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We study the geometric phase (GP) in neutrino oscillation for both Dirac and Majorana neutrinos. We

apply the kinematic generalization of the GP to quantum open systems that take into account the coupling

to a dissipative environment. In the dissipationless case, the GP does not depend on the Majorana angle. It

is not the case in the presence of dissipation and hence the GP can serve as a tool determining the type of

the Dirac vs the Majorana neutrino.

DOI: 10.1103/PhysRevD.83.097302 PACS numbers: 14.60.Pq, 03.65.Vf, 03.65.Yz

The physics of neutrino has inspired the long-standing
debate, at least in two clearly recognizable issues. The first
is related to the existence of the neutrino mass [1,2]. The
second concerns the nature of the Dirac vs the Majorana
neutrino. Recent studies suggest that the subtle, quantum
phenomenon of the neutrino interference [3,4] gives fur-
ther insight into this second issue [5,6]. This is due to the
geometric phase (GP), the property of quantum evolution
already recognized as a hallmark of various neutrino fea-
tures [7]. The concept of the GP has been elucidated in
various contexts of classical and quantum physics, includ-
ing quantum information with a potential application in
holonomic quantum computation as a means of construct-
ing built-in fault tolerant quantum logic gates. We propose
to study the GP for neutrinos to achieve two aims at once:
(1) to compare its behavior for an ideal closed system and
an experimentally more realistic open system in the pres-
ence of matter, noise, and environments, and (2) to exploit
its properties to distinguish between the Dirac and
Majorana neutrinos. Although one should consider three
neutrino flavors for a complete analysis, within this work
we study a minimal model based on two neutrino flavors.
In the case of electron-muon neutrino oscillation this ap-
proximation is fairly justified due to the hierarchy of mass
splittings and small values of a part of elements of the
mixing matrix, the fact we refer below. It is effectively
described as a two-level system with a suitably defined
Hamiltonian. Recently, it has been applied in the context of
the entanglement dynamics [8]. In this paper, using the
model of the dissipative Markovian dynamics which in-
cludes effects of both deterministic and noisy interactions
between the neutrino and the ordinary matter [2], we
analyze how the GP acquired by the oscillating neutrino
in the (quasi)-cyclic evolution indicates whether it is the
Dirac fermion or Majorana one.

Let us consider two neutrino flavors, the electron (e) and
muon (�) one with two orthogonal vacuum massive states
j1i and j2i. This approach is useful for solar experiments
under the experimental settings of the active �m2

21 [9]:
ð1=2Þ�m2

21c
3hL=ℏEi � � and 2EVC � �m2

21c
4, where E

and L are the energy of the massless neutrino and experi-
mental baseline, respectively. Here �m2

21 � m2
2 �m2

1 is

the square mass splitting of the mass states i ¼ 1, 2 in

the normal hierarchy case, VC ¼ ffiffiffi
2

p
GFNe is the effective

potential of the neutrino in the ordinary matter due to the
coherent forward scattering on electrons via charged cur-
rent (CC) interactions, where Ne is the electron density and
GF is the Fermi constant [9]. Massive states j1i and j2i are
associated with flavor ones: the electron neutrino state
j�ei ¼ cos�j1i þ ei� sin�j2i and the muon one j��i ¼
� sin�j1i þ ei� cos�j2i, where � ¼ �12 is the mixing
angle and � is the (CP-violating) Majorana phase. In the
Dirac neutrino case, � can be eliminated via the Uð1Þ
global transformation, j1i ! j1i and j2i ! e�i�j2i [9].
In turn, in the Majorana case, the mass term in the
Lagrangian is not invariant under the above transformation
and rephasing of the left-chiral massive neutrino field is not
possible, leaving � nonzero. However, it does not contrib-
ute to oscillation formulas in the standard model with
nonzero neutrino mass (�SM) [9].
The corresponding initial density matrix for the electron

neutrino reads [2]:

