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Coincident observations with gravitational wave (GW) detectors and other astronomical instruments

are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors.

They will become a necessary part of the future GW astronomy as the next generation of advanced

detectors comes online. The success of such joint observations directly depends on the source localization

capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW

sources with the future advanced detector networks and describe their fundamental properties. By

reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the

accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and

network configurations.
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I. INTRODUCTION

There has been a significant sensitivity improvement of
gravitational wave detectors since the Laser Interferometer
Gravitational Wave Observatory (LIGO) [1] and Virgo
observatory [2] started their operation. In 2007 LIGO and
Virgo completed a 2 yr run at a sensitivity that allows
detection of a merger of two neutron stars (NS-NS) as far
as�30 Mpc away [3,4]. In the most recent run (May 2009–
October 2010) the binary neutron star horizon distance has
been increased to�40 Mpc. However, even at this impres-
sive sensitivity, the anticipated detection rate with the initial
LIGO and Virgo detectors is quite low. A detection may be
possible in the case of a rare astrophysical transient event
such as a supernova explosion in our Galaxy or a nearby
merger of binary neutron stars. The signal is likely to be
weak, and it will be difficult to prove its astrophysical origin
unless it is confirmed with a coincident observation of the
electromagnetic or neutrino counterpart. For this reason the
LIGO andVirgo collaborations are conducting a wide range
of joint observations [5] with other astrophysical experi-
ments including radio [6,7], optical, and x-ray telescopes
[8–11], and neutrino detectors [12,13].

A more robust detection of gravitational waves from
astrophysical sources is anticipated in the next five years
as Advanced LIGO and Advanced Virgo come online.
Numerous GW signals, expected to be observed by ad-
vanced detectors (likely �40 NS-NS events per year [14]),
will begin our exploration of the gravitational wave sky and
start the era of gravitationalwave astronomy. Alongwith the
advanced GW detectors, a new generation of optical tele-
scopes will come online [15–17], which will enable a wide

and deep survey of the electromagnetic sky. Joint observa-
tions with the advanced gravitational wave detectors and
electromagnetic instruments will not only increase the con-
fidence of detection but also bring fundamentally new in-
formation about the GW sources. They will reveal the
physics and dynamics of sources, provide identification of
host galaxies and the associated redshifts, and in some cases
determine the luminosity distance to the source.
One of the major challenges for such joint observations

is to establish an unambiguous association between a
gravitational wave signal and a possible electromagnetic
(EM) counterpart. This greatly depends on the ability of
the GW networks to reconstruct sky coordinates of a
detected GW source. Given an accurate sky location, a
corresponding EM transient may be identified in a list of
events obtained with the all-sky telescope surveys, or the
EM instruments can be guided to take images of a small
area in the sky. In the second case, it is important that the
sky localization is performed by GW detectors in real time
with low latency. The efficiency of the GW-EM association
and the choice of a partner telescope are affected by the sky
localization error which should be well within the instru-
ment’s field of view (typically less than a few square
degrees). Moreover, exploring a smaller area in the sky
will decrease the probability of the false association.
The problem of the source localization with networks of

GW detectors is one of the focuses of research on the
gravitational wave data analysis. There are several analyti-
cal studies [18–21] of this problem that consider geomet-
rical reconstruction of source coordinates based on the
triangulation, which requires a measurement of the arrival
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time of a GW signal at different detectors. However, the
accurate timing of the GW signal is intimately related to
the reconstruction of the signal waveforms. Because of the
different detector sensitivities to the GW polarizations, the
waveforms recorded by individual detectors may be differ-
ent and they may not have a common timing reference (like
a signal peak time) for a direct measurement of the differ-
ences in the arrival time. Therefore, the problem of the
source localization is better addressed in the framework of
the coherent network analysis [22–24], which reconstructs
the waveforms and the sky coordinates simultaneously. By
using both these methods (triangulation and coherent
network analysis), several practical source localization
algorithms [25–27] have been recently developed and
used during the LIGO and Virgo data taking runs from
2009–2010.

There have been a number of studies addressing the
benefits of individual detectors [28,29] and various detec-
tor networks [30,31]. In this paper we present a simulation
study of the source localization and the reconstruction of
GW waveforms with networks of advanced detectors. The
study is performed with a coherent network method, called
coherent WaveBurst [25] (cWB), based on the likelihood
analysis. In cWB the data from all detectors in the network
are processed simultaneously in order to reconstruct a
common GW signal which is consistent with the recorded
detector responses. The consistency is measured by the
likelihood ratio, which is a function of the source parame-
ters (waveforms and sky location). The most probable
source parameters are obtained by maximizing the like-
lihood ratio over the signal waveforms and sky coordi-
nates. The method performs reconstruction of unmodeled
burst signals (arbitrary waveforms) and signals with a
certain polarization state: elliptical, linear, and circular.

The paper is organized as follows. Possible networks of
advanced detectors and their fundamental properties are
discussed in Sec. II. In Sec. III we describe the reconstruc-
tion algorithm. The simulation framework for this study is
presented in Sec. IV. The results are reported in Sec. V. In
Secs. VI and VII we describe the main factors limiting the
source reconstruction and discuss the results.

