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We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive

gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique

form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter

set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the

helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is

indistinguishable from the �CDM model. Fluctuations about the self-accelerated background are stable

for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above

its background decouples from an arbitrary source in the linearized theory. We also show how massive

gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while

evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting

that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this

mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements

severely constrain the value of the cosmological constant that can be neutralized, making this scheme

phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate

on a possible way out of this issue.
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I. INTRODUCTION AND SUMMARY

The observed late-time acceleration of the Universe [1],
and the cosmological constant problem (see reviews [2,3]),
remain two of the most tantalizing, mutually connected
puzzles at the interface of particle physics and cosmology.

A promising approach to the late-time acceleration
enigma is to invoke new degrees of freedom, belonging
to the gravitational field itself (as in massive gravity), that
give rise to the cosmic speed-up. This framework postu-
lates the existence of a new energy scale—set by the
graviton mass—which is very low; nevertheless, this scale
is technically natural in the quantum-field theoretical
sense. This approach, as is known by now, is challenging
theoretically (hence, is interesting), and happens to have
robust observational predictions.

Such a scenario was first worked out in a context of the
DGP model [4] in Refs. [5,6], where the cosmic accelera-
tion is due to the helicity-0 component of a five-
dimensional graviton. Hence, the solution is said to be
self-accelerating.

Regretfully, in the context of DGP, the self-accelerating
solution is plagued by negative-energy ghostlike states in
the perturbative approach [7–9], and despite the issue of
whether or not the negative-energy perturbations could be
continued in the full nonlinear theory [10], the existence of
nonperturbative negative-energy solutions [7,11,12] makes
the self-accelerating branch unsatisfactory (in spite of the
interesting finding of Ref. [13] that the quasiclassical
approach does not seem to reveal the instabilities of this
solution).

Certain generalizations of the DGP model, however,
allow for stable self-accelerating solutions, either by con-
structing an explicit braneworld model [14] where the
negative energy ghost disappears, or by extending the
decoupling limit of DGP to the ‘‘Galilean’’ invariant inter-
actions, [15].
In this work, we show for the first time that a theory of

massive gravity may produce a self-accelerated geometry
while being free of the problems that arise in the self-
accelerating branch of DGP. In particular, we will work
in a certain approximation in which the helicity �2, �1,
and helicity-0 modes of the massive graviton decouple
from each other in the linearized theory, while the non-
linear self-interactions, and interactions between them, are
captured by a few leading higher-dimensional terms in the
Lagrangian; this approximation constitutes the decoupling
limit.
In this approximation, we will show the existence of the

self-accelerated solution, around which small fluctuations
are stable. The acceleration is due to a condensate of the
helicity-0 field, which in the decoupling limit is reparamet-
rization invariant. On the other hand, since the helicity-0 is
not an arbitrary scalar, but descends from a full-fledged
tensor field, it has no potential, but enters the Lagrangian
via very specific derivative terms fixed by symmetries [16].
These terms generate the negative pressure density which
causes the accelerated expansion with stable fluctuations,
as will be discussed below.
From the observational point of view, the obtained self-

accelerating background is indistinguishable, in the ap-
proximation used, from that of the �CDM model. As to
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the fluctuations, however, the helicity-0 could have intro-
duced some differences. For instance, at cosmological
distance scales it could have given an additional force
leading to, e.g., changes in the growth of structure
[17,18], while at shorter scales still being strongly screened
via the Vainshtein mechanism [19], guaranteeing the re-
covery of general relativity with tiny departures [19,20],
which may also be measurable [21,22] in high-precision
laser ranging experiments [23] (for recent detailed studies
of the Vainshtein mechanism see Refs. [24]). All the above
takes place in the DGP model. However, this is not what
happens on the self-accelerated background in the massive
theory: Surprisingly enough, the fluctuation of the helicity-
0 on this background decouples in the linearized approxi-
mation from an arbitrary source! Thus, the astrophysical
sources need not excite this fluctuation, in which case one
recovers exactly the �CDM results. It is likely, however,
that this similarity of the self-accelerated solution and its
fluctuations to the �CDM results will not hold beyond the
decoupling limit (i.e. will not hold for the horizon-size
scales).

Furthermore, if we wish to tackle the cosmological
constant problem (CCP), S. Weinberg’s no-go theorem
makes it impossible to find dynamical solutions within
general relativity (GR) without involving fine-tuned pa-
rameters, [2]. The idea of infrared (IR) modification of
gravity, however, addresses this puzzle by accepting a large
vacuum energy and modifying instead the gravitational
sector in the IR, so that vacuum energy gravitates very
weakly [25]. Such a source would not manifest itself as
strongly as naively anticipated in GR, i.e. it would be
degravitated, while all the astrophysical sources would
exhibit the GR behavior [26]. As shown in Refs. [25,26],
one can think of degravitation as a promotion of Newton’s
constant to a high-pass filter operator thereby modifying
the effect of long wavelength sources such as a CC while
recovering GR on shorter wavelengths. In particular, theo-
ries of massive and resonance gravitons have been shown
to exhibit the high-pass filter behavior required to degra-
vitate the CC [25]. Moreover, it was shown in Ref. [27] that
any causal theory that can degravitate the CC is a theory of
massive and resonance gravitons.

It is important to emphasize that in theories of massive
gravity degravitation is a causal process (unlike more
general theories considered in [26]). The real measure of
whether or not a source is degravitated is given by its time
evolution. During inflation for instance, the vacuum energy
driving the acceleration of the Universe will not be degra-
vitated for a long time. It is only after long enough periods
of time that the IR modification of gravity kicks in and can
effectively slow down an accelerated expansion [25,26].
Hence, a crucial ingredient for the degravitation mecha-
nism to work is the existence of a (nearly) static solution in
the presence of a cosmological constant towards which the
geometry can relax at late time (or after some long period

of time). Indeed, Ref. [27] studied linearized massive
gravity demonstrating that in this approximation degravi-
tation takes place after a long enough period of time.
In this paper, we focus on the hard mass case using the

generalized Fierz-Pauli theory of massive gravity, as de-
rived in [16]. We show that this model allows for static
solutions while evading any ghost issues at least in the
decoupling limit. In this framework an arbitrary vacuum
energy can be neutralized by the effective stress-tensor of
the helicity-0 component of the massive graviton. Small
fluctuations around this solution are shown below to be
stable, as long as this static solution exists.
Moreover, we find that the energy scale at which the

interactions of the helicity-0 modes become nonlinear is
affected by the scale of the degravitated cosmological
constant—the interaction scale being higher for larger
values of the CC.1

