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We explore the possibility that a new interaction between muons and protons is responsible for the

discrepancy between the CODATAvalue of the proton-radius and the value deduced from the measurement

of the Lamb shift in muonic hydrogen. We show that a new force carrier with roughly MeV-mass can

account for the observed energy-shift as well as the discrepancy in the muon anomalous magnetic moment.

However, measurements in other systems constrain the couplings to electrons and neutrons to be suppressed

relative to the couplings to muons and protons, which seems challenging from a theoretical point of view.

One can nevertheless make predictions for energy shifts in muonic deuterium, muonic helium, and true

muonium under the assumption that the new particle couples dominantly to muons and protons.

DOI: 10.1103/PhysRevD.83.101702 PACS numbers: 14.20.�c, 12.90.+b, 14.60.Ef, 36.10.Ee

I. INTRODUCTION

A recent publication [1] announced a measurement of the
Lamb shift in muonic hydrogen that seems to require a value
of the proton’s radius, rp ¼ 0:84184ð67Þ fm. This value

differs by 5 standard deviations from the value given in
the CODATA compilation [2], rp ¼ 0:8768ð69Þ fm, al-

though the precise significance of the discrepancy may be
debated (see, for example, Ref. [3]). It is, of course, possible
that the reason for the different values of rp extracted from

muonic and electronic hydrogen lies within the standard
model, involving subtle QED and/or hadronic effects. It is,
nevertheless, worth considering whether new physics could
be the explanation. Here, we explore the possibility that the
discrepancy arises from the existence of a roughly MeV-
mass force carrier that couples the muon to the proton. As
we will see, such a force can also resolve the long-standing
discrepancy between theory and observation in ðg� 2Þ�
measurements (a review of other beyond the standard model
explanations of this discrepancy can be found in Ref. [4]).
However, atomic precision measurements and neutron scat-
tering experiments at low energies constrain the coupling of
this new force to electrons and neutrons, respectively. It is
not difficult to construct models that effectively decouple
the force carrier from the electron (by arranging for the
particle to couple to mass) or the neutron (by arranging for
the particle to couple to charge), but decoupling it from both
is a more serious challenge to model building attempts.
Taking the force to act on muons and protons only, it is still
possible to make predictions for energy shifts in related
systems—muonic deuterium, muonic helium, and true mu-
onium—with minimal model-dependence.

II. CONTRIBUTIONS TO THE LAMB SHIFT IN
HYDROGENIC SYSTEMS

Independent of whether the new force is mediated by a
scalar or a vector boson with vectorlike couplings, the

nonrelativistic potential between the proton and muon
can be written as

V�ðrÞ ¼ ð�Þsþ1

�
g�gp

e2

�
�e�m�r

r
; (1)

where m� is the mass of the force carrier, s is its spin,

and g� and gp are its couplings to the muon and proton,

respectively. A similar expression holds for the electronic-
hydrogen system. Note, however, that the sign of the
potential may be different, depending on the relative sign
between ge and g�.

This potential gives an additional contribution to the
Lamb shift in the 2S1=2-2P3=2 transition, which, using

first-order perturbation theory, is given by

�E� ¼
Z

drr2V�ðrÞðjR20ðrÞj2 � jR21ðrÞj2Þ

¼ ð�Þsþ1 �

2a3�

�
g�gp

e2

�
fða�m�Þ

m2
�

; (2)

with fðxÞ ¼ x4=ð1þ xÞ4. Here, a� ¼ ð�m�pÞ�1 is the

Bohr radius of the system to leading order, and m�p is

the reduced mass of the �-p system. A similar expression
holds for the e-p system, but the Bohr radius is a factor
� m�=me larger. This expression is convenient for a direct

comparison with the leading order contribution from the
proton-radius,

�Ep ¼ 2�

3n3a3�
hr2pi; (3)

where rp is the proton’s radius, and nð¼ 2Þ is the principle
quantum number.
If everything else is the same between the e-p and �-p

systems, then since fðxÞ is a monotonically increasing
function that asymptotes to unity at large values of x, the
resulting energy shift in the e-p system is always larger
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than the corresponding shift in the �-p system [5]. If the
force is attractive in both systems, the apparent proton-
radius will always appear smaller in the e-p system, con-
trary to observations. An attractive force must therefore
couple more strongly to muons than to electrons if it is to
explain the discrepancy in the proton-radius determination.

