7
k�2c _F�2ð1� _�cÞ

� 16

147
k3�3cF�2 þOð�5cÞ: (10)

The last step in deriving expansions for the quadrupole
moment and its derivative is to express the polarization
multipole G�2 in terms of _F�2 and F�2. Similar to the

above calculation, this is accomplished by using the recur-
sion relation for the polarization multipole moments [19]

_G�l ¼ k

2lþ 1

�
lG�ðl�1Þ � ðlþ 3Þðl� 1Þ

lþ 1
�lG�ðlþ1Þ

�

� 1

�c

�
G�l � 2

15

�
3

4
F�2 þ 9

2
G�2

�
�l2

�
; (11)

where �ij is the Kronecker delta. Again, we set G�5 ¼ 0

and follow the method outlined above to obtain
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G�2 ’
F�2

4
� 5

8
�c _F�2

�
1� 5

2
_�c þ 25

4
_�2c

�

� 5

56
k2�2cF�2ð1� 6 _�cÞ þ 15

27
k2�3c _F�2; (12)

which is accurate to fourth order in �c. We now have all the
necessary tools to derive approximate expressions for F�2

and _F�2. We substitute Eqs. (12) and (10) in Eq. (A9) and

solve for F�2. We then take the derivative with respect to

conformal time and set €F�2 ¼ 0. We finally solve for _F�2

and obtain

_F�2 ¼ 32

45
_�cð�� þ k
Þ

�
1� 11

6
_�c

�

þ 32

45
�cð _�� þ k _
Þ

�
1� 11

6
_�c

�
þOð�3cÞ: (13)

Substituting the above back in Eq. (A9), we ultimately
arrive at the desired expression for the photon quadrupole
moment

F�2 ¼ 32

45
�cð�� þ k
Þ

�
1� 11

6
_�c

�

þ 32

45
�2cð _�� þ k _
Þ

�
� 11

6

�
þOð�3cÞ: (14)

C. Computational procedure

As we can see from Eq. (14), our second-order expres-
sion for the photon quadrupole moment depends on _��.

From a practical perspective, this is problematic since it is
the quantity that we are trying to determine in the first
place. We overcome this difficulty by computing each
quantity order by order in �c until the desired level of
accuracy is reached.

The first step is to obtain an approximation to F�2 using

Eq. (14) but keeping only the terms linear in �c, which are
independent of _��. We then use this expression to calculate

_
 to first order in �c using the traceless space-space part of
the perturbed Einstein equation

k _
þ 2
_a

a
k
� k2� ¼ �8�Ga2ð	�F�2 þ 	�F�2Þ: (15)

Next, we calculate a zeroth-order expression for _�� using

Eq. (4) with _Sb and F�2 set to zero. We then use our two

formulas for _
 and _�� to compute _F�2 to first order in �c
using Eq. (13).

We now have all the necessary tools to calculate the
photon-baryon slip to second order in �c using Eq. (C1).
We finally use this last expression to obtain a first order
approximation to _�� using Eq. (A8), which in turn is used

to obtain _F�2 and F�2 accurate to second order in �c.

D. Accuracy of the second-order scheme

We test the accuracy of the second-order scheme by
comparing the final angular power spectrum with both
the stiff integrator benchmark and the usual first-order
tight-coupling approximation. To isolate the effect of the
second-order terms in the equations of motion, we leave
untouched the algorithm that switches from the tightly-
coupled equations to the exact system of equations.
Improvements to the switching criteria will be discussed
in Sec. V. As mentioned above, all the results presented in
this section are valid for the WMAP seven-year best-fit
values for cosmological parameters. We find that at default
accuracy setting (“accuracy boost” ¼ 1) for all three com-
putations, the fractional difference between the second-
order scheme and the benchmark integration averaged
over multipoles is about an order of magnitude smaller
than the average fractional difference between the usual
first-order tight-coupling approximation and the bench-
mark integration (see Fig. 3). Hence, the second-order
scheme reproduces more accurately the solution to the
exact equations.
As the accuracy boost factors are increased, the second-

order scheme keeps providing, on average, a more accurate
answer than the first-order tight-coupling approximation.
Figure 4 compares the angular power spectra from the two
schemes with those found by integrating the exact system
of equations. Although, the difference between the two
codes might be insignificant for current CMB experiments,
it illustrates that the next-to-leading-order code is better
capturing what is happening during the tightly-coupled
epoch, especially for the low multipoles. The key point
however is that this better accuracy comes at almost no
additional computational cost, a point that we shall empha-
size in Sec. V.