On the one hand, it is intriguing that the interactions of
the helicity-0 can be kept linear up to the energy scale
which is significantly higher than what it would have been
in a theory without the CC. However, this very same
phenomenon also creates a problem by postponing
Vainshtein’s recovery of GR to shorter and shorter distance
scales. As a result, the tests of gravity impose a stringent
upper bound on the vacuum energy that can be degravitated
in this framework without conflicting measurements of
gravity. Disappointingly, this upper bound turns out to be
of the order the critical energy density of the present-day
Universe, ð10�3 eVÞ4—the value that does not need to be
degravitated.
A possible way out of this difficulty may be to envisage a

cosmological scenario in which degravitation of the vac-
uum energy takes place before the Universe enters the
radiation dominated epoch—say during the inflationary
period, or even earlier. By the end of that epoch then the
cosmology should reset itself to continue evolution along
the other branch of the solutions that exhibits the standard
early behavior followed by the self-acceleration, found in
the present work. The existence of such a transition would
depend on properties of the degravitating solution in the
full theory. Since we have no detailed knowledge of this
solution at the time of this writing, we have no concrete
mechanism to substantiate the above scenario. Therefore,
in what follows we will not rely on it. Instead, we empha-
size that there still are two important virtues of the degra-
vitating solution with the low value of the degravitated CC:
(i) It is a concrete example of how degravitation could
work in four-dimensional theories of massive gravity with-
out giving rise to ghostlike instabilities. (ii) As we will
show, the degravitated solution with small values of CC
can be combined with the self-accelerated solution

1In this work we will use interchangeably the notions of
vacuum energy and CC, although there could be a big difference
between the two when it comes to IR modified gravity [25].
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discussed above, to give a satisfactory solution that is in
agreement with the existing cosmological and astrophys-
ical data.

Last but not least, the solutions found in the decoupling
limit do not necessarily imply the existence of the solutions
with identical properties in the full theory. Nevertheless,
the decoupling limit solutions should capture the local
dynamics at scales well within the present-day Hubble
four-volume, as argued in [15]. On the other hand, at larger
scales the full solutions may be very different from our
ones. These differences would kick in at scales comparable
to the graviton Compton wavelength. Therefore, our solu-
tions should manifest themselves at least as transients
lasting long cosmological times.

Organization of the paper is as follows. In Sec. II, we
review the generalized Fierz-Pauli theory of massive grav-
ity and discuss its ghostless decoupling limit. We then start
by focusing on self-accelerating solutions in Sec. III, first
deriving the background solutions, then testing their stabil-
ity, and finally studying the implications for late-time
cosmology. We then explore the cosmology in the presence
of a cosmological constant in Sec. IV, proving the exis-
tence of a stable degravitating branch of solutions, and
analyzing the stability of the de Sitter branch. Brief dis-
cussions of the degravitating solution are given at the end
of Sec. IV.

II. THE FORMALISM

Search for a consistent theory of a massive spin-2 field
goes back to the original work of Fierz and Pauli [28].
Whereas any massive gravity should reduce to the Fierz-
Pauli (FP) theory at the quadratic level [29], a generic
nonlinear extension exhibits the sixth degree of free-
dom—the so-called Boulware-Deser (BD) ghost [30].
This sixth mode produces severe instabilities on cosmo-
logical backgrounds [31], as well as on locally nontrivial
asymptotically flat backgrounds (such as that of a point
source, for instance) [32–34].

This problem is usually related to the helicity-0 sector
of massive theories [32]. The latter can efficiently be
studied in the decoupling limit, where the sixth mode is
hidden in higher-derivative nonlinear terms for the
helicity-0 [32–34]. Such terms make the Cauchy problem
ill-defined, unless additional initial data are supplied. This
corresponds to an additional, sixth, degree of freedom
which shows up as a ghostlike linear mode on various
backgrounds mentioned above.

Up until recently it was thought that the cancellation of
the higher-derivative nonlinear terms for the helicity-0 was
not possible [33]. However, recently an explicit construc-
tion was given in Ref. [16] in which all the nonlinear terms
for the helicity-0 with more than two time derivatives
cancel. Below we briefly review these results and recast
them in a more convenient form. We refer to Ref. [16] for
more detailed discussions.

Consider a 4D covariant theory of a spin-2 field [32],
which, once expanded on Minkowski space-time gives a
graviton of mass m:

L ¼ M2
Pl

ffiffiffiffiffiffiffi�g
p

R�M2
Plm

2

4

ffiffiffiffiffiffiffi�g
p ðU2ðg;HÞ þU3ðg;HÞ

þU4ðg;HÞ þU5ðg;HÞ � � �Þ: (1)

Here Ui’s denote the mass and potential terms of ith order
in H��

U2ðg;HÞ ¼ H2
�� �H2; (2)

U3ðg;HÞ ¼ c1H
3
�� þ c2HH2

�� þ c3H
3; (3)

U4ðg;HÞ ¼ d1H
4
�� þ d2HH3

�� þ d3H
2
��H

2
��

þ d4H
2H2

�� þ d5H
4; (4)

U5ðg;HÞ ¼ f1H
5
�� þ f2HH4

�� þ f3H
2H3

�� þ f4H
2
��H

3
��

þ f5HðH2
��Þ2 þ f6H

3H2
�� þ f7H

5: (5)

Index contractions are performed using the inverse metric
g��; the coefficients ci, di and fi are a priori arbitrary. The
tensor H�� is not an independent entity; it is related to the

metric tensor as H�� ¼ g�� � �ab@�’
a@�’

b, where a,

b ¼ 0, 1, 2, 3, �ab ¼ diagð�1; 1; 1; 1Þ, and H�� is a co-

variant tensor as long as the four fields ’a transform as
scalars under a change of coordinates [32]. Hence, the
potential terms in (1) can be rewritten as functions of
the metric g and the specific combination of the four
scalars ’a, as Uðg;�Þ, where ��� ¼ �ab@�’

a@�’
b.

However, we will not be exploiting the latter representation
in the present work. Instead, following [32] we expand
’a in terms of the coordinates x�, and the field ��, as
’a ¼ ðx� � ��Þ�a

� and using the convention, g�� ¼
��� þ h��=MPl, we obtain

H�� ¼ h��

MPl

þ @��� þ @��� � ���@��
�@��

�: (6)

The ��’s represent the Stückelberg fields that transform
under reparametrization to guarantee that the tensor H in
(6) transforms covariantly. In particular under linearized

diffeomorphism, x� ! x� þ ��

MPl
, the metric perturbations

and the Stückelberg transform, respectively, as

h�� ! h�� � @ð���Þ and �� ! �� þ ��

MPl

: (7)

It is therefore worth pointing out that in the decoupling
limit MPl ! 1, the Stückelberg field �� ends up being
gauge invariant under linearized diffeomorphism.
In the unitary gauge one could put �� ¼ 0 (or, ’a ¼

x��a
�), in which case (1) reduces to the standard FP theory

extended by a potential for the field h��. However, this is

not a convenient way of dealing with these degrees of
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freedom. Instead, it is more instructive to retain �� and fix
a gauge for h��.

