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A major controversy has arisen in QCD as to how to split the total angular momentum into separate

quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a

gauge-invariant way, into a spin and orbital part. Several authors have proposed various answers to these

questions and offered a variety of different expressions for the relevant operators. I argue that none of

these is acceptable and suggest that the canonical expression for the momentum and angular momentum

operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular

momentum operator cannot, in general, be split in a gauge-invariant way into a spin and orbital part.

However, the projection of the gluon spin onto its direction of motion, i.e. its helicity is gauge invariant

and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular

momentum to generalized parton distributions, though not based on the canonical operators, is shown to

be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and

QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on field

theory.
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I. INTRODUCTION

Amajor controversy has arisen in QCD as to how to split
the total angular momentum into separate quark and gluon
components (throughout this paper ‘‘quark’’ will mean a
sum over all flavors of quarks and antiquarks). The idea of
identifying separate quark and gluon angular momentum
operators is attractive, since these operators may be mea-
surable in certain physical processes and there may be sum
rules relating the spin of a nucleon to the angular momen-
tum carried by its constituents. The operators for total
momentum and total angular momentum, obtained via
Noether’s theorem from the QCD Lagrangian, consist of
separate terms which seem to represent a natural division
into quark and gluon pieces. However, Ji, in particular, [1]
has argued that such terms are not individually gauge
invariant and has advocated the use of the Bellinfante
version of these operators, which has the nice property
that they are gauge invariant and can be measured in deeply
virtual Compton scattering reactions [2]. But Ji’s quark
angular momentum operator contains both quark fields and
the gluon vector potential, so is not obviously to be inter-
preted as the physical quark angular momentum. Indeed, a
major debate has arisen as to whether it is correct to
identify this operator as the quark angular momentum,
and Chen, Lu, Sun, Wang, and Goldman [3] and
Wakamatsu [4] have proposed quite different identifica-
tions, leading to very different statements as to what frac-
tions of momentum and angular momentum the quarks and
gluons carry in the asymptotic limit Q2 ! 1. In Ji’s
Bellinfante approach no attempt is made to split the gluon
angular momentum into a spin part and an orbital part, in

accord with the long held belief that such a splitting cannot
be done in a gauge-invariant way. But both Chen et al. [3]
and Wakamtsu [4] claim much more, namely, that it is
possible to carry our such a division in a gauge-invariant
way and that even in QED the traditional, decades-old
textbook method of identifying electron and photon angu-
lar momentum is incorrect! (For access to the papers in the
controversy see Ref. [5].)
Wakamtsu’s paper [4] explains very clearly how the

differences between the various approaches arise. In
QED one splits the photon vector potential into two parts

A ¼ Aphys þApure; (1)

corresponding exactly to what is usually called the trans-
verse A? and longitudinal Ak parts, respectively, with

r �Aphys ¼ 0 and r�Apure ¼ 0: (2)

Under a gauge transformation Aphys is invariant, whereas

A pureðxÞ ! ApureðxÞ þ r�ðxÞ: (3)

In QCD, analogously, one splits

A
�
a ¼ A

�
phys;a þ A

�
pure;a; (4)

where A
�
pure;a transforms like A

�
a itself under gauge trans-

formations, but is a pure gauge in the sense that it gives rise
to no nonzero fields, i.e. G��

pure ¼ 0, while A�
phys;a trans-

forms covariantly, i.e. like G�� itself.
Wakamatsu shows that the difference between the vari-

ous versions lies in the freedom to insert a particular term

V � g
Z

d3xc yl ðxÞðx�Aa
physÞtalmc mðxÞ (5)
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either into the quark orbital angular momentum or into the
gluon angular momentum, yielding, he claims, two possi-
bilities. But, in fact, if there is no other criterion to indicate
which is the correct choice, there is actually an infinite
number of possibilities, i.e. one could insert �V into the
quark orbital term and ð1� �ÞV into the gluon term.

In a later paper [6] Wakamatsu attempted to reformulate
his approach in a manifestly covariant form and to relate
his spin and orbital terms to the polarized parton densities
which are measured in polarized deep inelastic scattering.
Unfortunately many of the equations in this paper are
incorrect as a result of treating a nonforward matrix
element like hpþ �=2; SjM���jp��=2; Si as transform-
ing like a tensor, and forgetting that the physical require-
ment on the covariant polarization vector, namely
S � ðp� �=2Þ ¼ 0 implies S �� ¼ 0. It should be stressed
that the existence of these errors is not controversial. The
same errors occur in the Jaffe-Manohar paper [7] and
have been graciously acknowledged by those authors [8].
Unfortunately then, it is very difficult to decide which
claims in the Wakamatsu paper are justified.

We shall argue that none of these prescriptions is gen-
erally correct or physically plausible, but we shall see that
the Bellinfante version works in certain specific situations.
There are three main problems:

(1) In all these papers much emphasis is placed on the
issue of using gauge-invariant operators. We shall show
that this emphasis is misplaced and that the gauge invari-
ance of the operators is not an important criterion. In
particular we suggest that neither Ji’s, Chen et al.’s nor
Wakamtsu’s identification is physically correct. We shall
first show below that in any theory which is invariant under
gauge transformations, even the total momentum and an-
gular momentum operators cannot be gauge invariant. Of
course this does not mean that the momentum and angular
momentum cannot be measured. Because what one mea-
sures—and this is the key point— are not operators but
matrix elements of operators, and if care is exercised in
defining the physical states of the theory (respecting any
subsidiary conditions, which is crucial in a gauge theory)
then these matrix elements turn out to be gauge invariant.
This is the basis for our suggestion that the emphasis on
utilizing gauge invariant operators is misleading. Then we
shall discuss what happens if one insists on using gauge
invariant operators and demonstrate that they do not, in
general, have the physical meaning expected of them.

(2) In all the above papers the treatment is essentially
classical and use is made of the classical equations of
motion. This totally ignores the highly nontrivial compli-
cations involved in quantizing a gauge theory and the fact
that some classical equations cannot be maintained at the
operator level. For example in QED, when one writes for
the photon vector potential the symbol A�ðxÞ, it creates the
expectation that it transforms like a 4-vector under Lorentz
transformations. Yet to agree with the Maxwell equations

A�ðxÞ has to satisfy a subsidiary condition. In classical

electrodynamics one chooses the beautiful covariant
Lorenz condition @�A�ðxÞ ¼ 0, which indeed permits

A�ðxÞ to transform as a 4-vector. It is well known, however,

that one cannot impose such a subsidiary condition on the
operators A�ðxÞ in QED, since it contradicts the usual

canonical equal-time commutation relations of the quan-
tized theory. There are many approaches to the quantiza-
tion of electrodynamics in which a noncovariant subsidiary
condition is imposed (for a concise summary see Sec. 21.2
of [9]). A popular choice is the Coulomb gauge condition
r �A ¼ 0 (see, for example, Sec. 13.5 of [10]). If this
gauge condition is to hold in any reference frame then
clearly A�ðxÞ cannot behave as a 4-vector, but—and this

is the crucial point—this does not spoil the Lorentz invari-
ance of the theory, since thematrix elements corresponding
to any measurable physical quantity do transform correctly
[11]. Thus, firstly, we suggest that it is unnecessary to insist
that A�ðxÞ transforms as a 4-vector, and secondly, but more

importantly, if, as Ji does, one does insist that one’s vector
potential is a genuine 4-vector, then one has to deal with a
covariantly quantized theory, in which case the expressions
given in the Ji, Chen et al., and Wakamatsu papers, for the
linear and angular momenta, are incomplete. The covariant
quantization of QED is a nontrivial task [12–14] involving
the introduction of a scalar gauge-fixing field BðxÞ.
Covariant QCD is even more complicated, both in instant
form [15] and light-front form [16], involving both a
gauge-fixing field and Faddeev-Popov ghosts fields. In
both QED and QCD the expressions for the linear and
angular momentum should include terms involving all
these fields.
(3) The key issue of splitting the total momentum and

angular momentum into a quark and gluon contribution is
not adequately analyzed. There are two rather separate
aspects. There is the age-old question of splitting the
angular momentum of a gauge particle into a spin part
and an orbital part. We shall discuss this in Sec. VII. But
there is a more general question of how, in any theory with
interacting fields, say �EðxÞ and �FðxÞ, one can split the
total momentum (and angular momentum) into pieces
interpretable as the contributions of the quanta E and F.
In all the above papers, having invented some strategy for
defining the operators PE and PF, one writes, for the total
momentum

P ¼ PE þ PF (6)

and then interprets the nucleon expectation values of theses
operators as a measure of the contribution of E and F
respectively to the momentum of the nucleon. But this is
potentially misleading, because the interacting particles
constantly exchange momentum, and the correct way to
express Eq. (6) is

P ¼ PEðtÞ þ PFðtÞ (7)
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to reflect the fact that while the total momentum is con-
served, the individual momenta are not. Thus it requires
some analysis to explain why it is meaningful to interpret,
e.g. hnucleonjPEðtÞjnucleoni as a fixed number measuring
the contribution of E to the momentum of the nucleon. The
correct way to extract a measure of the separate contribu-
tions is to remember, as stressed by Jaffe and Manohar [7]
in the QCD case, that constituent quark models and parton
models of the nucleon are canonical Fock-space models.
Thus the physical nucleon states of the theory are taken
to be superpositions of quark and gluon Fock states.
Similarly, in QED, atomic states are regarded as super-
positions of electron and photon Fock states. How this
affects the extraction of the separate momentum and an-
gular momentum contributions is spelled out in Sec. VI.