FIG. 3 (color online). Fractional difference of CTT
l between the

usual first-order tight-coupling approximation and the benchmark
integration (full line), and between the second-order approxima-
tion and the benchmark integration (dashed line). Here, the three
sets of Cls have been computed with default accuracy. The
average fractional difference is 6:6� 10�4 for the first-order
approximation and 5� 10�5 for the second-order approximation.

FRANCIS-YAN CYR-RACINE AND KRIS SIGURDSON PHYSICAL REVIEW D 83, 103521 (2011)

103521-4



In summary, we have shown that the second-order tight-
coupling approximation reproduces more closely the result
found by solving the exact equations, hence showing that
the tight-coupling expansion is converging toward the ex-
act solution. For practical applications however, the per-
centage change in the angular power spectrum between the
usual first-order approximation and the exact solution is
small and well within the quoted precision from CAMB

(0.3% at default accuracy). This implies that the first-order
tight-coupling approximation should be sufficient for most
practical purposes. Nevertheless, as we will describe in the
next few sections, it is possible to use our second-order
expansion to reduce the potential bias on cosmological
parameter estimates and to speed up the code.

We mention in passing that the precision (i.e., the size of
the numerical noise) of individual Cl is almost not affected
by the introduction of the second-order terms in the equa-
tions of motion. Indeed, the precision of the final angular
power spectrum is mainly determined by the number of
k-modes evolved by the code, the number of photon multi-
poles that are solved for, as well as various interpolation
errors. Since our new tight-coupling approximation does
not modify any of the above, it is therefore natural to
expect that the precision of the second-order power spec-
trum to remain unchanged.

IV. BIAS ON COSMOLOGICAL PARAMETERS

In today’s era of precision cosmology, the main purpose
of CMB codes is to generate theoretical spectra that are
then compared with data for cosmological parameter
estimation purpose. However, numerical errors in the theo-
retical spectra could lead to a slight bias on estimates
of cosmological parameters [15]. Since our improved

tight-coupling approximation scheme leads to more accu-
rate values of the power spectra, it is interesting to see how
the bias is affected. To answer this question, we need to
compute the effective �2 between our theoretical spectra
and a fiducial data set which we take to have Planck-level
noise. The effective �2 is defined by

�2 ¼ X
l

ð2lþ 1Þfsky
�
Trð~C�1

l ĈlÞ þ ln
j~Clj
jĈlj

� 2

�
; (16)

where fsky is the observed sky fraction and ~Cl ¼ fCXX0
l þ

N XX0
l g is the theoretical covariance matrix. Here, X runs

over temperature (T) and polarization (E). Ĉl is the data
covariance matrix. If we assume that the likelihood L ¼
expð��2=2Þ is a multivariate Gaussian and that the prior
probability densities are flat, then the bias on any cosmo-

logical parameter cannot exceed
ffiffiffiffiffiffi
�2

p
standard deviations.

In practice, however, this bound is rarely saturated.
Nonetheless, a small �2 between the data and the theory
is still necessary to ensure a minimal bias.
We generate a fiducial data set up to l ¼ 2500 using the

method outlined in [15] but with the Cl obtained from the
stiff solver. Again, we use theWMAP 7-year best-fit values
for cosmological parameters. We take the noise to be
Gaussian and isotropic with power spectrum given by

N XX0
l ¼ �XX0�2beam�

2
X exp

�
lðlþ 1Þ�

2
beam

8 ln2

�
; (17)

where �beam is the beam width and �X is the sensitivity
per pixel. As an example, we consider the 143 GHz chan-
nel of the HFI instrument aboard Planck [20], which has
�beam ¼ 7:10, �T ¼ 6:0 K, and �E ¼ 11:4 K, assum-
ing 14 months of integrated observation. We assume a sky
coverage of fsky ¼ 0:65.