The theory (1) was studied in detail in [16,35], and a
two-parameter family of the coefficients was identified for
which no sixth (ghost) degree of freedom arises in the
decoupling limit.2 In these theories the higher-derivative
nonlinear terms either cancel out, or organize themselves
into total derivatives. For these ghostless theories, the
decoupling limit is defined as follows3

m ! 0; MPl ! 1; �3 ¼ ðMPlm
2Þ1=3 fixed: (8)

In what follows, we will focus on the helicity-2 and
helicity-0 modes, and ignore the helicity-1 modes as they
do not couple to a conserved stress-tensor at the linearized
level, and, therefore, can be set to zero self-consistently
(see, however, important comments on this at the end of
Sec. III B).

We therefore use the following decomposition for H��

in terms of the canonically normalized helicity-2 and
helicity-0 fields after setting �a ¼ @a�=�

3
3

H�� ¼ h��

MPl

þ 2@�@��

�3
3

� @�@
��@�@��

�6
3

: (9)

Then, one can show by direct calculations [16] that the
Lagrangian (1) reduces in the decoupling limit to the
following expression

L ¼ � 1

2
h��E��

��h�� þ h��
X3
n¼1

an

�3ðn�1Þ
3

XðnÞ
��½��; (10)

where the first term represents the usual kinetic term for the
graviton, a1 ¼ �1=2, and a2;3 are two arbitrary constants,

related to the two parameters from the set fci; dig which
characterize a given ghostless theory of massive gravity.
The expression ðEhÞ�� denotes the linearized Einstein

operator acting on h�� defined in the standard way:

E��
��h�� ¼ � 1

2 ðhh�� � @�@�h
�
� � @�@�h

�
� þ @�@�h�

���hh þ ���@�@�h
��Þ.

The three symmetric tensors XðnÞ
��½�� are composed of

the second derivative of the helicity-0 field��� � @�@��.

In order to maintain reparametrization invariance of the

full Lagrangian the tensors XðnÞ
��½�� should be identically

conserved. These properties uniquely determine the ex-

pressions for XðnÞ
�� at each order of nonlinearity. The ob-

tained expressions agree with the results of the direct
calculations of Ref. [16]. A convenient parametrization

for the tensors XðnÞ
�� which we adopt in this work is as

follows:

Xð1Þ
��½�� ¼ "�

�	
"�
�
	
���;

Xð2Þ
��½�� ¼ "�

�	�"�
�


�����	
;

Xð3Þ
��½�� ¼ "�

�	�"�
�
�����	
���:

(11)

The remarkable property of (10) is that it represents the
exact Lagrangian (excluding the helicity-1 part) in the
decoupling limit: All the higher than quartic terms vanish
in this limit, making (10) a unique theory to which any
nonlinear, ghostless extension of massive gravity should
reduce in the decoupling limit [16].
If external sources are introduced, their stress-tensors

then couple to the physical metric h��. In the basis used in

(10) there is no direct coupling of � to the stress-tensors.
Hence, the Lagrangian (10) is invariant with respect to the
shifts, and the ‘‘Galilean’’ transformations in the internal
space of the � field, @�� ! @��þ v�, where v� is a

constant four-vector. The latter invariance guarantees that
there is no mass nor potential terms generated for � by the
loop corrections.
The tree-level coupling of � to the sources arises only

after diagonalization: The quadratic mixing h��Xð1Þ
��, and

the cubic interaction h��Xð2Þ
��, can be diagonalized by a

nonlinear transformation of h��, that generates the follow-

ing coupling of � [16]

1

MPl

�
�2a1����þ 2a2@��@��

�3
3

�
T��: (12)

Moreover, the above transformation also generates all the
Galileon terms for the helicity-0 field, introduced in a
different context in Ref. [15].4

Since the Galileon terms are known to exhibit the
Vainshtein recovery of GR at least for static sources [15],
so does the above theory with a3 ¼ 0. The quartic inter-

action h��Xð3Þ
��, however, cannot be absorbed by any local

redefinition of h��. It is still expected though to admit the

Vainshtein mechanism.
However, as wewill show in the next section, on the self-

accelerated background the fluctuation of the helicity-0
field decouples from an arbitrary source, making the pre-
dictions of the theory consistent with GR already in the
linearized approximation. This decoupling is a direct con-
sequence of the self-accelerated background and the spe-
cific form of the coupling (12).

2Interestingly, a recently proposed extension of general rela-
tivity by an extra auxiliary dimension [36,37], automatically
generates the coefficients from this family at least up to the
cubic order.

3By ‘‘ghostless’’ we mean a theory with no ghost at least in the
decoupling limit, implying that even if the BD ghost exists in the
full theory, it must have a mass larger than the scale �3, [16].

4In this model the coupling of the Galileon field to matter is
not only given by �T as considered in the original Galileon
theory [15], but also includes more generic mixing of the form
@��@��T

��.
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III. THE SELF-ACCELERATED SOLUTION

The universality of the decoupling limit Lagrangian (10)
for the class of ghostless massive gravities, suggests the
possibility of a fairly model-independent phenomenology
of the massive theories that should be captured by the
limiting Lagrangian (10). In the present section, we will
be interested in the cosmological solutions in these theo-
ries. We will directly work in the decoupling limit, which
implies scales much smaller than the Compton wavelength
of the graviton. In the case of the self-accelerated de Sitter
solution for instance, this corresponds to probing physics
within the Hubble scale, which as one would expect, is set
by the value of the graviton mass.

A. The solution in the decoupling limit

Below we look for homogeneous and isotropic solutions
of the equations of motion that follow from the Lagrangian
(10). The helicity-0 equation of motion reads as follows:

@�@�h
��

�
a1"�

�	
"�
�
	
 þ 2

a2
�3

3

"�
�	
"�

��

�	�

þ 3
a3
�6

3

"�
�	
"�

����	��
�

�
¼ 0; (13)

while variation of the Lagrangian with respect to the
helicity-2 field gives

� E��
��h�� þ X3

n¼1

an

�3ðn�1Þ
3

XðnÞ
��½�� ¼ 0: (14)

We are primarily interested in the self-accelerated solu-
tions of the system (13) and (14). This solution is obtained
by choosing the configuration for � such that the second
factor in (13) vanishes. This has for consequence to kill the
first order mixing between h�� and � and hence the

coupling of � to matter at leading order (which arises after
diagonalization of the mixing term). As a consequence the
perturbations around the self-accelerated solution we ob-
tain here do not couple to matter. This will be presented in
more details in what follows.