We shall argue that the various prescriptions given by
Chen et al. and Wakamatsu are somewhat ad hoc and that
what is missing is a compelling criterion for identifying a
particular operator as the momentum operator or as the
angular momentum operator. The natural definition of the
totalmomentum operator is as the generator of translations
and of the total angular momentum operator as the gen-
erator of rotations, but when the system consists of differ-
ent interacting quanta some modification is unavoidable.
We suggest that the minimal requirement for this identi-
fication is the following:

Definition: Suppose we have a system consisting of
interacting fields �EðxÞ and �FðxÞ. Then the momentum

operator Pj
EðtÞ for, say, particles E should, at equal times,

satisfy

i½Pj
EðtÞ; �Eðt; xÞ� ¼ @j�Eðt; xÞ: (8)

Analogously, the angular momentum operator Mij
E ðtÞ

should, at equal times, satisfy

i½Mij
E ðtÞ; �E

r ðt; xÞ� ¼ ðxi@j � xj@iÞ�E
r ðt; xÞ

þ ð�ijÞrs�E
s ðt; xÞ; (9)

where r and s are spinor or Lorentz labels and ð�ijÞrs is the
relevant spin operator. The need for the requirement ‘‘at
equal times’’ is explained in detail in Sec. VI.

Demanding that these conditions be satisfied leads to the
conclusion that the canonical expressions for the momen-
tum and angular momentum operators are the correct and
physically meaningful ones. It is then an inescapable fact
that the photon and gluon angular momentum operators
cannot, in general, be split in a gauge-invariant way into a
spin and orbital part. However, as discussed in Sec. VII, the
projection of the photon and gluon spin onto their direction
of motion, i.e. their helicity, is gauge invariant and is
measured in deep inelastic scattering on atoms or nucleons,
respectively.

It should be noted that Ji’s expressions for the compo-
nents of the quark and gluon momentum and angular
momentum vectors, which are the Bellinfante versions,

do not conform to the above definition and thus should
not be considered as measuring all the components of the
physical quark and gluon momentum and angular momen-
tum vectors, though it turns out that they give the correct
results for the Z components, Pz and Jz, for a nucleon
moving in the Z direction. In particular the quark orbital
angular momentum defined by Ji as the difference between
his quark total angular momentum, as measured in deeply-
virtual Compton scattering, and the quark spin, as mea-
sured in polarized deep inelastic scattering, is in agreement
with our definition, as long as it is appreciated that this
refers only to the components along the direction of motion
of the nucleon.
The difficulty in defining separate quark and gluon

angular momenta in QCD has its analogue in QED, in
the problem of defining separate electron and photon
angular momenta. However, the situation is not completely
analogous in the two cases, because the straightforward
gauge invariance of QED is replaced by the rather different
Becchi-Rouet-Stora-Tyutin (BRST) [17] invariance of
QCD. For this reason we shall discuss the two cases
separately.
Most of the problems which beset the definition of

separate quark and gluon angular momenta actually al-
ready occur at the level of the linear momentum. Since
this is a much simpler object to deal with, we shall mainly
illustrate the problematic issues through an analysis of the
linear momentum operator.

II. OBSERVABLES IN GAUGE THEORIES

As mentioned above we think there has been too much
emphasis on the need to use gauge-invariant operators to
represent any dynamical quantity which can be measured,
i.e. which is an observable. In this section we shall show
that, in fact, in gauge theories the concept of an observable
is very subtle and is rather different in QED and QCD, and
we shall give the precise conditions that an observable
operator must satisfy. Our discussion follows the approach
of Kugo and Ojima [18], which, in turn, follows the treat-
ment of Strocchi and Wightman [19].
In the covariant quantization of a gauge theory it is

unavoidable that one has to set up the theory in a vector
space with an indefinite metric, i.e. one in which the
‘‘length’’ or norm of a vector can be negative. From this
one constructs a subspace, the physical vector spaceV phys,

in which scalar products are positive semidefinite, and
finally the positive definite Hilbert quotient spaceH phys ¼
V phys=V 0, whereV 0 is the subspace ofV phys consisting

of zero-norm vectors.1 How the states forming V phys are

defined, depends on the formulation of the theory. In
covariantly quantized QED they are defined by

1Strictly speaking H phys should be defined as the completed
quotient space, but this is irrelevant for our discussion.
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BðþÞðxÞj�i ¼ 0, where BðxÞ is the gauge-fixing field. In
covariantly quantized QCD one hasQBj�i ¼ 0, whereQB

is the generator of BRST transformations.
Note that while V phys is labeled ‘‘phys,’’ the states

which correspond to the actual physical particles belong
to H phys, i.e. the zero-norm states in V phys are not truly

physical. We assume, as usual, that the physical states form
a complete set in H phys.

Let j�i be a state inV phys, i.e. j�i 2V phys and let j�i
be a zero-norm state, i.e. j�i 2V 0. Then it can be shown
that

h�j�i ¼ 0 for 8j�i 2V phys; 8j�i 2V 0; (10)

i.e.

V 0 ? V phys: (11)

Let O be a physical quantity and let Ô be the Hermitian
operator representing it. It can be shown that a necessary

condition for Ô to be an observable is

h�þ �jÔj�þ �i ¼ h�jÔj�i for

8j�i 2V phys; 8j�i 2V 0: (12)

Equivalently, via Eq. (11), an observable operator must
satisfy

Ôj�i 2V phys for 8j�i 2V phys: (13)

The essential point of this argument, as we shall see
later, is that the condition Eq. (13) does not necessarily
require an observable operator to be gauge invariant in the
operator sense, i.e. to commute with the generator of gauge
transformations. And we shall see that the situation differs
somewhat between covariantly quantized QED and QCD.

III. THE MOMENTUM OPERATOR IN
GAUGE-INVARIANT THEORIES

If the theory is invariant under translations in space-
time, then Noether’s theorem allows the construction,
from the classical Lagrangian, of what is usually referred
to as the canonical energy-momentum tensor density
t
��
canðxÞ. This is a conserved density

@�t
��
canðxÞ ¼ 0 (14)

but is generally not symmetric under �$ �.

The canonical total linear momentum operator Pj
can is

the space integral

Pj
can ¼

Z
d3xt0jcanðxÞ (15)

and, crucially, is independent of time as a consequence of
Eq. (14).

A. The canonical momentum operator
as generator of translations

In the classical theory Pj
can thus constructed is the gen-

erator of spatial translations. In the quantum theory one has

to check that the operator version of Pj
can satisfies the

correct commutation relations with all the fields, i.e. for
any field �ðxÞ

i½Pj
can; �ðxÞ� ¼ @j�ðxÞ: (16)

It is important to realize that in an interacting field
theory an arbitrary commutation relation between the fields
cannot be calculated unless one can completely solve the
theory—an impossible task in all relevant physical theo-
ries. On the other hand the equal time commutators are
fixed as part of the process of quantizing the theory. Hence
the only reason it is possible to check an equation like (16)

is because Pj
can is independent of time and so the time

variable in the fields occurring in it can be chosen to
coincide with the time variable in �ðxÞ � �ðt; xÞ. This
consideration will play a crucial role when we come to
discuss how to divide the total momentum into contribu-
tions from the different fields in the theory.
An important issue in comparing the treatment of linear

and angular momentum is the concept of a local operator.
An operator OðxÞ is local if, obviously, it is defined at one
space-time point x, but also it must satisfy the law of
translation

Oðt; xþ aÞ ¼ eiP
j
canajOðt; xÞe�iPj

canaj : (17)

Note that an operator of the formMðxÞ ¼ xOðxÞ, such as
occurs in the expression for the angular momentum, is not
a local operator. [It is trivial to see that if MðxÞ satisfies
Eq. (17) thenMðxÞ ¼ 0 for all x.] In a careful discussion of
the properties of angular momentum, operators of this type
have been called compound operators [20].

