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We investigate the (partial) chiral restoration at finite temperature ðTÞ under the strong external

magnetic field B ¼ B0ẑ of the SU(2) light-flavor QCD matter. To this end, we employ the instanton-

liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the

magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e.

the average instanton size ð ��Þ and interinstanton distance ð �RÞ, as functions of T. In addition, we include

the meson-loop corrections as the large-Nc corrections because they are critical for reproducing the

universal chiral-restoration pattern. We present the numerical results for the constituent-quark mass as

well as chiral condensate, which signal the spontaneous breakdown of chiral-symmetry (SB�S), as

functions of T and B0. From our results we observe that the strengths of those chiral order parameters are

enhanced with respect to B0 due to the magnetic-catalysis effect. We also find that there appears a region

where the u and d-quark constituent masses coincide with each other at eB0 � ð7–9Þm2
�, even in the

presence of the explicit isospin breaking (mu � md). The critical T for the chiral restoration Tc tends to

shift to the higher temperature in the presence of the B0 for the chiral limit but keeps almost stationary for

the physical quark mass case. The strength of the isospin breaking between the quark condensates is also

explored in detail by defining the ratio R � ðhiuyui � hidydiÞ=ðhiuyui þ hidydiÞ, which indicates the

competition between the explicitly isospin-breaking effect and magnetic-catalysis effect. We also compute

the pion weak-decay constant F� and pion mass m� below Tc, varying the strength of the magnetic field,

showing correct partial chiral-restoration behaviors. Besides we find that the changes for the F� and m�

due to the magnetic field is relatively small, in comparison to those caused by the finite T effect.
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I. INTRODUCTION

Studies on the breakdown of symmetries and their re-
storations have been very useful in the analysis of phe-
nomena related to phase transitions. Such studies applied
to Quantum Chromodynamics (QCD) are particularly fas-
cinating since QCD owns a very complicated phase struc-
ture. Among them, the (partial) restoration of chiral
symmetry at finite temperature (T) and/or quark chemical
density (�) has been one of the most interesting and
stimulating subjects for decades. A great number of theo-
retical and experimental endeavors have been devoted to
this subject. In particular, the high-T and low-� region,
which resembles the early universe, shows a very noble
feature of the restoration pattern. Namely, there is a cross-
over phase transition for the nonzero current-quark mass
(mf) and that of the second-order for mf ¼ 0. These dis-

tinctive patterns of the phase transition are consistent with
the universal-class argument of the three-dimensional Ising
model [1] and turns out to be highly nontrivial in QCD
[2,3]. Moreover, the critical endpoint (CEP) [4,5], tricrit-
ical point (TCP) [6], the critical chiral phase transition on
the T-� plane have been also attracting much interest.

Recently, together with the energetic progress for the
heavy-ion-collision (HIC) experiment facilities, such as
the relativistic heavy-ion collider (RHIC) and large hadron
collider (LHC), one can now probe hot and dense QCD
matters, i.e. quark-gluon plasma (QGP), experimentally. It
has been reported that very strong magnetic field in the
order of the several times ofm2