For an observer at the origin of the coordinate system,
the de Sitter metric can locally (i.e., for times t, and
physical distances j ~xj, much smaller than the Hubble scale
H�1) be written as a small perturbation over Minkowski
space-time [15]

d s2 ¼
�
1� 1

2
H2x�x�

�
���dx

�dx�: (15)

The linearized Einstein tensor for the (dimensionless) met-
ric (15) is given by

Glin
�� ¼ 1

MPl

E��
��h�� ¼ �3H2���: (16)

For the helicity-0 field we look for the solution of the
following isotropic form

� ¼ 1

2
q�3

3x
�x� þ b�2

3tþ c�3; (17)

where q, b and c are three dimensionless constants.
The equations of motion for the helicity-0 and helicity-2

fields (13) and (14), therefore, can be recast in the follow-
ing form

H2

�
� 1

2
þ 2a2qþ 3a3q

2

�
¼ 0; (18)

MPlH
2 ¼ 2q�3

3

�
� 1

2
þ a2qþ a3q

2

�
: (19)

Solving the quadratic Eq. (18) for q (forH � 0), we obtain
the Hubble constant of the self-accelerated solution from
(19). Its magnitude, H2 ��3

3=MPl ¼ m2, is set by the

graviton mass, as expected (positivity of H2 is one of the
conditions that we will be demanding below). It is not hard
to convince oneself that there exists a whole set of self-
accelerated solutions, parametrized by a2 and a3. This
range, however, will be restricted further by the require-
ment of stability of the solution, which is the focus of the
next section.
Before doing so, let us briefly analyze the four scalars

’a. Using the ansatz, (17), their expression is given by

’a ¼ ð1� qÞx��a
�; (20)

if we set b ¼ 0. Thus the four scalars vanish in the special
case of q ¼ 1, and the metric is g�� ¼ H��, so that the

Lagrangian considered in (10) reduces to standard GR plus
a CC (at least at the background level). This happens only
if the parameters of our theory are such that a3 ¼ 1

6 � 2
3a2,

which is not the regime we will be interested in—we will
indeed show in what follows that the stability of the self-
accelerated background implies q � 1.

B. Small perturbations and stability

Here we investigate the constraints that the requirement
of stability imposes on a possible background. Let us adopt
a particular solution of the system (18) and (19) and con-
sider perturbations on the corresponding de Sitter back-
ground

h�� ¼ hb�� þ ���; � ¼ �b þ
; (21)

where the superscript b denotes the corresponding back-
ground values. The Lagrangian for the perturbations (up to
a total derivative) reads as follows

L ¼ � 1

2
���E��

����� þ 6ða2 þ 3a3qÞH
2MPl

�3
3


h


� 3a3
H2MPl

�6
3

ð@�
Þ2h
þ a2 þ 3a3q

�3
3

���Xð2Þ
��½��

þ a3
�6

3

���Xð3Þ
��½�� þ ���T��

MPl

; (22)
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where� denotes the four-by-four matrix with the elements
��� � @�@�
. The first term in the first line of the above

expression is the Einstein term for ���, the second term is

a kinetic term for the scalar, and the third one is the cubic
Galileon. The second line contains cubic and quartic inter-
actions between ��� and 
, which are identical in form to

the corresponding terms in the decoupling limit on
Minkowski space-time (10). None of these interactions
therefore lead to ghostlike instabilities [16], as long as
the 
 kinetic term is positive definite.

Most interestingly, however, there is no quadratic mix-
ing term between � and
 in (22). Since it is only ��� that

couples to external sources T�� in the quadratic approxi-

mation, then there will not be a quadratic coupling of 

to the sources generated in the absence of the quadratic
��
 mixing. Therefore, for arbitrary external sources,
there exist consistent solutions for which the fluctuation of
the helicity-0 is not excited,
 ¼ 0. On these solutions one
exactly recovers the results of the linearized GR. The
above phenomenon provides a mechanism of decoupling
the helicity-0 mode from arbitrary external sources! This
mechanism is a universal property of the self-accelerating
solution in ghostless massive gravity.

Hence, there are no instabilities in (22), as long as
a2 þ 3a3q > 0. The latter condition, along with the re-
quirement of positivity of H2, and the equations of motion
(18), requires that the following system be satisfied:

� 1

2
þ 2a2qþ 3a3q

2 ¼ 0;

MPlH
2 ¼ 2q�3

3

�
a2qþ a3q

2 � 1

2

�
> 0; a2 þ 3a3q> 0;

for the self-accelerating solution to be physically mean-
ingful. The above system can be solved. The solution is
given as follows

a2 < 0; � 2a22
3

< a3 <�a22
2
; (23)

while the Hubble constant and q are given by the following
expressions

H2 ¼ m2½2a2q2 þ 2a3q
3 � q�> 0;

q ¼ � a2
3a3

þ ð2a22 þ 3a3Þ1=2
3

ffiffiffi
2

p
a3

:
(24)

It is clear from (23), that the undiagonalizable interaction

h��Xð3Þ
�� plays a crucial role for the stability of this class of

solutions: All theories without this term (i.e. the ones with
a3 ¼ 0) would have ghostlike instabilities on the self-
accelerated background. Notice as well that in the regime
(23) none of the scalars ’a vanish, and our model therefore
differs from GR with a CC.

We therefore conclude that there exists a well-defined
class of massive theories with the parameters satisfying
the conditions (23), which propagate no ghosts on

asymptotically flat backgrounds, and also admit stable
self-accelerated solutions in the decoupling limit.
As we mentioned before, the helicity-1 field enters only

quadratically, or in higher order terms in the Lagrangian,
and hence, can consistently be set to be zero (i.e. it does not
need to be excited by any other fields). Nevertheless, once
a background configuration for the helicity-0 field is
switched on, the higher-dimensional mixed terms of the
helicity-0 and helicity-1 could in principle flip the sign of
the Maxwell kinetic term, giving rise to a vector ghost that
would only enter the Lagrangian quadratically or in higher
powers; this field would couple to other fields at the non-
linear level. This certainly would not be a satisfactory state
of affairs.
By restoring back the helicity-1 field in our expressions,

and performing direct calculations we have found that in
the nth order in nonlinearities, where n � 6, the coefficient
of the Maxwell term on the self-accelerated background is
proportional to (� 1

2 þ 2a2qþ 3a3q
2), up to corrections

that are of order (nþ 1), [38]. Hence, up to these correc-
tions, the Maxwell term vanishes on the self-accelerated
background!
If this were the full story we would get a theory of a

helicity-1 coupled infinitely strongly to the fluctuations of
the helicity-0 in the decoupling limit. However, quantum
loop corrections will necessarily generate a nonzero
Maxwell term, as it is not protected by any symmetries.
In these loops propagate the helicity-0 mode, as well as the
matter fields to which the helicity-1 couples nonlinearly
(for instance, one of the couplings being, @�A�@�A�T

��).