B. The Bellinfante energy-momentum
operator tensor density

As mentioned the canonical t
��
canðxÞ is generally not

symmetric under interchange of � and �. It is also not
gauge invariant. It is possible to construct from t

��
canðxÞ and

the Lagrangian, the conserved Bellinfante density t
��
bel ðxÞ,

which is symmetric and, which is, in some cases, as will be
discussed below, gauge invariant. It differs from t��

canðxÞ by
a divergence term of the following form:

t��
bel ðxÞ ¼ t��

canðxÞ þ 1
2@�½H��� �H��� �H����; (18)

where the only relevant property of H��� for the present
discussion is that it is antisymmetric under �$ �

H��� ¼ �H��� (19)

and that it is a local operator.
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It follows that Pj
bel defined by

Pj
bel �

Z
d3xt0jbelðxÞ (20)

differs fromPj
can by the integral of a spatial divergence, and

it is usually stated that since the fields must vanish at
infinity, such a contribution can be neglected, leading to
the equality

Pj
bel ¼ Pj

can: (21)

Now for a classical c-number field it is meaningful to
argue that the field vanishes at infinity and that Eq. (21)
holds as a numerical equality. It is much less obvious what
this means for a quantum operator. The correct way to tell
whether a divergence term can be neglected is to check
what its role is in the relevant physical matrix elements
involving the operator. In the case of Eq. (21) one can
readily check that the matrix elements between any nor-
malizable physical states, j�i and j�i are the same2, i.e.

h�jPj
belj�i ¼ h�jPj

canj�i: (22)

However, the operators cannot be identical, because
one, for example, may be gauge invariant and the other
not, so that the equality would be contradicted upon per-
forming a gauge transformation. On the other hand the
operators are essentially equivalent, and they generate the
same transformations on the fields. We shall indicate
the relationship as

Pj
bel ffi Pj

can: (23)

It should be noted that it would be impossible to con-
struct a consistent theory if it were not permissible, in
certain cases, to ignore the spatial integral of the diver-
gence of a local operator. For example we could not even
establish the obvious requirement that the momentum
operator commutes with itself! For one has, (no sum
over j)

i½Pj; Pj� ¼
Z

d3xi½Pj; t0jðxÞ� ¼
Z

d3x@jt0jðxÞ; (24)

and this vanishes only if the divergence integral can be
ignored.

For compound operators like the angular momentum it is
a much more difficult task to show the equivalence of the

total angular momentum generators Mij
can and Mij

bel, con-

structed from the canonical and Bellinfante Pcan;bel, respec-

tively, and care has to be exercised to always use
normalizable states. This has been done by Shore and
White [21].

IV. QUANTUM ELECTRODYNAMICS

We shall study the questions of gauge invariance and
Lorentz covariance first in the simpler context of QED.

A. The nongauge invariance of the QED momentum
and angular momentum operators

We remarked in the Introduction that in trying to define
separate quark and gluon angular momentum operators too
much emphasis was being placed on the use of gauge-
invariant operators by Ji, Chen et al., and Wakamatsu.
In support of this point of view we shall now prove that

in any theory which is invariant under a local c-number
gauge transformation, even the total momentum and an-
gular momentum operators cannot be gauge invariant. As
discussed in Sec. II this does not mean that the momentum
and angular momentum are not observables, i.e. cannot be
measured. Because what one measures are not operators
but matrix elements of operators, and if care is exercised in
defining the physical states of the theory (respecting any
subsidiary conditions) then these matrix elements turn out
to be gauge invariant.
Theorem 1: Consider a theory which is invariant under

local c-number gauge transformations. Let P� be the total
momentum operators, defined as the generators of space-
time translations, and let Mij be the total angular momen-
tum operators, defined as the generators of rotations. Then
P� and Mij cannot be gauge-invariant operators.
Proof: For simplicity we consider QED and give the

proof just for the momentum operators. The case of angu-
lar momentum is a straightforward generalization. Note
that it is irrelevant for the proof whether we use the
canonical or Bellinfante versions.
The theory is invariant under the infinitesimal gauge

transformation

A�ðxÞ ! A�ðxÞ þ @��ðxÞ; (25)

where �ðxÞ is a c-number field satisfying h�ðxÞ ¼ 0 and
vanishing at infinity.
Now gauge transformations are canonical transforma-

tions [22]. Let F be the generator of gauge transformations,
so that

i½F;A�ðxÞ� ¼ @��ðxÞ (26)

and consider the Jacobi identity

½F; ½P�; A��� þ ½A�; ½F;P��� þ ½P�; ½A�; F�� ¼ 0: (27)

Now ½P�; ½A�; F�� ¼ 0 since by Eq. (26) ½A�; F� is a c
number and thus commutes with P�, so that

½½F; P��; A�� ¼ ½F; ½P�; A���: (28)

Moreover since P� are the generators of translations

i½P�; A�� ¼ @�A�: (29)
2This is not true for all operators which differ by a divergence

term. Singularities can affect the result.
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Thus the right-hand side (RHS) of Eq. (28) becomes

½F; ½P�; A��� ¼ �i@�½F; A�ðxÞ� ¼ �@�@��ðxÞ � 0

(30)

and hence from Eq. (28)

½½F; P��; A�� � 0; (31)

implying that

½F; P�� � 0 (32)

so that P� is not gauge invariant.

B. The momentum and angular momentum
in QED are observables

We shall now demonstrate that this lack of gauge invari-
ance is of no physical significance. We shall take as an
example covariantly quantized QED and show that the

matrix element of Pj
can between any physical states, is

unaffected by gauge changes in the operator.
As far as we are aware the most general covariantly

quantized version of QED is given by the Lautrup-
Nakanishi Lagrangian density [12,13], which is a combi-
nation of the classical Lagrangian (Clas) and a gauge fixing
part (Gf)

L ¼ LClas þLGf ; (33)

where

LClas ¼ �1
4F��F

�� þ 1
2½ �c ði6@�mþ eAÞc þ h:c:� (34)

and

L Gf ¼ BðxÞ@�A�ðxÞ þ a

2
B2ðxÞ; (35)

where BðxÞ is the gauge-fixing field3 and the parameter a
determines the structure of the photon propagator and is
irrelevant for the present discussion.4 The theory is invari-
ant under the usual c-number infinitesimal gauge trans-
formation

A� ! A� þ @��ðxÞ; c ! c þ ie�c ; (36)

while BðxÞ is taken to be unaffected by gauge
transformations.

A straightforward calculation gives for the conserved
generator of infinitesimal gauge transformations

F ¼ �
Z

d3x½e �c�0c�ðxÞ þ F0j@j�ðxÞ � BðxÞ@0�ðxÞ�;
(37)

which, via the equations of motion, can be transformed to

F ¼
Z

d3x½ð@0BÞ�� B@0�þ @jðF0j�Þ�: (38)

Now the physical states j�i of the theory are defined to
satisfy

BðþÞðxÞj�i ¼ 0; (39)

where

BðxÞ ¼ BðþÞðxÞ þ Bð�ÞðxÞ (40)

with Bð�ÞðxÞ the positive/negative frequency parts of BðxÞ.
With this definition of the physical states, an operator Ô

is an observable, if, according to Eq. (12), Ôj�i is itself a
physical state, i.e. if

BðþÞðxÞðÔj�iÞ ¼ 0: (41)

This is equivalent to the condition

½BðþÞðxÞ; Ô�j�i ¼ 0; (42)

since

½BðþÞðxÞ; Ô�j�i ¼ BðþÞðxÞÔj�i � ÔBðþÞðxÞj�i
¼ BðþÞðxÞÔj�i ¼ 0

iff Eq:ð41Þ holds:
(43)

Since, via Eqs. (39) and (16)

½BðþÞðxÞ; Pj�j�i ¼ i@jBðþÞðxÞj�i ¼ 0; (44)

we see that Pj is an observable, so that its eigenstates are
physical states.
We shall now consider the gauge invariance of its matrix

elements. In doing so it should be noted that Bð�ÞðxÞ ¼
½BðþÞ�yðxÞ, so that h�jBð�ÞðxÞ ¼ 0, and thus for arbitrary
physical states

h�0jBðxÞj�i ¼ 0: (45)

Theorem 2: Any physical matrix element of the momen-
tum operator Pj is invariant under gauge transformations.
Proof: Consider the general physical matrix element

h�0jPjj�i ¼
Z

d3pd3p0�0�ðp0Þ�ðpÞhp0jPjjpi: (46)

The change induced in hp0jPjjpi by the gauge trans-
formation is given by hp0ji½F; Pj�jpi. Focus initially on the
effect of the first two terms (call them f12) in the integrand
on the RHS of Eq. (38).

hp0ji½f12; Pj�jpi ¼ ðp� p0Þjhp0jf12jpi ¼ 0; (47)

because of Eq. (45) and the fact that � is a c number.
The change induced by the third, divergence term (call it

f3) in the integrand on the RHS of Eq. (38), after some
algebra, and using translation invariance Eq. (17), can be
written

3Because of its similarity with the QCD case, we use the
notation of Nakanishi. Note that Lautrup’s �ðxÞ ¼ �BðxÞ.

4The case a ¼ 1 corresponds to the Gupta-Bleuler approach
(see e.g. [22]) based on the Fermi Lagrangian.
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hp0ji½f3;Pj�jpi¼ ðp0 �pÞjfðp�p0Þ0hp0jAkð0Þjpi; (48)

� ðp� p0Þkhp0jA0ð0Þjpig@k½�ðxÞeiðp�p0Þ�x�; (49)

and this vanishes after the spatial integration because �ðxÞ
vanishes at infinity.

Hence h�0jPjj�i is indeed invariant under gauge
transformations.

Corollary: Physical matrix elements of the total angular
momentum operator Jk are gauge invariant.

The total angular momentum is given by

Jk ¼ 1

2
	klmM

lm ¼ 1

2
	klm

Z
d3xM0lmðxÞ; (50)

where M0lmðxÞ is the angular momentum tensor density.
The simplest way to show the gauge invariance of the
physical matrix elements in this case is to reinterpret the
gauge change i½F;Mlm� as �i½Mlm; F� and to study
the effect of the rotations on F. For this one needs the
following results:

i½Mlm; A
ðxÞ� ¼ ðxl@m � xm@lÞA
ðxÞ
þ gl
AmðxÞ � gm
AlðxÞ (51)

and, since BðxÞ is a scalar field,
i½Mlm; BðxÞ� ¼ ðxl@m � xm@lÞBðxÞ: (52)

Application of these to F yields terms which either vanish
directly as a result of the subsidiary condition Eq. (45) or
divergence terms which can be shown to vanish since �ðxÞ
vanishes at infinity.