II. DETECTOR NETWORKS

From 2001–2010 the LIGO Scientific Collaboration
(LSC) and the Virgo Collaboration operated a network of
interferometric gravitational wave detectors which are the
most sensitive instruments from the first generation of the
GW interferometers (1G). They consist of power-recycled
Michelson interferometers with kilometer-scale Fabry-
Perot arms designed to detect gravitational waves with
frequencies between tens of Hz and several kHz. The two
LIGO observatories [1] are in Hanford, Washington (4 km
and 2 km detectors) and in Livingston, Louisiana (4 km
detector), and the 3 km Virgo detector [2] is located in
Cascina, Italy. Other gravitational wave interferometers are

the 300 m detector TAMA [32] in Mitaka, Japan, and the
600 m detector GEO600 [33] in Hannover, Germany.
Currently, all 1G interferometers are decommissioned, ex-
cept Virgo and GEO600, which continue to take data.
The second-generation GW detectors (2G) are currently

under construction. They include the advanced LIGO de-
tectors [34], and the advanced Virgo detector (V) [35],
which will have an order of magnitude better sensitivity
than the 1G detectors. All advanced LIGO detectors have
4 km long arms, with one detector in Livingston (L) and two

identical coaligned detectors in Hanford (H and ~H). Also,
there are plans to build the Large Cryogenic Gravitational
Telescope (LCGT) [36,37] in Japan (the J detector) and

possibly move the LIGO ~H detector to a site in Australia
[30,38] (the A detector). Figure 1 shows the design sensi-
tivity for the listed 2G detectors. These interferometers
(hopefully all five) will compose the most advanced GW
detector network planned for operation after 2015.
The network performance greatly depends on the num-

ber of detectors in the network, their location, and the
orientation of the detector arms. Table I shows the geo-
graphical coordinates of the instruments and the orienta-
tion of the detector arms used in this study. For the
Australian instrument the orientation of the detector arms
is not yet decided; therefore, we consider two possible
configurations: Ã arms are due north and east, and A

FIG. 1. Amplitude spectral density of the design noise for the
second-generation detectors.

TABLE I. Geographical locations and orientations of the 2G
detectors. The orientation of the detector arms is defined by the
rotation angle (counterclockwise) with respect to the local
coordinate frame with axes due north and east.

Detector Latitude Longitude Orientation

A 31�2103000S 115�4203000E 45.0�
H 46�2701800N 119�2402700W 126.0�
J 36�1500000N 137�1004800E 19.0�
L 30�3304600N 90�4602700W 197.7�
V 43�3705300N 10�3001600E 70.6�
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arms are rotated counterclockwise by 45� with respect to
Ã. Depending on what instruments are constructed, we

consider several network configurations: HLV, H~HLV,
AHLV, HJLV, and AHJLV. Since the sky localization per-
formance is expected to be about the same for the HLVand

H~HLV networks, only the HLV network was considered
for the coordinate reconstruction studies.

A. Network sensitivity

The sensitivity of the network of K detectors is fully
characterized by its noise-scaled antenna pattern vectors
fþ and f�:

fþð�Þ½i� ¼
 
F1þð�Þffiffiffiffiffiffiffiffiffiffi
S1½i�

p ; . . . ;
Fkþð�Þffiffiffiffiffiffiffiffiffiffi
Sk½i�

p ; . . . ;
FKþð�Þffiffiffiffiffiffiffiffiffiffiffi
SK½i�

p
!
; (2.1)

where Sk½i� is the power spectral density (PSD) of the noise
[39] and ðFkþ; Fk�Þ are the antenna patterns of individual
detectors. Sk½i� is a function of the time-frequency index i,
which is replacing the separate time and frequency indices.
Below in the text the index i is often omitted. Given the
time-frequency series xk½i�, obtained from a discrete de-
tector output with an appropriate (in our case, wavelet)
transformation,
Sk½i� can be calculated for every data sample. Such
time-frequency PSD ‘‘maps’’ are convenient for the char-
acterization of the colored quasistationary noise of real
detectors. The power spectral density Snet of the network
noise is defined by the following equation:

Snet ¼
�XK
k¼1

S�1
k

��1
: (2.2)

Note that the Snet decreases as more detectors are added to
the network. A network of K equally sensitive detectors

has, by a factor
ffiffiffiffi
K

p
, a lower noise amplitude than the

individual detectors. The utility of the network power
spectral density is explained later in this section.