�eð0Þ ¼ cos2� 1
2 e

�i� sin2�

1
2 e

i� sin2� sin2�

 !
; (1)

and for the muon neutrino ��ð0Þ ¼ 1� �eð0Þ.
From now on we assume that the neutrino propagates

through matter and interacts with its environment. It is a
source of decoherence and dissipation which allows tran-
sitions from the pure state to mixed one. In the presence of
dissipation, the Majorana phase can enter both into the
transition probabilities [2,7,8] and the neutrino geometric
phase. For the GP to be detected it is necessary to perform
the split-beam-interference experiment. As the neutrino
cross section is very tiny, until now the spatially beam
splitting experiment is impossible. However, the flavor
neutrino is the superposition of two massive states which
splits just at the moment of the production of its �-flavor
superposition; then it propagates and finally two massive
states interfere in the detector in its �-flavor interference
pattern. This single flavor neutrino split-beam experiment
in the energy space is the one we need [3].
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In what follows we suppose that the neutrino is the
relativistic particle hence the vacuum mass states jii have
energies Ei � Eþm2

i c
4=2E, i ¼ 1, 2 [9]. Then the neu-

trino vacuum Hamiltonian is

H0 ¼
E� �m2

21
c4

4E 0

0 Eþ �m2
21
c4

4E

0
@

1
A (2)

and the neutrino Wolfenstein effective Hamiltonian H in
medium, in the vacuum neutrino mass basis [2,9] is

H ¼ H0 þ V0

2

1þ cos2� e�i� sin2�

ei� sin2� 1� cos2�

 !
; (3)

where V0 ¼ cos2ð�13ÞVC is the interaction potential and
0:953< cos2�13 � 1 is one of the oscillation parameters
with 3	 bound [9]. We take into account the usual matter
only hence the corresponding CC term for the muon neu-
trino is missing. In the �SM the neutral current interaction
does not enter effectively into Eq. (3) [9].

Because neutrino propagates in matter and interacts with
its environment leading to decoherence and dissipation
hence the considered system should be treated as an open
system, which in the Markovian regime can be described
by completely positive linear maps acting on the system
density matrices. Their general form reads [10]

d

dt
��ðtÞ ¼ �i½H;��ðtÞ� þ L½��ðtÞ�; � ¼ fe; �g: (4)

One can recognize in (4) the Kossakowski-Lindblad master
equation with two parts responsible for the physically
distinct processes. The first (conservative) part is generated
by the effective Hamiltonian H. The second (dissipative)
part is generated by the dissipator L and results in the
nonunitary evolution of the density matrix. If one knows
all of the details of the system-environment iteration, it is
possible (in principle) to construct the corresponding
dissipator. The (semi)phenomenological treatment of the
neutrino propagation with the dissipation is presented in
[2,11] with the dissipator in the form

L½��� ¼ X3
i;j¼0

Cij

�
	j�

�	i � 1

2
f	i	j; �

�g
�
; (5)

where 	i are the Pauli matrices and Cij should assure

complete positivity of the map. The constraints guarantee-
ing complete positivity applied to Cij result in reducing the

number of free parameters to six as discussed in [2,11].
Here, instead of attempting to derive the relation between
Cij and the properties of an environment [2], we consider

the dissipator (5) as a result of a phenomenological model-
ing. Such an approach is clearly less physical, as it suffers
from a lack of microscopic justification. On the other hand,
phenomenological modeling guided exclusively by the
requirement of complete positivity remains independent
on any approximation always used in more fundamental

derivations. Let us notice that the effective description of
nonstandard effects resulting from openness of the system
has recently been applied to various systems in particle
physics [12].
There have been many proposals tackling the problem of

the geometric phase from different generalizations of the
parallel transport condition for systems which are either in
a mixed state and/or undergo a nonunitary evolution like
that determined by Eq. (4). The earliest attempt (purely
mathematical) towards this goal is given in [13]. The others
are based on quantum trajectories [14], quantum interfer-
ometry [15], and the state purification (kinematic ap-
proach) [16]. Here we use the kinematic approach. The
GP constructed in [16] exhibits primary features: it is
purification-independent, gauge invariant and reduces to
the standard definition in the limit of an unitary evolution.
One of the appealing advantages of studying this phase is
its measurability in a carefully prepared interferometric
experiments [15,16]. A new type of an experiment on the
GP of open systems has recently been reported [17]: the GP
has been determined by measuring the decoherence factor
of the off-diagonal elements of the reduced density matrix
of the system. Our reasoning is thus guided by its potential
for experimental implementation. In order to determine the
GP based on state purification [16] we have to rewrite the
density matrix in the spectral-decomposition form