The fact that even the total momentum and angular
momentum are not gauge invariant, but that their physical
matrix elements are, suggests that to insist on gauge-
invariant operators for the momentum and angular momen-
tum operators of the individual fields of the theory is
unnecessary.

C. Relativistic covariance in QED

In the debate with Chen et al., Ji rightly argues that their
photon vector potential does not transform as a 4-vector
under Lorentz transformations, and implies that in his
treatment his A�ðxÞ transforms as a true 4-vector, and

that this is an essential property. But if this is the case
then Ji’s expressions for momentum and angular momen-
tum are incomplete. The point is that the gauge-fixing field
BðxÞ introduced above in the covariant quantization of
QED also appears in the expressions for the momentum
and angular momentum. One finds for the conserved ca-
nonical energy-momentum tensor density,

t��
can ¼ ���

can þ t��
canðGfÞ; (53)

where

�
��
can ¼ i

2
�c��@

$�c � F�
@�A
 � g��LClas; (54)

where @
$� � @

!
� � @

 
�, and

t��
canðGfÞ ¼ B@�A� � g��LGf : (55)

For the conserved Bellinfante density one finds,

t��
bel ¼ ���

bel þ t��
bel ðGfÞ; (56)

where �
��
bel , which is referred to as the classical energy-

momentum tensor density, is

���
bel ¼

i

4
�c ð��D

$� þ ��D
$�Þc � F�
F�


 � g��LClas;

(57)

where D
$� ¼ @

$� � 2ieA�, and

t
��
bel ðGfÞ ¼ �ð@�BÞA� � ð@�BÞA� � g��LGf : (58)

The conservation of an energy-momentum tensor de-
pends on the equations of motion, which are a consequence
of the Lagrangian. Thus t��

bel is conserved, but �
��
bel is not,

when the Lagrangian is LClas þLGf . On the other hand
���
bel would be conserved if the Lagrangian were LClas.

Now Ji and Chen et al. utilize ���
bel and treat it as if it

were conserved, i.e. they take the momentum operator
based on it to be independent of time (equivalently: to
remain unrenormalized), which implies that the
Lagrangian is just LClas. But it is well known that one
cannot quantize QED covariantly using L ¼ LClas.
Nonetheless Ji insists that his A� transforms covariantly,

which is thus, at the operator level, a contradiction.
We have seen that insisting on covariant quantization

leads to a more complicated structure for the energy-
momentum density and analogously for the angular mo-
mentum density. This raises what, at first sight, seems to be
a worrying issue concerning several papers in the literature,
e.g. Ji [1,2], Jaffe and Manohar [7], Bakker, Leader and
Trueman (BLT) [20] and Wakamatsu [4,6], where the
general structure of the matrix elements of ���

bel (or its

QCD analogue) is derived under the assumption that ���
bel

is a genuine conserved tensor. However the situation is
saved by the following: for physical matrix elements, for
both the canonical and Bellinfante versions,

h�0jt��ðGfÞj�i ¼ 0: (59)

This follows from Eqs. (55), (58), and (35) when a
complete set of physical states is inserted between the
operators appearing in t��ðGfÞ and use is made of
Eq. (45). Hence

h�0j@����
bel ðxÞj�i ¼ h�0j@�t��

bel ðxÞj�i ¼ 0: (60)

Similar arguments show that �
��
canðxÞ, which just corre-

sponds to the canonical version of ���
bel ðxÞ, may also be

treated as a conserved density inside physical matrix ele-
ments. Thus this aspect of the analysis in the above papers
is, in fact, consistent.
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In summary covariant quantization of QED complicates
some aspects and there is no compelling reason to insist on
it. Indeed, as explained in the Introduction, the noncovar-
iant Coulomb gauge leads to a perfectly good Lorentz
invariant theory. However, if one prefers to work with a
covariantly quantized theory then, in so far as its physical
matrix elements are concerned, ���

bel ðxÞ and ���
canðxÞ may be

treated as conserved tensor operators.

V. QUANTUM CHROMODYNAMICS

The situation in QCD is somewhat different. The infini-
tesimal gauge transformations on the gluon vector potential
and on the quark fields, under which the pure quark-gluon
Lagrangian LqG (the QCD analogue of the QED LClasÞ,

L qG ¼ �1
4G

a
��G

��
a þ 1

2
�c l½�lmið6@

!
� 6@
 
Þ � 2gtalmA

a�c m

(61)

is invariant, are determined by eight scalar c-number fields
�aðxÞ,

�Aa
� ¼ @��

aðxÞ � gfabcA
b
�ðxÞ�cðxÞ; (62)

�c l ¼ �igtalm�aðxÞc mðxÞ; (63)

where a; b; c ¼ 1; 2 . . . 8 and l; m ¼ 1; 2; 3 are color labels,
and where our sign convention is

Ga
�� ¼ @�A

a
� � @�A

a
� � gfabcA

b
�A

c
�: (64)

However, in order to quantize the theory covariantly one
has to introduce both a gauge-fixing field BðxÞ and Fadeev-
Popov anticommuting fermionic ghost fields cðxÞ, �cðxÞ.
The Kugo-Ojima Lagrangian [15] for the covariantly
quantized theory is then

L ¼ LqG þLGfþGh; (65)

where

LGfþGh ¼ �ið@� �caÞDab
� cb � ð@�BaÞAa

� þ a

2
BaBa; (66)

which is no longer invariant under the original infinitesimal
gauge transformations Eqs. (62) and (63).

One can again show that the momentum operators Pcan,
Pbel are not gauge invariant, but this is now irrelevant,
given that the Lagrangian itself does not possess this
invariance. Instead the theory is invariant under the
BRST transformations [17]

�Aa
� ¼ �Dab

� cbðxÞ;
�c l ¼ �i�gtalmcaðxÞc mðxÞ;

�caðxÞ ¼ �ðg=2ÞfabccbðxÞccðxÞ;
� �ca ¼ i�BaðxÞ;

�BðxÞ ¼ 0;

(67)

where � is a constant operator which commutes with
bosonic fields and anticommutes with fermionic fields.
The BRST transformation is generated by �QB, i.e. for

any of the above fields �

i½�QB;�� ¼ ��; (68)

where the conserved, Hermitian charge QB is given by

QB ¼
Z

d3x½Ba@
$
0c

a � gBafabcA
b
0c

c

� iðg=2Þð@0 �caÞfabccbcc�: (69)

There is also a conserved charge

Qc ¼
Z

d3x½ �ca@$0c
a � g �cafabcA

b
0c

c�; (70)

which ‘‘measures’’ the ghost number

i½Qc;�� ¼ N� (71)

where N ¼ 1 for � ¼ c, �1 for � ¼ �c and 0 for all other
fields.
The physical states j�i are defined by the subsidiary

conditions

QBj�i ¼ 0; (72)

Qcj�i ¼ 0: (73)

A. The momentum and angular momentum
operators in covariant QCD

The proof of an analogue of Theorem 1 for BRST trans-
formations does not work, because the BRST �Aa

� is an

operator, not a c number. Consequently, use of the Jacobi
identity Eq. (27), with F replaced by QB, does not imply
that Pcan or Pbel are non-BRST invariant.
Analogously to condition Eq. (42), in order to be ob-

servable the momentum operator in QCD must satisfy

½QB; P
j�j�i ¼ 0 and ½Qc; P

j�j�i ¼ 0: (74)

The latter, as will be seen presently, follows from the fact
that the ghost number of Pj is zero. The former is usually
stated to hold because QB is a translationally invariant
scalar. This is correct, but is not quite as trivial as it seems,
for if we write

QB ¼
Z

d3xQBðt; xÞ; (75)

then translational invariance requires

eiP
jajQBe

�iPjaj ¼
Z

d3xeiP
jajQBðt; xÞe�iPjaj

¼
Z

d3xQBðt; xþ aÞ ¼ QB: (76)
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The last step holds only if the integral in invariant under the
change of variables x! y ¼ xþ a, which is in accord
with our being able to ignore the integral of a divergence.