The antenna patterns depend upon the source coordi-
nates ð�;�Þ and the polarization angle �, which defines
the wave frame of the two-component GW signal h½i� ¼
ðhþ½i�; h�½i�Þ. It is convenient to define vectors fþ, f�, and
h in the dominant polarization wave frame [24], where
ðfþ � f�Þ ¼ 0 and jfþj � jf�j. The vectors fþ and f�
define a vector of the noise-scaled detector responses to
the wave h,

� h½i� ¼ fþ½i�hþ½i� þ f�½i�h�½i�: (2.3)

The inner product ð�hj�hÞ calculated over the sampled
detector responses gives the estimator of the network
signal-to-noise ratio (SNR):

�net ¼ ð�hj�hÞ1=2: (2.4)

The inner product of two sets of vectors a and b with an
arbitrary number of components is defined via their scalar
products

ðajbÞ ¼ X
i

ða½i� � b�½i�Þ; (2.5)

where b� is the complex conjugate of b and the sum is
taken over the data samples i containing the signal [40].
The norms of the antenna pattern vectors jfþj and jf�j

characterize the network sensitivity to the GW polariza-
tions. To illustrate this and other network properties, we
assume below that in the signal frequency band the vectors
fþ and f� do not vary much. In this case

�net 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfþj2ðhþjhþÞ þ jf�j2ðh�jh�Þ

q
; (2.6)

where the inner product ðhjhÞ ¼ ðhþjhþÞ þ ðh�jh�Þ
determines the root-sum-square amplitude of the GW
polarizations:

hrss ¼ ðhjhÞ1=2: (2.7)

As it follows from Eq. (2.6), the network alignment
factor [25]

� ¼ jf�j=jfþj (2.8)

characterizes the relative network sensitivity to the two
GW polarizations. It determines the ratio of the SNRs from
each GW component, assuming that, on average, their
sum-square energies are the same: ðhþjhþÞ ¼ ðh�jh�Þ.
Closely aligned networks (like H~HL) have poor sensitivity
to the second polarization (� 
 1), making reconstruction
of the full GW signal difficult.
The overall network sensitivity is characterized by the

effective power spectral density of the network noise,

Nnet ¼ ðjfþj2 þ jf�j2Þ�1; (2.9)

which depends on the sky coordinates. It is convenient to
factorize the sky-dependent part of the effective power
spectral density as

Nnet ¼ F�2Snet; (2.10)

whereF is the network antenna factor distributed between
0 (low sensitivity) and 1 (high sensitivity). Snet character-
izes the sky-independent sensitivity of the network. These
network parameters determine the average network SNR
for a population of GW signals with the average amplitude

hrss=
ffiffiffi
2

p
per polarization:

�� net 	 hrssffiffiffiffiffiffiffiffiffiffiffi
2Nnet

p ¼ F hrssffiffiffiffiffiffiffiffiffiffi
2Snet

p : (2.11)

The network PSD Snet defines the baseline noise, and the
antenna factor F defines the fraction of the hrss amplitude
utilized by the network.
Figure 2 shows the antenna and the alignment factors

for different networks as a function of the latitude
and longitude of the source (sky maps). Since these net-
work parameters are noise dependent, the sky maps are
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calculated at the frequency 100 Hz, where the advanced
detector sensitivities are about the same. The F distribu-
tion shows the network efficiency to capture the signal and
its uniformity across the sky. The values of � close to unity

indicate the same sensitivity to the two GW components.
Respectively, the values of � close to zero indicate that
the second GW component is not measurable for a weak
GW signal. As Fig. 2 shows, several nonaligned detectors

FIG. 2 (color online). The distributions of the network antenna factor F (left plots) and the network alignment factor � (right plots)
at the frequency of 100 Hz as a function of latitude (�) and longitude (�) for the networks H~HLV, ÃHLV, AHLV, HJLV, and AHJLV
(from top to bottom).
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(preferably five) are required for the elimination of these
blind spots in the sky.

One of the main characteristics of a detector network is
its search volume. Given an isotropic distribution of tran-
sient sources with the root-square-sum amplitude ho at the
fiducial distance ro, the search volume is defined as [41]

Vnet ¼ 4�ðhoroÞ3
Z 1

0
dhh�4�ðhÞ; (2.12)

where � is the detection efficiency. Assuming the same
SNR thresholds �netðhÞ [see Eq. (2.11)], the Vnet can be
calculated with respect to the volume V0 of the reference
network,

Vnet ¼ V0

hN3=2
0 i

hN3=2
net i

; (2.13)

where hN3=2
net i and hN3=2

0 i are the averages over the sky. The
ratioVnet=V0 is quite independent on a search algorithmand a
GW source model. Table II shows the volume (and detection
rate) ratios calculatedwith respect to theHLVnetwork (V0 ¼
VHLV). As more detectors are added to the network the
detection rates increase. This increase can be beneficial;
however, it is not critical for a first direct observation of
gravitational waves. More importantly, the networks with
more detectors are likely to be less affected by non-
Gaussian and nonstationary noise than the networks with
fewer detectors. They are expected to have lower false alarm
rates and higher detection confidence for the same �net

threshold. Also, relocation of the LIGO ~H detector to
Australia does not affect the detection rates for the A and Ã
configurations. But, as shown in Fig. 2, the AHLV detector
configuration would be more preferable for the reconstruc-

tion of the GW polarizations than the H~HLV or the ÃHLV
network.

