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We calculate the quark spin contribution to the total angular momentum of flavor octet and flavor

decuplet ground state baryons using a spin-flavor symmetry based parametrization method of quantum

chromodynamics. We find that third order SU(6) symmetry breaking three-quark operators are necessary

to explain the experimental result �1 ¼ 0:29ð09Þ. For spin 3=2 decuplet baryons, we predict that the quark
spin contribution is �3 ¼ 3:93ð22Þ, i.e. considerably larger than their total angular momentum.
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I. INTRODUCTION

The question how the proton spin is made up from the
quark spin �, quark orbital angular momentum Lq, gluon

spin �g, and gluon orbital angular momentum Lg

J ¼ 1

2
�þ Lq þ �gþ Lg (1.1)

is one of the central issues in nucleon structure physics
[1,2]. In the constituent quark model with only one-body
operators, one obtains J ¼ �=2 ¼ 1=2, i.e., the proton
spin is the sum of the constituent quark spins and nothing
else. However, experimentally it is known that only about
1=3 of the proton spin comes from quarks [3,4]. The
disagreement between the quark model result and experi-
ment came as a surprise because the same model accu-
rately described the related proton and neutron magnetic
moments.

Using a broken SU(6) spin-flavor symmetry based pa-
rametrization of quantum chromodynamics, we show that
the failure of the quark model to describe the quark con-
tribution to proton spin correctly is due to the neglect of
three-quark terms in the axial current. Including third order
SU(6) symmetry breaking three-quark terms, we reproduce
the measured quark contribution to the proton spin and
predict the spin carried by quarks for the remaining flavor
octet and decuplet ground state baryons.

II. SPIN-FLAVOR SYMMETRYAND QCD
PARAMETRIZATION METHOD

We use a general parametrization method developed by
Morpurgo [5] to calculate the quark contribution to baryon
spin in a systematic manner. This method is based on
broken spin-flavor symmetry and quark-gluon dynamics
of quantum chromodynamics (QCD). The basic idea is to
formally define, for the observable at hand, a QCD operator
� and QCD eigenstates jBi expressed explicitly in terms of
quarks and gluons. The corresponding matrix elements

can, with the help of the unitary operator V, be reduced
to an evaluation in a basis of pure three-quark states j�Bi
with orbital angular momentum L ¼ 0

hBj�jBi ¼ h�BjVy�Vj�Bi ¼ hWBj ~�jWBi: (2.1)

The spin-flavor wave functions contained in j�Bi are
denoted by jWBi. The operator V dresses the pure three-
quark states with q �q components and gluons and thereby
generates the exact QCD eigenstates jBi.
The main task is to find the most general expression for

the operator ~� that is compatible with the space-time and
inner QCD symmetries. Usually, this is a sum of one-,
two-, and three-quark operators in spin-flavor space multi-
plied by a priori unknown constants which parametrize the
orbital and color space matrix elements. Empirically, a
hierarchy in the importance of one-, two-, and three-quark
operators is found. This fact can be understood in the 1=Nc

expansion of QCD where two- and three-quark operators
describing second and third order SU(6) symmetry break-
ing are usually suppressed by powers of 1=Nc and 1=N2

c ,
respectively compared to one-quark operators associated
with first order symmetry breaking [6]. Previously, we have
applied this method also to calculate higher order correc-
tions to baryon-meson couplings as well as baryon elec-
tromagnetic moments [7].
To begin with, we show which spin-flavor structures

contribute to the flavor singlet axial current. Generally,

an SU(6) spin-flavor symmetry breaking operator ~�R act-
ing on the 56 dimensional baryon ground state supermul-
tiplet must transform according to one of the irreducible
representations R contained in the direct product [8]

56� 56 ¼ 1þ 35þ 405þ 2695: (2.2)

The 1 dimensional representation (rep) on the right-hand
side of Eq. (2.2) corresponds to an SU(6) symmetric op-
erator, while the 35, 405, and 2695 dimensional reps
characterize, respectively, first, second, and third order
SU(6) symmetry breaking. Therefore, a general SU(6)
breaking operator has the form

~� ¼ ~�1 þ ~�35 þ ~�405 þ ~�2695: (2.3)
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In terms of quarks, the operators on the right-hand side of
Eq. (2.3) are represented, respectively, by zero-, one-, two-,
and three-quark operators [9]. The two- and three-quark
operators are an effective description of quark-antiquark
and gluon degrees of freedom that have been moved from

the QCD eigenstates jBi to the operator ~� by virtue of the
unitary transformation V.