One finds for the canonical energy-momentum tensor
density,

t��
can ¼ t��

canðqGÞ þ t��
canðGf þ GhÞ; (77)

where

t��
canðqGÞ ¼ i

2
�c l�

�@
$�c l �G�


a @�Aa

 � g��LqG (78)

and where

t
��
canðGf þ GhÞ ¼ �A�

a @�Ba � ið@� �caÞðD�
abcbÞ

� g��LGfþGh � ið@� �caÞð@�caÞ: (79)

The Bellinfante version is

t��
bel ¼ t��

bel ðqGÞ þ t��
bel ðGf þ GhÞ; (80)

where

t��
bel ðqGÞ ¼

i

4
½ �c l�

�D
$�c l þ ð�$ �Þ�

�G
�

a G�

a
 � g��LqG (81)

is BRST invariant, i.e. commutes with QB. Here D
$� is a

matrix in color space

D
$�ðzÞ ¼ �lm½@

!� � @
 �� þ 2igA�

aðzÞtalm: (82)

The gauge-fixing and ghost terms are given by

t
��
bel ðGf þ GhÞ ¼ �ðA�

a @�Ba þ A�
a@

�BaÞ
� i½ð@� �caÞD�

abcb þ ð@� �caÞD�
abcb�

� g��LGfþGh: (83)

This can be rewritten [18] as an anticommutator withQB

t
��
bel ðGf þ GhÞ ¼ �

�
QB;

�
ð@� �caÞA�

a þ ð@� �caÞA�
a

þ g��

�
a

2
�caBa � ð@� �caÞAa

�

���
: (84)

It follows that t
��
bel ðGf þ GhÞ is BRST invariant (because

QB is nilpotent, i.e. Q2
B ¼ 0) and does not contribute to

physical matrix elements, i.e.

h�0jt��
bel j�i ¼ h�0jt��

bel ðqGÞj�i: (85)

Thus the entire t
��
bel ðxÞ commutes with QB and is there-

fore a local observable.
The situation with t

��
canðxÞ is somewhat different. It does

not commute with QB, so is not itself an observable, but,
contrary to the statement in [21], t

��
canðGf þ GhÞ does not

contribute to physical matrix elements. This can be seen as
follows. The first three terms in Eq. (79) can be written as
an anticommutator with QB, so, as argued above, do not

contribute to physical matrix elements. For the last term we
have, by completeness,

� ih�0jð@� �caÞð@�caÞj�i
¼ �iX

all�

h�0jð@� �caÞj�ih�jð@�caÞj�i: (86)

This is zero because, via Eq. (71), caðxÞ ¼ i½Qc; caðxÞ�,
so that

h�j@�caðxÞj�i ¼ i@�h�j½Qc; caðxÞ�j�i ¼ 0 (87)

as a consequence of Eq. (73).
Thus even though the actual canonical density is not

BRST invariant, its ghost and gauge-fixing terms do not
contribute to physical matrix elements. And, as discussed
in Sec. III B, for the space integrated versions, because they
differ by a divergence, we have, analogous to Eq. (20),

Pj
belðQCDÞ ffi Pj

canðQCDÞ; (88)

and both are BRST invariant.
There is thus no compelling reason in QCD for insisting

on using the Bellinfante version. Analogous statements

hold for the angular momentum generators Mij
can and Mij

bel.

B. Relativistic covariance in QCD

We have seen that insisting on covariant quantization
forces us to include gauge-fixing and ghost fields in the
Lagrangian. However, the terms in the canonical and
Bellinfante versions of the total momentum, which depend
on the ghost and gauge-fixing fields, do not contribute to
physical matrix elements. Thus if we consider the expec-
tation value of the total momentum operator for a nucleon
in a state of definite momentum jpi then, irrespective of
whether we use Pcan or Pbel, there will be no contribution
from the ghosts or gauge-fixing fields. Moreover, both
operators are observables and their matrix elements are
thus physically measurable quantities.
However, as mentioned in the Introduction, Ji, Chen

et al., and Wakamatsu insist on using the gauge-invariant
Bellinfante tensor, or modifications of it, for the separate
electron and photon, or quark and gluon, parts of the total
momentum and angular momentum tensors. We shall
argue in the next section that this has no solid basis, is
essentially arbitrary and lacks any persuasive physical
motivation.

VI. THE PROBLEM OF DEFINING SEPARATE
QUARK AND GLUON MOMENTA

We come now to the heart of the controversy between Ji,
Chen et al., and Wakamatsu, namely, how to define in a
sensible way the separate contributions of quarks and
gluons to the momentum and angular momentum of a
nucleon. There are actually two separate issues. One, quite
general, is how to define the separate momenta for a system
of interacting particles. The second is more specific to
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gauge theories and includes the issue of splitting the an-
gular momentum of a gauge particle into a spin and orbital
part.

A. Interacting particles: The general problem

Suppose we have a system of interacting particles E and
F and we split the total momentum into two pieces

Pj ¼ Pj
E þ Pj

F; (89)

which we wish to associate with the momentum carried by
the individual particles E and F respectively.

As mentioned in the Introduction it is crucial to realize
that Eq. (89), as it stands, is totally misleading, and should
be written

Pj ¼ Pj
EðtÞ þ Pj

FðtÞ (90)

to reflect the fact that the particles exchange momentum as
a result of their interaction.

The key question is: what should be the criterion for
identifying PE;F as the momentum associated with parti-

cles E, F, respectively?
The seductively obvious answer would be to demand

that

i½Pj
E;�

EðxÞ� ¼ @j�EðxÞ (91)

and similarly for F, but there is no way we can check this,

since Pj
EðtÞ depends on t and, without solving the entire

theory, we are only able to compute equal-time
commutators.

We suggest, therefore, that the minimal requirement for

identifying an operator Pj
E with the momentum carried by

E, is to demand that at equal times the analogue of Eq. (91)
holds, i.e.

i½Pj
EðtÞ; �Eðt; xÞ� ¼ @j�Eðt; xÞ: (92)

Analogously, for an angular momentum operator Mij
E

we suggest the minimal requirement that

i½Mij
E ðtÞ; �E

r ðt; xÞ� ¼ ðxi@j � xj@iÞ�E
r ðt; xÞ

þ ð�ijÞrs�E
s ðt; xÞ; (93)

where r and s are spinor or Lorentz labels and ð�ijÞrs is the
relevant spin operator.

Now we explained in Sec. III B that for the total mo-
mentum there is no essential difference between Pcan and
Pbel, since their integrands differ by the spatial divergence
of a local operator. However, if we split Pcan into Pcan;E þ
Pcan;F and Pbel into Pbel;E þ Pbel;F, then the integrands of

Pcan;E and Pbel;E do not differ by a spatial divergence, and

hence Pcan;E and Pbel;E do not generate the same trans-

formation on �EðxÞ, and similarly for F.
As an example consider QED. From Eqs. (53), (54), and

(56)–(58) we would identify

t0jcanðelectronÞ ¼ i

2
�c�0@

$jc (94)

and

t0jbelðelectronÞ ¼
i

4
�c ð�0Dj

$ þ �jD
$0Þc ; (95)

and these do not differ by a spatial divergence.
It should be noted that the difference between various

definitions of the momentum operators is not just a ques-
tion of principle. In QCD the asymptotic (Q2 ! 1) limit
of the longitudinal momentum carried by quarks in a
nucleon, with the Ji definition is PðquarksÞJi 	 50%
whereas with the Chen et al. version PðquarksÞChen 	
80%, for the number of flavors nf ¼ 5.

Since, by construction, Pcan;E and Pcan;F generate the

correct transformations on �EðxÞ and �FðxÞ respectively,
we conclude that with the above minimal requirement we
are forced to associate the momentum and angular mo-
mentum of E and F with the canonical version of the
relevant operators. This disagrees with Ji, Chen et al.,
and Wakamatsu, but agrees with Jaffe and Manohar [7].
Nonetheless, exceptionally, for the fraction of the Z

component of the longitudinal momentum and angular
momentum carried by the quarks in a nucleon moving
in the Z direction, the distinction between Bellinfante
and canonical versions is not crucial, since it turns
out that PzðquarksÞJi � PzðquarksÞbel ¼ PzðquarksÞcan
and JzðquarksÞJi � JzðquarksÞbel ¼ JzðquarksÞcan, as will
be discussed in Sec. VI E.
Now, as Jaffe and Manohar [7] have emphasized in the

QCD case, constituent quark models and parton models of
the nucleon are canonical Fock-space models. Thus the
physical states of the theory are taken to be superpositions
of Fock states, formed from the vacuum by the quark and
gluon ‘‘in-field’’ creation operators. Similarly, in QED,
atomic states are regarded as superpositions of Fock states,
formed from the vacuum by the electron and photon
‘‘in-field’’ creation operators. Loosely speaking, for any
field �ðxÞ5

�ðxÞ ���!t!�1 ffiffiffiffi
Z
p

�inðxÞ; (96)

where Z is a renormalization constant. Also

½Pj
can;EðtÞ; �Eðt; xÞ� ���!t!�1 ½Pj

in;canðEÞ;
ffiffiffiffi
Z
p

�in;Eðt; xÞ�; (97)

@j�Eðt; xÞ ���!t!�1 ffiffiffiffi
Z
p

@j�in;Eðt; xÞ; (98)

where we have defined

Pj
can;EðtÞ ���!t!�1 PJ

in;canðEÞ: (99)

5Strictly speaking such limits of operators should be carried
out using normalizable ‘‘smearing functions’’. We shall continue
to be a little cavalier in order not to complicate the presentation.
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Note that because the ‘‘in’’ fields obey free field equations,
PJ
in;canðEÞ is independent of time.