We list in Table I the values of �2 computed between our
fiducial Planck data and our improved second-order code.
For comparison, we also give the �2 values for unmodified
CAMB at similar accuracy boost. We see that the higher-

order tight-coupling approximation leads to a better fit to

FIG. 4 (color online). Fractional difference of CTT
l between the

usual first-order tight-coupling approximation and the bench-
mark integration (full line) and the second-order approximation
and the benchmark integration (dashed line). Here, all the Cls
have been computed with the three accuracy boost factors set
to 5. The average fractional difference is 2:4� 10�5 for the first-
order approximation and 3:5� 10�6 for the second-order
approximation.

TABLE I. �2 values between fiducial Planck data and theo-
retical spectra gotten with the first- and second-order codes for
different accuracy boost. We also give the computational time
needed to generate the theoretical spectra in order to show that
the greater accuracy comes at no extra numerical cost. The
computational times displayed here are for a single-processor
machine.

Code �2 Time (s)

CAMB accuracy ¼ 1 2.3 4.8

2nd Order acc ¼ 1 1.3 4.8

CAMB accuracy ¼ 2 0.17 18.2

2nd Order acc ¼ 2 0.091 18.2

Opt. CAMB acc ¼ 2 1.1 15.1

Opt. 2nd Order acc ¼ 2 0.10 15.1
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the fiducial data and therefore to a smaller theoretical
maximal bias on cosmological parameters at no extra
numerical cost. To estimate the real biases on cosmological
parameters, we run several Markov chains using both the
first- and second-order tight-coupling code together with
the publicly available code COSMOMC [21]. We restrict
ourselves to the ‘‘vanilla’’ 6-parameter �CDM model
and made sure that the Gelman-Rubin ‘‘R� 1’’ conver-
gence criteria [22] is smaller than 0.005 for all the parame-
ters under consideration.

We list in Table II the biases between the results from
our second-order CMB code and the results from a code
that used the same accuracy setting as the fiducial spectra
(mimicking an error-free analysis). For comparison, we
also give the biases for the usual first-order code. At default
accuracy, we see that the difference between the two codes
in terms of the bias is rather slim, with � being the most
dramatically affected by the second-order code. This stems
from the fact that our second-order code better captures the
position of the first peak as can be seen from Figs. 3 and 4.
We conclude that the numerical errors due to the first-order
tight-coupling approximation does introduce a small bias
to the estimate of � at default accuracy, although it is clear
that other numerical errors (k-sampling, interpolation, etc.)
contribute the most significant part to the biases of cosmo-
logical parameters for both codes. As the accuracy of the
codes is increased, the difference in bias between the two
codes becomes insignificant for parameter estimation pur-
poses. Therefore, if one sets the accuracy of the theoretical
spectra to be large enough, then the usual tightly-coupled
equations are appropriate for cosmological parameter
estimation.

V. REDUCING THE COMPUTATIONAL RUNTIME

Up to this point, we have used the second-order expan-
sion in �c to improve the accuracy of CMB Boltzmann
codes. In this section, we adopt a different point of view
and take advantage of our improved tight-coupling scheme
to reduce the computational time needed to evolve the
perturbation equations. Indeed, the new Oð�2cÞ terms in
the tightly-coupled perturbation equations allow one to
switch to the exact equations at a later time, while keeping
the same accuracy as the usual first-order expansion. Since

the approximate tightly-coupled equations are easier to
solve than their exact counterparts, precious computational
time can be saved. Moreover, the higher accuracy of the
second-order equations lets us use a larger minimal time
step for the numerical integrator, hence reducing the total
number of steps taken by the integrator and further cutting
down the computational time.
Our approach here is to degrade the accuracy of the

second-order code by modifying the tight-coupling switch-
ing criteria, using larger time steps and cutting down the
photon hierarchy until the output from this ‘‘optimized’’
code somewhat matches that of the unmodified first-order
code. We then compute the �2 value between our fiducial
Planck data and the output from this optimized code and
compare it to a similar calculation done with regular CAMB.
The results are shown on the two last rows of Table I,
where we see that we achieve a�17% computational time
reduction while still retaining the accuracy of the first-
order code at accuracy boost 2.
Although this gain in computational efficiency is mod-

est, it can significantly reduce the amount of time neces-
sary to run Markov chains for cosmological parameter
estimation. To demonstrate this, we run 8 chains with our
optimized second-order code at accuracy boost 2, generat-
ing 20 000 samples per chains. We also run the similar
chains with regular CAMB at accuracy boost 2 and make
sure to have R� 1 & 0:005. Figure 5 shows that the results
for the marginalized posterior distribution are very similar
between the two codes, with the distribution for � being the
most affected, although very mildly (0.09 standard devia-
tion). However, the most important difference between the
two results is that our optimized second-order code took,
on average, �16% less time to complete. Hence, our
second-order tight-coupling code, in addition to leading
to more accurate angular CMB spectra, can instead be used