We now decompose each SU(6) tensor ~�R into sub-

tensors ~�R
ðF;2Jþ1Þ with definite transformation properties

with respect to the SUð3ÞF flavor and SUð2ÞJ spin sub-
groups of SU(6). To describe spin, flavor singlet, axial

vector subtensors of type ~�R
ð1;3Þ are required. Denoting

operators by their dimensionalities for simplicity, we
obtain [10,11]

35 ¼ ð8; 3Þ þ ð8; 1Þ þ ð1; 3Þ;
405 ¼ ð27; 5Þ þ ð8; 5Þ þ ð1; 5Þ þ ð27; 3Þ þ ð10; 3Þ

þ ð10; 3Þ þ 2ð8; 3Þ þ ð27; 1Þ þ ð8; 1Þ þ ð1; 1Þ;
2695 ¼ ð64; 7Þ þ ð27; 7Þ þ ð8; 7Þ þ ð1; 7Þ þ ð64; 5Þ

þ ð35; 5Þ þ ð35; 5Þ þ 2ð27; 5Þ þ ð10; 5Þ þ ð10; 5Þ
þ 2ð8; 5Þ þ ð64; 3Þ þ ð35; 3Þ þ ð35; 3Þ þ 3ð27; 3Þ
þ 2ð10; 3Þ þ 2ð8; 3Þ þ ð1; 3Þ þ ð64; 1Þ þ ð27; 1Þ
þ ð10; 1Þ þ ð10; 1Þ þ ð8; 1Þ: (2.4)

Here, the first and second entries in the parentheses refer to
the dimensions of the SUð3ÞF and SUð2ÞJ reps according to
which the corresponding operators transform.

From the flavor-spin decompositions in Eq. (2.4),
it is clear that a flavor singlet axial vector operator ð1; 3Þ
needed to describe baryon spin is contained only in the
35 and 2695 dimensional reps of SU(6) so that we can

write A :¼ ~� ¼ ~�35
ð1;3Þ þ ~�2695

ð1;3Þ . As a result, the flavor

singlet axial vector current contains only a one-quark and
a three-quark term

A ¼ A½1� þA½3� ¼ A
X3
i¼1

�i þ C
X3

i�j�k

�i:�j�k; (2.5)

where �i is the Pauli spin matrix of quark i and the
constants A and C are to be determined from experi-
ment. Two-quark operators, such as

P
i�j�i � �j orP

i�jð�i � �jÞ�i add up to zero or can be reduced to one-

body operators. Therefore, there is no two-quark contribu-
tion to the flavor singlet axial vector current A, in agree-
ment with the general symmetry argument that the 405 rep
does not contain a ð1; 3Þ operator structure.

In Ref. [12], a flavor singlet two-body gluon exchange
current A0 was constructed from the flavor octet axial
current A8 by replacing the Gell-Mann matrix �8 with
the SU(3) flavor singlet matrix �0. From the perspective
of broken SU(6) symmetry, such a two-body exchange
current, which has also been used in Ref. [13], does not
exist.

III. SPIN-FLAVOR WAVE FUNCTIONS

The SU(6) spin-flavor wave functions of octet baryons
are, for example, for the proton in standard notation

jp "i¼ 1ffiffiffi
2

p
�
1ffiffiffi
6

p
��������ð2uud�udu�duuÞ

�

� 1ffiffiffi
6

p
��������ð2 ""#� "#"� #""Þ

�
þ 1ffiffiffi

2
p

��������ðudu�duuÞ
�

� 1ffiffiffi
2

p
��������ð"#"� #""Þ

��
: (3.1)

Alternatively, one can write this wave function as

jp "i ¼ 1ffiffiffiffiffiffi
18

p
��������2u " u " d # �u " u # d " �u # u " d "

þ 2d # u " u " �d " u # u " �d " u " u #
þ 2u " d # u " �u " d " u # �u # d " u "

�
: (3.2)

Likewise, one can write down the spin-flavor wave func-
tions of other octet and decuplet baryons [14].

