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We propose to use a model-independent criterion based on first integrals of motion, due to Noether

symmetries of the equations of motion, in order to classify the dark energy models in the context of scalar

field (quintessence or phantom) Friedmann-Lemaı̂tre-Robertson-Walker cosmologies. In general, the

Noether symmetries play an important role in physics because they can be used to simplify a given system

of differential equations as well as to determine the integrability of the system. The Noether symmetries

are computed for nine distinct accelerating cosmological scenarios that contain a homogeneous scalar

field associated with different types of potentials. We verify that all the scalar field potentials, presented

here, admit the trivial first integral, namely, energy conservation, as they should. We also find that the

exponential potential inspired from scalar field cosmology, as well as some types of hyperbolic potentials,

include extra Noether symmetries. This feature suggests that these potentials should be preferred along the

hierarchy of scalar field potentials. Finally, using the latter potentials, in the framework of either

quintessence or phantom scalar field cosmologies that contain also a nonrelativistic matter (dark matter)

component, we find that the main cosmological functions, such as the scale factor of the Universe, the

scalar field, the Hubble expansion rate, and the metric of the Friedmann-Lemaı̂tre-Robertson-Walker

space-time, are computed analytically. Interestingly, under specific circumstances the predictions of the

exponential and hyperbolic scalar field models are equivalent to those of the �CDM model, as far as the

global dynamics and the evolution of the scalar field are concerned. The present analysis suggests that our

technique appears to be very competitive to other independent tests used to probe the functional form of a

given potential and thus the associated nature of dark energy.
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I. INTRODUCTION

The analysis of the available high quality cosmological
data (supernovae type Ia, cosmic microwave background
(CMB), galaxy clustering, power spectrum, etc.) have
converged during the last decade towards a cosmic expan-
sion history that involves a spatially flat geometry and a
recently initiated accelerated expansion of the Universe
(see [1–6] and references therein). From a theoretical point
of view, an easy way to explain this expansion is to con-
sider an additional energy component, usually called dark
energy (DE) with negative pressure, that dominates the
Universe at late times. The simplest DE candidate corre-
sponds to the cosmological constant (see [7–9] for re-
views). Indeed the so-called spatially flat concordance
�CDM model, which includes cold dark matter (DM)
and a cosmological constant, (�) fits accurately the current
observational data and thus it is an excellent candidate to
be the model which describes the observed Universe.

However, the concordance model suffers, among other
[10], from two fundamental problems: (a) The ‘‘old’’ cos-
mological constant problem (or fine-tuning problem) i.e.,
the fact that the observed value of the vacuum energy
density (�� ¼ �c2=8�G ’ 10�47 GeV4) is many orders
of magnitude below the value found using quantum field
theory [7], and (b) the coincidence problem [11] i.e., the

fact that the matter energy density and the vacuum energy
density are of the same order (just prior to the present
epoch), despite the fact that the former is a rapidly decreas-
ing function of time while the latter is stationary.
Attempts to solve the coincidence problem have been

presented in the literature (see [8,9,12] and references
therein), in which an easy way to overpass the coincidence
problem is to replace the constant vacuum energy with a
DE that evolves with time. Nowadays, the physics of DE is
considered one of the most fundamental and challenging
problems on the interface uniting astronomy, cosmology,
and particle physics. In the last decade there have been
theoretical debates among the cosmologists regarding the
nature of this exotic component. Many candidates have
been proposed in the literature, such as a cosmological
constant � (vacuum), time-varying �ðtÞ cosmologies,
quintessence, k-essence, quartessence, vector fields, phan-
tom, gravitational matter creation, tachyons, modifications
of gravity, Chaplygin gas and the list goes on (see
[7,13–29] and references therein).
In the original scalar field models [30] and later in the

quintessence context, one can ad hoc introduce an adjust-
ing or tracker scalar field � [18] (different from the usual
standard model Higgs field), rolling down the potential
energy Vð�Þ, which could resemble the DE [8,9,31–34].
However, it was realized that the idea of a scalar field
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rolling down some suitable potential does not really solve
the problem because � has to be some high energy field of
a grand unified theory, and this leads to an unnaturally
small value of its mass, which is beyond all conceivable
standards in Particle Physics. As an example, utilizing the
simplest form for the potential of the scalar field, Vð�Þ ¼
m2

��
2=2, the present value of the associated vacuum en-

ergy density is �� ¼ hVð�Þi � 10�11 eV4, so for h�i of
order of a typical grand unified theory scale near the Planck
mass, MP � 1019 GeV, the corresponding mass of � is
expected in the ballpark of m� �H0 � 10�33 eV.

Notice that the presence of such a tiny mass scale in
scalar field models of DE is generally expected also on the
basis of structure formation arguments [35–37];, namely,
from the fact that the DE perturbations seem to play an
insignificant role in structure formation for scales well
below the sound horizon. The main reason for this homo-
geneity of the DE is the flatness of the potential, which is
necessary to produce a cosmic acceleration. Being the
mass associated to the scalar field fluctuation proportional
to the second derivative of the potential itself, it follows
that m� will be very small and one expects that the mag-

nitude of DE fluctuations induced by � should be appre-
ciable only on length scales of the order of the horizon.
Thus, equating the spatial scale of these fluctuations to the
Compton wavelength of � (hence to the inverse of its
mass) it follows once more that m� & H0 � 10�33 eV.

Despite the above difficulties there is a class of viable
models of quintessence based on supersymmetry, super-
gravity and string-theory which can protect, under of spe-
cific potentials, the light mass of quintessence (for a review
see [38] and references therein). In spite of that, this class
of DEmodels have been widely used in the literature due to
their simplicity. Notice that DE models with a canonical
kinetic term have a dark energy equation of state (EoS)
parameter �1 � w� <�1=3. Models with (w� <�1),

sometimes called phantom DE [39], are endowed with a
very exotic nature, like a scalar field with negative kinetic
energy. In any case, in order to investigate the overall
dynamics of the Universe we need to define the functional
form of the potential energy. As we have already men-
tioned the issue of the potential energy has a long history in
scalar field cosmology and indeed several parametrizations
have been proposed (exponential, power law, hyperbolic,
etc.).