A different possibility is that ge is not suppressed rela-
tive to g�, but the force is repulsive, leading to a larger

apparent proton-radius in the e-p system. This possibility
is consistent with the ðg� 2Þe constraint discussed in the
next section. However, since the effects of such a light
force are suppressed at higher momentum transfer, this
possibility seems in tension with the value of the proton-
radius extracted from scattering data which generally also
imply a larger proton-radius [6]. Therefore, for the purpose
of this paper, we concentrate on the possibility that it is a
new attractive force that modifies the �-p system.

III. CONTRIBUTIONS TO ðg� 2Þe;�
The scalar and vector-boson contributions to the elec-

tron and muon anomalous magnetic moments are [7,8],

�al ¼ �

2�

�
g�

e

�
2
�ðm�=mlÞ; (4)

where ml is the mass of the electron or muon, and

�ðxÞscalar ¼
Z 1

0

ð1� zÞ2ð1þ zÞ
ð1� zÞ2 þ x2z

dz (5)

�ðxÞvector ¼
Z 1

0

2zð1� zÞ2
ð1� zÞ2 þ x2z

dz: (6)

For ml � m� we have the asymptotic behaviors

�scalar ! 3=2 and �vector ! 1.
We begin with the electron system. As emphasized in

Ref. [9], the ðg� 2Þe measurement is currently used to
define the fine-structure constant �. The additional contri-
bution to ðg� 2Þe therefore acts as a shift of the fine-
structure constant as �� ¼ 2��ae. Comparing this
correction to measurements made in Rb and Cs atoms
[10,11], the shift in � must not exceed 15 ppb, which
constrains the coupling to electrons as [9]�

ge
e

�
2
�ðm�=mlÞ< 15� 10�9: (7)

For m� � MeV, this constraint translates to ge=e & 2:3�
10�4 and ge=e & 4:0� 10�4 for scalar and vector media-
tors, respectively. The constraint is weakened for larger
values of m�. A similar analysis and limit were recently

presented in Ref. [12].
More important for the purpose of a direct comparison

with the Lamb shift in the �-p system is the constraint
coming from measurement of ðg� 2Þ� [13]. At present,

the theoretical prediction for ath� seems to indicate a deficit

of 302ð88Þ � 10�11 compared with the experimental value

a
exp
� [14]. For a given massm�, we can extract the values of

g� that bring the theoretical and experimental values of

ðg� 2Þ� into agreement. In fact, these values are insensi-

tive to m� provided m� � m� is satisfied, giving g�=e �
1:6� 10�3 for a vector and g�=e � 1:3� 10�3 for a

scalar. In Fig. 1, we plot the 2S1=2-2P3=2 energy-shift,

Eq. (2), against the mass of the mediator, m�, fixing the

coupling to muons in this way. For the purpose of the plot,
we take gp ¼ g�, but the result for other choices is easily

obtained, as the energy-shift is proportional to gp.

As the plot indicates, a new force with a mass � MeV
and a coupling to muons that explains the discrepancy in
the muon anomalous magnetic moment can also give the
required energy-shift in muonic hydrogen to reconcile the
proton-radius extracted from this system with the one
extracted from hydrogen and electron-proton scattering.
The mediator mass that gives the maximum energy-shift
is near an MeV because it is essentially determined by the
Bohr radius of the �-p system, a�1

� ¼ 0:69 MeV. The

choice gp � g� favors m� � MeV, but a different mass

can be accommodated by increasing gp accordingly.

For m� � MeV (m� � MeV), the required coupling

becomes large and scales as m2
� (m�2

� ).

For m� � MeV, the coupling to muons necessary to

explain both discrepancies turns out to be close to the
muon mass divided by the electroweak scale, m�=v ¼
4:3� 10�4. A Higgs-like coupling proportional to the
mass would resolve any tension with the constraint from
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FIG. 1 (color online). The contribution to the energy-shift in
muonic hydrogen, Eq. (2), plotted against the mass of the
mediator. In the central solid-blue curve, we require the coupling
to the muon, g�, to be such that the scalar contribution to

ðg� 2Þ� equals the theoretical deficit. In the upper/lower

solid-blue curve, the scalar contribution to ðg� 2Þ� is deter-

mined to be�1 s:d. away from the theoretical deficit. The vector
case is similarly given by the dashed-red curves. The coupling
to the proton is fixed at gp ¼ g�. The solid horizontal line

is the discrepancy between the experimentally measured value of
the energy and the theoretical prediction assuming the CODATA
value [2] for the proton-radius, rp ¼ 0:8768 fm. The dotted

horizontal lines represent the �1 s:d. uncertainty about this
value.