It is worth emphasizing that, in the decoupling limit the
theory of tensor, vector and� field represents a theory with
independent gauge invariances for the tensor and vector
Uð1Þ transformations. One could therefore already con-
sider quantum loops within this theory, which will generate
the Maxwell term. Notice that the Maxwell term does not
have to be written in terms of the original variables H��

since in the decoupling limit the original Stückelberg
symmetry is split into independent symmetries for h��

and A�.

Then, interpreting the value of the tree-level coefficient
of the Maxwell term (which is zero) as an infinite value of
the inverse of the running Uð1Þ coupling at some UV scale
�UV � �3, we obtain that at lower scales the coupling
constant has a positive value as long as the theory is not
asymptotically free (in other words, the Uð1Þ coupling
would have a Landau pole at some high scale �UV).

5

Hence, the helicity-1 sector would not have a ghost, but
the scale at which it would become nonlinearly interacting

5Alternatively, if the particle content is such that the theory has
a negative beta function, then the infinite value of the coupling
constant should be attributed to some far IR scale, �IR 	 �3,
and at any scale greater than �IR the helicity-1 theory would
have a finite positive coupling square.
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(the Vainshtein scale) would be parametrically (logarithmi-
cally) smaller than �3. Since the helicity-1 field does not
have to be excited by any source, this will not be a concern
for us.

C. Late-time cosmology

In this subsection we discuss the relevance of the results
obtained above for the late-time local cosmological evolu-
tion of the Universe. As seen from the decoupling limit
Lagrangian (10), the helicity-0 mode � provides an effec-
tive stress-tensor that is ‘‘felt’’ by the helicity-2 field:

T�
�� ¼ MPl

X3
n¼1

an

�3ðn�1Þ
3

XðnÞ
��½��

¼ �6qMPl�
3
3

�
� 1

2
þ a2qþ a3q

2

�
���: (25)

It is this stress-tensor that provides the negative pressure
density required to drive the acceleration of the Universe.
Supplemented by the matter density contribution, it leads
to the usual �CDM—like cosmological expansion of the
background in the subhorizon approximation used here.
This is clear form the fact that the stress-tensor (25) gives
rise to a de Sitter background as was shown in the previous
subsection. Hence, in the comoving coordinate system—
which differs from the one used above—the invariant de
Sitter space will be the self-accelerating solution.

All this can be reiterated by performing an explicit
coordinate transformation to the comoving coordinates.
This will be done in two steps. In the so-called Fermi
normal coordinates, the FRW metric can be locally written
in space and for all times, as a small perturbation over
Minkowski space-time:

ds2 ¼ �½1� ð _H þH2Þx2�dt2 þ
�
1� 1

2
H2x2

�
dx2

¼ ð��� þ hFRW�� Þdx�dx�; (26)

where the corrections to the above expression are sup-
pressed by higher powers of H2x2. The Fermi normal
coordinates, on the other hand, are related to those used in
(15) (in which the FRW metric is a small conformal
deformation of Minkowski space-time), by an infinitesimal
gauge transformation [15]. The latter does not change
the expression (25), since T�

�� is invariant under infinitesi-

mal gauge transformations in the decoupling limit. On the
other hand, the Fermi normal coordinates can be trans-
formed into the standard comoving coordinates ðtc;xcÞ as
follows [15]

tc ¼ t� 1

2
HðtÞx2; xc ¼ x

aðtÞ
�
1þ 1

4
H2ðtÞx2

�
: (27)

The stress-tensor of a perfect fluid, T�� ¼
diagð	ðtcÞ; a2ðtcÞpðtcÞ�ijÞ, transforms under this change

of coordinates (at the leading order in H2x2) into the
following expression

T�� ¼ 	 �Hð	þ pÞxi
�Hð	þ pÞxi p�ij

 !
;

where all quantities in the latter expression are evaluated at
time t. Note that the off-diagonal entries of the stress-
tensor for the cosmological constant vanish in the Fermi
normal coordinates, the same is true for T�

�� as well.

Hence, in all coordinate systems used the expressions for
the stress-tensor on the self-accelerated solution is given
by (25).
Not surprisingly, the corresponding cosmological equa-

tions coincide with the conventional ones for the �CDM
model, with the cosmological constant set by the mass of
the graviton

H2 ¼ 	

3M2
Pl

þ C2m2

3
; (28)

_H þH2 ¼ €a

a
¼ � 1

6M2
Pl

ð	þ 3pÞ þ C2m2

3
: (29)

Here 	 and p denote the energy and pressure densities of
matter and/or radiation, and C2 � 6q½� 1

2 þ a2qþ a3q
2�

is a constant that appears in (25).
As already mentioned, irrespective of the completion

(beyond the Hubble scale) of the self-accelerated solution,
it is locally indistinguishable from the �CDM model. At
the horizon scales, however, it is likely that these two
scenarios will depart from each other: As emphasized in
the first section, the solutions found in the decoupling limit
do not necessarily imply the existence of full solutions with
identical properties. Moreover, the decoupling limit
Lagrangian (10) is derived from the full theory by dropping
certain total derivative terms (see [16]), implying solutions
that decay fast-enough at infinity. On the other hand, the
solutions that we found in this section are given in the
coordinate system where the fields grow at large distance/
time scales. If these solutions are to be continued into the
full theory, the latter should have an appropriate large scale
behavior in this coordinate system. A given solution in the
decoupling limit can just be a transient state of the full
solution. Significant deviations of the latter from the for-
mer should kick in at distance/time scales comparable to
the graviton Compton wavelength.

IV. SCREENING THE COSMOLOGICAL
CONSTANT

A. Degravitation in generic theories of massive gravity

One explicit realization of degravitation is expected to
occur in massive gravity, where gravity is weaker in the IR,
and the graviton mass could play the role of a high-pass
filter [25]. In the approach of [25], the original theory was
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formulated as a higher-dimensional model, the 4D
reduction of which can be thought as massive/resonance
gravity with the mass term promoted into a specific differ-
ential operators determined by the underlying higher-
dimensional construction.

A more general approach was adopted in Ref. [27],
where the graviton mass was also promoted to an operator
parameterized by a continuous parameter �

m2ðhÞ ¼ m2ð1��Þ
0 h�; (30)

the inverse graviton propagator is typically of the form

G �1 �h�m2ð1��Þ
0 h�; (31)

so that for �< 1, gravity is weaker beyond wavelengths
comparable to the graviton Compton wavelength m�1

0 .

To take this mechanism a step further, the reliability of
this argument within the nonlinear regime is hence crucial.
A trick to manifest the key interactions that arise in mas-
sive gravity is to work in the decoupling limit, where the
usual GR interactions are suppressed, while the interac-
tions of the new degrees of freedom are emphasized. This
approach was first derived in Ref. [27], which we discuss
first before turning to our considerations. As mentioned
above, this limit is obtained by taking MPl ! 1 and
m ! 0. However unlike in the decoupling limit of the
theory discussed in the previous section, the nonlinear
dynamics in a generic model of massive gravity is gov-
erned by the scale

�5�4�
? ¼ MPlm

4ð1��Þ: (32)

In such models, it has been shown [27] that the helicity-0
(�) and -2 ( �h��) modes satisfy the following equations in

the decoupling limit,

� E��
��

�h�� ¼ � 1

MPl

T��; (33)

3h�� 18

�5�4�
?