��ðtÞ ¼ X2
i¼1


�
i ðtÞjw�

i ðtÞihw�
i ðtÞj; (6)

where 
�
i ðtÞ and jw�

i ðtÞi are the instantaneous eigenvalues
and the eigenvectors of the matrix ��ðtÞ, respectively. The
GP��ðtÞ corresponding to such an evolution is defined by
the relation [16]:

��ðtÞ ¼ Arg

�X2
i¼1

½
�
i ð0Þ
�

i ðtÞ�1=2hw�
i ð0Þjw�

i ðtÞi

� exp

�
�
Z t

0
hw�

i ðsÞj _w�
i ðsÞids

��
; (7)

where Arg½z� denotes argument (or phase) of the complex
number z, hw�

i jw�
j i is a scalar product and the dot indicates

the derivative with respect to time s. Below we consider the
electron neutrino only [9] so, �ðtÞ ¼ �eðtÞ.
For the closed, dissipationless system invacuum(V0 ¼ 0),

the evolution of the neutrino is unitary and cyclic with the
period T ¼ L=c ¼ �=!0, where !0 ¼ �m2

21c
4=4ℏE. In

this case, the GP assumes the well-known form [18]

�0 ¼ �ð�=!0Þ ¼ �½1� cosð2�Þ�; modð2�Þ; (8)

which is a monotonic function of the mixing angle �. This
case can serve as a reference only for studying the influence
of the matter and dissipation. For the dissipationless case but
when the neutrino propagates through matter (V0 � 0) the
dynamics is still unitary and the analytic formula for GP
reads

�ðtÞ ¼ Arg½MðtÞ þ iRðtÞ�; (9)
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where

MðtÞ ¼ cosð�tÞ cosð!tÞ þ !

�
sinð�tÞ sinð!tÞ;

RðtÞ ¼ cosð�tÞ sinð!tÞ � !

�
sinð�tÞ cosð!tÞ;

(10)

� ¼ !0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2V cosð2�Þ þ V2

q
;

! ¼ !0½V � cosð2�Þ�; V ¼ V0=2ℏ!0:

(11)

For this cyclic evolution with the period T ¼ �=� one
obtains

�ð�=�Þ ¼ �

�
1� cosð2�Þ � Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2V cosð2�Þ þ V2
p

�
: (12)

For the dimensionless potential parameter V � 1 we may
Taylor expand the right-hand side of Eq. (12) and obtain to
the first order in V:

�ð�=�Þ ¼ �0½1þ Vð1þ cosð2�ÞÞ�; (13)

where�0 is the reference GP in Eq. (8). It follows that in the
case of neutrino propagation through matter its GP increases
in comparison to the vacuum reference curve. Themain note
is that in the absenceof dissipation theGPdoesnotdepend on
the Majorana angle� and therefore the GP cannot be a tool
for solving theDirac vsMajorana neutrino dilemma. InFig. 1
we illustrate details of the influence of the neutrino-matter
interaction on the GP at time t ¼ �=!0, i.e.�ð�=!0Þ. With
the increase of the neutrino energy E, the potential V rises
and at V � 0:87 the GP becomes a non–monotonic function
of the mixing angle �, being significantly modified for �
smaller values. Yet with further increase of V the GP as the
function of � stabilizes in the variation of V and still at V �
1:2, i.e. when �2m21 is active, it hardly feels the effect of
further change of the neutrino energy, see Fig. 1. Let us notice
that at one period trip t ¼ �=!0 and both� and�

2m21 equal
to the experimental solar neutrino values �	 ¼ 0:188�
and �2m21 ¼ 8:0� 10�5 eV2, respectively [9], the phase
difference�ð�=!0Þ ��0 becomes approximately equal to
the geometric value � for V � 1 that means for the solar
neutrino energies. Yet in the presence of ordinary matter the
neutrino evolution is no more strictly cyclic at t ¼ �=!0 but

at t ¼ �=�. One can attempt to quantify to what extent the
cyclic character of the evolution is affected by the interaction
with anordinarymatter in terms of the trace distancebetween
the state at t ¼ �=!0 and the initial state [19]:

