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We study the scale and redshift dependence of the power spectra for density perturbations and peculiar

velocities, and the evolution of a coarse grained phase space density for warm dark matter

(WDM) particles that decoupled during the radiation dominated stage. The WDM corrections are obtained

in a perturbative expansion valid in the range of redshifts at which N-body simulations set up initial

conditions, and for a wide range of scales. The redshift dependence is determined by the kurtosis �2 of the

distribution function at decoupling. At large redshift there is an enhancement of peculiar velocities for

�2 > 1 that contributes to free streaming and leads to further suppression of the matter power spectrum

and an enhancement of the peculiar velocity autocorrelation function at scales smaller than the free

streaming scale. Statistical fluctuations of peculiar velocities are also suppressed on these scales by the

same effect. In the linearized approximation, the coarse grained phase space density features redshift

dependent WDM corrections from gravitational perturbations determined by the power spectrum of

density perturbations and �2. For �2 > 25=21 it grows logarithmically with the scale factor as a

consequence of the suppression of statistical fluctuations. Two specific models for WDM are studied in

detail. The WDM corrections relax the bounds on the mass of the WDM particle candidate.
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I. INTRODUCTION

The current paradigm of structure formation, the�CDM
standard cosmological model, describes large scale struc-
ture remarkably well. However, observational evidence has
been accumulating suggesting that the cold dark matter
(CDM) scenario of galaxy formationmay have problems at
small, galactic, scales.

Large scale simulations seemingly yield an overpredic-
tion of satellite galaxies [1] by almost an order of magni-
tude [1–5]. Simulations within the �CDM paradigm also
yield a density profile in virialized dark matter (DM) halos
that increases monotonically toward the center [1,6–9] and
features a cusp, such as the Navarro-Frenk-White (NFW)
profile [6] or more general central density profiles
�ðrÞ � r�� with 1 � � & 1:5 [3,6,9]. These density pro-
files accurately describe clusters of galaxies but there is an
accumulating body of observational evidence [10–17] sug-
gesting that the central regions of DM-dominated dwarf
spheroidal satellite (dSphs) galaxies feature smooth cores
instead of cusps as predicted by CDM. Some observations
suggest [18] that the mass distribution of spiral disk gal-
axies can be best fit by a cored Burkert-type profile [18].
This difference is known as the core-vs-cusp problem
[16,17]. The case for core-dominated halos has been re-
cently bolstered by the analysis of rotation curves from the
THINGS survey [19].

Warm dark matter (WDM) particles were invoked
[20–22] as possible solutions to the discrepancies both in
the overabundance of satellite galaxies and as a mechanism
to smooth out the cusped density profiles predicted by

CDM simulations into the cored profiles that fit the obser-
vations in dSphs. WDM particles feature a range of veloc-
ity dispersion in between the CDM and hot dark matter
leading to free streaming scales that smooth out small scale
features and could be consistent with core radii of the
dSphs. If the free streaming scale of these particles is
smaller than the scale of galaxy clusters, their large scale
structure properties are indistinguishable from CDM but
may affect the small scale power spectrum [23] providing
an explanation of the smoother inner profiles of dSphs and
fewer satellites.
Furthermore recent numerical results hint to more evi-

dence of possible small scale discrepancies with the
�CDM scenario: another overabundance problem, the
‘‘emptiness of voids’’ [24], and the spectrum of
‘‘mini-voids’’ [25], both of which may be explained by a
WDM candidate. Constraints from the luminosity function
of Milky Way satellites [26] suggest a lower limit for the
mass of a WDM particle of a few keV, a result consistent
with Lyman-� [27–29], galaxy power spectrum [30], and
lensing observations [31]. More recently, results from the
Millenium-II simulation [32] suggest that the �CDM sce-
nario overpredicts the abundance of massive * 1010M�
halos, which is corrected with a WDM candidate of
m� 1 keV. A model independent analysis suggests that
dark matter particles with a mass in the keV range is a
suitable WDM candidate [33,34]. Recent counterargu-
ments [35,36] seem to suggest that WDM cannot explain
cores in low surface brightness (LSB) galaxies, thus the
controversy continues.
In the absence of conclusive evidence in favor of or

against cusps or cores, and in view of the ongoing con-
troversy and the body of emerging evidence in favor of*boyan@pitt.edu
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WDM, a deeper understanding of the small scale clustering
properties of WDM candidates is warranted.

A. Motivation and goals

Redshift dependence of the power spectrum and peculiar
velocities: recent N-body simulations of WDM [25,26] set
up initial conditions at z ¼ 40 [26] or z ¼ 50 [25] with a
rescaled version of the CDM power spectrum from a fit
provided in Ref. [29] that inputs a cutoff from free stream-
ing, however, these simulations neglected the velocity
dispersion of the WDM particles in the initial conditions.
We seek to understand both the redshift dependence of the
matter and peculiar velocity power spectrum in this range
of redshifts for a wide range of scales.

Phase space density: in a seminal article Tremaine and
Gunn [37] provided bounds on the mass of the DM particle
from phase space density considerations: whereas in the
absence of self-gravity the fine grained phase space density
(or distribution function) is conserved after the DM species
decouples from the plasma, phase mixing theorems [38]
assert that a coarse grained phase space density always
diminishes as a result of phase mixing (violent relaxation)
[38,39]. Therefore the microscopic phase space density
provides an upper bound from which constraints on the
mass can be extracted. These arguments were generalized
in Refs. [10,33,40–43] to a coarse grained phase space
density obtained from moments of the microscopic distri-
bution function. In Refs. [33,41–43] this coarse grained
phase space density was combined with photometric ob-
servations of (dSphs) to constrain the mass and the number
of relativistic degrees of freedom at decoupling.

Although the microscopic phase space density, namely,
the distribution function, obeys the collisionless
Boltzmann equation, the evolution of the coarse grained
phase space density is not directly obtained from this
equation (see discussion in Ref. [39]). Although the proxy
phase space density introduced in Refs. [10,40–42] is
conserved after decoupling, its evolution does not include
self-gravity. Therefore there remains the unexplored ques-
tion of precisely what happens to the microscopic phase
space density or its proxy introduced in Refs. [10,40–42]
when gravitational perturbations are included in the
Boltzmann equation. One aspect is clear: the perturbations
of the distribution function (microscopic phase space den-
sity) feature two moments that grow under gravitational
perturbations, the first moment (density perturbations) and
the second moment (velocity perturbations) which are
actually related via the continuity equation on subhorizon
scales. In this article we study the evolution of the coarse
grained phase space density introduced in Refs. [10,40–42]
as a function of redshift and scale for WDM particles
in order to assess how the original arguments are modified
by gravitational perturbations, again in the regime of
redshifts at which N-body simulations set up initial
conditions.