Now as we have stressed PE;FðtÞ are time-dependent

operators. However, these operators possess a remarkable
property. While their general matrix elements are time-
dependent, there is a subclass of these, and it is just this
class of matrix elements that are of interest to us, which are
time-independent, namely, their matrix elements between
arbitrary states of a single particle. To see this for the

momentum Pj
EðtÞ let

jc i ¼
Z

d3p0c ðp0Þjp0i and j�i ¼
Z

d3p�ðpÞjpi
(100)

be arbitrary states of a particle of mass m, so that

p2
0 ¼ p2 þm2 and p020 ¼ p02 þm2: (101)

Then

hc jPj
EðtÞj�i ¼

Z
d3p0d3pd3xc �ðp0Þ�ðpÞhp0jt0jE ðxÞjpi

¼
Z

d3p0d3pd3xc �ðp0Þ�ðpÞeix�ðp0�pÞeitðp0�p00Þhp0jt0jE ð0Þjpi

¼ ð2Þ3
Z

d3p0d3pc �ðp0Þ�ðpÞ�3ðp0 � pÞeitðp0�p00Þhp0jt0jE ð0Þjpi

¼ ð2Þ3
Z

d3pc �ðpÞ�ðpÞhpjt0jE ð0Þjpi; (102)

which is independent of time because p00 ¼ p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

A similar, though more complicated argument, shows
that the single particle matrix elements of the angular
momentum operators JiE;F are also time independent.

It follows that, e.g.

hc jPj
EðtÞj�i ¼ lim

t!�1hc jP
j
EðtÞj�i ¼ hc jPj

inðEÞj�i (103)

and analogously for the angular momentum operators.
Thus we have the important result that the nucleon

matrix elements of Pj
E;F and JjE;F can be calculated by

inserting a Fock expansion for the nucleon state and then
evaluating the Fock state matrix elements of the ‘‘in’’ field

operators Pj
inðEÞ, Pj

inðFÞ, JjinðEÞ and JjinðFÞ, respectively.

B. Interacting particles in gauge theories:
Canonical vs ‘‘the rest’’

The objection of Ji, Chen et al., and Wakamatsu to the
use of the canonical operators is that they are not gauge
invariant. We have suggested that this is not obviously
important since the total canonical momentum and angular
momentum operators are observables and their physical
matrix elements are gauge invariant or BRST invariant
(Secs. IVB and VA). That argument relied on the fact
that an arbitrary physical state can be expressed as a
superposition of eigenstates of total momentum.

Now from Eqs. (96)–(99) and (92) it follows that, for E
(and analogously for F)

i½Pj
in;canðEÞ; �in;Eðt; xÞ� ¼ @j�in;Eðt; xÞ; (104)

which implies that the Fock states, created from the vac-
uum by the action of the creation operators in �in;EðxÞ,

�in;FðxÞ, are eigenstates of Pj
in;canðEÞ and Pj

in;canðFÞ respec-
tively. This fact will be used in the next two sections in
proving the gauge or BRST invariance of the Fock-space

matrix elements of Pj
in;canðEÞ and Pj

in;canðFÞ. An analogous

statement holds for the angular momentum operators.

C. QED

Here particles E and F correspond to electrons
and photons and the Fock states may be taken as super-
positions of states with electrons having definite momen-
tum p1, p2 ��� pn and transverse photons with
momenta k1, k2 ��� km. It is possible to show that

these eigenstates of Pj
in;canðelectronÞ and Pj

in;canðphotonÞ
are physical states, i.e.

BðþÞin ðxÞjp1;p2 ��� pn; k1;k2 ��� kmi ¼ 0: (105)

This follows from the asymptotic limit of the commutation
relations given in [12], and the Greenberg-Robinson theo-
rem [23,24], which states that the commutators of asymp-
totic fields are c numbers.
Since we are only concerned with physical matrix ele-

ments of the momentum operators we may, as a conse-
quence of Eq. (105) ignore the gauge-fixing terms and from
now on utilize,

Pj
in;canðelectronÞ �

Z
d3x

�
i

2
�c in�

0@
$j@jc in

�
(106)

and

Pj
in;canðphotonÞ �

Z
d3x½�F0


in @jAin;
�: (107)

CONTROVERSY CONCERNING THE DEFINITION OF . . . PHYSICAL REVIEW D 83, 096012 (2011)

096012-11



The proof that the Fock-space matrix elements of these
operators are gauge invariant requires that the matrix
elements of BinðxÞ vanish between these states. This fol-
lows from Eq. (105) and thus the proof of the gauge

invariance of the expectation values of Pj
in;canðelectronÞ

and Pj
in;canðphotonÞ can be carried through in the same

way as was done for the total momentum in Sec. IVB.
Note that the simplified versions of the canonical mo-

mentum operators above generate the correct transforma-
tions on c inðxÞ and the spatial components Ak

inðxÞ, namely

i½Pj
in;canðelectronÞ; c inðt; xÞ� ¼ @jc inðt; xÞ;

i½Pj
in;canðphotonÞ; Ak

inðt; xÞ� ¼ @jAk
inðt; xÞ:

(108)

On the other hand one can show that the Bellinfante

versions Pj
in;belðelectronÞ and Pj

in;belðphotonÞ do not gener-

ate the transformations Eq. (108). Thus the Bellinfante
versions do not satisfy our minimal requirement for iden-
tifying these operators as representing the momentum
carried by the electrons and photons, respectively. The
same is true of the Chen et al. and Wakamatsu momentum
operators.

The analysis of the angular momentum operators is quite
analogous and one concludes that the canonical operators
are the ones that generate the correct rotations on the fields.

D. QCD

Similar results hold for QCD. The states with quarks
having definite momentum p1, p2 ��� pn and trans-
verse gluons having momenta k1, k2 ��� km are eigen-

states of Pj
in;canðquarkÞ and Pj

in;canðgluonÞ and are physical

states, i.e.

QBjp1;p2 ��� pn; k1; k2 ��� kmi ¼ 0; (109)

This follows from the commutation relations for the
asymptotic fields given in Sec. IV in [25].

Since we are only concerned with the physical matrix
elements of the momentum operators we may, as a con-
sequence of the discussion following Eq. (85), ignore the
gauge-fixing and ghost terms and from now on utilize

Pj
in;canðquarkÞ �

Z
d3x

�
i

2
�c l
in�

0@
$jc l

in

�
(110)

and

Pj
in;canðgluonÞ �

Z
d3x½�G0


in;a@
jAa

in;
�: (111)

These commute with QB and are thus observables.
Moreover these simplified versions of the canonical mo-
mentum operators generate the correct transformations on
c l

inðxÞ and the spatial components Ak
in;aðxÞ, namely

i½Pj
in;canðquarkÞ; c l

int; xÞ� ¼ @jc l
inðt; xÞ;

i½Pj
in;canðgluonÞ; Ak

in;aðt; xÞ� ¼ @jAk
in;aðt; xÞ:

(112)

On the other hand one can show that the Bellinfante

versions Pj
in;belðquarkÞ and Pj

in;belðgluonÞ do not generate

the transformations Eq. (112). Thus the Bellinfante ver-
sions do not satisfy our minimal requirement for identify-
ing these operators as representing the momentum carried
by the quarks and gluons. Similar remarks apply to the
Chen et al. and Wakamatsu operators.
Similarly, one sees that the correct rotations of the fields

are generated by the canonical versions of the angular
momentum operators, which suggests that the Ji, Chen
et al., and Wakamatsu operators should not be regarded
as representing the angular momentum of the quarks and
gluons. Nonetheless, the expectation value of the
Bellinfante operator Jz;belðquarkÞ used by Ji for the longi-

tudinal component of the quark angular momentum, which
has the nice property that it can be measured in deeply
virtual Compton scattering reactions, does indeed repre-
sent the Z component of the angular momentum carried by
the quarks in a nucleon moving in the Z direction, and
therefore, Ji’s definition of the orbital angular momentum
as the difference ½Jz;belðquarkÞ � 1

2 ��MS�, is fine as long as
it is appreciated that this applies only to the components
along the motion of the nucleon.

E. The longitudinal component of the quark
momentum and angular momentum

We have argued that the canonical versions of the mo-
mentum and angular momentum operators should be re-
garded as the physically meaningful ones. Yet it is well
known that xB, Bjorken-x, can be interpreted as the fraction
of the Z component of the quark momentum inside a
nucleon, in an infinite momentum frame where the nucleon
is moving along theOZ axis, and that this corresponds, via
the Operator Product Expansion, to the matrix element of
the Bellinfante version of the momentum operators. At first
sight this appears to contradict our assertion that it is the
canonical version that should be regarded as the physically
meaningful momentum operators. We shall here explain
that there is, in fact, no contradiction in the special case of
the longitudinal components of the momentum and angular
momentum.
The gauge-invariant expression for the unpolarized

quark number density qðxÞ is usually written as

qðxÞ¼1

2

�
Z dz�

2
eixP

þz�hPj �c ð�z�=2Þ�þWc ðz�=2ÞjPijx>0;

(113)

where jPi corresponds to an unpolarized proton moving
along the OZ axis, i.e.
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P� ¼ ðE; 0; 0; PÞ; (114)

and where

W � W½�z�=2; z�=2� ¼ P exp

�
ig

Z z�=2

�z�=2
dz0Aþa ðz0nÞta

�

(115)

is the Wilson line operator, a matrix in color space, and
where

n ¼ 1ffiffiffi
2
p ð1; 0; 0;�1Þ: (116)

We are using the standard definition of the � compo-
nents of a vector, i.e.

v� ¼ 1ffiffiffi
2
p ðv0 þ vzÞ: (117)

The expression for the antiquark density �qðxÞ is analo-
gous to Eq. (113) but with x < 0.
After some manipulation one finds that

xqðxÞ ¼ i

4Pþ
Z dz�

2
eixP

þz�hPjf �c ðzÞ½�@
 þ � igAþðzÞ�gz¼�z�=2�þWc ðz�=2Þ

þ �c ð�z�=2Þ�þWf½@!þ � igAþðzÞ�c ðzÞgz¼z�=2jPijx>0: (118)

Integrating over x one has

Z 1

0
dxx½qðxÞ þ �qðxÞ� ¼ i

4ðPþÞ2 hPj
�c ð0Þ�þD$þc ð0ÞjPi

(119)

with

D
$ þ ¼ @

!þ � @
 þ � 2igAþð0Þ: (120)

Now from Eq. (81) the quark part of t
��
bel ðqGÞ is given by

t��
q;belðzÞ ¼

i

4
½ �c ðzÞ��D

$ðzÞ�c ðzÞ þ ð�$ �Þ� � g��Lq;

(121)

where Lq is the quark part of LqG given in Eq. (61).