TABLE II. Biases of the 6-parameter �CDM model in unit of
the standard deviation. We contrast the first- and second-order
tight-coupling approximation and give the value of the accuracy
boost factors used for each computation.

Code �bh
2 �ch

2 � � ns lnð1010AsÞ
CAMB accuracy ¼ 1 0.24 0.15 0.31 0.11 0.40 0.19

2nd Order acc ¼ 1 0.25 0.16 0.15 0.12 0.33 0.15

CAMB accuracy ¼ 2 0.02 0.006 0.03 0.013 0.03 0.03

2nd Order acc ¼ 2 0.03 0.003 0.01 0.016 0.017 0.015

FIG. 5 (color online). Marginalized posterior probability dis-
tribution for the vanilla �CDM model. The full black line
represents the result gotten using the first-order code at accuracy
boost 2 while the red dotted line was obtained using our
optimized second-order code.
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to speed up the computational time and make more
efficient use of computing resources.

VI. DISCUSSION AND CONCLUSION

We have developed a second-order tight-coupling ap-
proximation to the photon-baryon perturbation equations
and shown that it closely reproduces the solution to the
nonapproximated equations. In practice, the main reason
why our second-order tight-coupling code produces more
accurate power spectra is that it better tracts the evolution
of the photon perturbations. Figure 6 shows the residuals
between the photon perturbation �� computed using the

exact equations and the solutions obtained with the first-
and second-order tight-coupling approximation. We see
that the second-order scheme deviates much less from
the exact solution then the usual first-order scheme, leading
to a more accurate value of the source term needed for the
line-of-sight integration [12].

In conclusion, we have investigated the accuracy of the
tight-coupling approximation by solving the exact equa-
tions at all times using a stiff numerical solver. We have
shown that the first-order tight-coupling approximation
leads to a small accuracy lost compared to the exact solution
and that this change is well within the quoted precision of
the angular power spectra. We have discussed how our
second-order code has a smaller maximal possible bias on
cosmological parameters than its first-order counterpart.
We have shown that the bias introduced by the first-order
tight-coupling is insignificant for today’s cosmological ex-
periments, unless CAMB’s default accuracy is used. Finally,
we have shown that the improved accuracy of our second-
order approximation allows one to optimize the tight-
coupling switching criteria and integration parameters in
order to reduce the computational time of the code. (After
this project was completed, a related work appeared [23].)
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APPENDIX A: PERTURBATION EQUATIONS

In this Appendix, we list the perturbation equations used
to solve for the initial conditions found in Appendix B. We
closely follow the notation of [7]. Here, � and h stand for
the synchronous gauge curvature perturbation variables, a
is the scale factor, K is the inverse of the squared curvature
radius, 	i is the energy density of the ith specie, wi �
pi=	i, where pi is the pressure, and a dot denotes differ-
entiation with respect to conformal time.

k2�1�� 1

2

_a

a
_hþ 4�Ga2

X
i

	i�i ¼ 0 (A1)

k2�1 _�� K _h

2
� 4�Ga2

X
i

ð1þ wiÞ	i�i ¼ 0 (A2)

_� c þ 1

2
_h ¼ 0 (A3)

_� � þ 4

3
�� þ 2

3
_h ¼ 0 (A4)

_� � � k2

4
ð�� � 2�1F�2Þ ¼ 0 (A5)

_F �2 � 8

15
�� þ 3

5
�2kF�3 � 4

5

� _h

3
þ 2 _�

�
¼ 0 (A6)

_� � þ 4

3
�� þ 2

3
_h ¼ 0 (A7)

_� � � k2

4
ð�� � 2�1F�2Þ � 1

�c
Sb ¼ 0 (A8)