B. Results

Armed with the results recently obtained in Ref. [44] we
obtain a perturbative expansion of the redshift corrections
to the matter, peculiar velocity power spectra, and evolu-
tion of a coarse grained phase space density. This expan-
sion is valid in the regime z � zeq for a wide range of

scales and is a distinct feature of WDM particles. These
corrections depend on the kurtosis �2 of the unperturbed
distribution function. Peculiar velocities contribute to the
velocity dispersion and free streaming and lead to a
suppression of the matter power spectrum for �2 > 1 at
scales smaller than the free streaming scale at redshifts
z ’ 30–50. The peculiar velocity power spectrum is en-
hanced at these scales and in this range of redshifts, leading
to an increase of the peculiar velocity autocorrelation
function and a suppression of statistical fluctuations. For
WDM perturbations in the linearized approximation, it is
found that the coarse grained phase space density intro-
duced in Refs. [10,40–42] grows logarithmically with the
scale factor for�2 > 25=21. Two specific models of WDM
particles motivated by particle physics are studied in detail.
Implications on the bounds for the mass of the WDM
particle are discussed.

II. PRELIMINARIES

We begin by establishing some notation and conventions
that are used in the analysis. Since we focus on the region
of redshift z � 1 we can safely neglect the dark energy
component and we consider a radiation and matter domi-
nated cosmology with

H2 ¼ _a2

a4
¼ H2

0

�
�r

a4
þ�m

a3

�
¼ H2

0�m

a4
½aþ aeq�; (2.1)

where the dot stands for derivative with respect to confor-
mal time (�), the scale factor is normalized to a0 ¼ 1
today, and

aeq ¼ �r

�m

’ 1

3229
: (2.2)

Introducing

~a ¼ a

aeq
; (2.3)

it follows that

d~a

d�
¼

�
H2

0�m

aeq

�
1=2½1þ ~a�1=2: (2.4)

At matter-radiation equality we define

keq � Heqaeq ¼
ffiffiffi
2

p �
H2

0�m

aeq

�
1=2 ¼ 9:8	 10�3

Mpc
; (2.5)

corresponding to the comoving wave vector that enters the
Hubble radius at matter-radiation equality, where we have
used �mh

2 ¼ 0:134 [45].
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We study the evolution of perturbations in the conformal
Newtonian gauge

g00 ¼ �a2ð�Þ½1þ 2c ð ~x; �Þ�; (2.6)

gij ¼ a2ð�Þ½1� 2�ð ~x; �Þ��ij: (2.7)

The perturbed distribution function is given by

fðp; ~x; �Þ ¼ f0ðpÞ þ F1ðp; ~x; �Þ; (2.8)

where f0ðpÞ is the unperturbed distribution function, which
after decoupling obeys the collisionless Boltzmann equa-
tion in absence of perturbations and ~p, ~x are comoving
momentum and coordinates, respectively. As discussed in
Refs. [41–43] the unperturbed distribution function is of
the form

f0ðpÞ � f0ðy;�1; �2; . . .Þ; (2.9)

where

y ¼ p

T0;d

; (2.10)

where p is the comoving momentum and T0;d is the decou-

pling temperature today,

T0;d ¼
�
2

gd

�
1=3

TCMB; (2.11)

with gd being the effective number of relativistic degrees
of freedom at decoupling, TCMB ¼ 2:35	 10�4 eV is the
temperature of the cosmic microwave background (CMB)
today, and �i are dimensionless couplings or ratios of mass
scales.

We neglect stress anisotropies, in which case � ¼ c
and introduce

~Fð ~p; ~k; �Þ ¼ F1ð ~p; ~k; �Þ
n0

; ~fðpÞ ¼ f0ðpÞ
n0

; (2.12)

where

n0 ¼
Z d3p

ð2�Þ3 f0ðpÞ; (2.13)

is the background density of DM today. Therefore

�ð ~k; �Þ ¼
Z d3p

ð2�Þ3
~Fð ~k; �Þ (2.14)

becomes ��m=�m after the DM particle becomes
nonrelativistic.

Introducing spatial Fourier transforms in terms of co-

moving momenta ~k (we keep the same notation for the
spatial Fourier transform of perturbations), and neglecting
stress anisotropies the linearized Boltzmann equation for
perturbations is given by [46–52]

_~Fð ~k; ~p;�Þþ i
k	p


ðp;�Þ
~Fð ~k; ~p;�Þ

þ
�
d~fðpÞ
dp

�
½p _�ð ~k;�Þ� ik	
ðp;�Þ�ð ~k;�Þ�¼0; (2.15)

where dots stand for derivatives with respect to conformal

time, 	 ¼ k̂ 
 p̂, and 
ðp; �Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2a2ð�Þp

is the
conformal energy of the particle of mass m. The gravita-
tional potential is determined by Einstein’s equation
[46,47].
As discussed in Ref. [44] for a WDM particle with a

mass in the �keV range, there are three stages of evolu-
tion: (I) radiation domination and the DM particle is rela-
tivistic, (II) radiation domination and the DM particle is
nonrelativistic, and (III) the matter dominated stage, during
which cold and warm DM particles are nonrelativistic.
During stages I and II the gravitational potential is

completely determined by the radiation component and
the Boltzmann equation for the distribution function of
the WDM particle is solved by integrating Eq. (2.15)
with � being determined by the radiation component.
During stage III the gravitational potential is determined
by the matter component and the Boltzmann equation
becomes a self-consistent Vlasov-type equation.
Since the Boltzmann equation is first order in time, the

solution during stages I and II becomes the initial condition
for the evolution during stage III.
In this article we focus on the evolution of peculiar

velocities and phase space density during the matter
dominated stage 10 � z & zeq, corresponding to stage III

during which dark energy can be neglected. Typical
N-body simulations setup initial conditions which input
the matter power spectrum from linear perturbation theory
at z ’ 30–50.
In this stage the WDM is nonrelativistic, hence

p=
ðp;�Þ ¼ p=mað�Þ, and the Boltzmann equation sim-
plifies by introducing the variable

sð�Þ ¼
Z � d�0

að�0Þ �
2

ffiffiffi
2

p
uð�Þ

keqaeq
; (2.16)

where the dimensionless variable

uð�Þ ¼ 1

2
ln

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~að�Þp � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~að�Þp þ 1

3
5; uNR � uð�Þ � 0

(2.17)

is normalized so that uð1Þ ¼ 0. Furthermore, following
Ref. [44] we introduced

uNR ¼ ln

� ffiffiffiffiffiffiffiffi
~aNR

p
2

�
; ~aNR ¼ hV2ðteqÞi1=2; (2.18)

where ~aNR corresponds to the time when the particle
becomes nonrelativistic, and hV2ðteqÞi is the velocity dis-

persion of the DM particle at matter-radiation equality
given by [44]
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hV2ðteqÞi1=2 ’ 7:59	 10�4
ffiffiffiffiffi
�y2

q �
keV

m

��
2

gd

�
1=3

: (2.19)

In this expression gd is the number of relativistic degrees of
freedom at decoupling and we introduced the moments

�y n ¼
R1
0 y2þnf0ðyÞdyR1
0 y2f0ðyÞdy

: (2.20)

The function u½z� as a function of redshift is displayed in
Fig. 1 and

~aðuÞ ¼ 1

sinh2½u� : (2.21)

The solution of the Boltzmann equation during stage III
is given in Ref. ([44])

~Fð ~k; ~p;sÞ

¼��ð ~k;sÞ
�
p
d~fðpÞ
dp

�

þ im
Z s

sNR

ds0a2ðs0Þ�ð ~k;s0Þð ~k 
 ~rp
~fðpÞÞe�ið ~k
 ~p=mÞðs�s0Þ

þe�ið ~k
 ~p=mÞðs�sNRÞ
�
~Fð ~k; ~p;�NRÞþ�ð ~k;�NRÞ

�
p
d~f

dp

��
:

(2.22)

The term ~Fð ~k; ~p;�NRÞ in the bracket in Eq. (2.22) is the
solution of the Boltzmann equation at the beginning of
stage III (end of stage II); its form is given in detail in
Ref. [44] but is not necessary in the discussion that follows.