IV. QUARK SPIN CONTRIBUTION
TO BARYON SPIN

The matrix elements of the quark contribution to
baryon spin can be straightforwardly calculated by sand-
wiching the flavor singlet axial current A of Eq. (2.5)
between SU(6) baryon wave functions, e.g. for the proton
in Eq. (3.2). Our results for the spin 1=2 octet and the spin
3=2 decuplet baryons are

�1 :¼ hB8 " jAzjB8 "i ¼ A� 10C

�3 :¼ hB10 " jAzjB10 "i ¼ 3Aþ 6C;
(4.1)

where B8 (B10) stands for any member of the baryon flavor
octet (decuplet). Here, �i is twice the quark spin contri-
bution to the total baryon angular momentum. We predict
the same quark contribution to the total baryon angular
momentum for all members of a given flavor multiplet
independent of the flavor composition of individual bary-
ons. This is to be expected because we are dealing with a
flavor singlet operator that does not break SU(3) symmetry.
On the other hand, we find that SU(6) symmetry is broken
as reflected by the different expressions for flavor octet and
decuplet baryons.
To calculate the contribution of individual quark flavors

we define one-body u-quark and d-quark operators acting
only on u-quarks and d-quarks as

A u
½1�z ¼ A

X3
i¼1

�u
iz; Ad

½1�z ¼ A
X3
i¼1

�d
iz; (4.2)

with matrix elements between proton wave functions
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�
p "

��������A
X3
i¼1

� u
iz

��������p "
�
¼ 4

3
A;

�
p "

��������A
X3
i¼1

�d
iz

��������p "
�
¼ � 1

3
A:

(4.3)

Adding both contributions gives

�
p "

��������A
X3
i¼1

ð�u
iz þ �d

izÞ
��������p "

�
¼ 4

3
A� 1

3
A ¼ A; (4.4)

in agreement with the first term of Eq. (4.1).
Analogously, three-body u-quark and d-quark operators

are defined as

A u
½3�z ¼ 2Cð� u

1 � � d
2�

u
3z þ � d

1 � � u
2�

u
3z þ � u

1 � � d
3�

u
2z

þ � d
1 � � u

3�
u
2z þ � u

2 � � d
3�

u
1z þ � d

2 � � u
3�

u
1zÞ;

Ad
½3�z ¼ Cð� u

1 � � u
2�

u
3z þ � u

2 � � u
1�

d
3z þ � u

1 � � u
3�

d
2z

þ � u
3 � � u

1�
d
2z þ � u

2 � � u
3�

d
1z þ � u

3 � � u
2�

d
1zÞ;
(4.5)

with matrix elements

hp " jAu
½3�zjp "i ¼ � 28

3
C; hp " jAd

½3�zjp "i ¼ � 2

3
C:

(4.6)

The total three-quark spin contribution to proton spin is

hp " jAu
½3�z þAd

½3�zjp "i ¼ � 28

3
C� 2

3
C ¼ �10C; (4.7)

as it should be according to Eq. (4.1).
Summarizing, we obtain for the u- and d-quark contri-

butions to the spin of the proton

�u ¼ hp " jAu
½1�z þAu

½3�zjp "i ¼ 4

3
A� 28

3
C

�d ¼ hp " jAd
½1�z þAd

½3�zjp "i ¼ � 1

3
A� 2

3
C:

(4.8)

At this point, some remarks concerning our use of
three-quark operators in the calculation of the quark spin
fractions�u and�d are necessary. In the parton model, the
spin fractions carried by the individual quark and antiquark
flavors are defined as

�q ¼
Z 1

0
dxðq " ðxÞ þ �q " ðxÞ � q # ðxÞ � �q # ðxÞÞ: (4.9)

The quark momentum distributions q " ðxÞ and q # ðxÞ de-
note the probability for finding in the nucleon a current
quark of flavor q with momentum fraction x of the total
nucleon momentum and spin parallel or antiparallel to the
proton spin. We stress that the definition of �q in Eq. (4.9)
involves both quark and antiquark distributions. The latter
are denoted by �q " ðxÞ and �q # ðxÞ. The quark momentum
distributions, e.g., q " ðxÞ, can be further decomposed

q " ðxÞ ¼ qval " ðxÞ þ qsea " ðxÞ (4.10)

where qval " ðxÞ and qsea " ðxÞ are the contributions of the
valence and sea-quarks. Thus the quark spin fractions �q
contain not only the contribution of valence quarks qval but
also sea-quarks qsea and sea-antiquarks �qsea [15,16]. In a
noncovariant parameterization method based on two com-
ponent Pauli spinors instead of four component Dirac
spinors, the antiquark degrees of freedom are described
as many-quark operators.
We compare our theoretical results with the combined

deep inelastic scattering and hyperon �-decay experimen-
tal data, from which the following Q2-independent quark
contributions to the proton spin [4] were extracted

