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A variational principle was recently suggested by Goenner, where an independent metric generates the

spacetime connection. It is pointed out here that the resulting theory is equivalent to the usual Palatini

theory. However, a bimetric reformulation of the variational principle leads to theories which are

physically distinct from both the metric and the metric-affine ones, even for the Einstein-Hilbert action.

They are obtained at a decoupling limit of C-theories, which contain also other viable generalizations of

the Palatini theories.
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I. INTRODUCTION

Recently, an interesting new variational principle was
proposed by Goenner as an alternative to the so-called
Palatini variational method [1]. In the Palatini method,
the metric and the connection are treated as independent
variables, according to the metric-affine variational
principle, in contrast to the usual metric variation where
it is assumed a priori that the connection is the Levi-Civita
connection computed from the metric [2]. In Goenner’s
variant of this principle, the connection is taken to be the
Levi-Civita connection of another metric. Contrary to
the claims made in Ref. [1], however, both variants of
the Palatini method yield an equivalent theory when
applied to an fðRÞ action.

The concept of a connection as a fundamental varia-
tional degree of freedom but subjected to metric-
compatibility appears to us somewhat vague. It remains
unclear how to apply this restriction of variation in practice
to a generic action, while the problem is absent in the fðRÞ
case at the classical level since the extremals of the action
turn out a posteriori to belong to a metric subspace. In any
case, it is natural and technically straightforward to instead
promote the underlying metric to a fundamental field with
independent variations. For an obvious reason, we call this
approach the bimetric variational principle. This indeed
results in theories that are different from the corresponding
metric as well as metric-affine ones, even in the case of
Einstein-Hilbert action where the two latter approaches are
both well known to lead to general relativity.

It is illuminating to view this from the wider perspective
of C-theories [3]. This is a unified framework which in-
cludes as special cases all theories that emerge from the
metric and the Palatini variational methods, and describes
also Goenner’s variant of the Palatini principle, or alter-
natively, its bimetric version, at a certain decoupling limit.
As far as we know, Ref. [3] was the first application of a
bimetric variational principle, or ’’formulation’’ for short.
Here we point out a subtlety which was missed there:

whereas the metric-affine formulation of C-theories
(trivially) reduces to the usual Palatini theory in the
special decoupling limit, the bimetric formulation in gen-
eral does not. The latter carries additional dynamics due to
the second-order property of the field equation. We also go
further to generalize these results to actions beyond fðRÞ.

II. ON METRIC-AFFINE VARIATIONS

In order to clarify these issues, it is useful to first
distinguish two different roles of a connection in gravita-
tional theories. In the definition of the basic curvature

object, the Riemann tensor, R̂�
���, one refers to a connec-

tion �̂ as

R̂ �
��� ¼ �̂�

��;� � �̂�
��;� þ �̂�

���̂
�
�� � �̂�

���̂
�
��: (1)

This tensor can be constructed in a metric-independent
way by parallel transporting a vector v around a closed

curve, ½r̂�; r̂��v� ¼ R̂�
���v

�. The Riemann tensor is

needed to compose invariants of the curvature. Thus, the

connection �̂ inevitably enters any covariant gravitational
action and so affects the form of the left-hand side of
the gravitational field equations ensuing from that action.

We therefore call �̂ the geometric connection.
A crucial point is that, as long as there is a metric,

another connection is always present. This is of course
the Levi-Civita connection � generated by the metric as

��
�� ¼ 1

2g
��ðg��;� þ g��;� � g��;�Þ: (2)

In the gravity theories we are discussing the metric is
formally providing the invariant volume element and
the contractions of vectors in the matter action. The
metric then provides measure of physical distances.
Consequently, the trajectories of material particles are the
shortest paths with respect to the metric. Equivalently, they
follow the geodesics determined by the connection (2),
which we hence call the matter connection. This result,
implied by the so-called generalized Bianchi identity that
is a consequence of the diffeomorphism invariance of the
action, is completely independent of the left-hand side of*T.S.Koivisto@uu.nl
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the field equations, in particular, the geometric connection
that generates them [4].