DAVID TUCKER-SMITH AND ITAY YAVIN PHYSICAL REVIEW D 83, 101702(R) (2011)

RAPID COMMUNICATIONS

101702-2



ðg� 2Þe on the electron coupling, Eq. (7). However, it
implies that the coupling to neutrons is comparable to the
coupling to protons, gn � gp, which seems severely con-

strained by neutron scattering experiments, as we discuss
in the following section.

IV. CONSTRAINTS

The most model-independent constraint on an MeV-
scale interaction between muons and protons comes from
measurements of the 3d5=2-2p3=2 transitions in 24Mg and
28Si [15]. A weighted-average between the results from
24Mg and 28Si was used to obtain the limit, ð�exp �
�QEDÞ=�QED ¼ ð�0:2� 3:1Þ � 10�6. For m� � MeV,

this translates to a 95% CL limit gpg�=e
2 < 3:1� 10�6,

assuming coupling only to protons. This measurement
therefore allows the couplings necessary to explain the
muonic hydrogen and ðg� 2Þ� discrepancies. Mild ten-

sion does arise if one assumes that the new force carrier
also couples to neutrons since the bound improves by a
factor of 2. This result is in agreement with the analysis of
Ref. [16] on the exclusion of a low mass Higgs-like scalar.
However, as we now discuss, such a coupling to the neu-
tron is much better constrained by neutron scattering
experiments.

A new force carrier with an MeV-mass that couples to
neutrons produces sizable corrections to the scattering
cross-section of neutrons on heavy nuclei. This was first
realized by Barbieri and Ericson , who used the results of
an old experiment [18] on the polarizability of the neutron
to set a limit on any additional force carrier that interferes
with the strong interaction amplitude. They showed that
such a force will contribute to the angular dependence of
the differential cross-section in a distinct manner as com-
pared with the contribution from the strong interactions.
Assuming that the new force couples equally to both pro-
tons and neutrons, the bound on the nucleon coupling is

gn & 2� 10�5ðm�=MeVÞ2: (8)

This is about an order of magnitude smaller than the
necessary coupling to muons and protons discussed above.
A more recent analysis arrived at a similar result [19,20],
although the claimed precision of that experiment was later
questioned (see Ref. [21] and references therein).

The bound in Eq. (8) arises from an interference term
between the strong amplitude and the amplitude due to the
new force. As such, it may be susceptible to cancellations
involving other parts of the amplitude, and it also depends
on the relative phase of the strong and new-physics ampli-
tudes. Nevertheless, the constraint is sufficiently strong to
disfavor gn � gp. The bound on the neutron coupling

would have to be invalidated by more than an order of
magnitude to allow for a simultaneous explanation of
ðg� 2Þ� and the muonic hydrogen results while requiring

gn � gp, a possibility which we therefore eschew in this

letter.
There are several other constraints on such a light boson,

but they all involve further assumptions about its couplings
to matter. Refs. [22,23] use 16O and 4He atoms to search for
0þ ! 0þ þ� transitions to constrain light bosons with
Higgs-like couplings. These bounds are not very useful for
m� � MeV, and in any case depend sensitively on the

decay properties of �. For example, the bounds do not
apply if� decays promptly, or if� is too light to decay into
an electron-positron pair. Ref. [24] has searched for a light
boson emitted in the scattering of electrons against the
nucleus. It sets a strong bound on the coupling to the
electron for masses in the range 1:2<m� < 52 MeV.

However, it too relies on the � lifetime being in a certain
range. Ref. [25] sets a very strong limit on the decay�þ !
eþ�eð� ! eþe�Þ and excludes masses in the range 10<

m� < 110 MeV, but again relies on the coupling to elec-

trons. Finally, we note that any coupling to neutrinos must
also be strongly suppressed as such an interaction will
strongly affect the well measured interactions of neutrinos
with matter.