III. RECONSTRUCTION ALGORITHM

A. Coherent network analysis

One possible approach to the coherent network analysis
is based on the Neyman-Pearson criterion which defines
the likelihood ratio

�ðx;�Þ ¼ pðxjhð�ÞÞ
pðxj0Þ ; (3.1)

where x is the network data, pðxj0Þ is the joint probability
that the data are only instrumental noise, and pðxjhÞ is the
joint probability that a GW signal h is present in the data.
In general, the likelihood ratio is a functional which de-
pends upon the source parameters�. One generalization of

the Neyman-Pearson criterion is to maximize�ðx;�Þ over
�. The obtained maximum likelihood ratio statistic
reaches its maximum for the best match of the correspond-
ing waveform to the data. If the source model allows the
calculation of the GW waveforms as a function of a small
number of source parameters (for example, for binary
black holes), then a template bank can be generated. In
this case the variation is performed over the template bank
and the likelihood approach is equivalent to a matched
filter. The cWB algorithm searches for unmodeled burst
signals. In contrast to the binary black hole sources, where
the number of parameters is relatively small, the parame-
ters characterizing the unmodeled bursts are essentially the
signal amplitudes themselves at each instance of time. It is
not possible to generate a template bank for such a large
parameter space. Instead, the best matching waveform is
found by variation of � over unknown GW waveforms h.

B. GW waveforms

For stationary Gaussian noise the coherent WaveBurst
algorithm defines the likelihood L as twice the logarithm
of the likelihood ratio �,

L ½h� ¼ 2ðwj�hÞ � ð�hj�hÞ; (3.2)

where the vector w represents whitened data from K
detectors with uncorrelated noise,

w ½i� ¼
 
x1½i; �1�ffiffiffiffiffiffiffiffiffiffi
S1½i�

p ; . . . ;
xk½i; �k�ffiffiffiffiffiffiffiffiffiffi
Sk½i�

p ; . . . ;
xK½i; �K�ffiffiffiffiffiffiffiffiffiffiffi

SK½i�
p

!
: (3.3)

The sampled detector amplitudes (where i is a sample
index) xk½i; �k� take into account the time-of-flight delays
�k, which in turn depend upon the source coordinates � and
�. The solutions for the GW waveforms h, defined in the
dominant polarization frame, are found by the variation of
the likelihood functional [Eq. (3.2)]:

Hþ½i� ¼ ðw½i� � fþ½i�Þ=jfþ½i�j2; (3.4)

H�½i� ¼ ðw½i� � f�½i�Þ=jf�½i�j2: (3.5)

The maximum likelihood ratio statistic is calculated by
substituting the solutions into L½h�. The result can be
written as

Lmax ¼
X
i

w½i�P½i�wT½i�; (3.6)

where the matrix P is the projection constructed from
the components of the unit vectors eþ and e� along the
directions of the fþ and f�, respectively:

Pnm½i� ¼ eþn½i�eþm½i� þ e�n½i�e�m½i�: (3.7)

The kernel of the projectionP is the signal plane defined by
these two vectors. The null space of the projection P
defines the reconstructed detector noise which is referred
to as the null stream.

TABLE II. Expected difference in detection rates with respect
to the HLV network.

HLV H~HLV AHLV HJLV AHJLV

100 Hz 1 1.66 1.65 1.39 2.09

300 Hz 1 1.65 1.63 1.15 1.80
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The projection matrix is invariant with respect to the
rotation in the signal plane, where any two orthogonal unit
vectors can be used for the construction of the Pnm.
Therefore, one can select the two orthogonal unit vectors
u and v such that w � v ¼ 0 and then

Pnm½i� ¼ un½i�um½i�: (3.8)

The unit vector u defines the vector

� ½i� ¼ ðw½i� � u½i�Þu½i� (3.9)

whose components are the standard likelihood estimators
of the noise-scaled detector responses �k

h½i�.

C. Source coordinates

The maximum likelihood ratio statistic Lmax is a func-
tion of the sky coordinates � and �. If no information
regarding the source coordinates is available, then the
variation over the sky should also be performed. It is
expected that Lmax takes a maximum close to a true source
location; however, it is not necessarily the optimal statistic
for the coordinate reconstruction. The coherent part of the
likelihood quadratic form

Ec ¼
X
i

X
n;m

wn½i�wm½i�Pnm½i�; n � m (3.10)

has a strong dependence on the time delays between the
detectors, and therefore the coherent energy Ec is expected
to be a better statistics for the source localization. On the
other hand, the Ec is a biased estimator: for an arbitrary
GW signal it may take a maximum value away from the
true source location. To minimize the bias, the sky statistic
is constructed in the following way:

Lsky ¼ LmaxEc

EðE� Lmax þ jEcjÞ ; (3.11)

where E ¼ ðwjwÞ is the total normalized energy in the
network data stream. This statistic penalizes the sky loca-
tions with low values of Ec and large values of the residual
(null) energy E� Lmax. The Lsky reduces to the maximum

likelihood statistic Lmax=E when the ratio ðE� LmaxÞ=Ec

is close to unity, which is expected at the true source
location. Lsky is used to rank different sky locations and

calculate the probability distribution of the estimated
source coordinates in the sky.