_F�2 � 8

15
�� þ 3

5
�2kF�3 � 4

5

� _h

3
þ 2 _�

�

� 1

�c

�
F�2 � 2

15

�
3

4
F�2 þ 9

2
G�2

��
¼ 0 (A9)

_� b þ �b þ 1

2
_h ¼ 0 (A10)

Sb � �c
1þ R

�
� _a

a
ðSb þ ��Þ � _Sb

þ k2
�
c2s�b � 1

4
�� þ �1

F�2

2

��
¼ 0 (A11)

FIG. 6 (color online). Residuals (��� � �exact
� � �

approx
� ) be-

tween the photon perturbation �� computed using the exact

equations and the solutions obtained with the first- and
second-order tight-coupling approximation.
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Here, R ¼ ð4=3Þ	�=	b. Our approach to solve these equa-

tions follow closely that of [24]. We first use Eq. (A1) to

eliminate _h in favor of the curvature perturbation �. For
simplicity, we set c2s ¼ 0. We then approximate the octu-
pole moment of the neutrinos and photons as

F�3 ’ k�

7

�
1� 4

315
k2�2

�
F�2; (A12)

F�3 ’ 3

7
k�cF�2: (A13)

Finally, we eliminate the photon polarization moments
from (A9) using

G�2 ’ 1

4

�
F�2 � 5�c

2
_F�2

�
: (A14)

APPENDIX B: INITIAL CONDITIONS

In this Appendix, we list the initial conditions obtained
by the method outlined in Sec. II A. Here, R� ¼ 	�=ð	� þ
	�Þ, Rb ¼ 	b=	m, ! ¼ H0�m=

ffiffiffiffiffiffiffi
�r

p
, � ¼ �c=�, Sbð�Þ �

�bð�Þ � ��ð�Þ is the velocity difference between baryons

and photons. Note that our convention for the normalization
of perturbations differs from [24] by �1 ! ��1=2. Note
also that what we label �1 here is denoted by �2 in [24].

(1) Photons

��ð�Þ ¼ � 2�1

3
k2�2 þ 2�1

15
!k2�3

þ �1ð4�1R� þ 15�1 � 5Þ
27ð4R� þ 15Þ k4�4

� �1

24
!2k2�4 (B1)

��ð�Þ¼��1

18
k4�3� 8�1

36R�þ135
k4�3�

þ�1ð1þ5Rb�R�Þ
120ð1�R�Þ !k4�4

�2�1ð2ð5Rb�9ÞR�þ75Rbþ8R2
�þ10Þ

15ðR��1Þð2R�þ15Þð4R�þ15Þ !k4�4�

þ 16�1ð6R�þ181Þ
45ð2R�þ15Þð4R�þ15Þk

4�3�2 (B2)

F�2ð�Þ ¼ 64

9ð4R� þ 15Þ k
2�2�

þ 4ð8R� � 5Þ
3ð2R� þ 15Þð4R� þ 15Þ!k2�3�

� 32ð6R� þ 181Þ
9ð2R� þ 15Þð4R� þ 15Þ k

2�2�2

� 16ð2R�ð12R� þ 767Þ � 1855Þ
9ð2R� þ 15Þð2R� þ 25Þð4R� þ 15

�!k2�3�2

(B3)

(2) Baryons

�bð�Þ ¼ 3

4
��ð�Þ (B4)

Sbð�Þ ¼ �1Rb

6ð1� R�Þ!k4�4�

þ 10�1Rb

3ð1� R�Þð4R� þ 15Þ!k4�4�2

� �1Rbð15Rb þ 2R� � 2Þ
96ðR� � 1Þ2 !2k4�5� (B5)

(3) Cold Dark Matter

�cð�Þ ¼ ��1

2
k2�2 þ �1

10
!k2�3

þ 1

72
�1

�
� 10

4R� þ 15
þ 2�1 � 1

�
k4�4

� �1

32
!2k2�4 (B6)

(4) Neutrinos

��ð�Þ¼�2�1

3
k2�2þ2�1

15
!k2�3

þ 1

27
�1

�
�1� 1

4R�þ15

�
k4�4��1

24
!2k2�4

(B7)