�½GeV2� can be produced in
the noncentral (peripheral) HIC experiment by STAR col-
laboration at RHIC [7,8]. According to this strong mag-
netic field and CP-violating domains created inside the
QGP, signals for possible P and CP violations were ob-
served as the charge separation along the direction of the
external magnetic field, which is perpendicular to the
collision plane. Theoretically, this phenomenon is nothing
but the axial anomaly of electromagnetic currents [7–16].
The charge separation at relatively low T has been already
investigated within the instanton-vacuum framework by
one of the authors (S. i. N.) [17–19], in which related works
and references can be found. Actually even before this sort
of studies receiving much more interest recently due to the
energetic progress of the HIC physics, QCD under mag-
netic field had been an important subject [20–24]. Inside
QCD matter in the presence of the external magnetic field,
the spins of the quarks are aligned along the direction of
induced magnetic field according to their helicities. As a
result, the quark-antiquark pair couples strongly, i.e. which
is a phenomena denoted by the magnetic catalysis [21,25].
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Hence, taking into account that the order parameter of the
spontaneous breakdown of chiral symmetry (SB�S) is the
chiral (quark) condensate h �qqi, one can observe that SB�S
will be enhanced by the presence of the external magnetic
field. Accordingly there appear specific consequences as
(1) the enhancement of the critical T for SB�S, Tc, (2) the
increase of constituent-quark mass, and (3) modifications
in the low-energy constants (LEC). In the present work, we
will address to all of these interesting consequences. To
date, there have been many related works, for instance,
from the Nambu-Jona-Lasinio (NJL) model [20,21], holo-
graphic QCD [26,27], lattice QCD simulations [28], linear
sigma model [29], Polyakov-loop inspired model [30], and
so on.

In the present work, we want to investigate the (partial)
chiral restoration under the strong external magnetic field
in QCD matter. For this purpose, we employ the instanton-
liquid model, modified by the Harrington-Shepard caloron
solution finite T [31]. Although this approach does not
manifest the quark confinement, such as the nontrivial
holonomy caloron, i.e. the Kraan-van Baal-Lee–Lu calo-
ron [32,33], as shown in Refs. [17–19,24,34], it is a useful
nonperturbatve method to study QCD matter at finite T. To
include the external magnetic field, we make use of the
linear Schwinger method [17,18,35]. Besides we also take
into account the meson-loop corrections (MLC) for the SU
(2) light-flavor sector as the large-Nc corrections. MLC is
essential to reproduce the correct current-quark mass de-
pendence of relevant physical quantities [36] and
universal-class chiral-restoration pattern at finite T [24].

Our numerical results show that the chiral order
parameters, such as the constituent-quark mass and chiral
condensate, are enhanced with respect to B0 due to the
magnetic-catalysis effect. There is a region where the u-
and d-quark constituent masses coincide at eB0 �
ð7–9Þm2

�, even for the explicit isospin-symmetry breaking,
i.e. mu � md. The critical T for the chiral restoration Tc

tends to be shifted higher pronouncedly in the presence of
the B0 in the chiral limit. On the contrary Tc keeps almost
stationary for the physical quark mass case. The strength of
the isospin breaking between the u and d quark conden-
sates is also explored in detail by defining the ratio
R � ðhiuyui � hidydiÞ=ðhiuyui þ hidydiÞ as a function
of T and B0. Finally, we compute the pion weak-decay
constant F� and pion mass m� below Tc as functions of T
and B0, showing correct partial chiral-restoration behav-
iors. Our result also shows the changes of the F� and m�

due to the magnetic field are relatively small in comparison
to those caused by the finite T effect.

The present work is structured as follows: In Sec. II,
we make a brief introduction of the basic instanton-
liquid model at vacuum without MLC and explain typical
procedures to compute relevant quantities for further
discussions. In Sec. III, we consider the inclusion of the
MLC and the external magnetic field. The T-dependent

modification of the instanton parameters using the
Harrington-Shepard caloron is given in Sec. IV. Taking
into account all the ingredients in the previous Sections,
we derive the expressions for the saddle-point equation and
chiral condensate as functions of T and B0 in Sec. V.
Section VI is devoted to presenting numerical results and
associated discussions including the analysis of the pion
properties at finite T and B0. Summary and conclusion are
given in Sec. VII.