V. CONTRIBUTIONS TO ENERGY SHIFTS IN
OTHER MUONIC SYSTEMS

We nowmove on to discuss predictions concerning other
muonic systems such as muonic deuterium and helium, and
true muonium. Neglecting any possible coupling to the
neutrons, the energy-shift in the 2S-2P transition due to
the new force is given by a simple generalization of Eq. (2).
Accounting for the change in the reduced mass and the
atomic number, it can be written in terms of the contribu-
tion to the energy-shift in muonic hydrogen,

�E
ð�NÞ
� ¼ Z

fða�Nm�Þ
fða�Hm�Þ

�a3�H

a3�N

�
�E

ð�HÞ
� (9)

where N stands for the different possible nuclei (deute-
rium, helium, and etc.) and Z is the atomic number.
The most straightforward prediction is that, more or less

independent of the mediator’s mass, the muonic deuterium
system, �-D, should exhibit almost exactly the same
energy-shift in the 2S-2P transition as the �-p system.
Depending on m�, it deviates from it by at most �
�15% due to the change in the reduced mass, and we

therefore predict �Eð�DÞ
� ¼ �0:3� 0:1 meV.

Next, we consider the muonic helium system. The
2S1=2-2P3=2 and 2S1=2-2P1=2 level splittings in ð��4HeÞþ
muonic ion were measured in the 1970’s and reported in
Refs. [26,27]. Unfortunately, these measurements were
later criticized by other groups which cast doubt on the
validity of the results. Experimentally [28], the 2S1=2-2P3=2
resonance was not found at the frequency reported
by Ref. [26]. Theoretically [29], the lifetime of the 2S
state is predicted to be too short at the pressure (40 bar)
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used in the experiment, a result which was later confirmed
experimentally by Ref. [30]. However, further measure-
ments on muonic helium are planned in the near future at
PSI [1]. In Fig. 2 we plot the prediction for the 2S-2P
energy-shift in this system as a function of the mediator
mass, m�.

A new force that couples to muons would also contribute
to the energy levels of true muonium (�þ-�� bound state),
a system that is yet to be observed. In an interesting recent
proposal, the authors of Ref. [31] have discussed two
possible production mechanisms, eþe� ! �þ�� and
eþe� ! 	�þ��, as particularly promising channels. If,
in addition to production, spectroscopic studies of true
muonium can be achieved, then it may be possible to
observe the small energy-shift due to the force carrier
exchange. In Fig. 3 we plot the predicted energy-shift in
the 2S-2P transition when the muon coupling, g�, is

chosen so as to fix the discrepancy in ðg� 2Þ�. This

energy-shift is much smaller than the expected level-
splitting due to vacuum polarization, and will undoubtedly
be very difficult to observe. Nevertheless, it serves as an
unambiguous prediction that may be tested in the future.

VI. CONCLUSIONS

A new force carrier with a mass of � MeV that couples
to both protons and muons with g�;p � 4� 10�4 can

explain the discrepancies observed in both ðg� 2Þ�
and the muonic hydrogen 2S1=2-2P3=2 energy splitting.

However, the coupling of such a new force to either neu-
trons or electrons is constrained by several past measure-
ments. Nevertheless, none of these constraints exclude this
possibility in a model-independent way. Assuming only
couplings to muons and protons, this possibility lends itself
to concrete predictions for the expected energy shifts in
muonic deuterium and helium as well as true muonium.
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as in Fig. 1.

DAVID TUCKER-SMITH AND ITAY YAVIN PHYSICAL REVIEW D 83, 101702(R) (2011)

RAPID COMMUNICATIONS

101702-4

http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1016/j.physletb.2011.01.025
http://dx.doi.org/10.1016/j.physrep.2009.04.003
http://dx.doi.org/10.1103/PhysRevD.82.125020
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1103/PhysRevD.5.2396
http://dx.doi.org/10.1103/PhysRevD.5.2396
http://dx.doi.org/10.1103/PhysRevD.80.095002
http://dx.doi.org/10.1103/PhysRevLett.96.033001
http://dx.doi.org/10.1103/PhysRevA.73.032504
http://dx.doi.org/10.1103/PhysRevLett.104.220406
http://dx.doi.org/10.1103/PhysRevD.73.072003
http://dx.doi.org/10.1103/PhysRevD.73.072003


[14] M. Passera, W. J. Marciano, and A. Sirlin, AIP Conf. Proc.
1078, 378 (2009).