The aim of the present work is to investigate which of
the available scalar field potentials can accommodate basic
geometrical symmetries (connected to the space-time),
namely, Lie point and Noether. In fact the idea to use
Noether symmetries as a cosmological tool is not new. In
particular, it has been proposed that the existence of such
symmetries are related with conserved quantities and thus
they can be used as a selection criterion in order to dis-
criminate the dark energy models, including those of fðRÞ
gravity (see [40–47]). From a mathematical point of view,

the Lie point/Noether symmetries play a vital role in
physical problems because they provide Noether (first)
integrals, which can be used in order to simplify a given
system of differential equations and to determine the inte-
grability of the system. A fundamental approach to derive
the Lie point and Noether symmetries for a given dynami-
cal problem moving in a Riemannian space has been
proposed recently by Tsamparlis and Paliathanasis [48]
(a similar analysis can be found in [49–55]).
The structure of the article is as follows. The basic

theoretical elements of the problem are presented in
Sec. II, where we also introduce the basic FLRW cosmo-
logical equations for various potentials of the scalar field.
The geometrical symmetries of the scalar fields and their
connections to the potential energy are discussed in
Sec. III. In Sec. IV we provide for a first time (to our
knowledge) analytical solutions in the light of either quin-
tessence or phantom scalar field cosmologies that include
nonrelativistic matter (dark matter). Finally, the main con-
clusions are summarized in Sec. V.

II. COSMOLOGY WITH A SCALAR FIELD

The scalar field contribution to the curvature of space-
time can be absorbed in Einstein’s field equations as
follows:

R�� � 1
2g��R ¼ k ~T��; k ¼ 8�G; (1)

where R�� is the Ricci tensor and ~T�� is the total energy-

momentum tensor ~T�� given by ~T�� � T�� þ T��ð�Þ.
Here T��ð�Þ is the energy-momentum tensor associated

with the scalar field �, and T�� is the ordinary energy-

momentum tensor of matter and radiation. Modeling the
expanding Universe as a perfect fluid that includes radia-
tion, matter and DE with 4-velocity U�, we have ~T�� ¼
�Pg�� þ ð�þ PÞU�U�, where � ¼ �m þ �� and P ¼
Pm þ P� are the total energy density and pressure of the

cosmic fluid, respectively. Note that �m is the proper iso-
tropic density of matter-radiation, �� denotes the density

of the scalar field and Pm, P� are the corresponding

pressures. In the context of a FLRW metric with
Cartesian coordinates

ds2 ¼ �dt2 þ a2ðtÞ 1

ð1þ K3

4 x2Þ2 ðdx
2 þ dy2 þ dz2Þ (2)

the Einstein’s field Eqs. (1), for comoving observers
(U� ¼ ��

0 ), provide

R00 ¼ �3
€a

a
; (3)

R�� ¼
�
€a

a
þ 2

_a2 þ K3

a2

�
g��; (4)

where the overdot denotes derivative with respect to the
cosmic time t, aðtÞ is the scale factor of the Universe, and
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K3 ¼ 0, �1 is the spatial curvature parameter. Also, the
contraction of the Ricci tensor provides the Ricci scalar

R ¼ g��R�� ¼ 6

�
€a

a
þ _a2 þ K3

a2

�
: (5)

Finally, the gravitational field equations boil down to
Friedmann’s equation

H2 �
�
_a

a

�
2 ¼ k

3
ð�m þ ��Þ � K3

a2
(6)

and

3H2 þ 2 _H ¼ �kðPm þ P�Þ � K3

a2
; (7)

where HðtÞ � _a=a is the Hubble function. The Bianchi
identity (which ensure the covariance of the theory)
5� ~T�� ¼ 0 amounts to the following generalized local

conservation law:

_�m þ _�� þ 3Hð�m þ Pm þ �� þ P�Þ ¼ 0: (8)

Note that the latter quantities obey the following relations:

ð�m;PmÞ� ð�T0
0 ;T

i
iÞ; ð��;P�Þ� ð�T0

0ð�Þ;Ti
ið�ÞÞ: (9)

Combining Eqs. (6)–(8), we obtain

€a

a
¼ � k

6
½�m þ �� þ 3ðPm þ P�Þ�: (10)

Assuming negligible interaction between matter and scalar
field, Eq. (8) leads to the following independent differential
equations:

_�m þ 3Hð�m þ PmÞ ¼ 0; (11)

_�� þ 3Hð�� þ P�Þ ¼ 0: (12)

In this work, we will present the global dynamics of the
Universe in the presence of a barotropic cosmic fluid
whose the corresponding EoS parameters are given by
wm ¼ Pm=�m and w� ¼ P�=��. In what follows we

assume a constant wm which implies that �m ¼
�m0a

�3ð1þwmÞ (cold wm ¼ 0 and relativistic wm ¼ 1=3
matter), where �m0 is the matter density at the present
time. Generically, some high energy field theories suggest
that the dark energy EoS parameter is a function of cosmic
time (see, for instance, [56]) and thus

��ðaÞ ¼ ��0 exp

�Z 1

a

3½1þ w�ð�Þ�
�

d�

�
; (13)

where ��0 is the DE density at the current epoch.

A. The scalar field

We consider a scalar field in the Friedmann-Lemaı̂tre-
Robertson-Walker (FRLW) cosmology which is minimally
coupled to gravity, such that the field satisfies the

cosmological principle that is, � inherits the symmetries
of the metric. This means that the scalar field depends only

on the cosmic time t, and consequently �;� ¼ _��0
� where

_� ¼ d�
dt . A scalar field �ðtÞ with a potential Vð�Þ is

defined by the energy-momentum tensor of the form (for
review see [38] and references therein)

T��ð�Þ ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
L�Þ

�g�� ; (14)

where L� is the Lagrangian of the scalar field. Although in

the current analysis we study generically, as much as
possible, the problem we will focus on a scalar field with

L� ¼ �1
2�g

���;��;� � Vð�Þ (15)

or

L� ¼ 1
2�

_�2 � Vð�Þ; (16)

where

� ¼
8<
: 1 Quintessence

�1 Phantom:
(17)

Therefore, using the second equality of Eq. (9), (14), and
(16) the energy density �� and the pressure P� of the

scalar field are given by

�� � �T0
0ð�Þ ¼ 1

2�
_�2 þ Vð�Þ (18)

and

P� � Ti
ið�Þ ¼ L� ¼ 1

2�
_�2 � Vð�Þ: (19)

Inserting Eq. (18) and (19) into Eq. (12) it is routine to
derive the Klein-Gordon equation which describes the time
evolution of the scalar field. This is