After radiation-matter equality when the WDM particle
is nonrelativistic and DM perturbations dominate the gravi-
tational potential and for k � keq, the gravitational poten-

tial � is determined by Poisson’s equation [47]

�ðk; �Þ ¼ � 3

4

k2eq

k2~a
�ð ~k; sÞ: (2.23)

For s > seq, the integral in s0 in (2.22) is split from sNR up

to seq and from seq up to s. In the first integral the gravi-

tational potential is determined by perturbations in the
radiation fluid and in the second integral the gravitational
potential is replaced by Poisson’s equation (2.23), leading
to the result (valid for s > seq) [44]

~Fð ~k; ~p; sÞ ¼ 3

4

k2eq

k2~a
�ð ~k; sÞ

�
p
d~fðpÞ
dp

�

� i
3mk2eqa

2
eq

4k

Z s

seq

ds0~aðs0Þ�ðk; s0Þ

		

�
d~fðpÞ
dp

�
e�i	Q þF ½ ~k; ~p; s�; (2.24)

where

Q ¼ kp

m
ðs� s0Þ; 	 ¼ k̂ 
 p̂; (2.25)

and F ½ ~k; ~p; s� is given by the third line in (2.22) plus the
contribution from the integral between sNR and seq (for

details see Ref. [44]).
We are interested in the corrections to the power spectra

in the regime of redshift 1< z � zeq corresponding to

~a � 1.
In the asymptotic limit ~a � 1 when density perturba-

tions grow as in an Einstein–de Sitter cosmology, � / ~a,
therefore in this limit and for k � keq we can neglect the

first term in (2.24). Since in this limit �ðk; s0Þ / ~aðs0Þ /
ð1=s0Þ2 the integral in Eq. (2.24) is / 1=s3 and dominates
all other terms in Eq. (2.24) since the last term remains
finite in the limit s ! 0 [44].
Therefore in the asymptotic limit ~a � 1 and for small

scales k � keq the leading contribution to the perturbation

in the distribution function is given by

~Fð ~k; ~p;sÞ’�i
3mk2eqa

2
eq

4k

	
Z s

seq

ds0~aðs0Þ�ð ~k;s0Þ	
�
d~fðpÞ
dp

�
e�i	Q: (2.26)

With this form for the distribution function we can obtain
any expectation value once �ðk; sÞ is determined from the
solution of the Boltzmann equation.
In Ref. [44] it is shown that in terms of the variable u

defined by Eqs. (2.16) and (2.17) � obeys the fluidlike
integro-differential equation

d2

du2
�ðk; uÞ � 6~aðuÞ�ðk; uÞ þ �2�ðk; uÞ

� 6�
Z u

uNR

~aðu0Þ ~�½�ðu� u0Þ��ðk; u0Þdu0 ¼ J½k; u�;

(2.27)FIG. 1. u½z� for z � zeq.
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where the inhomogeneity J½k; u� is given explicitly in
Ref. [44], and

~�½�ðu� u0Þ� ¼ 1

N

Z 1

0
yf0ðyÞð �y2 � y2Þ sin½y�ðu� u0Þ�dy;

N ¼
Z 1

0
y2f0ðyÞdy: (2.28)

In the above expressions we introduced

� ¼ 2
ffiffiffi
2

p kT0;d

mkeqaeq
’ 2:15	 10�3

�
k

keq

��
2

gd

�
1=3

�
keV

m

�

’ 0:22k

�
2

gd

�
1=3

�
keV

m

�
	 ðMpcÞ; (2.29)

and

� �
ffiffiffiffiffi
�y2

q
�: (2.30)

In terms of the free streaming wave vector [44]

kfs ¼
ffiffiffi
3

p
2

keq

h ~V2ðteqÞi1=2
¼ 11:17ffiffiffiffiffi

�y2
p

�
m

keV

��
gd
2

�
1=3ðMpcÞ�1;

(2.31)

it follows that

� ¼
ffiffiffi
6

p
k

kfs
¼

ffiffiffi
6

p
�fs

�
; (2.32)

where �fs is the free streaming length and � the wavelength
of the perturbation. The CDM limit corresponds to
�fs ! 0, namely � ! 0, therefore all the WDM correc-
tions are in terms of �.

In the CDM limit Eq. (2.27) reduces to the Meszaros
equation [53–55] for CDM perturbations in a radiation and
matter dominated cosmology [44].

The power spectrum of density perturbations is given by

P�ðkÞ ¼ AknsT2ðkÞ; (2.33)

where ns ¼ 0:963 [45] is the index of primordial scalar
perturbations, A is the amplitude, and TðkÞ is the transfer
function. It is convenient to normalize the WDM power
spectrum and transfer function to CDM, namely

PwdmðkÞ ¼ PcdmðkÞ �T2ðkÞ; �TðkÞ ¼ Twdmðk;�Þ
TcdmðkÞ ; (2.34)

where

PcdmðkÞ ¼ AknsT2
cdmðkÞ (2.35)

is the CDM power spectrum and the dependence on WDM
is encoded in the � dependence of Twdmðk;�Þ so that
Twdmðk;� ¼ 0Þ ¼ TcdmðkÞ. The dependence on � describes
the velocity dispersion and nonvanishing free streaming
length of the WDM particle.