[15] I. Beltrami et al., Nucl. Phys. A 451, 679 (1986).
[16] E. Borie and G. Rinker, Rev. Mod. Phys., 54, 67 (1982).
[17] R. Barbieri and T. E. O. Ericson, Phys. Lett. B 57, 270

(1975).
[18] Y. Aleksandrov et al., JETP Lett. 4, 134 (1966).
[19] J. Schmiedmayer, P. Riehs, J. A. Harvey, and N.W. Hill,

Phys. Rev. Lett. 66, 1015 (1991).
[20] H. Leeb and J. Schmiedmayer, Phys. Rev. Lett. 68, 1472

(1992).
[21] F. Wissmann, M. I. Levchuk, and M. Schumacher, Eur.

Phys. J. A 1, 193 (1998).
[22] D. Kohler, B. A. Watson, and J. A. Becker, Phys. Rev. Lett.

33, 1628 (1974).
[23] S. J. Freedman, J. Napolitano, J. Camp, and M. Kroupa,

Phys. Rev. Lett. 52, 240 (1984).

[24] M. Davier and H. Nguyen Ngoc, Phys. Lett. B 229, 150
(1989).

[25] S. Egli et al. (SINDRUM), Phys. Lett. B 222, 533
(1989).

[26] G. Carboni et al. (CERN-Pisa), Nucl. Phys. A 278, 381
(1977).

[27] G. Carboni et al. (CERN-Pisa), Phys. Lett. B 73, 229
(1978).

[28] P. Hauser et al., Phys. Rev. A 46, 2363 (1992).
[29] R. Landua and E. Klempt, Phys. Rev. Lett. 48, 1722

(1982).
[30] M. Eckhause et al., Phys. Rev. A 33, 1743 (1986).
[31] S. J. Brodsky and R. F. Lebed, Phys. Rev. Lett. 102,

213401 (2009).
[32] V. Barger, C.-W. Chiang, W.-Y. Keung, and D. Marfa- tia,

Phys. Rev. Lett. 106, 153001 (2011).

MUONIC HYDROGEN AND MeV FORCES PHYSICAL REVIEW D 83, 101702(R) (2011)

RAPID COMMUNICATIONS

101702-5

http://dx.doi.org/10.1016/0375-9474(86)90299-X
http://dx.doi.org/10.1103/RevModPhys.54.67
http://dx.doi.org/10.1016/0370-2693(75)90073-8
http://dx.doi.org/10.1016/0370-2693(75)90073-8
http://dx.doi.org/10.1103/PhysRevLett.66.1015
http://dx.doi.org/10.1103/PhysRevLett.68.1472
http://dx.doi.org/10.1103/PhysRevLett.68.1472
http://dx.doi.org/10.1103/PhysRevLett.33.1628
http://dx.doi.org/10.1103/PhysRevLett.33.1628
http://dx.doi.org/10.1103/PhysRevLett.52.240
http://dx.doi.org/10.1016/0370-2693(89)90174-3
http://dx.doi.org/10.1016/0370-2693(89)90174-3
http://dx.doi.org/10.1016/0370-2693(89)90358-4
http://dx.doi.org/10.1016/0370-2693(89)90358-4
http://dx.doi.org/10.1016/0375-9474(77)90089-6
http://dx.doi.org/10.1016/0375-9474(77)90089-6
http://dx.doi.org/10.1016/0370-2693(78)90843-2
http://dx.doi.org/10.1016/0370-2693(78)90843-2
http://dx.doi.org/10.1103/PhysRevA.46.2363
http://dx.doi.org/10.1103/PhysRevLett.48.1722
http://dx.doi.org/10.1103/PhysRevLett.48.1722
http://dx.doi.org/10.1103/PhysRevA.33.1743
http://dx.doi.org/10.1103/PhysRevLett.102.213401
http://dx.doi.org/10.1103/PhysRevLett.102.213401
http://dx.doi.org/10.1103/PhysRevLett.106.153001