ð3hðh1���Þ2 þ � � �Þ ¼ � T

MPl

; (34)

where the physical metric is given by g�� ¼ ��� þ
ð �h�� þ ����Þ=MPl. In the presence of a cosmological

constant, T�� ¼ �����, the solution for the helicity-2

mode is

�h �� ¼ � �

6MPl

x�x
����; (35)

which is the usual GR solution. One can now check the
condition for the existence of a (nearly) static solution
towards which the geometry can relax at late times. In
the language of the decoupling limit, this would happen
if the helicity-0 mode compensates the helicity-2 mode
contribution ���� ¼ � �h�� to maintain the geometry flat

g�� ¼ ���. However the configuration � ¼ �x2=6MPl is

precisely the solution of (34) when the higher interactions

vanish, i.e. 6MPlh� ¼ �T ¼ 8�. As shown in [27], such
interactions cancel for �� x2 only if �< 1=2, hence
implying that a generic theory of massive gravity amended
with a nonzero CC can only have a static solution when
�< 1=2. In particular, in this language the DGP model [4]
corresponds to � ¼ 1=2 (see Ref. [7], but also [39]) hence
explaining why this model does not bear static solutions
with a brane tension, while promoting it to higher dimen-
sions corresponds to a theory with � ! 0 for which the
usual codimension-two conical solutions can accommo-
date a tension without acceleration, [40–44].
The above results hold true for a generic theory of

massive gravity. We now focus the analysis of the ghostless
theory [16] reviewed in Sec. II, which strictly speaking are
not captured by the above � parametrization. The key
difference in the ghostless case is that interactions for the
helicity-0 mode are governed by the larger coupling scale
�3 >�?. The form of these interactions in the ghostless
theory, as well as the specific couplings to matter, play a
crucial role in accommodating a degravitating branch of
solutions, and this without being plagued by any instability
at least in the decoupling limit.

B. Degravitation in ghostless massive gravity

For convenience we start by recalling the decoupling
limit Lagrangian of (10) coupled to an external source

L ¼ � 1

2
h��E��

��h�� þ h��
X3
n¼1

an

�3ðn�1Þ
3

XðnÞ
��½��

þ 1

MPl

h��T��: (36)

The equations of motion for the helicity-0 and 2 modes are
then

� E��
��h�� þ X3

n¼1

an

�3ðn�1Þ
3

XðnÞ
��½�� ¼ � 1

MPl

T��; (37)

and�
a1 þ a2

�3
3

h�þ 3a3
2�6

3

ð½��2 � ½�2�Þ
�
½hh� @�@�h

���

þ 1

�3
3

�
a2��� � 3

a3
�3

3

ð�2
�� �h����Þ

�


 ½2@�@�h�� �hh�� � @�@�h�
� 3a3

�6
3

ð������ �������Þ@�@�h�� ¼ 0: (38)

We now focus on a pure cosmological constant source,
T�� ¼ �����, and make use of a similar ansatz as pre-

viously,

h�� ¼ � 1

2
H2x2MPl���; (39)
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� ¼ 1

2
qx2�3

3: (40)

The equations of motion then simplify to

�
� 1

2
MPlH

2 þ X3
n¼1

anq
n�3

3

�
��� ¼ � �

6MPl

���; (41)

H2ða1 þ 2a2qþ 3a3q
2Þ ¼ 0: (42)

As we will see below, this system of equations admits two
branches of solutions, a ‘‘degravitating’’ one, for which the
geometry remains flat (mimicking the late-time part of the
relaxation process), and a ‘‘de Sitter’’ branch which is
closely related to the standard GR de Sitter solution. We
start with the degravitating branch before exploring the
more usual de Sitter solution and show that the stability of
these branches depends on the free parameters a2;3, as well
as the magnitude of the cosmological constant.

1. The degravitating branch

In this formalism, it is easy to check that the geometry
can remain flat i.e. H ¼ 0 and g�� � ���, despite the

presence of the cosmological constant. Such solutions are
possible due to the presence of the extra helicity-0 mode
that ‘‘carries’’ the source instead of the usual metric. With
H ¼ 0, Eq. (42) is trivially satisfied, while the modified
Einstein Eq. (41) determines the coefficient (which we
denote by q0 here) for the helicity-0 field in (40),

a1q0 þ a2q
2
0 þ a3q

3
0 ¼ �

~�

6
; (43)

in terms of the dimensionless quantity ~� ¼ �=�3
3MPl.

Notice that as long as the parameter a3 is present,
Eq. (43) has always at least one real root. There is therefore
a flat solution for arbitrarily large cosmological constant.

Let us now briefly comment on the stability of the flat
solution, as this has important consequences for the relaxa-
tion mechanism behind degravitation. We consider the
field fluctuations above the static solution,

� ¼ 1

2
q0�

3
3x

2 �
=�; (44)

T�� ¼ ����� þ ���; (45)

where q0 is related to � via (43) and the coupling � is
determined by

� ¼ 2ða1 þ 2a2q0 þ 3a3q
2
0Þ: (46)

To the leading order, the action for these fluctuations is
then simply given by

L ð2Þ ¼ � 1

2
h��E��

��h�� � 1

2
h��Xð1Þ

��½�� þ 1

MPl

h�����;

(47)

with ��� ¼ @�@�
. The stability of this theory is better

understood when working in the Einstein frame where the
helicity-0 and -2 modes decouple. This is achieved by
performing the change of variable,

h�� ¼ �h�� þ
���; (48)

which brings the action to the following form

Lð2Þ ¼�1

2
�h��E��

��
�h��þ3

2

h
þ 1

MPl

ð �h��þ
���Þ���:

(49)

Stability of the static solution is therefore manifest for any
region of the parameter space for which � is real and does
not vanish. As already mentioned, if a3 � 0 there is always
a real solution to (43), which is therefore stable for � � 0.
Furthermore, direct calculations to the sixth order show
that the helicity-1 fluctuations will have a positive kinetic
term as long as �=ðq0 � 1Þ> 0. This suggests the presence
of a flat late-time attractor solution for degravitation. The
special case a3 ¼ 0 is discussed separately below.