In Ref. [44] it is shown that Eq. (2.27) can be solved in a
systematic Fredholm expansion, from which the transfer
function of density perturbations at z ¼ 0 is extracted. The
leading order term is a Born-type approximation which
provides a remarkably accurate approximation to the trans-
fer function and reproduces numerical results available in
the literature in several cases (for discussion and compari-
son see [44]). The definition of the power spectrum and
transfer function above are at z ¼ 0. We seek to study the
redshift dependence for z & 30–40 at which N-body simu-
lations set up initial conditions.
Asymptotically during the matter dominated era as

~a ! 1 (u ! 0) it is found [44] that �ðk; uÞ !
~aðuÞ�ðk; 0Þ þ 
 
 
 , where the dots stand for subleading
terms. The leading and subleading asymptotic behavior
in the u ! 0 (~a ! 1) limit can be obtained from
Eq. (2.27). In this limit the inhomogeneity J½k; 0� is a finite
constant (see expressions in Ref. [44]), the integral term
receives the largest contribution for u0 � u� 0, and in this
region we find

� 6� ~�½�ðu� u0Þ� ’ �4ðu� u0Þ3ð1� �2Þ þ 
 
 
 ;
(2.36)

where

�2 ¼ �y4

ð �y2Þ2 (2.37)

is the kurtosis of the distribution function of the decoupled
particle, with the moments defined by Eq. (2.20), and the
dots stand for terms that yield subleading corrections (see
below).
Since

~aðuÞ ¼ 1

sinh2½u� �
1

u2
� 1

3
þOðu2Þ; (2.38)

we propose the asymptotic expansion

�ðk; uÞ ¼ �ðk; 0Þ
u2

þ �1ðkÞ þ �2ðkÞu2 ln½�u� þ 
 
 
 :
(2.39)

Introducing this expansion in Eq. (2.27) we find

�1ðkÞ ¼ �ðk; 0Þ
6

½�2 þ 2�;

�2ðkÞ ¼ ��ðk; 0Þ�
4

4
ð1� �2Þ;

(2.40)

where �ð ~k; 0Þ is obtained from the asymptotic solution of
the full Eq. (2.27). Therefore

�ð ~k; uÞ ¼ �ð ~k; 0ÞD½k; u�; (2.41)

where the wave vector dependent growth factor is found
to be

D½k; u� ¼ Dcdm½u� �D½k; u�; (2.42)
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with Dcdm½u� being the CDM growth factor (for � ¼ 0)

Dcdm ¼ 1

u2

�
1þ u2

3
þ 
 
 


�
(2.43)

and

�D½k; u� ¼
�
1þ ð�uÞ2

6
þ ð�uÞ4

4
ð� ln½�u�Þð1� �2Þ þ 
 
 


�

(2.44)

contains the WDM corrections as is manifest in the �
dependence.

For u ! 0 we find

Dcdm½u� ¼ 1

u2
þ 1

3
’ ~aþ 2

3
;

which is recognized as the growing solution of the
Meszaros equation for CDM [53–55]. Furthermore from
(2.16) we recognize that

� �u ¼ klfs

� ffiffiffiffiffiffiffiffiffihp2ip
m

;�0; �

�
; (2.45)

where lfs½
ffiffiffiffiffiffiffi
hp2i

p
m ; �0; �� is the comoving free streaming

distance that a particle with (comoving) velocityffiffiffiffiffiffiffiffiffihp2ip
=m travels between conformal time � and today

�0 � 1. We see that up to logarithms, the expansion in
powers of �u is valid at late times for wavelengths much
larger than the free streaming distance that the particle
would travel between that time and today.

The identification (2.45) leads to a simple physical
interpretation of the first term in �D½k; u�: free streaming
of collisionless particles suppresses the gravitational col-
lapse of density perturbations, the longer the time scale, the
farther the free streaming particles can travel away from
the collapsing region erasing the perturbations. Therefore
the first term reflects that at earlier times (larger values of
u) density perturbations are larger. The second term, how-
ever, has a more interesting interpretation. As will be
discussed below, it represents the peculiar velocity contri-
bution to free streaming induced by gravitational self-
interaction (see discussion on peculiar velocity below).
When �2 > 1 the peculiar velocity contribution increases
the free streaming velocity leading to a suppression of
power, which counterbalances the enhancement by the first
term. Which term dominates depends on the scale k, the
free streaming wave vector, a characteristic of the WDM
particle, and the redshift. This will be analyzed in two
specific models below.

We emphasize that the expansion in (2.39) is valid at
long time, in particular, for �u < 1. At higher orders in the
expansion, the terms that feature the lnð�uÞ only appear
linearly in the logarithm but multiplied by higher powers
of �u, therefore for j�uj< 1 the third term in �D is the
leading logarithmic contribution, with higher contributions
being of the form ð�uÞn lnð�uÞ, n ¼ 6; 8 
 
 
 . This is an

important observation: in particular, within the regime of
validity of the perturbative expansion j�uj< 1, it is still
possible that j�u lnð�uÞj � 1 and the second term in (2.44)
can balance the first term within the region of validity of
the approximation.
An estimate of the range of validity is obtained from

0:098 � �u½z� � 0:125 for 30 � z � 50: (2.46)

For example in the region of redshifts where initial
conditions for N-body simulations are set up, the WDM
corrections to the growth factor are of Oð10–15%Þ
for k * ð1–2Þkfs which for a species with m� keV de-
coupled with gd � 30–100 with �y2 � 10 corresponds to
k * 10–30 ðMpcÞ�1.
There is a caveat in this analysis of the reliability of the

expansion, since it applies only in the linear regime where
the linearized Boltzmann equation describes the transfer
function. It is conceivable that nonlinear effects restrict
further the regime of validity, but of course this cannot be
assessed in the linear theory which is the focus of this
discussion.
Using Poisson’s equation (2.23), the asymptotic behav-

ior �ð ~k; uÞ ! �ð ~k; 0Þ~aðuÞ and the definition of the transfer
function [47] TðkÞ,

�ðk; ~a � 1Þ ¼ 9

10
�iðkÞTðkÞ; (2.47)

where �iðkÞ is the primordial value of gravitational per-
turbations seeded by inflation. It then follows that

�ð ~k; 0Þ ¼ ��ið ~kÞ 6k
2

5k2eq
TðkÞ: (2.48)

We emphasize that there are two different averages:
(I) the statistical average of a quantityOwith the perturbed
distribution function f0 þ F1 which we refer to as hOi; and
(II) the average over the initial gravitational potential �i

which is a stochastic Gaussian field (we neglect possible
non-Gaussianity) whose power spectrum is determined
during the inflationary era

�ið ~kÞ�ið� ~k0Þ ¼ ð2�Þ3�ð3Þð ~k� ~k0ÞP�ðkÞ; (2.49)

where the AB refers to averages with the primordial
Gaussian distribution function for the gravitational
potential.1 Therefore full expectation values correspond
to averages both with the perturbed distribution function
and the Gaussian distribution function for the primordial

gravitational potential; these are given by h �Oi, with the
power spectrum of matter density fluctuations

1This definition should not be confused with that of the mo-
ments in Eq. (2.20), which refer to averages with the unperturbed
distribution function. The meaning of averages is unambiguously
inferred from the context.
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�ð ~k; 0Þ�ð� ~k0; 0Þ ¼ ð2�Þ3�ð3Þð ~k� ~k0ÞP�ðkÞ; (2.50)

where P�ðkÞ is given by Eq. (2.33).
Including the wave vector dependent growth factor

�D½k; u� (2.44) but keeping only the WDM (� � 0) correc-
tions with redshift, the effective WDM power spectrum at
z � zeq is given by

