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The supermassive objects at the center of many galaxies are commonly thought to be black holes. In

4-dimensional general relativity, a black hole is completely specified by its massM and by its spin angular

momentum J. All the higher multipole moments of the gravitational field depend in a very specific way

on these two parameters. For instance, the mass quadrupole moment is Q ¼ �J2=M. If we can estimate

M, J, and Q for the supermassive objects in galactic nuclei, we overconstrain the theory and we can test

the black hole hypothesis. While there are many works studying how this can be done with future

observations, in this paper a constraint on the quadrupole moment of these objects is obtained by using

the current estimate of the mean radiative efficiency of AGN. In terms of the anomalous quadrupole

moment q, the bound is �2:01< q< 0:14.
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I. INTRODUCTION

Today we believe that the final product of the gravita-
tional collapse is a black hole (BH) and we have robust
observational evidences of the existence of 5–20 solar
mass compact objects in x-ray binary systems [1] and of
105–109 solar mass objects at the center of many galaxies
[2]. All these objects are interpreted as BHs because
they cannot be explained otherwise without introducing
new physics. The stellar-mass objects in x-ray binary
systems are too heavy to be neutron or quark stars for
any reasonable equation of state [3]. At least some of the
supermassive objects in galactic nuclei are too heavy,
compact, and old to be clusters of nonluminous bodies
[4]. However, there are no direct observational evidences
that they have an event horizon [5], while there are theo-
retical arguments suggesting significant deviations from
the classical picture [6].

In 4-dimensional general relativity, (uncharged) BHs
are described by the Kerr solution and are completely
specified by two parameters: the mass, M, and the spin
angular momentum, J. The condition for the existence of
the event horizon is ja�j � 1, where a� ¼ J=M2 is the
dimensionless spin parameter. The fact that a BH has
only 2 degrees of freedom is known as ‘‘no-hair’’ theorem
[7] and implies that all the mass moments, Ml, and all
the current moments, Sl, of the gravitational field can be
written in terms of M and J by the following simple
formula:

Ml þ iSl ¼ M

�
i
J

M

�
l
: (1)

The first three nontrivial terms are the mass M0 ¼ M, the
spin angular momentum S1 ¼ J, and the mass quadrupole
momentM2 � Q ¼ �J2=M. On the contrary, for a generic

compact object Ml and Sl can assume any arbitrary value,
but in case of reflection symmetry, all the oddMl-moments
and all the even Sl-moments are identically zero. As it was
put forward by Ryan in [8], by measuring the mass, the
spin, and at least one more nontrivial moment of the
gravitational field of a BH candidate, one overconstrains
the theory and can test the Kerr BH hypothesis.
There is a whole line of research devoted to study how

future experiments will be able to measure the mass quad-
rupole moment of BH candidates and thus test the nature of
these objects. The most studied and promising approach is
through the detection of gravitational waves of the inspiral
of a stellar-mass compact object into a supermassive BH
candidate [9]. Other proposals involve the observation of
the BH shadow [10], the possible discovery of a stellar-
mass BH candidate with a radio pulsar as companion [11],
and accurate measurements of stellar orbits at mpc dis-
tances from Sgr A* [12]. There are also two proposals to
constrain Q with current available x-ray data, by studying
the K� iron line [13] and the disk’s thermal spectrum [14].
Only Ref. [14] constrainsQ by considering the stellar-mass
BH candidate M33 X-7, but the analysis is based on a
simplified model and the bound is only meant as a quali-
tative guide for more rigorous future studies.

II. RADIATIVE EFFICIENCY OFAGN

The energy radiated by a compact object as a conse-
quence of the accretion process is simply Lacc ¼ � _Mc2,
where � is the efficiency parameter, _M is the mass accre-
tion rate, and c is the speed of light. If the accreting gas
cannot radiate efficiently its gravitational energy and the
compact object is capable of absorbing quickly all the
particles hitting its surface, � can be very small. For
example, the efficiency parameter of the supermassive
BH candidate in the Galaxy is estimated to be �5 � 10�6

[15]. On the contrary, if all the gravitational energy is*cosimo.bambi@ipmu.jp
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released as the gas sinks in the potential well of the
compact object, � ¼ 1� EISCO, where EISCO is the spe-
cific energy of the gas particles at the innermost stable
circular orbit (ISCO) and depends on the metric of the
space-time. For a Schwarzschild BH, � � 0:057, while for
a rotating BH � can be much higher, up to about 0.42.