2. de Sitter branch

In the presence of a cosmological constant, the field
Eqs. (41) and (42) also admit a second branch of solutions;
these connect with the self-accelerating branch presented
in Sec. III, and we refer to them as the de Sitter solutions.
The parameters for these solutions should satisfy

a1 þ 2a2qdS þ 3a3q
2
dS ¼ 0; (50)

H2
dS ¼

�

3M2
Pl

þ 2�3
3

MPl

ða1qdS þ a2q
2
dS þ a3q

3
dSÞ: (51)

This solution is closer to the usual GR de Sitter configura-
tion and only exists if a22 � 3a1a3. The stability of this
solution can be analyzed as previously by looking at fluc-
tuations around this background configuration,

� ¼ 1

2
qdS�

3
3x

2 þ
; (52)

h�� ¼ � 1

2
H2

dSx
2��� þ ���; (53)

T�� ¼ ����� þ ���: (54)

To second order in fluctuations, the resulting action is then
of the form

Lð2Þ ¼ � 1

2
���E��

����� þ 6H2
dSMPl

�3
3

ða2 þ 3a3qdSÞ
h


þ 1

MPl

������: (55)

It is interesting to point out again that the helicity-0 fluc-
tuation 
 then decouples from matter sources at quadratic
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order (however the coupling reappears at the cubic order).
Stability of this solution is therefore ensured if the parame-
ters satisfy one of the following three constraints, (setting

a1 ¼ �1=2 and ~� > 0)

a2 < 0 and � 2a22
3

� a3 <
1� 3a2 ~�� ð1� 2a2 ~�Þ3=2

3 ~�2
;

(56)

or

a2 <
1

2~�
and a3 >

1� 3a2 ~�þ ð1� 2a2 ~�Þ3=2
3 ~�2

; (57)

or

a2 � 1

2~�
and a3 >� 2

3
a22: (58)

These are consistent with the results (23) found for the self-
accelerating solution in the absence of a cosmological
constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on
the parameters (see, discussions at the end of Sec. III B).
Notice here that in the presence of a cosmological constant,
the accelerating solution can be stable even when a3 ¼ 0.
This branch of solutions therefore connects with the usual
de Sitter one of GR.

3. Diagonalizable action

In Sec. III we have emphasized the importance of the

contribution of Xð3Þ
�� for the stability of the self-accelerating

solution. However, in the presence of a nonzero cosmo-
logical constant, this contribution is not a priori essential
for stability of either the degravitating or the de Sitter
branches. Furthermore, since the helicity-0 and -2 modes
can be diagonalized at the nonlinear level when a3 ¼ 0, as
was explicitly shown in [16], wewill study this special case
separately below. In particular, we will show that it leads to
certain special bounds both in the degravitating and de
Sitter branches of solution.

Stability: To start with, when a3 ¼ 0, the degravitating
solution only exists if

2a2 ~� < 3a21: (59)

This bound, along with the stability condition for the

helicity-1 4a2q0�1
q0�1 > 0, then also ensures the absence of

ghostlike instabilities around the degravitating solution.
Assuming that the parameters a1;2 ¼ Oð1Þ take some natu-

ral values then the situation a2 > 0 implies a severe con-
straint on the value of the vacuum energy that can be
degravitated. This is similar to the bound in the nonlinear
realization of massive gravity [37], as well as in
codimension-two deficit angle solutions, � & m2M2

Pl.

The situation a2 < 0 on the other hand allows for an
arbitrarily large CC.

On the other hand, the bound a22 � 3a1a3 for the exis-
tence of the de Sitter solution is always satisfied if a3 ¼ 0.
However, the constraints on the parameters (56)–(58)
which guarantee the absence of ghosts on the de Sitter
branch imply that

2a2 ~� > 3a21: (60)

In this specific case then, we infer that when the Sitter
solution is stable, the degravitating branch does not exist,
and when the degravitating branch exists the de Sitter
solution is unstable. Therefore, at each point in the pa-
rameter space there is only one, out of these two solutions,
that makes sense. In the more general case where a3 � 0
the situation is however much more subtle and it might be
possible to find parameters for which both branches exist
and are stable simultaneously.
Einstein’s frame: Finally, to understand how this degra-

vitating branch connects with the arguments in [27] and
how it relates with Galileon theories, let us now work
instead in the Einstein frame, where the helicity-2 and -0
modes are diagonalized (which is possible as long as
a3 ¼ 0). The transition to Einstein’s frame is performed
by the change of variable [16,45]

h�� ¼ �h�� � 2a1���� þ 2a2
�3

3

@��@��; (61)

such that the action takes the form

L¼�1

2
�h��ðE �hÞ�� þ 6a21�h�� 6a2a1

�3
3

ð@�Þ2½��

þ 2a22
�6

3

ð@�Þ2ð½�2�� ½��2Þ

þ 1

MPl

�
�h�� � 2a1����þ 2a2

�3
3

@��@��

�
T��; (62)

and the structure of the Galileon becomes manifest. Notice
however, that the coefficients of the different Galileon
interactions are not arbitrary. Furthermore, the coupling
to matter includes terms of the form @��@��T

��, absent

in the original Galileon formalism [15]. Both of these
distinctions play a crucial role in screening the cosmologi-
cal constant—the task which was thought impossible in the
original Galileon theory. Here, however, as long as the
bound (59) is satisfied, the solution for � reads

� ¼ 1

2
q0�

3
3x

2 with a1q0 þ a2q
2
0 ¼ �

~�

6
; (63)

while the helicity-2 mode �h�� now takes the form

�h�� ¼
�
�

2
� �

6MPl

�
x2��� þ �x�x�; (64)

with � being an arbitrary gauge freedom parameter. Fixing
� ¼ �2a2q

2
0�

3
3, the physical metric is then manifestly flat:
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g�� ¼ ��� þ 1

MPl

�
�h�� � 2a1���� þ 2a2

�3
3

@��@��

�

¼ ��� � �3
3

MPl

�
a1q0 þ a2q

2
0 þ

~�

6

�
x2���

þ 1

MPl

ð�þ 2a2q
2
0�

3
3Þx�x� � ���: (65)

To reiterate, the specific nonlinear coupling to matter that
naturally arises in the ghostless theory of massive gravity is
essential for the screening mechanism to work. This allows
us to understand why neither DGP nor an ordinary
Galileon theory are capable of achieving degravitation.

C. Phenomenology

Let us now focus on the phenomenology of the degra-
vitating solution. This mechanism relies crucially on the
extra helicity-0 mode in the massive graviton. However
tests of gravity severely constrain the presence of addi-
tional scalar degrees of freedom. As is well known in
theories of massive gravity, the helicity-0 mode can evade
fifth force constraints in the vicinity of matter if the
helicity-0 mode interactions are important enough to
freeze out the field fluctuations, [19].