P�½k; z� ¼ PwdmðkÞ �D2½k; z�; (2.51)

where the scale and redshift dependent correction is given
by [see Eq. (2.44)]

�D½k; z� ¼ 1þ �2

6

�
1þ z

1þ zeq

�
� �4

8

�
1þ z

1þ zeq

�
2
ln

�
1þ zeq

1þ z

�

	 ð�2 � 1Þ þ 
 
 
 : (2.52)

For �2 > 1 the third term is negative and competes with
the second term, dominating the corrections for scales

k > kfs

2
64 2ð1þ zeqÞ
9ð1þ zÞð�2 � 1Þ ln

hð1þzeqÞ
ð1þzÞ

i
3
75

1=2

: (2.53)

For �2 � 1�Oð1Þ and z ’ 30–50 one finds that the third
term dominates over the second for k� ð1–2Þkfs. These are
the scales beyond which the contribution from the peculiar
velocities to free streaming leads to a suppression of the
power spectrum. Coincidentally this is the scale at which
the power spectrum displays WDM acoustic oscillations
which arise from the competition between free streaming
and gravitational collapse in the collisionless regime as
described in Ref. [44].

III. PECULIAR VELOCITYAND PHASE
SPACE DENSITY:

Statistical averages of observables with the perturbed
distribution function (2.8) in the linearized theory (in terms
of their spatial Fourier transform) are given by

~Oð ~k;�Þ � hOð ~p; ~k; �Þi

¼
R d3p

ð2�Þ3 ½f0ðpÞ þ F1ð ~p; ~k;�Þ�Oð ~p; ~k;�ÞR d3p
ð2�Þ3 ½f0ðpÞ þ F1ð ~p; ~k;�Þ�

¼
~O0ð ~k;�Þ þ �~Oð ~k;�Þ

½1þ �ð ~k; �Þ� ; (3.1)

where

~O 0ð ~k;�Þ ¼
Z d3p

ð2�Þ3
~fðpÞOð ~p; ~k;�Þ; (3.2)

�~Oð ~k;�Þ ¼
Z d3p

ð2�Þ3
~Fð ~p; ~k;�ÞOð ~p; ~k;�Þ; (3.3)

where ~F, ~f are defined in Eq. (2.12). In the linearized
approximation

~Oð ~k;�Þ ’ ~O0ð ~k;�Þ þ ð�~Oð ~k;�Þ � ~O0ð ~k;�Þ�ð ~k; �ÞÞ:
(3.4)

With ~Fð ~k; ~p; sÞ given by (2.26) and �ðk; �Þ given by (2.39)
and (2.40) we can now obtain any statistical average by

expanding Oð ~p; ~k;�Þ � Oðp; k;	;�Þ in Legendre poly-
nomials in 	 and carrying out the integrals in p, 	 leading
to an expansion in spherical Bessel functions. However,
here we focus on obtaining the leading asymptotic expan-
sion of these averages for z � zeq, namely, for u � 1. This

is readily achieved by using the asymptotic expansion
(2.39) with the coefficients given by (2.40), expanding

exp½�i	Q� ’ 1� i	Q� 1

2
	2Q2 þ i

6
	3Q3 þ 
 
 


and integrating over 	 and p term by term in the
expansion.

A. Peculiar velocity

Writing the comoving peculiar velocity in terms of the
longitudinal and transverse components

~vð ~k; �Þ ¼
�
~p

m

�
� ~vT þ k̂vL; ~k 
 ~vT ¼ 0; (3.5)

where

vL ¼ p

m
	; 	 ¼ k̂ 
 p̂ (3.6)

and p is the comoving momentum. In the linearized ap-
proximation, the expectation value of kvL is given by

kvLð ~k; �Þ ¼
Z d3p

ð2�Þ3
~Fð ~p; ~k;�Þ

~k 
 ~p
m

: (3.7)

Furthermore, ~Fð ~p; ~k;�Þ is a function of k and ~k 
 ~p leading
to ~vT ¼ 0 in the linearized approximation. Since the gravi-
tational potential is only a function of k, the first term on
the right-hand side of (2.22) does not contribute and we
find

kvLð ~k; �Þ ¼ i
d

ds

Z d3p

ð2�Þ3
�
~Fð ~p; ~k; sÞ þ�ðk; sÞ

�
p
d~fðpÞ
dp

��

¼ i
d

ds
½�ð ~k; sÞ � 3�ðk; sÞ�: (3.8)

Using d=ds ¼ ad=d� Eq. (3.8) becomes

d�

d�
� 3

d�

d�
þ i

k

a
vL ¼ 0; (3.9)

which is recognized as the continuity equation in presence
of the gravitational potential [47]2 for the comoving longi-
tudinal velocity. For ~a � 1 and k � keq the second term

in the continuity equation (3.9) can be safely neglected,
leading to

2Note that the Newtonian potential in Eq. (2.7) features a
minus sign with respect to the definition in [47].
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vLð ~k; uÞ ¼ i
keqaeq

2
ffiffiffi
2

p
k

d�ð ~k; uÞ
du

: (3.10)

As a function of redshift we find

vLð ~k; zÞ ¼ i
keqaeqffiffiffi

2
p

k

�ðk; 0Þ
ð�u½z�Þ3 V wdm½k; z�; (3.11)

where we used the asymptotic expansion (2.39) and (2.40)
and introduced

V wdm½k; z�

¼
�
1þ �4

8

�
1þ z

1þ zeq

�
2
ln

�
1þ zeq
1þ z

�
ð�2 � 1Þ þ 
 
 


�
:

(3.12)

In the CDM limit � ! 0 the growth factor u�3 ’ ~a3=2

which is recognized as the growth of comoving peculiar
velocity in a matter dominated cosmology, in this limit
�TðkÞ ! 1 [44] and V wdm½k; u� ! 1. The function
V wdm½k; u� encodes the corrections to the peculiar velocity
at small scales. It is clear that as compared to the CDM
case, when the kurtosis �2 > 1 the peculiar velocity at
small scales � * 1 is larger at higher redshift.
Comparing Eq. (3.12) with the third term in Eq. (2.52)
confirms the interpretation of the suppression of the power
spectrum at small scales and high redshift as a consequence
of the peculiar velocity contribution to free streaming.

B. Statistical fluctuations and correlation functions:

In the linearized approximation (and with adiabatic
perturbations only), the perturbation in the distribution

function ~Fð ~k; ~p;uÞ is linear in the primordial gravitational
potential�iðkÞ which is a Gaussian variable determined by
the power spectrum of perturbations during the inflationary
stage (here we neglect possible non-Gaussianities).
Therefore as discussed in the previous section there are
two different averages: (I) a statistical average with the
perturbed distribution function f0 þ F1 and (II) with the
initial Gaussian probability distribution of P�ðkÞ in

Eq. (2.49).
Statistical fluctuations are contained in the variance of

the various quantities calculated with the perturbed distri-
bution ~F. These are linear in �ðk; 0Þ, namely, linear in �i,
therefore they feature Gaussian fluctuations with the
probability distribution function P�ðkÞ, but with non-

Gaussian statistical variances.
As an example of a statistical fluctuation consider

�v2
L ¼ 6

�
p2

m2

�
0

Z u
du0~aðu0Þ�ðk; u0Þ

�
ðu� u0Þ

� �2

6
�2ðu� u0Þ3 . . .