D. Model-dependent constraints

The likelihood method offers a convenient framework
for the introduction of constraints arising from the source
models. Unlike for template searches where accurate
waveforms are required, in principle, any useful information
about sources can be used to constrain the likelihood func-
tional. This allows the customization of the generic burst
algorithms in order to search for specific, but not very well-
modeled sources. One obvious class of constraints is related

to the different polarization states of the GW signals. For
example, some of the core collapse models predict wave-
forms with a linear polarization [42] or random polarization
[43]. Merging binary neutron stars or black holes are ex-
pected to produce elliptically polarized gravitational wave
signals [44]. Also, the neutron starmergers can be the source
of the short gamma ray burst signals [45], where relativistic
jets are emitted along the rotation axis of the binary system;
in this case the associated gravitational waves should have
circular polarization. The cWB algorithm allows searches
with
several types of polarization constraints: circular, linear,
elliptical, and random (or unmodeled searches). All these
searches are used in the study to estimate the possible
improvement of the source localization if the reconstruction
is constrained by the source model.

IV. SIMULATIONS

A. Injected signals

Several types of ad hoc waveforms were used to study
the performance of the detector networks for different
signal frequencies and polarization states. They were in-
jected into the simulated detector data streams in a wide
range of signal-to-noise ratios, with the coordinates uni-
formly distributed in the sky. The Gaussian detector noise
was simulated with the amplitude spectral density pre-
sented in Fig. 1. The injected signals were band-limited
white-noise (WNB) waveforms with random polarizations
and sine-Gaussian (SG) waveforms with linear and circular
polarizations. The WNB waveforms are bursts of white
Gaussian noise in a frequency band ðf1; f2Þ which have a
Gaussian time profile with the standard deviation �
(see Table III). The random polarization waveforms
hþ and h� were selected to have the same square-sum
energy: ðhþjhþÞ ¼ ðh�jh�Þ.
The SG waveforms were simulated as follows:

hþðtÞ ¼ ho sinð2�tf0Þ expð�t2=�2Þ; (4.1)

h�ðtÞ ¼ h1 cosð2�tf0Þ expð�t2=�2Þ; (4.2)

where f0 is the waveform central frequency, ho and h1 are
the waveform amplitudes, and � is related to the waveform

quality factor Q ¼ ffiffiffi
2

p
�f0� (see Table IV). The amplitude

parameters were h1¼0 for linear polarization and h1 ¼ ho
for circular polarization. During the analysis the amplitude

TABLE III. Simulated white-noise bursts with low frequencies
(LF) and high frequencies (HF).

Waveform �ðsÞ f1 (Hz) f2 (Hz)

WNB LF 0.1 250 350

WNB HF 0.1 1000 2000
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of injected events was varied to simulate events with differ-
ent signal-to-noise ratios.

B. Error regions

The injected signals are used for the estimation of the
accuracy of the coordinate reconstruction. For each in-
jected event the Lsky sky map is calculated with an angular

resolution of d� ¼ 0:4� 0:4 square degrees: �200 000
sky locations (pixels) total. Figure 3 shows an example of
such a sky map for one of the SGQ9 LF injections. For such
events it is typical to see a pattern of fringes with a large
value of Lsky corresponding to a good match between

responses due to a common GW signal reconstructed in
different detectors. Such sky points are the most probable
source locations. Depending on many factors, such as
the signal strength, waveform morphology, etc., the Lsky

statistic can be well localized in a single small cluster in the
sky or distributed over a large area which can also be split

into several disjoint clusters. This type of ambiguity is
typical for the least constrained unmodeled search and
networks with only three spatially separated detectors.
To characterize the accuracy of the coordinate reconstruc-

tion for a single injection, we define an error region: the total
area of all pixels in the sky which satisfy the condition
Lskyð�;�Þ � Lskyð�i; �iÞ, where ð�i; �iÞ is the injection

sky location. Given a population of injected signals uniform
in the sky, the 50 C.L. and 90 C.L. error regions, containing
50% and 90% of injections, respectively, can be calculated.
The median error angle is defined as the square root of the
50% error area. Although the error area may be split into
several disjoint areas, we often use the error angle as a
convenient measure of the coordinate resolution.
The Lsky sky map can also be converted into the proba-

bility skymapwhich is normalized to unity if integrated over
the entire sky. In this case the 50 C.L. and 90 C.L. error
regions are represented by the most probable pixels with
cumulative probabilities of 50% and 90%, respectively.
Such probability skymaps are not relevant for the simulation
studieswe perform, but they are important for the analysis of
real data.