€�þ 3

a
_a _�þ�V;� ¼ 0; (20)

where V;� ¼ dV=d�. Obviously, if we use the current

functional form of L�, then Eq. (7) takes the form

€a

a
þ 1

2

�
_a2

a2
þ K3

a2

�
þ k

2

�
Pm þ 1

2
� _�2 � Vð�Þ

�
¼ 0: (21)

The corresponding dark energy EoS parameter (defined
before) is

w� ¼ P�

��

¼ �ð _�2=2Þ � Vð�Þ
�ð _�2=2Þ þ Vð�Þ : (22)

The quintessence (� ¼ 1) cosmological model accommo-
dates a late time cosmic acceleration in the case of

w� <�1=3 which implies that _�2 < Vð�Þ. On the other

hand, if the kinetic term of the scalar field is negligible with

respect to the potential energy [
_�2

2 � Vð�Þ], then the

equation of state parameter is w� ’ �1. In the case of a
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phantom DE (� ¼ �1), due to the negative kinetic term,

one has w� <�1 for ð _�2=2Þ< Vð�Þ.
The unknown quantities of the problem are aðtÞ, �ðtÞ

and Vð�Þ but we have only two independent differential
equations available, namely, Eqs. (20) and (21). Thus, in
order to solve this system of differential equations we need
to assume a functional form of the scalar field potential
energy, Vð�Þ. In the literature, due to the unknown nature
of the DE, there are many forms of potentials (for a review
see [38]) which describe differently the physical features of
the scalar field. Let us now briefly present various poten-
tials whose free parameters can be constrained by using the
current cosmological data.

(i) The power law potential [13,18]:

Vð�Þ ¼ M4þn

�n (23)

(ii) The exponential potential [57]:

Vð�Þ ¼ V0 expð�
ffiffiffi
k

p
	�Þ (24)

(iii) The unified dark matter potential (hereafter UDM)
[58]:

Vð�Þ ¼ V0½1þ cosh2ð	�Þ� (25)

(iv) The pseudo-Nambu Goldstone boson potential
[59]:

Vð�Þ ¼ �4½1þ cosð�=fÞ� (26)

(v) The exponential with inverse power [60]:

Vð�Þ ¼ M½expð
=�Þ � 1�: (27)

(vi) The supergravity motivated potential [19]:

Vð�Þ ¼ M expð�2Þ=�
: (28)

(vii) The early dark energy potential [61]:

Vð�Þ ¼ V1 expð�
ffiffiffi
k

p
	1�Þ þ V2 expð�

ffiffiffi
k

p
	2�Þ:

(29)

Interestingly the potential

Vð�Þ ¼ V0½coshð	�Þ � 1�p

provides predictions which are similar to those of
the early DE model, as far as the global dynamics
of the Universe is concerned [62].

(viii) The Albrecht-Skordis model [63]:

Vð�Þ ¼ M½Aþ ð�� BÞ2� expð�
�Þ: (30)

(ix) The Chaplygin gas from the ordinary scalar field
viewpoint [38]:

Vð�Þ ¼
ffiffiffiffi
A

p
2

�
cosh

ffiffiffi
3

p
k�þ 1

cosh
ffiffiffi
3

p
k�

�
: (31)

Detailed analysis of these potentials exist in the litera-
ture, including their confrontation with the data (see [38]
for extensive reviews). It is worth pointing out that for
some special cases attempts to find analytical solutions can
be found in [60,64–70] (and references therein).

III. DARK ENERGY VERSUS
SPACE-TIME SYMMETRIES

In the last decade, a large number of experiments have
been proposed in order to constrain DE and study its
evolution. Naturally, in order to establish the evolution of
the DE equation of state a realistic form ofHðaÞ is required
while the included free parameters must be constrained
through a combination of independent DE probes (for
example SNIa, BAOs, CMB, etc.). However, there is al-
ways a range of parameters of the considered scalar field
cosmological models for which a good fit with the obser-
vational data is provided. This implies that such DEmodels
can not be distinguished observationally, since they
provide similarly evolving Hubble functions.
Practically, the goal here is to define a method (selection

criterion) that can distinguish the DE models on a more
fundamental (e.g., geometrical) level. According to the
theory of general relativity, the space-time symmetries
(Killing and homothetic vectors) via the Einstein’s field
equations [see Eq. (1)], are also symmetries of the energy-
momentum tensor (the matter generates the gravitational
field). Owing to the fact that the scalar field is minimally
coupled to gravity and it evolves in space-time one would
expect that the scalar field must inherit the symmetries of
the space-time as gravity does.
It is interesting to mention that besides the geometric

symmetries one has to consider the dynamical symmetries,
which are the symmetries of the field equations. These
latter symmetries are known as Lie symmetries. In case
the field equations are derived from a Lagrangian there is a
special class of Lie symmetries, the Noether symmetries,
which have the characteristic that lead to conserved cur-
rents or, equivalently, to first integrals of the equations of
motion. The Noether integrals are used to reduce the order
of the field equations or even to solve them. Therefore a
sound requirement, which is possible to be made in
Lagrangian theories is that they admit extra Noether sym-
metries. This assumption is model independent, because it
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is imposed after the field equations have been derived,
therefore it does not lead to conflict whereas with the
geometric symmetries while, at the same time, serves the
original purpose of a selection rule. Since the basic equa-
tions in the scalar field cosmologies follow from a
Lagrangian we can apply the above ideas by looking for
scalar field cosmologies which admit extra Noether
symmetries.

In particular, let us consider a cosmological model
which accommodates a late time accelerated expansion
and it contains a scalar field �ðtÞ, described by a potential
Vð�Þ. We pose the following question: For the scalar field
that lives into a two-dimensional Riemannian space fa;�g
and which is embedded in the space-time, how many (if
any) of the previously presented potentials (see Sec. II A)
can provide nontrivial Noether symmetries (or first inte-
grals of motion )? As an example, if we find a cosmological
model (or a family of models) for which its scalar field
produces nontrivial number of first integrals of motion with
respect to the other DE cosmological models, then obvi-
ously this model contains an extra geometrical feature.
Thus, we can use this geometrical characteristic in order
to classify the explored DE cosmological model into a
distinct category (see also [40–45]). Below, we present
the geometrical method used in order to define the basic
symmetries, namely, Lie point and Noether which lead to
first integrals of motion.