�
du0: (3.13)

Using the asymptotic expansions (2.38), (2.39), and (2.40)
we find up to leading logarithmic order

Z u
~aðu0Þ�ðk; u0Þðu� u0Þdu0

¼ �ðk; 0Þ
6u2

½1� �2u2 ln½�u�� þ 
 
 
 ; (3.14)

Z u
~aðu0Þ�ðk; u0Þðu� u0Þ3du0 ¼ ��ðk; 0Þ ln½�u� þ 
 
 
 ;

(3.15)

leading to similar statistical fluctuations for the total
velocity dispersion hp2=m2i and the transverse component
~vT , namely (all quantities are comoving)

�hv2
Li ¼

hp2i0
m2

�ðk; 0Þ
u2

½1� �2u2 ln½�u�ð1� �2Þ� þ 
 
 
 ;
(3.16)

�

�
p2

m2

�
¼5

3

�
p2

m2

�
0

�ðk;0Þ
u2

	
�
1��2u2 ln½�u�

�
1�21

25
�2

��
þ


 ; (3.17)

�hv2
Ti¼

2

3

hp2i0
m2

�ðk;0Þ
u2

	
�
1��2u2 ln½�u�

�
1�3

5
�2

��
þ


 : (3.18)

Restoring units, writing hp2i0 ¼ �y2T2
0;d, and expressing

these expressions in terms of redshift, we find the follow-
ing statistical fluctuations:

�hv2
Li ’ 16:33

�
km

sec

�
2
�
keV

m

�
2
�y2�ðk;0Þ

�
1þ zeq
1þ z

�

	
�
1��2

�
1þ z

1þ zeq

�
ln

�
1þ zeq

1þ z

�
ð�2 � 1Þ

�
þ 

 
 ;

(3.19)

�

�
p2

m2

�
’ 27:22

�
km

sec

�
2
�
keV

m

�
2
�y2�ðk; 0Þ

�
1þ zeq
1þ z

�

	
�
1� 21

25
�2

�
1þ z

1þ zeq

�
ln

�
1þ zeq
1þ z

�

	
�
�2 � 25

21

��
þ 
 
 
 ; (3.20)

�hv2
Ti’10:89

�
km

sec

�
2
�
keV

m

�
2
�y2�ðk;0Þ

�
1þzeq
1þz

�

	
�
1�3

5
�2

�
1þz

1þzeq

�
ln

�
1þzeq
1þz

��
�2�5

3

��
þ


 :

(3.21)

These expressions also show that the WDM corrections
(proportional to �2) suppress the statistical fluctuations
at small scales k * kfs, where the peculiar velocity
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contribution to free streaming becomes important (we will
see below that at least for the WDM candidates considered
here �2 > 2).

The peculiar velocity autocorrelation function is
given by


ijð ~x; ~x0;uÞ¼
Z d3k

ð2�Þ3e
i ~k
 ~xZ d3k0

ð2�Þ3e
�i ~k0
 ~x0við ~k;uÞv�

j ð� ~k0;uÞ:
(3.22)

Using (2.50) and (3.10) we find


ijð ~r; zÞ ¼
k2eqa

2
eq

2u6

Z d3k

ð2�Þ3 e
i ~k
~rk̂ik̂j

P�ðkÞ
k2

V wdm½k; z�;
~r ¼ ~x� ~x0: (3.23)

Since there is only one vector ~r we write


ijð ~r; zÞ ¼ P?
ij ðr̂Þ
?ðr; zÞ þ P k

ijðr̂Þ
kðr; zÞ; (3.24)

where

P ?
ij ðr̂Þ ¼ �ij � r̂ir̂j; P k

ijðr̂Þ ¼ r̂ir̂j (3.25)

are the projectors on directions parallel and perpendicular
to r.

We find


kðr; zÞ ¼ k2eqa
2
eq

12�2ðu½z�Þ6
Z

dkP�ðkÞ
	V wdm½k; z�½j0ðkrÞ � 2j2ðkrÞ�; (3.26)


?ðr; zÞ ¼ k2eqa
2
eq

6�2ðu½z�Þ6
Z

dkP�ðkÞ
	V wdm½k; z�½j0ðkrÞ þ j2ðkrÞ�; (3.27)

where j0;2 are spherical Bessel functions.
Thus we see that the effectiveWDM power spectrum for

peculiar velocities is P�ðkÞV wdm½k; z�.
From expression (3.12) it is clear that for �2 > 1 WDM

perturbations enhance the peculiar velocity autocorrelation
function for z ’ 30–50. This enhancement of the velocity
correlation function is in concordance with the suppression
of the power spectrum, since the larger velocity dispersion
induced by self-gravity leads to a larger free streaming
velocity and a further suppression of the power spectrum.

C. Phase space density:

In their seminal article Tremaine and Gunn [37] argued
that the coarse grained phase space density is always
smaller than or equal to the maximum of the (fine grained)
microscopic phase space density, namely, the distribution
function, allowing one to establish bounds on the mass of
the DM particle.

Such argument relies on a theorem [38,39] that states
that collisionless phase mixing or violent relaxation by
gravitational dynamics (mergers or accretion) can only

diminish the coarse grained phase space density. A similar
argument was presented in Refs. [10,33,40–42] where a
proxy for a coarse grained phase space density in the
absence of gravitational perturbations was introduced.
However, whereas the distribution function obeys the

collisionless Boltzmann equation, Dehnen [39] clarifies
that the coarse grained phase space density does not nec-
essarily evolve with the collisionless Boltzmann equation,
and introduces an excess mass function which is argued to
always diminish upon gravitational phase space mixing.
Numerical simulations confirm the evolution of a coarse

grained phase space density toward smaller values during
violent relaxation events such as encounters, mergers, and
accretion of halos [56,57]. In the simulations in Ref. [56]
a phase space density Q is obtained by averaging �, �
over a determined volume, and its evolution with redshift
is followed from z ¼ 10 until z ¼ 0 diminishing by a
factor ’ 40 during this interval.
However, to the best of our knowledge, a consistent

study of the evolution of the microscopic phase space
density including gravitational effects even in the linear-
ized approximation has not yet been provided.
In linearized theory, the corrections to the distribution

function F1, or rather the normalized perturbation
~Fð ~p; ~k; �Þ defined by Eq. (2.12), obeys the collisionless
Boltzmann equation (2.15), whose solution in the regime
when the DM is nonrelativistic is given by Eq. (2.22). Thus
the time evolution of the microscopic phase space density
is completely determined. Two aspects of this solution
invite further scrutiny: (I) density perturbations grow
from self-gravity effects; and (II) peculiar velocities also
grow, a direct consequence of the continuity Eq. (3.9) and
explicitly shown by Eq. (3.11). That both quantities grow
upon gravitational collapse suggests an examination of the
phase space evolution in the linearized regime.
In principle one could perform the Fourier transform

back to (comoving) spatial coordinates and obtain
~Fð ~p; ~r;�Þ, however, �ð ~k; �Þ is a stochastic variable with
a Gaussian probability distribution determined by the
power spectrum of the primordial gravitational potential.
Therefore, the linear correction to the microscopic phase
space density itself becomes a stochastic variable as dis-
cussed above.
Rather than pursuing the Fourier transform, which in the

linearized approximation can be performed at any state in
the calculation, we follow Refs. [10,33,40–43] and define
the coarse grained (dimensionless) primordial phase space
density