Then, since gþþ ¼ 0 we see that

tþþq;belð0Þ ¼
i

2
f �c ð0Þ�þD$þc ð0Þg (122)

so that

Z 1

0
dxx½qðxÞ þ �qðxÞ� ¼ 1

2ðPþÞ2 hPjt
þþ
q;belð0ÞjPi: (123)

Consider, now, the physical interpretation of the left-hand
side of Eq. (123) in the parton model. The parton model is
not synonymous with QCD. It is a picture, a manifestation,
of QCD in the gauge Aþ ¼ 0 and it is in this gauge, and in
an infinite momentum frame that x can be interpreted as the
momentum fraction carried by a quark in the nucleon. But
since Aþ ¼ 0 we have

D
$ þ ¼ @

$þ; ðgauge Aþ ¼ 0Þ (124)

so that for these particular components of the tensors there
is no difference between the canonical and Bellinfante
versions

tþþq;canð0Þ ¼ tþþq;belð0Þ; ðgaugeAþ ¼ 0Þ: (125)

Hence the fraction of longitudinal momentum carried by
the quarks in an infinite momentum frame is given equally

well by either the canonical or Bellinfante versions of the
energy-momentum tensor density.
Let us turn now to the question of the angular momen-

tum and, in particular, to Ji’s relation of the quark angular
momentum to the second moment of certain generalized
parton distributions measurable in deeply virtual Compton
scattering [2]. In the standard notation (see, e.g. the review
of Diehl [26])

1

2

Z dz�

2
eix

�Pþz�hP0j �c ð�z�=2Þ�þWc ðz�=2ÞjPi

¼ 1

2 �Pþ

�
½ �uðP0Þ�þuðPÞ�Hðx; �; tÞ

þ
�
i��

2M
�uðP0Þ�þ�uðPÞ

�
Eðx; �; tÞ

�
; (126)

where

�P ¼ 1
2ðPþ P0Þ; � ¼ P0 � P;

t ¼ �2; �þ ¼ �2� �Pþ;
(127)

and the spinors are normalized to �uu ¼ 2M. Putting
P0 ¼ P, i.e. � ¼ t ¼ � ¼ 0 and comparing with
Eq. (113) one sees that

Hðx; 0; 0Þ ¼ qðxÞ (128)

so that xHðx; 0; 0Þ can be interpreted as the density in x
space of the quark longitudinal momentum.
Now consider the general expression for the off-

diagonal nucleon matrix element of t��
q;belð0Þ. The connec-

tion between these matrix elements and the angular
momentum involves divergent integrals, which have to be
treated carefully using wave packets, as was done correctly
for arbitrary components of J for the first time by BLT
[20], and for this reason we shall use their notation for the
scalar functions that appear in the matrix element of
t��
q;belð0Þ. One has
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hP0; S0jt��
q;belð0ÞjP; Si ¼ ½ �u0��u �P� þ ð�$ �Þ�Dq;belð�2Þ=2�

�
i��

2M
�u0���u �P� þ ð�$ �Þ

�
½Dq;belð�2Þ=2� Sq;belð�2Þ�

þ �u0u
2M

�
1

2
½Gq;belð�2Þ �Hq;belð�2Þ�ð���� ��2g��Þ þM2Rq;belð�2Þg��

�
; (129)

where

u � uðP; SÞ u0 � uðP0; S0Þ: (130)

Note that the termM2Rg�� is only allowed because we are
dealing with a nonconserved density.

Repeating for the generalized parton distributions the
analysis which led to Eq. (123) and bearing in mind
Eq. (126) yields

1

2 �Pþ

�
½ �u0�þu�

Z
dxxHðx;�;tÞþ

�
i��

2M
�u0�þ�u

�

�
Z
dxxEðx;�;tÞ

�
¼ 1

2ðPþÞ2 hP
0;S0jtþþq;belð0ÞjP;Si: (131)

From Eq. (129), remembering that gþþ ¼ 0 and that
�þ ¼ �2� �Pþ, one obtains

hP0; S0jtþþq;belð0ÞjP; Si ¼ ½ �u0�þu �Pþ�½Dq;belð�2Þ
þ �2ðGq;belð�2Þ �Hq;belð�2ÞÞ�

þ
�
i��

2M
�u0�þ�u �Pþ

�

� ½2Sq;belð�2Þ �Dq;belð�2Þ
� �2ðGq;belð�2Þ �Hq;belð�2ÞÞ�:

(132)

Comparing with Eq. (131), taking the limit �! 0 and
writing Dq;bel ¼ Dq;belð�2 ¼ 0Þ, etc., one obtains

Z 1

�1
dxxHðx; 0; 0Þ ¼ Dq;bel; (133)

Z 1

�1
dxxEðx; 0; 0Þ ¼ ð2Sq;bel �Dq;belÞ; (134)

and consequently

Z 1

�1
dxxHðx; 0; 0Þ þ

Z 1

�1
dxxEðx; 0; 0Þ ¼ 2Sq;bel: (135)

Consider now the parton model interpretation of these
expressions. Choosing the gauge Aþ ¼ 0 we have, as
before, tþþq;canð0Þ ¼ tþþq;belð0Þ, so that in Eqs. (133)–(135) we

may put

D q;bel ¼ Dq;can � Dq and Sq;bel ¼ Sq;can � Sq:

(136)

For the case of a longitudinally polarized nucleon mov-
ing at high speed in the Z direction BLT [20] proved that S
measures the Z component of J. Hence Eq. (135) can be
written

Z 1

�1
dxx½Hðx; 0; 0Þ þ Eðx; 0; 0Þ� ¼ 2JzðquarkÞ; (137)

which is the relation first derived by Ji [2].
Note, however, that unlike the case of linear momentum,

it is not obvious that x½Hðx; 0; 0Þ þ Eðx; 0; 0Þ�� can be
interpreted as the x-space density of JzðquarkÞ. Indeed,
Burkardt and Hikmat [27] have shown, in a model, that
Jzðquark; xÞ calculated directly from the nucleon wave
function disagrees with x½Hðx; 0; 0Þ þ Eðx; 0; 0Þ��, whereas
there is perfect agreement when integrated over x.

F. Interacting particles: Photons and gluons

To a large extent the entire controversy concerning the
assigning of angular momentum to quarks and gluons arose
from the long established claim that one cannot split the
angular momentum of a massless gauge particle into an
orbital and spin part in a gauge-invariant way. The two
standard expressions in the literature for the angular mo-
mentum for QED, the canonical and Bellinfante versions,
are

Jcan ¼
Z

d3xc y��5c þ
Z

d3xc y½x� ð�irÞ�c

þ
Z

d3xðE�AÞ þ
Z

d3xEiðx� rAiÞ
¼ ScanðelÞ þ LcanðelÞ þ Scanð�Þ þ Lcanð�Þ (138)

and

Jbel ¼
Z

d3xc y��5c þ
Z

d3xc y½x� ð�iDÞ�c

þ
Z

d3xx� ðE�BÞ
¼ SbelðelÞ þ LbelðelÞ þ Jbelð�Þ: (139)

InJcan only the electron spin term is gauge invariant. InJbel

each of the three terms is gauge invariant, but the photon
angular momentum is not split into a spin and orbital part.
Insisting on being able to split the photon angular mo-

mentum into a spin and orbital part, and on having each
term gauge invariant, Chen et al. [3] arrived at the follow-
ing form:

J chen ¼
Z

d3xc y��5c þ
Z

d3xc y½x� ð�iDpureÞ�c

þ
Z

d3xðE�AphysÞ þ
Z

d3xEiðx� rAi
physÞ

¼ SchenðelÞ þ LchenðelÞ þ Schenð�Þ þ Lchenð�Þ;
(140)
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where Dpure ¼ r� ieApure and the fields Apure and Aphys

were explained in Eqs. (1)–(3) of the Introduction.
Later, Wakamatsu [4] suggested a rearranged version of

Jchen, which retains a gauge-invariant split between the
spin and orbital angular momentum of the photon

Jwak ¼
Z

d3xc y��5c þ
Z

d3xc y½x� ð�iDÞ�c

þ
Z

d3xðE�AphysÞ þ
�Z

d3xEiðx� rAi
physÞ

þ
Z

d3xc yðx� eAphysÞc
�

¼ SwakðelÞ þLwakðelÞ þ Swakð�Þ þLwakð�Þ: (141)

In this version the very last term
R
d3xc yðx� eAphysÞc

has been shifted from Chen et al.’s electron orbital term to
the photon’s orbital angular momentum. We have already
commented that one could do such a rearrangement in an
infinite number of ways by shifting some arbitrary fraction
of this term.