A. Lie and Noether symmetries

We briefly present the main points of the method used to
classify all two-dimensional Newtonian dynamical sys-
tems, which admit Lie point/Noether symmetries.1 A first
important ingredient is the use of two theorems which
relate the Lie point and the Noether symmetries of a
dynamical system moving in a Riemannian space with
the special projective group and the homothetic group
generators of the space, respectively. These theorems
have been given by some of us in [48]. In particular in a
recent paper Tsamparlis and Paliathanasis [48] have pro-
vided an alternative way to solve the system of Lie point/
Noether symmetry conditions (see their Tables 1–15), for
second order equations of the form

€x i þ �i
jk _x

j _xk ¼ Fi: (32)

Here �i
jkðxrÞ are general functions, along the solution

curves and FiðxjÞ is a C1 vector field. Basically,
Eqs. (32) are the equations of motion of a dynamical
system in a Riemannian space in which the functions
�i
jkðxrÞ are the connection coefficients (Christofell sym-

bols) of the metric ĝij of the space (in our case fa;�g see
below). The key point, (see [48]), is to express the system
of Lie point/Noether symmetry conditions of Eq. (32) in
terms of collineation (usually referred as symmetries) con-
ditions of the metric. If this is achieved, then the Lie point/
Noether symmetries of Eq. (32) will be related to the
collineations of the metric. Therefore the determination
of the Lie point/Noether symmetries of Eq. (32) will be
transferred to the geometric problem of determining the
generators of a specific type of collineations of the metric.
Then it will be possible to use the plethora of results of
Differential Geometry on collineations to produce the
solution of the Lie point/Noether symmetry problem.
The natural question to ask is: How one will select the

Lie point/Noether symmetries of two different dynamical
systems, which move in the same Riemannian space? The
answer is simple. The left-hand side of Eq. (32) contains
the metric and its derivatives and it is common to all
dynamical systems moving in the same Riemannian space.
Therefore geometry enters in the left-hand side of Eq. (32)
only. Each dynamical system is defined by the force field
Fi, which enters into the right-hand side of Eq. (32) only.
Therefore, there must exist constraints, which involve the
components of the Lie point/Noether symmetry vectors
and the force field, and which will have to be satisfied
for a collineation of the metric in order for it to be a Lie
point/Noether symmetry of the specific dynamical system.
A similar approach can be found in [51–55].
In a subsequent work [48] Tsamparlis and Paliathanasis

determined (among others) all two-dimensional potentials
which admit at least one Lie point and/or Noether symme-
try. The results of the calculations have been collected for
convenience in Tables 1–15. From these tables one can
read directly the aforementioned potentials and, further-
more, for each potential the admitted Lie point and Noether
symmetries together with the corresponding Noether
integrals. It is emphasized that no extra calculations are
required. In the following we shall make use of these
results.

B. Using the geometry of the
space fa;�g to constrain dark energy

In this section we apply the previous theory into the
scalar field cosmology. Interestingly, we can easily prove
that the main field Eqs. (20) and (21), described in Sec. II,
can be produced by the following general Lagrangian:

L ¼ �3a _a2 þ ka3L� þ ka3Pm þ 3K3a (33)

in the space of the variables fa;�g. Also the action is

S ¼
Z

Ld3xdt: (34)

Therefore, utilizing Eq. (16) and (33) we can also obtain
the Hamiltonian of this system

1Note that the Noether symmetries are a subalgebra of the
algebra defined by the Lie symmetries [48]. A dot over a symbol
in Eq. (32) indicates derivation with respect to the parameter s
(the affine parameter along the trajectory—cosmic time in our
case)
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E ¼ 1
2ð�6a _a2 þ ka3� _�2Þ þ ka3½Vð�Þ � Pm� � 3K3a:

(35)

In order to compute the Lie point/Noether symmetries of
equations of motion (20) and (21), we consider the
Lagrangian as the sum of a kinetic energy which defines
the metric in the space of fa;�g and an external force field.
In particular, this two-dimensional metric takes the form

dŝ2 ¼ �6ada2 þ ka3�d�2; (36)

which implies that

�a
aa ¼ 1

2a
; ��

a� ¼ 3

2a
; �a

�� ¼ k

4
�a: (37)

Obviously, in the case of phantom cosmology � ¼ �1,
Eq. (36) points that we have to replace � with i� for
mathematical convenience. Using now Eq. (37) and insert-
ing the variables xi ¼ aðtÞ, �ðtÞ variables into Eq. (32) we
find that

€aþ 1

2a
_a2 þ k

4
a� _�2 ¼ Fa; €�þ 3

a
_a _� ¼ F�:

Comparing with the equations of motion (20) and (21), we
can define the external ’’forces’’ in terms of the scalar field
potential Vð�Þ

Fa ¼ � 1

2a
K3 � ka

2
½Pm � Vð�Þ�; F� ¼ ��V;�:

On the other hand, using the above �i
jk functions we find

after some simple algebra that the curvature of the fa;�g
space is R̂ ¼ 0 implying flatness (all two-dimensional

spaces are Einstein spaces hence R̂ ¼ 0 implies the space
is flat). Also, the signature of the metric Eq. (36) is �1,
hence the space is the two-dimensional Minkowski space.
Therefore, according to theorems 1 and 2 of [48] the Lie
point/Noether symmetries of the Eqs. (20) and (21) follow
from the special projective group of the two-dimensional
Minkowski space. To find explicitly these vectors and thus
the corresponding Noether symmetries (or first integrals),
we have to bring the two-dimensional metric of Eq. (36)
into its canonical form (i.e., dŝ2 ¼ �dx2 þ dy2).
Changing now the variables from ða;�Þ to ðr; �Þ via the
relations

r ¼
ffiffiffi
8

3

s
a3=2; � ¼

ffiffiffiffiffiffiffiffi
3k�

8

s
� (38)

the two-dimensional metric (36) is given by

dŝ2 ¼ �dr2 þ r2d�2; (39)

that is, ðr; �Þ are hyperbolic spherical coordinates in the
two-dimensional Minkowski space fa;�g. Next we intro-
duce the new coordinates ðx; yÞ with the transformation

x ¼ r coshð�Þ; y ¼ r sinhð�Þ; (40)

which implies that Eq. (39) becomes dŝ2 ¼ �dx2 þ dy2.
We also point here that

r2 ¼ x2 � y2; � ¼ arctanhðy=xÞ: (41)