Using our notation, the starting point of Ref. [1] may
then be written as1

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þLmð�; g��Þ�; (3)

whereR ¼ g��R̂�� and the tensor R̂�� is understood to be

a functional of an independent metric ĝ��. More precisely,

it is given by the expression (1) when � ¼ �, and

�̂ �
�� ¼ 1

2ĝ
��ðĝ��;� þ ĝ��;� � ĝ��;�Þ: (4)

Matter fields are collectively denoted by �. The signifi-
cance of the metric g�� should be clear from the discussion

above. In fact, with respect to this metric, we have a metric
theory of gravitation satisfying the three requirements that
[5] (1) there exists a symmetric metric, (2) test bodies
follow geodesics of the metric, and (3) in local Lorentz
frames, the nongravitational laws of physics are those of
special relativity. On the other hand, then the independent
metric ĝ�� may in a sense be regarded as an auxiliary field.

It can be algebraically eliminated in favor of the observable
metric g��, and it is most transparent to write the field

equations in terms of the latter.
The opposite viewpoint is adopted in Ref. [1]. The

metric g�� is interpreted there as an auxiliary field devoid

of physical significance, and the field equations are written
in terms of the other metric. Despite of being presented as a
novel alternative to the previously considered gravity theo-
ries, the ensuing theory is nothing but the Palatini version
of fðRÞ disguised in the Einstein frame. It was claimed
that the equivalence principle is broken since the matter

stress tensor is not covariantly conserved with respect to �̂,
and that no matter gradients appear in the theory. The stress
energy is, however, covariantly conserved with respect to
�, and when written in terms of the metric that is compat-
ible with this connection, the matter gradients appear
explicitly into the theory. In this light, the misleading
conclusions reached in Ref. [1] stem from a confusion
regarding the physical roles of the two connections, or in
this case equivalently, the associated metrics.2

The rationale of C-theories, recently introduced by
Amendola et al [3], is the possibility of a nontrivial relation
between the matter and the geometric connections. As a

simple example we first consider the following conformal
relation: ĝ�� ¼ CðRÞg��. In particular, we look at a spe-

cific class of C-theory actions parameterized by � 2 R in
such a way that when the parameter � ¼ 0, the corre-
sponding metric, and when � ¼ 1, the corresponding
Palatini theory is reproduced for an arbitrary function
fðRÞ. An example of such, �-parameterization is given
by the exponential interpolating function as

S� ¼ Sþ
Z

d4x
ffiffiffiffiffiffiffi�g

p
�
��
�

�
�̂�
�� �

�
�
��

�
ðf0ðRÞÞ�g

�
: (5)

Thus, we add to the action (3) a Lagrange multiplier
that constrain the geometric connection to be the Levi-
Civita connection of the metric ĝ�� ¼ ðf0ðRÞÞ�g��.

When � ¼ 0, the two connections coincide and we have a
metric theory.
When� ¼ 1, the geometric connection is in the Einstein

frame, which is the peculiar relation of Palatini-fðRÞ
theories. However, in general, also the Lagrangian multi-
plier contributes to the dynamics. This can be of course
changed by rescaling ���

� ! ð1� �Þ���
� , and then we

recover precisely Goenner’s action (3) at the limit � ¼ 1.
This is a discontinuous limit of the theory, since a degree of
freedom becomes nondynamical there. This decoupling is
the culprit for the pathology of the! ¼ �3=2Brans-Dicke
theory that was discovered decades ago and whose disturb-
ing consequences have surfaced in many different contexts
more recently [6].
The action (5), due to the presence of the Lagrange

multiplier may display no discontinuity in the propagating
degrees of freedom in the limit � ¼ 1. Still, the peculiar
relation CðRÞ ¼ f0ðRÞ holds and furthermore, � ¼ 0 is
always a consistent solution of this version of the theory.
Thus the solutions of theory (3) form a subset of the
solutions of the new theory, which nevertheless seems to
avoid the notorious theoretical and observational problems
of the former. Hence the action (5) at � ¼ 1 can realize the
motivation of Ref. [1] by introducing a phenomenologi-
cally viable alternative to the Palatini method.

III. ON BIMETRIC VARIATIONS

As discussed in the introduction, one can also consider

the setup where the metric ĝ�� rather than the connection �̂

is the fundamental field [3]. Instead of the action (5), where
the gravitational degrees of freedom consisted of the triplet

ðg��; �̂; �Þ, one would write the action

S� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þ ���ðĝ�� � ðf0ðRÞÞ�g��Þ�;
(6)

the independent fields being now ðg��; �̂; �Þ. By erasing

the Lagrangian multiplier constraint one then obtains a
bimetric reformulation of Goenner’s starting point (3).

1In the notation of Ref. [1], ĝ�� ! g��, g�� ! h�� and
�̂ ! fgg. The two latter fields are the variational degrees of
freedom in the approach of Ref. [1].