��ð�Þ ¼ ��1ð4R� þ 23Þ
18ð4R� þ 15Þ k

4�3 þ 16�1ð1� R�Þ
9ð2R� þ 15Þð4R� þ 15Þ k

4�3�þ �1ð8R2
� þ 50R� þ 275Þ

120ð2R� þ 15Þð4R� þ 15Þ!k4�4

� 16�1ðR� � 1Þð2R� � 15Þ
15ð2R� þ 15Þð2R� þ 25Þð4R� þ 15Þ!k4�4�þ 32�1ðR� � 1Þð6R� þ 181Þ

45ð2R� þ 15Þð2R� þ 25Þð4R� þ 15Þ k
4�3�2 (B8)
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F�2ð�Þ
2

¼ 4

12R� þ 45
k2�2 þ ð4R� � 5Þ

3ð2R� þ 15Þð4R� þ 15Þ!k2�3 þ 64ðR� � 1Þ
9ð2R� þ 15Þð4R� þ 15Þ k

2�2�

� 28ð7�1 � 3ÞR� þ 5ð175�1 þ 27�2 � 84Þ
189ð25þ 2R�Þð15þ 4R�Þ k4�4 þ ð4R�ð2R� � 65Þ þ 225Þ

24ð2R� þ 15Þð2R� þ 25Þð4R� þ 15Þ!
2k2�4

þ 16ðR� � 1Þð2R� � 15Þ
3ð2R� þ 15Þð2R� þ 25Þð4R� þ 15Þ!k2�3�� 32ðR� � 1Þð6R� þ 181Þ

9ð2R� þ 15Þð2R� þ 25Þð4R� þ 15Þ k
2�2�2 (B9)

F�3ð�Þ ¼ 4

7ð12R� þ 45Þ k
3�3 (B10)

(5) Curvature (synchronous gauge)

�ð�Þ¼2þ
�

5

12R�þ45
��1

6

�
k2�2þ 80ðR��1Þ

9ð2R�þ15Þð4R�þ15Þk
2�2�þð16�1R

2
�þ20ð9�1þ5ÞR�þ25ð18�1�5ÞÞ
60ð2R�þ15Þð4R�þ15Þ !k2�3

(B11)

APPENDIX C: TIGHT-COUPLING APPROXIMATION TO SECOND ORDER IN �c

In this Appendix, we give the key result of our improved tight-coupling approximation scheme: the photon-baryon slip
to second order in �c.

_Sb ¼
�
_�c
�c

�H
2

1þ R

�
Sb þ �c

1þ R

�
� €a

a
�b � k2H

�
1

2
�� � �1F�2

�
þ k2

�
c2s _�b � 1

4
_�� þ �1

_F�2

2

��

�
�
2Rð3H 2c2s þ ðRþ 1Þ _H � 3H 2Þ

ðRþ 1Þ3
�
Sb�c þ �2c

ð1þ RÞ2
�
€a

a

H ðð2� 3c2sÞR� 2Þ�b
ðRþ 1Þ þH k2ð1� 3c2sÞ�b

3ðRþ 1Þ

þ €a

a

k2c2s�b

ðRþ 1Þ þ
k4ð3c2s � 1Þc2s�b

3ðRþ 1Þ þ k4Rð3c2s � 1Þ��

12ðRþ 1Þ þ €a

a

k2ð2þ 3RÞ��

4ðRþ 1Þ þH 2k2ðð2� 3c2sÞR� 1Þ��

2ðRþ 1Þ

þH k2c2sð1þ ð3c2s � 2ÞRÞ _�b

Rþ 1
þH k2ð2þ ð5� 3c2sÞRÞ _��

4ðRþ 1Þ þ 2H ð1� 3c2sÞk3

3

þ k4ð3c2s � 1Þ�1�

3

þ 2H k2ð3c2s � 1Þ _�þ k2ð1� 3c2sÞ�
6

�
þ

�
4 €a
a �b � 4k2c2s _�b þ 2H k2�� þ k2 _��

2ðRþ 1Þ2
�
�c _�c � 4HR

ðRþ 1Þ2 _�cSb þOð�3cÞ
(C1)

Here, � ¼ 8�Ga2ð	��� þ 	��� þ 3c2s	b�bÞ.
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