The scale factor (aðtÞ> 0) is now given by

a ¼
�
3ðx2 � y2Þ

8

�
1=3

; (42)

which means that the new variables have to satisfy the
following inequality: x � jyj.
In the new coordinate system ðx; yÞ the Lagrangian (33)

and the Hamiltonian (35) are written

L ¼ 1
2ð _y2 � _x2Þ � Veffðx; yÞ; (43)

E ¼ 1
2ð _y2 � _x2Þ þ Veffðx; yÞ; (44)

where

Veffðx; yÞ ¼ ðx2 � y2Þ
�
~V

�
y

x

�
� ~Pm

�
� 3 ~K3ðx2 � y2Þ1=3:

(45)

Note that we have used

~K3 ¼ K3

�
3

8

�
1=3

~Pm ¼ 3k

8
Pm (46)

and

~Vð�Þ ¼ 3k

8
Vð�Þ: (47)

If the matter pressure Pm is constant, then the Lagrangian
(or Hamiltonian) is time independent, thus the system is
autonomous implying that theorems 1 and 2 of [48] apply.
In this case we also have (for more details see Appendix A)

that �m ¼ jEj
ka3

� Pm which obeys Eq. (11).

We now proceed in an attempt to provide the Lie point
and Noether symmetries of the current dynamical problem.
Note, that for simplicity in the analytical treatment below,
unless explicitly stated, we consider spatially flat FRLW
(K3 ¼ 0) scalar field models that include nonrelativistic

matter (Pm ¼ 0 with �m ¼ jEj
ka3

). Taking the latter into

account the effective potential of Eq. (45) is given by

Veffðx; yÞ ¼ ðx2 � y2Þ ~V
�
y

x

�
¼ r2 ~Vð�Þ: (48)

For this effective potential and with the aid of [48,49] we
find the following cases that admit Lie point and Noether
symmetries:
(i) Trivial Noether symmetries: First of all, it is well

known (see for example [48] and references therein)
that for a general effective potential Veffðx; yÞ we
have only the Lie symmetry @t. Additionally, for
effective potentials given by Eq. (48) we have that
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Veffðx; yÞ ¼ x2
�
1� y2

x2

�
~V

�
y

x

�
;

hence, the case of Table 8, line 5 (with d ¼ 0) of [48]
applies and we have the additional Lie symmetry
x@x þ y@y. A linear combination between @t and

x@x þ y@y provides the following Lie symmetry:

XL ¼ c1@t þ c2ðx@x þ y@yÞ: (49)

From the corresponding tables of theorem 2 of [48],
we see that in this case there is only the trivial
Noether symmetry2 @t, whose Noether integral is
the Hamiltonian E ¼ constant (@tE ¼ 0). As it is
expected, this result implies that all the scalar field
potentials described in Sec. II A admit the trivial
Noether symmetry, namely, energy conservation, as
they should.

(ii) Extra Noether symmetries: Now we are looking for
first integrals beyond the standard one. In particular,
we are interested to check whether the scalar field
potentials mentioned in this paper (see Sec. II A)
can admit nontrivial Lie point/Noether symmetries.
The argument is simple: if for a given potential we
find extra Noether symmetries which are related
with conserved quantities, then this particular model
has an enhanced physical meaning (see also
[42–45]). From the mathematical point of view the
existence of extra integrals of motion points the
existence of an analytical solution (see the next
section). The novelty in the current work is that
we find that the exponential potential [see Eq. (24)]
and the UDM potential (see Eq. (25)) can be clearly
distinguished from the other dark energy potentials
because these are the only potentials from the list
presented in Sec. II A, that accommodate extra
Noether symmetries.

Hyperbolic-UDM Potential: Generically, we use the
following potential:

~Vð�Þ ¼ !1cosh
2ð�Þ �!2sinh

2ð�Þ
2

(50)

or

Veffðx; yÞ ¼ r2 ~Vð�Þ ¼ !1x
2 �!2y

2

2
; (51)

where we have used Eqs. (40) and (48). The corresponding
Noether symmetries, Xn, are known (see for example [49]).
These are (for !1!2 � 0 otherwise see Appendix B):

Xn1 ¼ @t; Xn2 ¼ sinhð ffiffiffiffiffiffi
!1

p
tÞ@x;

Xn3 ¼ coshð ffiffiffiffiffiffi
!1

p
tÞ@x; Xn4 ¼ sinhð ffiffiffiffiffiffi

!2
p

tÞ@y;
Xn5 ¼ coshð ffiffiffiffiffiffi

!2
p

tÞ@y:
The Noether integrals are the Hamiltonian and the
quantities

In2 ¼ sinhð ffiffiffiffiffiffi
!1

p
tÞ _x� ffiffiffiffiffiffi

!1

p
coshð ffiffiffiffiffiffi

!1

p
tÞx;

In3 ¼ coshð ffiffiffiffiffiffi
!1

p
tÞ _x� ffiffiffiffiffiffi

!1

p
sinhð ffiffiffiffiffiffi

!1

p
tÞ;

In4 ¼ sinhð ffiffiffiffiffiffi
!2

p
tÞ _y� ffiffiffiffiffiffi

!2

p
coshð ffiffiffiffiffiffi

!2

p
tÞy;

In5 ¼ coshð ffiffiffiffiffiffi
!2

p
tÞ _y� ffiffiffiffiffiffi

!2

p
sinhð ffiffiffiffiffiffi

!2

p
tÞy:

Obviously the UDM potential is a particular case of the
current general hyperbolic potential. Indeed for !1 ¼ 2!2

and with the aid of Eqs. (38) and (47) we fully recover the
UDM potential (see Sec. II A)

Vð�Þ ¼ V0

�
1þ cosh2

�
3k�

8
�

��
; (52)

where V0 ¼ 4!2

3k modulus a constant.