V. RESULTS

A. Coordinate reconstruction

The accuracy of the coordinate reconstruction strongly
depends on the strength of the detected signals which can
be conveniently characterized by the average (per detector)
signal-to-noise ratio

�det ¼ �net=
ffiffiffiffi
K

p
: (5.1)

For example, Fig. 4 shows the dependence of the median
error angle �50% on �det for all injected signals, which is
well approximated by a function

TABLE IV. Simulated sine-Gaussian waveforms with quality
factorsQ ¼ 3 andQ ¼ 9, low (235 Hz or LF) and high (1053 Hz
or HF) frequencies, and two polarization types—linear and
circular.

Waveform f0 (Hz) Q Polarization

SGQ3 LF/HF 235=1053 3 Linear

SGQ9 LF/HF 235=1053 9 Linear

SGCQ9 LF/HF 235=1053 9 Circular

FIG. 3 (color online). Example of the likelihood sky map Lsky

for an injected signal in the HLV network at � ¼ �30� and � ¼
144�: Lsky as a function of � and � (top plot), and the Lsky

distribution around the reconstructed location (bottom plot).

FIG. 4. Median error angle vs average detector SNR obtained
with the unmodeled algorithm for all types of injections and
different network configurations: HLV, AHLV, HJLV, and AHJLV.
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�50% ¼ Aþ B

�
10

�det

�
þ C

�
10

�det

�
2
: (5.2)

The parameter A is the median error angle for events with
very large SNR: it may not be zero due to various factors
limiting the resolution (see Sec. VI). The sum of the fit
parameters Aþ Bþ C is the median error angle for events
with �det ¼ 10. Figure 4 also shows a dependence of the
coordinate resolution on the number of detector sites in
the network. There is a significant improvement of the
resolution when more sites are added to the network. This

is particularly noticeable at low SNR, which is very impor-
tant because the anticipated GW signals are likely to be
weak.
Because of several limiting factors (see Sec. VI) the

reconstruction is not uniform in the sky. Figure 5 shows
the distribution of the median error angle across the sky for
different network configurations. There is a dramatic im-
provement of the coordinate reconstruction for the AHLV,
HJLV, and AHJLV networks. However, for the four-site
networks there remain areas where the source localization
is poor. Figure 6 compares the pointing capabilities of the
network consisting of three, four, and five sites by present-
ing the fraction of the sky where the reconstruction is
performed with a given error area. This figure also shows
a significant improvement of the source localization (par-
ticularly for the 90% error area) as more sites are used for
the reconstruction. The best coordinate resolution is ob-
tained with the five-site network, and it is compatible with
the field of view of most optical telescopes.
The coordinate resolution also depends on the waveform

morphology and the polarization content of GW signals
(for details, see Sec. VIB). If reconstructed with the least
constrained unmodeled algorithm, the SG waves with lin-
ear and circular polarization have less accurate source
localization (see Fig. 7). However, the coordinate resolu-
tion can be significantly improved if the reconstruction is

FIG. 5 (color online). Median error angle for HLV, AHLV,
HJLV, and AHJLV networks (from top to bottom) as a function
of source coordinates (�—latitude, �—longitude) for injections
with the network SNR< 30.

FIG. 6. Fraction of the sky (vertical axis) for three-site
(LH~HV), four-site (AHLV and HJLV), and five-site (AHJLV)
networks where sources (all waveform types with �net < 30) are
reconstructed with a given 50% (top panel) and 90% (bottom
panel) error region (horizontal axis).
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constrained by the source polarization model. In general,
the reconstruction improves as more accurate models, with
fewer free parameters, are used [21,31,46]. We expect, for
example, that the template analysis of waves from the
coalescence of binary neutron stars and black holes [47]
should result in a better sky localization than for the un-
modeled burst search.

Tables V, VI, VII, and VIII summarize the results
of the analysis for different injection signals, source
polarization models, and networks by showing the fit
parameters A and Aþ Bþ C, which correspond to the
median error angle for events with high and low SNRs,
respectively.

B. Waveform reconstruction

The signal waveforms are obtained from the solution
of the likelihood functional. They are the reconstructed

detector responses as defined by Eq. (3.9). To characterize
the algorithm performances on waveform reconstruction,
we consider the normalized residual energy �:

� ¼ ð�h � �j�h � �Þ
ð�hj�hÞ ; (5.3)

TABLE V. Pointing accuracy for an unmodeled search: fit
parameters ðAþ Bþ CÞ=A represent the median error angle
for events with low/high SNR.

Unmodeled HLV AHLV HJLV AHJLV

WNB LF 4:8�=0:7� 1:1�=0:4� 1:8�=0:4� 0:8�=0:4�
WNB HF 4:5�=0:4� 0:6�=0:4� 0:8�=0:4� 0:4�=0:4�
SGQ9 LF 6:4�=0:7� 1:4�=0:4� 1:6�=0:4� 1:0�=0:4�
SGQ9 HF 4:1�=0:9� 1:0�=0:4� 1:0�=0:4� 0:5�=0:4�
SGQ3 LF 9:4�=0:5� 1:1�=0:5� 1:5�=0:4� 0:9�=0:4�
SGQ3 HF 6:3�=0:4� 0:9�=0:4� 1:0�=0:4� 0:5�=0:4�
SGCQ9 LF 9:3�=0:8� 1:7�=0:4� 2:0�=0:4� 0:9�=0:4�
SGCQ9 HF 5:5�=1:1� 1:4�=0:4� 1:7�=0:4� 0:9�=0:4�

FIG. 7. Median error angle vs SNR for the HLV network
comparing different constraint searches. Top panel: SGQ9 LF
waveform with unmodeled (black line) and linear (grey line)
searches. Bottom panel: SGCQ9 LF with unmodeled (black line)
and circular (grey line) searches.