All of the above comments hold equally well for the case
of QCD.

As we have stressed, there is absolutely no need to have
gauge-invariant operators so long as their physical matrix
elements are gauge invariant, as is the case for the canoni-
cal version of the electron spin, the electron orbital angular
momentum and the photon’s total angular momentum.
Moreover we have insisted that an angular momentum
operator should generate rotations, at least in the restricted
‘‘minimal’’ sense defined in Eq. (93). Only the canonical
choice satisfies this requirement. We conclude, in agree-
ment with the paper of Jaffe and Manohar [7], that it is the
terms in the canonical form Jcan which should be inter-
preted as corresponding to the angular momentum of the
electron and photon, respectively. Of course this leaves
open the issue of splitting the photon angular momentum
into spin and orbital parts. This we shall discuss in the next
section.

VII. THE SPINOF THEPHOTONANDTHEGLUON

As has been emphasized for more than half a century it is
true that the canonical photon or gluon spin terms, as a
whole, are not gauge invariant. This we regard as an
inevitable feature of a gauge theory and it has not been
the cause of any problems in the description and calcula-
tion of physical processes involving photons, and more
recently, gluons. However, the projection of the spin terms
onto the direction of the photon’s or gluon’s momentum,
i.e. the photon and gluon helicity, is gauge invariant and it
is this quantity which can be measured and, as we shall
show, is measured in deep inelastic scattering on atoms or
nucleons, respectively.

A. QED

Consider the expression for Scanð�Þ in Eq. (138), which
can be written as

Skcanð�Þ ¼ 1
2	kijS

ij: (142)

In accordance with the analogue of Eq. (103) we may
study its expectation value between states of definite mass
by replacing the fields by their ‘‘in-field’’ versions Thus we
may utilize

Sijin ¼
Z

d3x½Fi0
inðxÞAj

inðxÞ � Fj0
in ðxÞAi

inðxÞ�: (143)

We shall show that the matrix element of the ‘‘in-field’’
helicity operator

H in ¼ ½Skcanð�ÞPk=jPj�in (144)

taken between arbitrary physical states of a photon is gauge
invariant and then relate its matrix elements to the QED
analogue of the polarized gluon density �gðxÞ.
Consider the action of Sijin on a physical photon state of

momentum k and polarization vector �ðk; lÞ corresponding
to polarization along a transverse direction l:

jk; li ¼ ayðk; lÞjvaci: (145)

Provided the operators are normal ordered we have,

Sijinjk; li ¼ ½Sijin; ayðk; lÞ�jvaci: (146)

Then if i and j correspond to directions perpendicular to
k, expressing ayðk; lÞ in terms of the fields as in Sec. 14.4
of [10], and using the equal-time commutators (permitted
because we are dealing with the ‘‘in-field’’ momentum and
angular momentum), gives

½Sijin; ayðk; lÞ� ¼ if	iðk; lÞayðk; jÞ � 	jðk; lÞayðk; iÞg:
(147)

Let us first check that acting on a helicity state, H in, as
given by Eqs. (144) and (142), yields the correct result
when using Eqs. (146) and (147). For simplicity take the
OZ axis along k. Then

H in ¼ ½Scan;zð�Þ�in ¼ S12in ; (148)

and the helicity states are, for � ¼ �1,

jkẑ; �i ¼ ��ffiffiffi
2
p fjkẑ; 1i þ i�jkẑ; 2ig: (149)

Using the fact that 	jðkẑ; 1Þ ¼ �j1, 	
jðkẑ; 2Þ ¼ �j2 one

finds that indeed

H injkẑ; �i ¼ �jkẑ; �i: (150)

To show the gauge invariance of H in we consider its
action on a general physical photon state

j�i ¼
Z

d3k
X
l?k

�lðkÞjk; li; (151)
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where the sum over l refers to directions perpendicular to
k. Then

H inj�i ¼ 1

2

Z
d3k

X
l?k

�lðkÞ k
r

jkj 	rijS
ij
injk; li: (152)

Since i, j and l refer to directions orthogonal to k we may
use the results Eqs. (146) and (147) to obtain

H inj�i ¼ i

2

Z
d3k

X
l?k

�lðkÞ k
r

jkj 	rijf	
iðk; lÞayðk; jÞ

� 	jðk; lÞayðk; iÞgjvaci: (153)

The creation operators in Eq. (153) refer to polarization
directions orthogonal to k, and are thus unaffected by
gauge transformations. Hence the most general matrix
element of H in is gauge invariant.

For QED we now introduce ��ðxÞ, the gauge-invariant
analogue of �gðxÞ, based on the expression for �gðxÞ
given by Manohar [28] and used by Jaffe6 [29], i.e.

��ðxÞ ¼ i

4xPþ
Z

d��e�ix��PþhP; SLjFþ�in ð��Þ
� Ið��; 0Þ ~Fþ�ð0ÞjP; SLi þ ðx! �xÞ; (154)

where Ið��; 0Þ is the Wilson line integral, and jP; SLi is a
longitudinally polarized, fast moving state. The axes are
chosen so that P ¼ ð0; 0; PÞ and we have used Eq. (103) to
replace the fields by their ‘‘in-field’’ versions.

Since the expression in Eq. (154) is gauge invariant we
may evaluate it in the gauge Aþ ¼ 0. Then following the
argument in [29] and integrating over x, we obtain

�� �
Z

dx��ðxÞ

¼ 1

2Pþ
hP; SLjF1þ

in ð0ÞA2
inð0Þ � F2þ

in ð0ÞA1
inð0ÞjP; SLi:

(155)

Consideration of the possible tensorial structure for the
matrix elements indicates that in leading twist

hP; SLjFi0ð0ÞjP; SLi ¼ hP; SLjFi3ð0ÞjP; SLi (156)

so that in leading twist

�� ¼ 1

2E
hP; SLjF10

in ð0ÞA2
inð0Þ � F20

in ð0ÞA1ð0ÞinjP; SLi:
(157)

Now using Eq. (143) one sees that

hP0; SLjS12in jP; SLi ¼ ð2Þ3�ðP0 � PÞhP0; SLjF10
in ð0ÞA2

inð0Þ
� F20

in ð0ÞA1ð0ÞinjP; SLi: (158)

Hence

�� ¼ hP
0; SLjS12in jP; SLi

2Eð2Þ3�ðP0 � PÞ : (159)

But the denominator is just the norm of the state jP; SLi
so that �� indeed measures the expectation value of the
photon helicity operator.

B. QCD

Because we may use the ‘‘in-fields’’ to study the matrix
elements of the gluon helicity between arbitrary states of a
nucleon, there is no essential difference from the photon

case. The expression Eq. (143) for Sijin is simply altered by

adding a color label to the fields and summing over it.
Similarly the expression for �gðxÞ and �g are obtained
from Eqs. (154) and (157) by adding color labels and
summing over them.
Thus �g indeed measures the expectation value of the

gluon helicity in a nucleon.

VIII. CONCLUSIONS

We have argued that there is no need to insist that the
operators appearing in expressions for the momentum and
angular momentum of the constituents of an interacting
system should be gauge invariant, provided that the physi-
cal matrix elements of these operators are gauge invariant.
We have also suggested that the expressions given by Chen
et al. and Wakamatsu for the momentum and angular
momentum operators of quarks and gluons are somewhat
arbitrary and do not satisfy the fundamental requirement
that these operators should generate the relevant infinitesi-
mal symmetry transformations specified in Eqs. (92) and
(93). Demanding that the conditions Eqs. (92) and (93) be
satisfied leads to the conclusion that the canonical expres-
sions for the momentum and angular momentum operators
are the correct and physically meaningful ones.
It is then an inescapable fact that the photon and gluon

angular momentum operators cannot, in general, be split
in a gauge-invariant way into a spin and orbital part.
However, as discussed in detail, the projection of the
photon and gluon spin onto their direction of motion, i.e.
their helicity, is gauge-invariant and is measured in deep
inelastic scattering on atoms or nucleons, respectively.
Although Ji’s expressions for the quark and gluon angu-

lar momenta, which are the Bellinfante versions, do not
conform to the above conditions and thus should not be
considered as measuring arbitrary components of the quark
and gluon momenta and angular momenta, nonetheless, it
turns out that the expectation value of the Bellinfante
operator Jz;belðquarkÞ used by Ji for the longitudinal com-

ponent of the quark angular momentum, which has the nice
property that it can be measured in deeply virtual Compton
scattering reactions, does indeed represent the Z compo-
nent of the angular momentum carried by the quarks in a

6Note that there is a typographical error in the expression for
�gðxÞ in these papers: ~G�

þð0Þ should be ~Gþ�ð0Þ

ELLIOT LEADER PHYSICAL REVIEW D 83, 096012 (2011)

096012-16



nucleon moving in the Z direction, and therefore, Ji’s
definition of the orbital angular momentum as the differ-
ence ½Jz;belðquarkÞ � 1

2 ��MS�, is fine as long as it is appre-
ciated that this applies only to the components along the
motion of the nucleon.
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