If the distance from the compact object is known, Lacc

can be easily measured. However, an accurate estimate of
_M is typically much more problematic and model depen-
dent. It is instead possible to determine the mean efficiency
parameter of active galactic nuclei (AGN) [16]. From the
observed hard diffuse x-ray background and a quasar spec-
tral energy distribution, one can estimate u�, the total

contribution of quasar luminosity to the mean energy
density of the Universe. From the study of the supermas-
sive BH candidates in nearby galaxies, one can estimate
�BH, the mean mass density of BHs in the contemporary
Universe. Under the conservative assumption that these
objects acquire most of their mass through the accretion
process, one divides u� by �BH, to obtain an estimate of

the average accretion efficiency �. Current studies find
�> 0:15 [17,18]. There are several uncertainties in this
value, but 0.15 seems to be a reliable lower bound, espe-
cially for the most massive systems, because it is obtained
from a set of conservative assumptions. An average
efficiency around 0.30–0.35 seems to be a reasonable
estimate [18]. �> 0:15 is possible for a rapidly rotating
BH with a� > 0:89.

III. COMPACT OBJECTS WITH NON-KERR
QUADRUPOLE MOMENT

The Manko-Novikov (MN) metric is a stationary, axi-
symmetric, and asymptotically flat exact solution of
Einstein’s vacuum equation [19]. It is not a BH solution,
but it can be used to describe the space-time around a
compact body with arbitrary mass multipole moments.
The solution has an infinite number of free parameters
and the full expression can be seen in Ref. [14], where a
few typos present in the original paper were corrected.
Here we consider a subclass of the MN metric, with only
three free parameters: the mass M, the spin parameter a�,
and the anomalous quadrupole moment q. The latter is
defined by

Q ¼ QKerr � qM3; (2)

where QKerr ¼ �a2�M3 is the mass quadrupole moment of
a BH. For q ¼ 0, we recover exactly the Kerr metric, while
for q > 0 (q < 0) the object is more oblate (prolate) than a
BH. The MN solution is written in prolate spheroidal
coordinates and requires ja�j< 1, even if this is not a
fundamental limit as in the BH case. However, at least
for small deviations from the Kerr metric, compact objects
with a� > 1 should be unstable [20].

The efficiency parameter � can be computed as follows.
As in any stationary and axisymmetric space-time, the

geodesic motion in cylindrical coordinates ðt; r; z; �Þ is
governed by the following equations:

_t ¼ Eg�� þ Lzgt�

g2t� � gttg��

; (3)

_� ¼ �Egt� þ Lzgtt

g2t� � gttg��

; (4)

grr _r
2 þ gzz _z

2 ¼ VeffðE;Lz; r; zÞ; (5)

where E and Lz are, respectively, the conserved specific
energy and the conserved specific z component of the
angular moment, while Veff is the effective potential

Veff ¼
E2g�� þ 2ELzgt� þ L2

zgtt

g2t� � gttg��

� 1: (6)

Circular orbits in the equatorial plane are located at the
zeros and the turning points of the effective potential:
_r ¼ _z ¼ 0 implies Veff ¼ 0, and €r ¼ €z ¼ 0 requires
@rVeff ¼ @zVeff ¼ 0. The specific energy turns out to be

E ¼ � gtt þ gt��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2gt��� g���

2
q ; (7)

where

� ¼ d�

dt
¼

�@rgt� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@rgt�Þ2 � ð@rgttÞð@rg��Þ

q
@rg��

(8)

is the orbital angular velocity and the sign þ (� ) is for
corotating (counterrotating) orbits. The orbits are stable
under small perturbations if @2rVeff � 0 and @2zVeff � 0.
In this way, one determines the specific energy at the inner
radius of the disk, Ein, and the efficiency parameter
� ¼ 1� Ein for a particular choice of the spin parameter
a� and of the anomalous quadrupole moment q,1 see Fig. 1.
As the mean efficiency parameter of AGNmust be larger

than 0.15, one can constrain the mean spin and the mean
quadrupole moment of these objects. This is done in Fig. 2,
where the red curve denotes the boundary between the
regions with �> 0:15 and �< 0:15. The constrain on
the anomalous quadrupole moment q is

� 2:01< q< 0:14: (9)

If we adopt a more stringent bound on�, like�> 0:20, the
constraint on q becomes �0:96< q< 0:03.