Exponential potential: Here we provide for a first time
(to our knowledge) the Lie point and the Noether symme-
tries of the exponential potential. Indeed from Table 8,
line 3 (with d � 0) of [48] one can immediately see that

Veffðr; �Þ ¼ r2 ~Vð�Þ ¼ r2e�d�:

The corresponding Lie symmetry vector is

XL ¼ 2t@t þ 4

d
ðy@x þ x@yÞ: (53)

Concerning the Noether symmetries from Table 14 of [48]
we find that the Noether symmetry of the system for the
potential ~Vð�Þ ¼ e�d� is

Xn ¼ 2t@t þ
�
xþ 4

d
y

�
@x þ

�
yþ 4

d
x

�
@y: (54)

In general the Noether integral for the vector Xn ¼
2t@t þ �i@i is (see Eq. 66 of [48]):

I ¼ 2tE� �iĝij _x
i; (55)

where �i ¼ ðxþ 4
d yÞ@x þ ðyþ 4

d xÞ@y. After some algebra

we compute

�iĝij _x
i ¼ xþ 4

d y yþ 4
d x

� � �1 0

0 1

 !
_x

_y

 !

¼ �
�
xþ 4

d y

� �
yþ 4

d x

�� �
_x

_y

 !

¼ �
�
xþ 4

d
y

�
_xþ

�
yþ 4

d
x

�
_y;

i.e.,

I ¼ 2tEþ
�
xþ 4

d
y

�
_x�

�
yþ 4

d
x

�
_y; (56)

2The operator @z denotes @=@z. Also, there is a difference of
the results presented in [48] due to the Lorentzian character of
the metric. This affects only the rotational part of the metric (non
gradient Killing vectors) and gives y@x þ x@y instead of the
Euclidean y@x � x@y.
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where E is the Hamiltonian. Using ~V ¼ e�d� together with
Eq. (38) and (47) we write the potential to its nominal form
(see Sec. II A). This is

Vð�Þ ¼ V0 exp

0
@�d

ffiffiffiffiffiffiffiffi
3k�

8

s
�

1
A; (57)

where V0 ¼ 8
3k modulus a constant.3

From now on, we focus on the exponential and the UDM
potentials because they contain nontrivial integrals of mo-
tion, implying the existence of exact analytical solutions
(see the next section). In Sec. IV we provide for a first time
(to our knowledge) such analytical solutions in the light of
either quintessence or phantom scalar field cosmologies
that include also a nonrelativistic matter (cold dark matter)
component.

IV. ANALYTICAL SOLUTIONS IN THE FLAT
SCALAR FIELD COSMOLOGY

In this section, we proceed in an attempt to analytically
solve the differential Eqs. (20) and (21). We remind the
reader that this is possible because the dynamical system
that includes either an exponential or a UDM potential is
autonomous and it admits extra Noether symmetries (see
previous section). Our aim is to derive the predicted time
dependence of the main cosmological functions, namely,
aðtÞ and�ðtÞ [and thus ofHðtÞ andw�ðtÞ] in the scalar field
cosmology.

A. Analytical solutions of the hyperbolic potential

Inserting Eq. (51) into Eqs. (43) and (44) the Lagrangian
and the Hamiltonian, respectively, become

L ¼ 1
2ð _y2 � _x2Þ � 1

2ð!1x
2 �!2y

2Þ; (58)

E ¼ 1
2ð _y2 � _x2Þ þ 1

2ð!1x
2 �!2y

2Þ: (59)

Technically speaking, in the new coordinate system our
dynamical problem is described by two independent hyper-
bolic oscillators and thus the system is fully integrable. In
particular, utilizing the Euler-Lagrange equations in the
new coordinate system the corresponding equations of
motion can be written as

€x�!1x ¼ 0; €y�!2y ¼ 0;

where
ffiffiffiffiffiffi
!1

p
and

ffiffiffiffiffiffi
!2

p
are the oscillators’ ’’frequencies’’

with units of inverse of time. It is routine to perform the
integration to find the analytical solutions

xðtÞ ¼ sinhð ffiffiffiffiffiffi
!1

p
tþ �1Þ;

yðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ!1

!2

s
sinhð ffiffiffiffiffiffi

!2
p

tþ �2Þ;

a3ðtÞ¼3

8
½x2ðtÞ�y2ðtÞ�

¼3

8

�
sinh2ð ffiffiffiffiffiffi

!1
p

tþ�1Þ�2Eþ!1

!2

sinh2ð ffiffiffiffiffiffi
!2

p
tþ�2Þ

�
;

and

�ðtÞ ¼
ffiffiffiffiffiffiffiffi
8

3k�

s
arctanh

�
y

x

�

¼
ffiffiffiffiffiffiffiffi
8

3k�

s
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ!1

!2

s
sinhð ffiffiffiffiffiffi

!2
p

tþ �2Þ
sinhð ffiffiffiffiffiffi

!1
p

tþ �1Þ
�
;

where �1 and �2 are the integration constants of the prob-
lem. The constant �1 is related to �2 because at the singu-
larity (t ¼ 0), the scale factor has to be exactly zero. After
some algebra, we find that

�1 ¼ ln

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ!1

!2

s
sinh�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ!1

!2

sinh2�2 þ 1

s �
:

We would like to remind the reader that the UDM dark
energy model is recovered for !1 ¼ 2!2. Obviously, we
can easily prove that the concordance � cosmology is a
particular solution4 of the current hyperbolic potential with
� ¼ 1, !1 ¼ !2 ¼ !� and ð�1; �2Þ ¼ ð0; 0Þ.
Finally it is interesting to mention that the UDM cos-

mological model has been tested against the latest cosmo-
logical data (SNIa and BAO) in Basilakos and Lukes [71].
In this paper the authors discussed the evolution of matter
perturbations as well as the spherical collapse model. They
also compared the UDM scenario with the traditional �
cosmology and they found that the UDM scalar field model
provides an overall (global and local) dynamics which is in
a fair agreement with that of the � cosmology although
there are some differences especially at high redshifts.

B. Analytical solutions of the exponential potential

Now based on the exponential potential of Eq. (57), we
extend the analytical solutions found by Russo [69] by
taking into account the presence of nonrelativistic matter

(cold dark matter), �m ¼ jEj
ka3

� 0. It is important to em-

phasize that Russo [69] provided analytical solutions only
in the context of quintessence DE (� ¼ 1) with �m ¼ 0
while we solve analytically, for a first time (to our knowl-
edge), the current dynamical problem by treating dark
energy simultaneously either as quintessence or phantom
with �m � 0. Since for the current potential the ðx; yÞ
coordinate system does not lead to an analytical solution
we are using the same methodology with that provided by
Russo [69], we change variables from ða;�Þ to ðu; vÞ
according to the transformations

3In the special case of d ¼ 2, the system admits an additional
Lie symmetry @x þ @y, with Noether integral I ¼ _x� _y.