D � nðtÞ
h ~P2

fi3=2
; (3.28)

where ~P2
f ¼ ~p=aðtÞ is the physical momentum. In absence

of gravitational perturbations, the (unperturbed) distribu-
tion function of the decoupled species is frozen and
nðtÞ ¼ n0=a

3ðtÞ; therefore it is clear that D is a constant,
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namely, a Liouville invariant. In absence of self-gravity it
is given by

D 0 ¼ g

2�2

½R1
0 y2f0ðyÞdy�5=2

½R1
0 y4f0ðyÞdy�3=2

; (3.29)

where f0ðyÞ is the decoupled distribution function, and g
the number of internal degrees of freedom of the WDM
particle.

When the particle becomes nonrelativistic �ðtÞ ¼ mnðtÞ
and h ~V2i ¼ h ~P

2
f

m2i, therefore,

D ¼ �

m4h ~V2i3=2 ¼
QDH

m4
; (3.30)

where QDH ¼ �=h ~V2i3=2 is the phase space density intro-
duced in Refs. [10,40].

In the nonrelativistic regime D is related to the coarse
grained phase space density QTG introduced by Tremaine
and Gunn [37]

QTG ¼ �

m4ð2��2Þ3=2 ¼
�
3

2�

�
3=2

D; (3.31)

where � is the one-dimensional velocity dispersion. The
observationally accessible quantity is the phase space den-
sity �=�3, therefore, using � ¼ mn for a decoupled parti-
cle that is nonrelativistic today and Eq. (3.30), we define
the primordial phase space density3

�DM

�3
DM

¼ 33=2m4D � 6:611	 108D
�
m

keV

�
4 M�=kpc3

ðkm=sÞ3 :

(3.32)

In Refs. [33,41–43] the phase mixing theorem was in-
voked to argue that the observed phase space density is
smaller than the primordial value (3.32) with D replaced
byD0 given by Eq. (3.29), leading to a lower bound on the
mass of the WDM particle. However, as emphasized in
Ref. [39] the phase mixing theorem [38] does not directly
address the evolution of D, nor has there yet been an
analysis of its evolution in the linearized regime.

The results obtained above allow us to directly calculate
the corrections to D from self-gravity in the linearized
theory. Using the identity (3.3) for linearized statistical
averages, it is given by

D ¼ n0½1þ �ðk; uÞ�5=2
½hp2i0 þ�hp2i�3=2

’ D0

�
1þ 21

20
�ð ~k; 0Þ�2 ln

�
1þ zeq

1þ z

��
�2 � 25

21

��
;

(3.33)

where we have used Eqs. (2.39), (2.40), and (3.17). In the
CDM limit � ! 0 this coarse grained phase space density

remains constant at least up to linear order in gravitational
perturbations. However, for WDM, Eq. (3.33) clearly in-
dicates that in the regions where matter density perturba-
tions are positive the phase space density increases with
the logarithm of the scale factor when �2 > 1:19. We
will see below that this is the case at least for two examples
of WDM candidates supported by particle physics
models. The reason for the increase in the coarse grained
phase space density can be tracked to the suppression of

statistical fluctuations: the leading term in �ð ~k; uÞ ¼
�ð ~k; 0Þ=u2 þ 
 
 
 cancels against the leading term propor-

tional to �ð ~k; 0Þ=u2 in the statistical fluctuation (3.17).
These are the only contributions that remain in the CDM
limit, however the WDM contribution suppresses the sta-
tistical fluctuation of the velocity dispersion leading to an
increase of the coarse grained phase space density as a
consequence of the suppression of the statistical fluctua-
tions (statistical variance) of the velocity dispersion in the
WDM case.

IV. TWO SPECIFIC EXAMPLES

We now focus on two specific examples of WDM can-
didates: sterile neutrinos produced via the Dodelson-
Widrow (DW) mechanism [58] for which

fdwðyÞ ¼ 


ey þ 1
; (4.1)

where the constant 
 is a function of the active-sterile
mixing angle [58]; and sterile neutrinos produced near
the electroweak scale via the decay of scalar or vector
bosons BD for which [43,59]

fbdðyÞ ¼ �ffiffiffi
y

p
X1
n¼1

e�ny

n5=2
; (4.2)

where �� 10�2.
We implement the Born approximation to the matter

power spectrum presented in Ref. [44] to obtain the cor-
rected power spectrum normalized to CDM ½ �TðkÞ �D½k; z��2.
As discussed in Ref. [44] the Born approximation yields
excellent agreement with the power spectrum obtained in
Ref. [29] for DW sterile neutrinos.

A. DW sterile neutrinos:

For the distribution function (4.1) we find

�y2 ¼ 12:939; �2 ¼ 2:367;

kfs ¼ 5:44

�
m

keV

��
gd

10:75

�
1=3ðMpcÞ�1: (4.3)

The DW case is displayed in Fig. (2): the panel for
½ �D½k; z��2 for the ‘‘standard’’ value gd ¼ 10:75 [58] clearly
shows the crossover from an early enhancement to a later
suppression of the power spectrum as a consequence of the
contribution from peculiar velocity at small scales. For3keV4ðkm=sÞ3 ¼ 1:272 3108 M�

kpc3
.
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m ¼ 1 keV (the value used in the figure) kfs ¼
5:44 ðMpcÞ�1, and the figure clearly shows that the cross-
over from enhancement to suppression occurs at k �
1–2kfs for 30 � z � 50. The corrections from �D½k; z� are
not resolved in the log-log scale, however a linear-linear
display of the region k * 2kfs reveals the 10–15% suppres-
sion of the power spectrum. This range of small scales is
where the power spectrum develops the oscillatory behav-
ior associated with the WDM acoustic oscillations dis-
cussed in Ref. [44].