TABLE VI. Pointing accuracy for an elliptical search: fit pa-
rameters ðAþ Bþ CÞ=A represent the median error angle for
events with low/high SNR.

Elliptical HLV AHLV HJLV AHJLV

SGQ9 LF 5:3�=0:9� 1:2�=0:4� 1:4�=0:5� 0:9�=0:4�
SGQ9 HF 4:5�=0:8� 0:8�=0:4� 0:9�=0:6� 0:5�=0:4�
SGQ3 LF 3:6�=0:6� 1:3�=0:4� 1:1�=0:4� 0:9�=0:4�
SGQ3 HF 4:4�=0:7� 0:9�=0:4� 0:8�=0:4� 0:5�=0:4�
SGCQ9 LF 8:2�=0:7� 1:9�=0:4� 1:5�=0:4� 0:9�=0:4�
SGCQ9 HF 7:2�=0:8� 1:4�=0:4� 1:1�=0:4� 0:9�=0:4�

TABLE VII. Pointing accuracy for a linear search: fit parame-
ters ðAþ Bþ CÞ=A represent the median error angle for events
with low/high SNR.

Linear HLV AHLV HJLV AHJLV

SGQ9 LF 3:6�=0:5� 1:1�=0:4� 1:1�=0:4� 0:7�=0:4�
SGQ9 HF 4:5�=0:6� 0:8�=0:4� 0:9�=0:4� 0:5�=0:4�
SGQ3 LF 2:7�=0:5� 1:1�=0:4� 0:9�=0:4� 0:7�=0:4�
SGQ3 HF 4:5�=0:5� 0:8�=0:4� 0:9�=0:4� 0:5�=0:4�

TABLE VIII. Pointing accuracy for a circular search: fit pa-
rameters ðAþ Bþ CÞ=A represent the median error angle for
events with low/high SNR.

Circular HLV AHLV HJLV AHJLV

SGCQ9 LF 2:3�=0:6� 0:8�=0:4� 1:0�=0:4� 0:7�=0:4�
SGCQ9 HF 1:7�=0:6� 0:8�=0:4� 0:6�=0:4� 0:6�=0:4�
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where the inner products are defined by Eq. (2.5). Like the
coordinate reconstruction, the accuracy of the waveform
reconstruction strongly depends on the strength of the
detected signal and the waveform morphology. At low
SNR, the reconstruction is affected by the detector noise;
however, it improves with an increasing value of the SNR
(see Fig. 8). At high SNR, the reconstruction accuracy
reaches a limit due to the finite precision of the algorithm.
In this paper we do not present a detailed study of the
waveform reconstruction. However, such work is planned
in the future.

VI. FACTORS LIMITING RECONSTRUCTION

In this section we describe the factors which limit
the accuracy of the coordinate reconstruction, including
(a) angular and strain sensitivity of the detectors,
(b) polarization content of the signals, (c) calibration un-
certainties, and (d) limitations of the reconstruction
algorithm.

A. Antenna patterns and detector noise

The angular and strain sensitivity of the network is fully
characterized by its noise-scaled antenna pattern vectors
[see Eq. (2.1)]. Because of the unfortunate sky location or
elevated detector noise, the components of these vectors
corresponding to an individual detector may be small
with respect to the other detectors, effectively excluding
this detector from the detection and reconstruction
of a marginal GW signal. For example, for a source at
ð� ¼ �40�; � ¼ 50�Þ the angular sensitivity of the V1

detector is too low (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFþj2 þ jF�j2

p � 0) and it cannot
contribute to the reconstruction unless the GW signal is
very strong. For the HLV network this means that for
a significant fraction of the sky the triangulation is
performed with only two detectors, which is not sufficient

for the accurate source localization. For this reason it
is very desirable to have four or more detectors in the
network operating in coincidence.

B. Waveforms and polarization

For a given direction to the source, the reconstruction
accuracy may be very different, depending on the signal
polarization. For example, a linearly polarized signal
ðhþ; 0Þ may not be measured by one of the detectors for
some values of the polarization angle when jFþj is almost
null. As a result, with the three-site networks the source
localization for such signals is expected to be poor (see
Fig. 9). On the contrary, signals with two polarization
components can be localized well via their cross compo-
nent even at the minimum of Fþ.