4In the �CDM cosmology the scale factor is aðtÞ ¼
a0sinh

2=3ð!�tÞ where !� ¼ 3H0

ffiffiffiffiffiffiffiffi
��

p
=2, a0 ¼ ð�m=��Þ1=3

and �� ¼ 1��m.
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u ¼
ffiffiffiffiffiffiffiffi
3k�

8

s
�þ 1

2
lnða3Þ; (60)

v ¼ �
ffiffiffiffiffiffiffiffi
3k�

8

s
�þ 1

2
lnða3Þ: (61)

Note that we have interchanged ðu; vÞ with respect to those
of [69]. Inverting the above equations and using Eq. (57)
we get

a ¼ eðuþvÞ=3; � ¼ 1

2

ffiffiffiffiffiffiffiffi
8

3k�

s
ðu� vÞ (62)

and

Vðu; vÞ ¼ V0e
�dðu�vÞ=2: (63)

In the new variables ðu; vÞ our Lagrangian (33) is written
as follows:

L ¼ �eðuþvÞ
�
4

3
_u _vþkV0e

�2Kðu�vÞ
�
; K ¼ d

4
; (64)

where kV0 ¼ 8=3. The next step is to consider a change in
the time coordinate as follows:

d


dt
¼

ffiffiffiffiffiffiffiffiffiffiffi
3kV0

4

s
e�Kðu�vÞ; (65)

which implies

_v ¼ dv

dt
¼ dv

d


d


dt
¼ v0

ffiffiffiffiffiffiffiffiffiffiffi
3kV0

4

s
e�Kðu�vÞ;

_u ¼ du

dt
¼ du

d


d


dt
¼ u0

ffiffiffiffiffiffiffiffiffiffiffi
3kV0

4

s
e�Kðu�vÞ;

where u0 ¼ du
d
 and v0 ¼ dv

d
 . Obviously using the latter

transformations, Eq. (64) and (65) the action given by
Eq. (34) takes the form

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
4kV0

3

s Z
d3xd
eðuþvÞe�Kðu�vÞðu0v0 þ 1Þ: (66)

Now varying the action we arrive at

u00 þ ð1� KÞu02 � ð1þ KÞ ¼ 0; (67)

v00 þ ð1þ KÞv02 � ð1� KÞ ¼ 0: (68)

Obviously, in the latter equations the variables u, v de-
couple. In these variables, the Hamiltonian of the system
becomes

E ¼ eðuþvÞe�Kðu�vÞðu0v0 � 1Þ; (69)

where E � 0 (or �m � 0). As we have already stated the
above system of equations has been derived also by [69] in
the case of quintessence dark energy ð� ¼ þ1Þ, and it is
solved only for E ¼ 0 (see Appendix A). Here we prove

that the same equations are valid also in the case of
phantom dark energy in which the scalar field is imaginary,
however the potential, the scale factor and the FRLW
metric are real as they should.
We conclude that the FRLW metric [using Eqs. (65) and

(62)] in the coordinates ð
; x�Þ is

ds2 ¼ � 4

3kV0

e4K
ffiffiffiffiffiffiffiffiffi
3k�=8

p
�ð
Þd
2 þ a2ð
Þdxidxi: (70)

Below we provide analytical solutions for the two different
cases.

1. Case K ¼ 1

In this case the system of Eqs. (67)–(69) becomes

u00 � 2 ¼ 0; v00 þ 2v02 ¼ 0; e2vðu0v0 � 1Þ ¼ E;

and the solution is

uð
Þ ¼ 
2 þ c1
; vð
Þ ¼ 1
2 lnð2c3
Þ;

where the constants are related by the constraint

E ¼ c3c1 ! c3 ¼ E

c1
:

Using the latter constraint we simply find

uð
Þ ¼ 
2 þ c1
; vð
Þ ¼ 1

2
ln

�
2E

c1



�
:

We note that the solution depends on one arbitrary parame-
ter c1 � 0. If we choose c1 ¼ E, then we have the solution

uð
Þ ¼ 
2 þ E
; vð
Þ ¼ 1
2 lnð2
Þ:

From these follows

a3ð
Þ ¼ ffiffiffiffiffiffi
2


p
e


2þE
;

�ð
Þ ¼ 1

4

ffiffiffiffiffiffiffiffi
8

3k�

s
½2
2 þ 2E
� lnð2
Þ�:

2. Case K � 1

In this case the solution of the system is

uð
Þ ¼ � 1

2ðK � 1Þ ln
�
Cc23Sinn

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q

þ �1

��
;

vð
Þ ¼ 1

2ð1þ KÞ ln
�
C�1c21Sinn

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q

þ �1

��
;

where C ¼ jK�1j
1þK ,

Sinn! ¼
�
sin! K > 1
sinh! 0<K < 1

(71)

and �1 being the phase constant. Without loosing the
generality we can select �1 ¼ 0. Also, the two constants
of integration satisfy the condition: E ¼ c3c1. Next we
may choose c3 ¼ E � 0 and have the solution
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uð
Þ ¼ � 1

2ðK � 1Þ ln
�
CE2Sinn2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q



��
; vð
Þ ¼ 1

2ð1þ KÞ ln
�
C�1Sinn2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q



��
:

Finally, we transform this solution to the coordinates að
Þ; �ð
Þ. Doing so we obtain

a3ð
Þ ¼ C�ðK=K2�1ÞjEj1=ðK�1ÞSinn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jK2 � 1j
q




��ð2=ðK2�1ÞÞ
;

�ð
Þ ¼ � 1

2

ffiffiffiffiffiffiffiffi
8

3k�

s
ln

�
C�ð1=ðK2�1ÞÞjEjð1=ðK�1ÞÞSinn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q



�ð2K=ðK2�1ÞÞ�
:

It is interesting to mention that in the case of 0<K < 1
at late enough times we obtain that 
� lnt and thus the

scale factor evolves as aðtÞ / t2=3
ffiffiffiffiffiffiffiffiffi
1�K2

p
. The current solu-

tion of the scale factor can provide, a recent cosmic accel-

eration ( €aðtÞ> 0) for K 2 ð
ffiffi
5

p
3 ; 1Þ.