B. BD sterile neutrinos:

Sterile neutrinos produced by the decay of scalar or
vector bosons at the electroweak scale [43,59] are colder
for two reasons: (I) their decoupling occurs when gd � 100
and they do not reheat when the entropy from other degrees
of freedom is given off to the thermal plasma, and (II) their
distribution function (4.2) is more enhanced at small mo-
mentum thereby yielding smaller velocity dispersion. For
this species

�y2 ¼ 8:509; �2 ¼ 2:890;

kfs ¼ 14:107

�
m

keV

��
gd
100

�
1=3ðMpcÞ�1: (4.4)

This case is displayed in Fig. (3): the panel for ½ �D½k; z��2
for gd ¼ 100 (corresponding to freeze-out at the electro-
weak scale) also shows the crossover from an early en-
hancement as a consequence of free streaming to a later
suppression of the power spectrum as a consequence of the
extra contribution to free streaming from peculiar velocity
at small scales. For m ¼ 1 keV (the value used in the
figure) kfs ¼ 14:107 ðMpcÞ�1, and the figure clearly shows
that, again, the crossover from enhancement to suppression
occurs at k � 1–2kfs for 30 � z � 50. The corrections
from �D½k; z� are not resolved in the log-log scale of the
power spectrum, however a linear-linear display of the
region k * 2kfs reveals the 10–15% suppression of
the power spectrum. In this region the figure displays a
hint of the WDM acoustic oscillations discussed in
Ref. [44]. As discussed in Ref. [44] the smaller amplitudes

FIG. 2 (color online). DW, m ¼ 1 keV, gd ¼ 10:75: upper left panel �D½k; z� and upper right panel ½ �TðkÞ �Dðk; zÞ�2; lower left panel
small scale region of ½ �TðkÞ �Dðk; zÞ�2 and lower right panel V wdm½k; z� all for z ¼ 30; 40; 50.
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of the WDM acoustic oscillations as compared to the DW
case are a reflection of the fact that BD sterile neutrinos are
colder as explained above.

In both these cases, we see that there is a suppression of
the power spectrum for z� 30–50 in the small scale region
k ’ ð1–2Þkfs and an enhancement of the peculiar velocity
in the same region; both effects are at the 10–15% level and
clearly correlated: the larger peculiar velocity adds to free
streaming depressing the power spectrum. Although these
effects are at the level of few percent, it is conceivable that
they may be magnified by the inherent nonlinearities in the
process of gravitational collapse, perhaps leading to im-
portant consequences for galaxy formation in N-body
simulations.

V. CONCLUSIONS

Motivated by recent and forthcoming N-body simula-
tions of galaxy formation in WDM scenarios, we set out to
study the redshift corrections to the matter and peculiar
velocity power spectra and corrections to the phase space

density from gravitational perturbations in the region
30 � z � 50. This is the region in redshift where N-body
simulations set up initial conditions and the dark energy
component can be safely neglected.
Drawing from results in Ref. [44], we implemented a

perturbative expansion for the redshift and scale depen-
dence of the distribution function, matter density perturba-
tions, and coarse grained phase space density valid for
z=zeq � 1 and a wide range of scales, up to leading loga-

rithmic order in the scale factor.
We find that for WDM the redshift dependence is de-

termined by�2, the kurtosis of the unperturbed distribution
function after freeze-out, with an enhancement of of the
peculiar velocity power spectrum and autocorrelation func-
tion at larger redshift for �2 > 1. This enhancement in the
peculiar velocity hastens free streaming and leads to a
further suppression of the matter power spectrum for
k > ð1–2Þkfs, where kfs is the free streaming wave
vector. For WDM gravitational perturbations lead to a
suppression of the statistical fluctuations of velocities
when �2 > 5=3.

FIG. 3 (color online). BD, m ¼ 1 keV, gd ¼ 100: upper left panel �D½k; z� and upper right panel ½ �TðkÞ �Dðk; zÞ�2; lower left panel
small scale region of ½ �TðkÞ �Dðk; zÞ�2 and lower right panel V wdm½k; z� all for z ¼ 30; 40; 50.
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We also study the linear corrections to the coarse grained
phase space density introduced in Refs. [10,33,40–43]
resulting from gravitational perturbations. We find that
whereas these vanish for CDM resulting in a constant
(coarse grained) phase space density, WDM perturbations
lead to a logarithmic growth with scale factor as a conse-
quence of the suppression of statistical fluctuations if
�2 > 1:19.

Two specific examples of WDM candidates are studied
in detail: sterile neutrinos produced nonresonantly either
via the Dodelson-Widrow mechanism [58] or via the decay
of scalar or vector bosons at the electroweak scale [43,59].
In these cases we find that the corrections to the power
spectra of matter and peculiar velocities are of order
10–15% for scales k ’ ð1–2Þkfs and redshifts z ’ 30–50.

Impact on the bounds on the mass: The scale and red-
shift dependence of the power spectra are encoded in the
effective matter and velocity power spectra P�ðkÞ �D2½k; z�;
P�ðkÞV ½k; z� with �D½k; z�; V ½k; z� given by Eqs. (2.52)
and (3.12) respectively.

To assess the impact of the above results on the bounds
on the mass of the WDM particle consider two N-body
simulations with a particle of the same mass both setting up
initial conditions at the same z ’ 30–50, one with the
matter and peculiar velocity power spectra at z� 1 and
the other with the spectra corrected by the scale and
redshift dependent factors obtained above. If �2 > 1 the
corrected matter power spectrum features the WDM sup-
pression and the peculiar velocity power spectrum features
the WDM enhancement for k * kfs found above. These
effects at small scales are akin to the suppression of density
fluctuations and enhancement of velocity dispersion asso-
ciated with a lighter particle for the uncorrected power
spectra. This is because a lighter particle features a smaller
kfs and a larger velocity dispersion. Therefore these cor-
rections allow larger masses to describe the same large

scale structure output from the N-body simulations as
compared to the uncorrected power spectra. Thus one
aspect of the corrections is to allow larger mass WDM
particles, thereby relaxing the bound on the mass, at least
for those models for which �2 > 1. However, this is not all
there is to the corrections, because the coarse grained phase
space density increases, which would correspond to a
colder particle with smaller velocity dispersion. Thus the
net effect of the corrections cannot be simply characterized
as being described by an increase or decrease of the mass
of the particle and ultimately must be understood via a full
N-body simulation.
Although these corrections are relatively small, nonline-

arities arising from gravitational collapse may result in a
substantial amplification of these effects; if this is the case,
and only large scale N-body simulations with the corrected
power spectra can assess this possibility, then it is conceiv-
able (and expected) that the bounds on the mass of the
WDM particle may need substantial revision.
The results obtained here suggest a breakdown of per-

turbation theory either at large redshift and or small scales
k � kfs; this is clearly an artifact of the expansion, the
integral in (2.27) which yields the logarithmic contribution
is bounded and well behaved both in the small scale and
u ! uNR limits [44]. However a systematic study of
smaller scales and or larger redshifts would require a full
numerical solution of the integro-differential equation
(2.27). If future N-body simulations find that the correc-
tions obtained here do modify the dynamics of large scale
structure formation in WDM models substantially, such a
study may be worthy of consideration.
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