C. Calibration uncertainties

The coordinate reconstruction may be affected by the
calibration uncertainties of recorded data streams.
Typically, the calibration uncertainties are of the order of
10% in the amplitude and a few degrees in the phase [48].
These systematic distortions of the GW signal may result
in a systematic shift of the reconstructed sky location away
from a true source location.
To estimate this effect we introduce a variation of the

amplitude and phase of the injected detector responses.
The amplitude variation is selected randomly between

FIG. 8. Normalized residual energy � vs network SNR ob-
tained with the unmodeled algorithm and the HLV network for
all types of injections.

FIG. 9. Dependence of Fþ (top plot, at �¼�30� and�¼72�)
and the reconstruction accuracy on the polarization angle c for
two types of waveforms: linearly polarized SGQ9 LF waveforms
(middle plot) and randomly polarized WNB LF waveforms (bot-
tom plot).
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�10% and 0%, and the random time shifts of �32 	s or
0 	s are introduced. The nonzero time shifts correspond
to a phase shift of �2:5� and �11:5� at the low and
high frequencies, respectively. Such a ‘‘miscalibration’’
is applied to all detectors in the network. The results are
reported in Table IX for the HLV network. They show that,
depending on the signal morphology and bandwidth, the
calibration uncertainties may affect the coordinate recon-
struction. The effect of calibration uncertainties is particu-
larly visible at high SNR where the angular resolution is
less affected by the detector noise. Similar studies for the
AHJLV network do not show, even at high SNR, any
significant impact of the calibration errors used in the
analysis. This is an expected result, because a better con-
strained AHJLV network provides more robust source
localization than the HLV network.

D. Reconstruction algorithm

There are several factors limiting the accuracy of the
coordinate and waveform reconstruction due to the cWB
algorithm. For high SNR events the coordinate resolution is
limited by the cWB sky segmentation, which is 0:4� 0:4�.
Therefore, the error angle cannot be less than 0.4�. Also, for
the high frequency events the coordinate resolution is lim-
ited by the discrete time delays �k (see Sec. III) with a step
of 1=16 384 sec , and by the accuracy of the time delay filter
(few percent) used in the analysis. Also, in the analysis we
did not use any unmodeled constraint specific for individual
networks, which, in principle, may improve the reconstruc-
tion. These limitations are not fundamental, and the algo-
rithm performance can be improved in the future.

VII. CONCLUSION

In this paper we present the results of the source local-
ization and reconstruction of GW waveforms with the net-
work of GW interferometers. For a general characterization
of the detector networks we introduce a few fundamental
network parameters, including the effective noise, and the
network antenna and alignment factors. The effective power
spectral density of the network noise determines the average

network SNR for a given population of GW signals.
For each direction in the sky the network performance is
characterized by its antenna and alignment factors. The
antenna factor describes how uniform the network response
across the sky is. The alignment factor, which strongly
depends on the number of detectors and the orientation of
their arms, determines the relative contribution of the two
GW polarizations into the total network SNR.
It requires several nonaligned detectors (preferably more

than three) for a robust detection and reconstruction of both
GW components. The coordinate reconstruction strongly
depends on the signal waveforms, network SNR, and num-
ber of detector sites in the network. The reconstruction can
be significantly improved when it is constrained by the
signal model. Although a crude coordinate reconstruction
(ring in the sky) is possible with the networks of two
spatially separated sites, at least three detector sites are
required to perform the source localization. The accuracy
of the localization dramatically increases for networks with
more than three sites, particularly for the low SNR events.

For example, the H~HLV and AHLV networks are expected
to have about the same detection rates; however, the four-
site AHLV network would have much better performance
for the accurate reconstruction of GW signals. The point-
ing resolution required for joint observations with the
electromagnetic telescopes is achievable with the networks
consisting of four sites. The AHJLV network demonstrates
further improvements, both in the detection and recon-
struction of GW signals, reaching a subdegree angular
resolution. In addition, due to the limited duty cycle of
the detectors, both the LCGT and the Australian detectors
will significantly increase the observation time when any
of the four-site networks are operational.
The advanced LIGOandVirgo detectors are very capable

of the first direct detection of gravitational waves. However,
for better reconstruction of the GW signals more detectors
are required. Extra detectors introduce an important redun-
dancy which lowers the impact of the limited duty cycle of
the detectors, and makes the coordinate reconstruction
more accurate and less dependent on the waveform mor-
phology and calibration uncertainties. The construction of
the LCGT and the detector in Australia will significantly
enhance the advanced LIGO-Virgo network, and these
detectors will play a vital role in the future GWastronomy.
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TABLE IX. Pointing accuracy (fit parameter A) for the HLV
network and different signals (column 1): no calibration errors
(column 2), amplitude and phase miscalibration (columns 3 and
4, respectively).

Waveform No error Amplitude Phase

WNB LF 0.7� 1.0� 0.9�
WNB HF 0.4� 0.6� 0.8�
SGQ9 LF 0.7� 2.8� 1.2�
SGQ9 HF 0.9� 1.6� 1.4�
SGQ3 LF 0.5� 2.1� 1.0�
SGQ3 HF 0.4� 1.1� 1.0�
SGCQ9 LF 0.8� 2.5� 1.1�
SGCQ9 HF 1.1� 1.9� 2.0�
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