V. CONCLUSIONS

In this paper we propose to use a theoretical model-
independent criterion, based on first integrals of motion,
usually named Noether symmetries in order to discriminate
the dark energy (quintessence or phantom) models within
the context of scalar field FLRW cosmology. This is pos-
sible via the geometrical symmetries of the space-time in
which both gravity and dark energy live. In particular,
following the general methodology of [48] (see also the
references therein), the Noether symmetries are computed
for nine distinct accelerating cosmological scenarios that
contain a homogeneous scalar field associated with differ-
ent types of potentials. Note that the free parameters of the
dark energy models studied here can be constrained by
using the current cosmological data. In particular, one has
to perform a joint likelihood analysis utilizing, for ex-
ample, the SNIa data [5], the shift parameter of the CMB
[6] and the observed BAOs [72]. Such an analysis is in
progress and will be published elsewhere.

The main results of the current paper can be summarized
in the following statements (see Secs. III B and IV):

(i) We verify that all the scalar field potentials, studied
here, admit the trivial first integral, namely, energy
conservation as they should.

(ii) We find that the exponential and the unified dark
matter potentials occupy an eminent position in the
scalar field potentials hierarchy, being the potentials
that admit extra integrals of motion, and therefore
appear to be promising candidates for describing the
physical properties of dark energy as well as ex-
tracting useful cosmological information. The exis-
tence of the new Noether integrals can be used to
simplify the system of differential equations (equa-
tions of motion) as well as to determine the integra-
bility of the system.

(iii) Based on the exponential and hyperbolic potentials
we find that the main cosmological functions, such
as the scale factor of the Universe, the scalar field,

the Hubble expansion rate and the metric of the
FRLW space-time are provided analytically.

In a future work we plan to apply the same approach also to
fðRÞ cosmological models.
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APPENDIX A: MATTER
DENSITY VERSUS HAMILTONIAN

We remind the reader that if the matter pressure is
constant, then the dynamical system described by the
general Lagrangian of Eq. (33) is autonomous. Therefore,

one can easily prove that �m ¼ jEj
ka3

� Pm. Indeed, utilizing

Eq. (6) and (35) and we have after some simple algebra that

_a

a

� �
2þK3

a2
¼k

3

�
�mþ1

2
� _�2þVð�Þ

�
)a _a2þK3a

¼k

6
a3� _�2þa3

k

3
�mþk

3
a3Vð�Þ

)�a _a2þk

6
a3� _�2þk

3
a3½Vð�Þ�Pm��K3a

¼�k

3
a3½Pmþ�m�

or

E ¼ �ka3½Pm þ �m�
and thus

�m ¼ jEj
ka3

� Pm;

which satisfies Eq. (11). Note that the inequality �m � 0
points that E � 0. The case of nonrelativistic matter

Pm ¼ 0 implies �mðaÞ ¼ jEj
ka3

.

APPENDIX B: SOLUTIONS OF HARMONIC
OSCILLATOR COUPLING
WITH A FREE PARTICLE

Here we consider either !1 � 0, !2 ¼ 0 or !1 ¼ 0,
!2 � 0. For the latter case one may checks [45]. In both
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cases the system is equivalent to a pair of two dynamical
systems a simple harmonic oscillator and a free particle.
The Lie point and the Noether symmetries of the current
system can be found in [50]. As an example for !1 � 0,
!2 ¼ 0 Eqs. (58) and (59) become

L ¼ 1

2
ð _y2 � _x2Þ �!1x

2

2
; E ¼ 1

2
ð _y2 � _x2Þ þ!1x

2

2

and

€x�!1x ¼ 0; €y ¼ 0:

The solution of the above system is

xðtÞ ¼ sinhð ffiffiffiffiffiffi
!1

p
tþ �1Þ yðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eþ!1

p
t

or

a3ðtÞ ¼ 3

8
½x2ðtÞ � y2ðtÞ�

¼ 3

8
½sinh2ð ffiffiffiffiffiffi

!1

p
tþ �1Þ � ð2Eþ!1Þt2�;

�ðtÞ ¼
ffiffiffiffiffiffiffiffi
8

3k�

s
arctanh

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ!1

p
sinhð ffiffiffiffiffiffi

!1
p

tþ �1Þ
�
:

Note that due to að0Þ ¼ 0 we have �1 ¼ 0.

APPENDIX C: EXPONENTIAL POTENTIAL
VERSUS EMPTY SPACE �m ¼ 0 (OR E ¼ 0)

In this appendix we would like to give the reader the
opportunity to appreciate the fact that our solutions pro-
vided in Sec. IV can be viewed as an extension of those
found by Russo [69] for the quintessence (� ¼ 1) dark
energy with �m ¼ 0 (or E ¼ 0). For either quintessence
or phantom dark energy, the system of Eqs. (67)–(69),
which we have to solve is

u00 þ ð1� KÞu02 � ð1þ KÞ ¼ 0;

v00 þ ð1þ KÞv02 � ð1� KÞ ¼ 0;

E ¼ ðu0v0 � 1ÞeðuþvÞe�Kðu�vÞ: (C1)

Because of the fact that E ¼ 0 Eq. (C1) takes the form
u0v0 ¼ 1. Thus we consider the following cases:
Case 1: For K ¼ 1 the solution is

uðtÞ ¼ 
2; vðtÞ ¼ 1
2 lnð2
Þ

or

a3ð
Þ ¼ ffiffiffiffiffiffi
2


p
e


2
; �ð
Þ ¼ 1

4

ffiffiffiffiffiffiffiffi
8

3k�

s
½2
2 � lnð2
Þ�:

Case 2: For K � 1 the solution is

uð
Þ ¼ � 1

ðK � 1Þ ln
�
Sinn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q

þ �1

��
;

vð
Þ ¼ 1

ðK þ 1Þ ln
�
Coss

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q

þ �1

��

or (for �1 ¼ 0)

a3ð
Þ ¼ Cossð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p

Þ1=ðKþ1Þ

Sinnð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijK2 � 1jp

Þ1=ðK�1Þ ;

�ð
Þ ¼ � 1

2

ffiffiffiffiffiffiffiffi
8

3k�

s
ln

�
a3ð
ÞSinn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jK2 � 1j

q



�
2=ðK�1Þ�

;

where the quantity Sinn is given by (Eq. (71)) and

Coss! ¼
�
cos! K > 1

cosh! 0<K < 1:

We point out that for � ¼ 1 the current solutions coincide
(modulus some constants) those of [69]. In the case of
phantom dark energy (� ¼ �1) the scalar field is imagi-
nary, however the potential, the scale factor and the metric
of the space-time are real as they should.
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