1In the MN space-times, for some q < 0 one finds two dis-
connected regions with stable circular orbits: one closer to the
object, r1 < r < r2, and another for larger radii, r > r3 with
r3 > r2. The inner radius of the disk is r3, as the orbits in
the region r1 < r < r2 have larger energy and angular momen-
tum [14].
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IV. DISCUSSION

Equation (9) provides a constraint on possible deviations
from the Kerr metric around the supermassive BH candi-
dates. The bound is much weaker for negative values of q
because in these space-times either the inner radius of the
disk and the specific energy at a given radius are usually
smaller than the cases with q > 0. It is clear that the
supermassive BH candidates must be objects very different
from a compact body made of ordinary matter. For in-
stance, the quadrupole moment of a neutron star is thought
to be well approximated by the following expression:

Q ¼ �ð1þ ~qÞa2�M3; (10)

with ~q � 1–10 independent of a�, according to the matter
equation of state and the mass of the body [21].

The constraint in Eq. (9) relies on the assumption that
the mass of these objects is conserved during mergers.
While this is a reasonable approximation for BHs in
general relativity, we cannot say anything in the case of
compact objects with unknown internal structure. If a

substantial fraction of their mass were lost during merger,
for instance through the emission of gravitational waves,
the bound would be weaker, as the energy radiated in the
accretion process would come from a larger amount of
accreted mass. To obtain Eq. (9), we also assumed that the
disk is on the equatorial plane. As explained in [22], this is
justified by the fact that the time-scale of the alignment of
the spin of the object with the disk is much shorter than the
time for the mass of these objects to increase significantly.
We would like to warn the reader that the estimate of �

in Fig. 1 and the allowed region in Fig. 2 for the spin and
the anomalous quadrupole moment inevitably partially
depend even on the higher order moments of the space-
time. The latter are less and less important, but they are not
completely negligible. This can be easily understood by
noticing the difference in the constraint on the spin pa-
rameter a� between a BH with q ¼ 0 and a generic object
with q � 0. For a BH, an efficiency parameter � larger
than 0.15 requires a� > 0:89. For q � 0, this bound relaxes
to a� > 0:30, see Fig. 2. This problem is present in any
estimate of a quadrupole moment and therefore the future
comparison of two limits on q obtained from different
arguments or with different metrics deserves some
attention.

V. CONCLUSIONS

There are not yet direct observational evidences that the
supermassive objects at the center of many galaxies are the
BHs predicted by general relativity, while recent theoreti-
cal arguments suggest that the final product of the gravi-
tational collapse of matter may be quite different from
what it is usually thought [6]. The BH hypothesis can be
tested by measuring at least three nontrivial moments of
the gravitational field of these objects, as in the case of a
BH all the moments depend on the mass M and the spin J
in a very specific way. There are several works in the
literature discussing how this is possible with future experi-
ments, but so far there are no constraints on the nature of
these objects. For example, the future gravitational wave
detector LISA will be able to measure the quadrupole
moment of the supermassive BH candidates with a preci-
sion at the level of 10�2–10�4 (see the third paper in [9]).
In this paper, we considered the current estimate of the
mean radiative efficiency of AGN and we was able to
constrain the anomalous quadrupole moment q of these
objects. The bound we obtained is �2:01< q< 0:14.
Lastly, let us notice that the maximum radiative effi-

ciency for a BH is � � 0:42 when a� ¼ 1. A very fast-
rotating object with q a little bit smaller than 0 can have a
higher efficiency parameter. This implies, at least in prin-
ciple, that the argument used in this paper may also rule out
the Kerr BH hypothesis in the case of the discovery of an
object with an efficiency parameter larger than the one that
can be expected for a BH.

FIG. 2 (color online). Constraint on the mean spin parameter
and the mean anomalous quadrupole moment of AGN from the
estimate of their radiative efficiency. The allowed region is the
one with �> 0:15.

FIG. 1 (color online). Efficiency parameter � in the plane
ða�; qÞ.
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