�u ¼ 0:83� 0:03;

�d ¼ �0:43� 0:03;

�s ¼ �0:10� 0:03:

(4.11)

The sum of these spin fractions �1exp ¼ �uþ �dþ
�s ¼ 0:29ð09Þ is considerably smaller than expected
from the additive quark model, which gives �1 ¼ 1. We
note that the quark spin contributions in Eq. (4.11) are
obtained from a Q2-independent analysis (second line in
Table XXIX of Ref. [4]). Their extraction from the experi-
mental proton spin structure function g1 requires theoreti-
cal input from a next-to-leading order perturbative QCD
calculation [17]. The latter involves the choice of a facto-
rization scheme on which the extracted spin fractions

depends. In Ref. [4], the MS scheme has been adopted.
In this scheme, the matrix element of the flavor singlet
axial current is equal to the quark spin sum (without a
gluonic contribution) in a Q2-independent form, i.e.,
hpjAzjpi ¼ �1.
We fix the constants A and C as follows. Solving

Eq. (4.8) for A and C, we get

A ¼ 1

6
�u� 7

3
�d; C ¼ � 1

12
�u� 1

3
�d: (4.12)

Inserting the experimental results for �u and �d from
Eq. (4.11), we obtain A ¼ 1:15ð7Þ and C ¼ 0:08ð1Þ.
According to Eq. (4.1), the quark spin contribution to the
total angular momentum of flavor octet baryons is then

�1 ¼ hB8 " jAzjB8 "i ¼ A� 10C ¼ 0:35ð12Þ (4.13)

compared to the experimental result �1exp ¼ 0:29ð09Þ.
Despite the typical 1=N2

c ffi 1=9 suppression of three-quark
compared to one-quark terms, for octet baryon spin, the
three-quark contribution is of the same importance as the
one-quark term because of the factor 10 multiplying the C
term. As a result of the cancellation between the one-quark
and the three-quark terms, one finds that quark spin
contributes only 1=3 of the total octet baryon spin.
As mentioned before, the three-quark term is an effective
description of quark-antiquark and gluon degrees of
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freedom in physical baryons. These degrees of freedom
are also responsible for orbital angular momentum that is
needed to obtain the total baryon spin.

With A and C fixed, we predict the quark spin contribu-
tion to decuplet baryon spin not considered before by other
authors as

�3 ¼ hB10 " jAjB10 "i ¼ 3Aþ 6C ¼ 3:93ð22Þ: (4.14)

It is interesting that for decuplet baryons, quark spins add
up to 1.31 times the additive quark model value 2Sz ¼ 3.
Therefore, while orbital angular momentum must provide
a positive contribution for octet baryons, it must reduce
the quark spin in the case of decuplet baryons. This may be
related to the different geometric shapes of octet and
decuplet baryons as revealed by their different intrinsic
quadrupole moments [7].

V. SUMMARY

In summary, we have presented a straightforward calcu-
lation of the quark spin contribution to the total angular
momentum of ground state baryons using a spin-flavor
symmetry based parametrization of QCD. For flavor octet
baryons, we have shown that three-quark operators modify
the standard quark model prediction based on one-quark

operators from �1 ¼ 1 to �1 ¼ 0:35ð12Þ in agreement
with the experimental result. On the other hand, in the
case of flavor decuplet baryons, three-quark operators
enhance the contribution of one-quark operators from
�3 ¼ 3 to �3 ¼ 3:93ð22Þ.
In this paper, our concern has been with the quark spin

contribution to baryon total angular momentum. There are
two further contributions, the orbital angular momentum of
the quarks and the gluon contributions. Concerning gluon
spin �g, different experiments agree that it is too small
to explain the total proton angular momentum [18].
Furthermore, it has been shown that gluon orbital angular
momentum Lg is very small as well [19]. Quark orbital

angular momentum Lq has recently been investigated by a

number of authors [20–22]. We do not attempt to discuss
these contributions here, because it would detract from our
main theme. We hope to address this issue in a future
publication.
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