Around the degravitating solution, the scale for helicity-
0 interactions is no longer governed by the parameter �3,
but rather by the scale determined by the cosmological

constant ~�3 � ð�=MPlÞ1=3. To see this, let us pursue the
analysis of the fluctuations around the degravitating branch
(44) and keep the higher order interactions. The resulting
Lagrangian is then

Lð2Þ ¼ � 1

2
h��E��

��h�� � 1

2
h��

�
Xð1Þ
��½�� þ ~a2

~�3
Xð2Þ
��½��

þ ~a3
~�6

Xð3Þ
��½��

�
þ 1

MPl

h�����; (66)

with

~a2
~�3

¼ �2
a2 þ 3a3q0

�3
3�

2
; and

~a3
~�6

¼ � 2a3
�6

3�
3
: (67)

Assuming a2;3 �Oð1Þ, a large cosmological constant
~� � 1, implies q0 � 1, so that a3q

2
0 � a2q0 � a1 and

�� a3q0 such that

~a2
~�3

� 1

�3
3a3q

3
0

� 1

�3
3
~�
�MPl

�
(68)

(notice that these results are maintained even if a3 ¼ 0),
and similarly

~a3
~�6

�
�
MPl

�

�
2
: (69)

To evade fifth force constraints within the solar system, the

scale ~� should therefore be small enough to allow for the
nonlinear interactions to dominate over the quadratic

contribution and enable the Vainshtein mechanism. In
the DGP model this typically imposes the constraint,
~�3=MPl & ð10�33 eVÞ2, while this value can be pushed
by a few orders of magnitude in the presence of Galileon
interactions, [15,46]. Therefore, the allowed value of vac-
uum energy that can be screened without being in conflict
with observations is fairly low, of the order of ð10�3 eVÞ4
or so.
Notice that this maximal cosmological constant is at

least of the same order of magnitude, if not better, than
the tension that can be carried by a codimension-2 brane
embedded in six dimensions with a Planck scaleM6. In this
scenario, the maximal tension is of the order of � < 2�M4

6.

From a four-dimensional point of view, this model with
the brane-induced Einstein-Hilbert term looks like a theory
of massive gravity with a graviton mass m2 �M4

6=M
2
Pl.

Phenomenology imposes the graviton mass to be
m & 10�33 eV, which therefore implies the upper bound
of the brane tension, � & ð10�3 eVÞ4.
An alternative would be to impose a hierarchy between

the dimensionless coefficients ai. Since the Galilean inter-
actions satisfy a nonrenormalization theorem [47], such a
tuning would remain technically natural.6 To explore this
avenue in a simple way, let us set a3 ¼ 0. In that case, the
effective strong coupling scale is given by

~� 3 ¼ �3
3

3
4 � 2a2 ~�

a2
: (70)

The strong coupling scale can then be tuned to small values
by adjusting the parameter a2 within the very small
window ��������a2 ~�� 3

8

��������& ð10�33 eVÞ2MPl

�3
3

: (71)

Therefore even when allowing a hierarchy between the
parameters, once they are fixed only very restricted values
of the degravitated cosmological constant would be com-
patible with solar system tests. The previous argument
would have been unaffected if we had set a3 � 0.
The above constraint on the vacuum energy that can be

degravitated makes the present framework not viable phe-
nomenologically for solving the old cosmological constant
problem. There may be a way out of this setback though:
As mentioned in the first section, one may envisage a
cosmological scenario in which the neutralization of vac-
uum energy takes place before the Universe enters the
epoch for which the Vainshtein mechanism is absolutely
necessary to suppress the helicity-0 fluctuations. Such an
epoch should certainly be before the radiation domination.
During that epoch, however, the cosmological evolution
should reset itself—perhaps via some sort of phase tran-
sition—to continue subsequent evolution along the other
branch of the solutions that exhibits the standard early

6We thank the referee for this suggestion.
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behavior followed by the self-acceleration, found in the
present work. This scheme would have to address the
cosmological instabilities discussed in Refs. [48,49].
Moreover, the viability of such a scenario would depend
on properties of the degravitating solution in the full the-
ory—which are not known. Therefore, we do not rely on
this possibility.

Nevertheless, there are certain important virtues to the
degravitating solution with the low value of the degravi-
tated CC. This is an example of high importance in under-
standing how S. Weinberg’s no-go theorem can be evaded
in principle. As already emphasized in [41–44], such
mechanisms evade the no-go theorem by employing a field
which explicitly breaks Poincaré invariance in its vacuum
configuration �� x2, while keeping the physics insensi-
tive to this breaking. Indeed, physical observables are only
sensitive to ��� ¼ @�@�� which is clearly Poincaré in-

variant, while the configuration of the � field itself has no
direct physical bearing. This is built in the specific
Galileon symmetry of the theory, and is a consequence
of the fact that � is not an arbitrary scalar field but rather
descends as the helicity-0 mode of the massive graviton.
More precisely, under a Poincaré transformation,
x� ! �

�
� x� þ a�, the configuration for � transforms as

x2 ! x2 þ v�x
� þ c, with v� ¼ 2a��

�
� and c ¼ a2

which is precisely the Galileon transformation for � under
which the action is invariant. In other words the Poincaré
symmetry is still realized up to a Galilean transformation
(or, there is a diagonal subgroup of Poincaré and internal
‘‘Galilean’’ groups that remains unbroken by the VEV of
the � field).

Thus, we have presented here the crucial steps towards a
nonlinear realization of degravitation within the context of
massive gravity, and this, without introducing any ghosts
(at least in the decoupling limit). The arguments presented
here only rely on the decoupling limit and it is reasonable
to doubt their validity beyond that regime. Fortunately,
nonlinear theories of massive gravity have been explicitly
formulated in [36,37], and static solutions in the fully

nonlinear regime have been presented in [37]. The absence
of the ghost in theories of massive gravity requires the
presence of additional symmetry projecting out the usual
Boulware-Deser ghost, which can typically be thought of
as inherited from a higher-dimensional fundamental the-
ory. It is therefore only natural to investigate massive
gravity as arising in braneworld models embedded in
(spurious) extra dimensions. The static solutions presented
so far then embrace a much more physical meaning, where
the quantity ��� plays the role of the extrinsic curvature

on the brane, describing the brane position along the extra
dimension(s). The fact that our model allows for flat solu-
tions while carrying the cosmological constant with ���

suggests that such models could be understood as flat
branes embedded in extra dimensions, similarly as in
[36,37,40–42].
Some interesting work in Refs. [44] appeared during the

completion of this manuscript. These have certain overlaps
with the ideas of Sec. IVof the present work. In particular,
Refs. [44] emphasize the role of Galileon fields in the
context of degravitation. These works differ, however, in
several aspects from the present one. In particular,
Ref. [44] relies on the existence of two Galileon fields, as
would arise in models with two extra dimensions, [41],
while our model explores the degravitating solutions with a
unique extra helicity-0 mode which naturally arises in the
4D theory of massive gravity. Our mechanism is possible
thanks to the very specific coupling to matter that arises in
a ghostless theory of massive gravity, and differ from the
standard Galileon coupling.
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