2It is formally possible to identify the Einstein frame as the
physical frame, and then the equivalence principle indeed ap-
pears to be violated. The Einstein frame version of Palatini-fðRÞ
gravity (that is ’’dynamically equivalent’’ to the Jordan frame
version) has been also considered in the literature [6]. We are not
concerned here with the choice of frame, which is a separate
issue from the result that the two variational principles yield
equivalent theories.
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One may also ask whether the conclusions persist be-
yond the fðRÞ theories. In particular, one could suspect
that the conformal relation appearing in this special
class of theories is necessary to guarantee the degeneracy
of the two variational methods. Starting from more general
forms of action, one obtains a more complicated relation
between the independent and the metric connection by
applying the metric-affine variational principle [6]. In the
remainder of this communication, we will generalize the
bimetric variational principle and C-theory field equations
to such actions.

For this purpose, we write the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðR;P Þ þLmð�; g��Þ�; (7)

allowing in there the invariant P constructed from the two
metrics via

P ¼ g��g��R̂��R̂��; (8)

where again R̂�� ¼ R̂��½�̂½ĝ�� when taking into account

Eqs. (1) and (4). The field equations for the metric g�� are

ðf;RR̂�� þ 2f;P R̂��R̂
��Þ � 1

2
fg�� ¼ T��; (9)

where T�� is the matter stress energy tensor. The variation

with respect to the metric ĝ�� yields

D̂
��
��

� ffiffiffi
g

ĝ

s
ðf;Rg�� þ 2f;P R̂

��Þ
�
¼ 0; (10)

where we have defined the differential operator

D̂
��
�� ¼ 1

2

ffiffiffî
g

g

s
ðĝ���

�
��

�
� þ ĝ���

�
���

� � ĝ���
�
��

�
�

� ĝ����
��

�
�Þr̂�r̂�: (11)

Equation (10) is solved by

ĝ �� ¼ f;Rg�� þ 2f;P R̂�� � h��: (12)

This is the same disformal relation one obtains [6] in the
metric-affine variation of the action corresponding to (7).
Since, obviously, in the usual Palatini version of the theory
the field equations have the same form (9), the dynamics of
the solution (12) coincide with those.3

There is, however, the following subtlety. Unlike from a
metric-affine variation which yields first-order equations of
motion, we now obtained a second-order equation which
may have different solutions. Indeed, Eq. (10) appears to

allow solutions where the nonmetricity of the connection

�̂ with respect to the metric h�� defined by (12) is

nonvanishing Q��� ¼ �r̂�h�� � 0. By writing open

Eq. (10), one gets a nontrivial differential constraint on
nonmetricity. In general then, the solutions of the theory
need not coincide with the Palatini theory, either in its
usual or in its C-theory form, since the connection need
not be the Levi-Civita connection of h��. Even in the

Einstein-Hilbert case, when h�� ¼ g��, there can be non-

metric solutions. They are classically distinguishable from
general relativity (or from more general Palatini theories
when f � R) if the difference of the metrics does not
correspond to a projective transformation of the geometric
connection. In general, from Eq. (1) one gets that

R̂�� ¼ R��ðhÞ þ r̂��
�
�� � r̂��

�
�� þ��

���
�
��

���
���

�
��; (13)

where in the case at hand we have

�
�
�� ¼ 1

2g
��ðQ��� þQ��� �Q���Þ: (14)

Let us demonstrate explicitly the appearance of non-
metricity in the general relativistic Einstein-Hilbert
action f ¼ R within the bimetric formulation. For sim-
plicity, we assume conformal nonmetricity described

the function b as Q��� ¼ �r̂�g�� ¼ b;�g��. The field

equations (9) and (10) for the two metrics g�� and ĝ��

become now, respectively,

G�� þ 1
2b;�;b;� �r�b;� þ ðhbþ 1

4ð@bÞ2Þg�� ¼ T��;

(15)

r�b;� � 2b;�b;� � ðhb� 1
2ð@bÞ2Þg�� ¼ 0: (16)

There is no matter source in the right-hand side of (16)
since we have assumed that matter is minimally coupled to
geometry. In fact, by using the trace of the latter equation

and rescaling b ¼ ffiffiffiffiffiffiffiffi
2=3

p
	, one confirms the expectation

that conformal nonmetricity contributes a canonic mass-
less scalar obeying h	 ¼ 0,

G�� �	;�;	;� þ 1
2ð@	Þ2g�� ¼ T��: (17)