D ¼ 1
2jj�ðt ¼ 0Þ � �ðt ¼ �=!0Þjj; (14)

where the norm jj%jj ¼ Tr
ffiffiffiffiffiffiffiffiffi
%y%

q
. For a cyclic evolution,

when the final and initial wave functions differ up to an
overall phase factor,D ¼ 0. As seen from Fig. 2, the depar-
ture from the cyclic evolution quantified by D is strongly
affected by the mixing angle and, for certain angles the
evolution, despite the presence of an ordinary matter
(V � 0) remains cyclic, and this happens for V � 1 at the
solar experimental value � ¼ 0:188� again. It is interesting
to analyze how the GP depends on choice of
the time t. We have compared �ð�=!0Þ and �ð�=�Þ for
the mixing angle corresponding to the solar neutrino value
� ¼ 0:188�. For V 2 ½0; 1:2�, the difference �ð�=�Þ �
�ð�=!0Þ is extremely small and from the experimental
point of view negligible.
When the quantum system interacts with an environ-

ment, properties of the GP can be radically modified [20].
In the presence of dissipation, when the dissipation matrix
Cij in Eq. (5) is not identically zero, the GP can be

determined by solving Eq. (4) with (5) using, e.g. the
Bloch vector formalism [21] to obtain the coupled evolu-
tion equations for mean values h	kðtÞi; k ¼ x; y; z. Next,
the reduced density matrix is found as �ðtÞ ¼ ð1=2Þ½1þ
h	xðtÞi	x þ h	yðtÞi	y þ h	zðtÞi	z�. From this form one

can obtain the spectral decomposition (6) and the phase
��ðtÞ. Such an analytical form of the GP is, however,
rather cumbersome without exhibiting much physical in-
sight. Therefore, we present here the numerical results for
the GP. The analysis has shown that none of the features of
the GP is affected by the dissipative effects given by the
diagonal matrix Cij � �ij. Hence all the results presented

so far hold true for quite a general class of dissipative
effects. It does not mean that the dynamics of neutrinos
is unaffected by environmental noise as in the diagonal
case the trace distance D in Eq. (14) approaches constant
value D � 1=2 with no regard to any choice of an initial
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FIG. 1 (color online). The geometric phase � ¼ �ð�=!0Þ vs
the mixing angle � for the neutrino interacting with an ordinary
matter for selected values of the dimensionless potential constant
V (the case of absence of dissipation, Cij ¼ 0).
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FIG. 2 (color online). The trace distance D calculated as in
Eq. (14) plotted vs the mixing angle � for different values of V.
Remaining parameters are as in Fig. 1.
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preparation. It is no more the case when there is an off-
diagonal contribution to the dissipation matrix Cij. In

Fig. 3 we present how the dissipation can affect the GP
provided that there are nonvanishing off-diagonal elements
in Cij. The significant impact of dissipation is present only

in a relatively narrow range of mixing angle �.
Additionally, there is a feature which makes an off-
diagonal dissipation worth studying: there is a nontrivial
� dependence of the GP. In Fig. 3 the considerations are
limited to a single nonvanishing element Cð1; 2Þ ¼
Cð2; 1Þ ¼ 1=10 and for the solar neutrino mixing angle
� ¼ 0:188� ¼ 33:9
. The results of other calculations,
not reproduced here, show that the presented behavior is
qualitatively generic. Amost intriguing behavior on the role

of theMajorana angle emerges when the angle� is allowed
to vary and themixing angle � is fixed. One can observe that
the GP does depend on the Majorana angle � in a non-
monotonic way and is always minimal for the Dirac neu-
trino; for the Majorana neutrino the GP is greater than for
the Dirac neutrino. This property of the GP can provide a
significant test for the type of neutrino, the Majorana or
Dirac one. Let us notice that this effect originates essentially
from the dissipative character of an evolution since it is also
present for the case V ¼ 0. Since dissipation is a generic
feature of the quantum world, the � dependence of the
geometric phase seems to be generic as well.
In summary, the results reported in this paper show that

the GP can be a potentially useful indicator of various
properties of neutrinos and their environment. In the dis-
sipationless case, the GP does not depend on the Majorana
angle. However, in the presence of dissipation it is not the
case anymore: the GP does depend on the Majorana angle
and therefore can serve as a tool for determining the nature
of the Dirac vs the Majorana neutrino. The theoretical
analysis presented in the paper suggesting potential use-
fulness of the GP as a tool for distinguishing neutrino type
achieves a real status of being useful provided that one can
perform an experiment measuring the GP in neutrino os-
cillations. Any proposal of such an experiment, which
requires highly sophisticated experimental methods even
in the case on NMR-type systems [17], is beyond the scope
of this brief report.
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