Even without sources we can have propagating nonmetric-
ity in the bimetric formulation of the action f ¼ R. In this
sense the resulting theory is richer than in the metric or in
the metric-affine formulation. Finally, we look also at the
C-theory generalization of the theory (7) in the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fþ �̂� C��D�̂þLmð�; g��Þ�;
(18)

where for brevity of notation, we have suppressed the
explicit dependence of the three functions f, C, and D on
the two scalars R and P , and introduced the invariants
constructed by contractions of the field ��� as

3We assume that in the metric-affine variation of the action (7)
one is restricted to symmetric connections and Ricci tensors.
Furthermore, in the bimetric variations discussed here, we as-
sume the metric ĝ�� to be symmetric. Though, since this metric
is related to the spin connection aspects of geometry and not to
physical distances, it would be meaningful to relax this assump-
tion, we omit exploring the possibility here.
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� ¼ ���g��; �̂ ¼ ���ĝ��; �̂ ¼ ���R̂��: (19)

Variations with respect to the three tensor fields g��, ĝ��,

and ��� give, respectively, the field equations

T�� ¼ LRR̂�� þ LP R̂��R̂
�
� � 1

2Lg�� þ C���; (20)

��� ¼ D̂
��
��

� ffiffiffi
g

ĝ

s
ðLRg�� þ 2LP R̂

�� �D���Þ
�
; (21)

ĝ �� ¼ Cg�� þDR̂��: (22)

We have employed the shorthand notations for the gravity
Lagrangian and its derivatives with respect to the two
scalars

L ¼ fþ �̂� C��D�̂; (23)

LR ¼ f;R � C;R��D;R�̂; (24)

LP ¼ f;P � C;P��D;P �̂: (25)

Now the constraint (22) dictates the relation of the metrics
without any ambiguity. However, we should take into
account that the Lagrange multiplier has also other non-
trivial consequences. In the metric caseC ¼ 1,D ¼ 0, ���

contributes to the field equations in such a way that they
reduce to the field equations one obtains from pure metric
variation. In particular, L ¼ R yields then pure Einstein
gravity.

Choosing C and D suitably, we can obtain ĝ�� ¼ h��,

as in (12). Also now, as in the metric-affine case above, the
Lagrangian multiplier can also contribute to the field
equations. Its equation of motion is given by (21). In the
fðRÞ case, these theories can be described as biscalar
tensor gravity, which do not in general reduce to the
!BD ¼ �3=2 theory when C ¼ f0ðRÞ.

We can thus straightforwardly construct C-theories that
generalize (6) and interpolate between the modified
Palatini theories and the metric theories. A possible choice
is C ¼ f�;R and D ¼ �f;P .

The construction of the metric-affine C-theory general-
izing (5) is completely analogous. There the rescaled

theory � ! ð1� �Þ� reduces to the usual Palatini theory
at the decoupling limit � ¼ 1, but to recapitulate, in the
bimetric framework this limit is different from both the
usual Palatini and its C-theory generalizations.

IV. CONCLUSIONS

We clarified the motivations and implications of recently
introduced variational principles in gravity. Some errone-
ous conclusions concerning (in)equivalences between
theories were pointed out.
Starting from the distinction between the matter and the

geometric connections, one may assume either the metric-
affine or the bimetric formulation depending on whether
the geometric connection or its underlying metric is the
fundamental degree of freedom. We observed that in the
latter case, even the Einstein-Hilbert action can support
propagating torsion and nonmetricity, opening the possi-
bility to observationally distinguish the correct fundamen-
tal assumption.
Furthermore, either formulation can be generalized by

allowing an arbitrary relation between the two connections
à la C-theories. In particular, one can then obtain theories
where the geometric connection is in the Einstein frame
but which could avoid the worst problems of the usual
Palatini theories. A summary of the different variants of the
Palatini theory as special limits of C-theories is presented
in Table I.
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TABLE I. A summary of our findings at the various limits of
C-theories. Metric-affine and bimetric formulations are consid-
ered. If we impose the metric constraint � ¼ 0, the metric field
equations follow in both cases. We refer to theories where the
ĝ�� ¼ h��, but there are more dynamics than in the usual

Palatini theories as ’’gen. P.’’ In the decoupling limit � ! 0 of
the bimetric formalism, we may have solutions with ĝ�� � h��.

Such solutions are absent in the metric-affine formalism at this
limit, where the theory reduces to the usual Palatini theory.

C-theory � ! 0 � ! 1 � ! 0

metric-affine metric (first order ?) gen. P. Goenner � P.

bimetric metric (second order ?) gen. P. new theories
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