II. E�A IN THE LEADING ORDEROF THE LARGE
Nc EXPANSION IN VACUUM

We start by making a brief introduction for the
instanton-liquid model in vacuum. This theoretical frame-
work is characterized by the average of the inter-(anti)
instanton distance �R � 1 and that of the (anti)instanton
size �� � 1=3 fm [37,38]. The effective chiral action
(E�A) in the leading order (LO) of the 1=Nc expansion
can be written in Euclidean space as follows:

S eff½mf�¼CþN ln�þ2�2

�
Z d4k

ð2�Þ4 Trc;f;� ln
�
kþ i½mfþMðkÞ�

kþ imf

�
; (1)

where C, N , �, �, and mf correspond to an irrelevant

constant for further discussions, the instanton-number den-
sity (packing fraction), the Lagrangian multiplier to expo-
nentiate the 2Nf-’t Hooft interaction, the saddle-point

value of the chiral condensate, and current-quark mass
for the flavor f for the SU(2) light-flavor sector. The
Trc;f;� indicates the trace over the color, flavor, and

Lorentz indices. Detailed explanations on these
instanton-related quantities are given in Refs. [37,38]. In
this picture quarks are moving inside the (anti)instanton
ensemble and flipping their helicities. It results in that
(anti)quarks acquire the momentum-dependent effective
masses dynamically, i.e. constituent-quark masses.
Assuming that the zero modes dominate the low-energy
phenomena, we can write the Dirac equation for a quark for
the (anti)instanton background as follows:

ði6@þAI �IÞ�I �I ¼ 0; (2)

where AI �I and�I �I denote, respectively, the singular-gauge
(anti)instanton solution and eigen function of the Dirac
equation in the coordinate space [38]. By performing
Fourier transformation of the �I �I, one is led to a
momentum-dependent effective quark mass:

MðkÞ � Ma ¼ MfF
2ðkÞ;

FðkÞ ¼ 2t

�
I0ðtÞK1ðtÞ � I1ðtÞK0ðtÞ � 1

t
I1ðtÞK1ðtÞ

�
;

t � jkj ��
2

;

(3)
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where Mf stands for the constituent-quark mass for each

flavor f, Kn and In are the modified Bessel functions [37].
Note that the FðkÞ can be interpreted as a quark distribution
and plays the role of a natural UV regulator. Hence, in the
instanton approach, UV divergences are regularized by
construction without inserting any artificial form factors
by hand. In practice, it is much easier to employ a parame-
trized form of the FðkÞ as in Refs. [17–19]:

FðkÞ ¼ 2

2þ k2 ��2
: (4)

From the E�A we derive the following self-consistent
(saddle-point) equations. They are used to determine rele-
vant quantities such as the constituent-quark mass Mf at

zero-momentum transfer k2 ¼ 0 in Eq. (3):

@Seff½mf�
@�

¼ 0;
@Seff½mf�

@�
¼ 0: (5)

Similarly the chiral condensate can be computed by differ-
entiating the E�A with respect to mf:

� 1

Nf

@Seff½mf�
@mf

¼ hiqyqi: (6)

From the first equation in Eq. (5) and (6), one obtains the
expressions for the LO contributions for the instanton-
number density and the chiral condensate as functions of
mf as follows:

N LO ¼ 2NcNf

Z d4k

ð2�Þ4
�
Ma

�Ma

k2 þ �M2
a

�
;

hiqyqiLO ¼ 4Nc

Z d4k

ð2�Þ4
� �Ma

k2 þ �M2
a

� mf

k2 þm2
f

�
:

(7)

Here we define �Ma ¼ mf þMa. The value of N LO is

determined from the parameter �R and its phenomeno-
logical value is �ð200 MeVÞ4 [37]. At the chiral limit
mf ¼ 0, one solves the first equation of Eq. (7) self-

consistently. The value of Mf turns out to be about

325 MeV. It is well consistent with the constituent-quark
mass employed in usual quark models, i.e. 3Mf �
Mnucleon. Applying this value of Mf into the second

equation, we have hiqyqi � �h �qqi � ð235 MeVÞ3 for
the SU(2) light-flavor sector. Again, this value of the
chiral condensate is well matched with phenomenologi-
cally accepted ones.
In contrast to these seemingly successful numerical

results for the chiral limit, the LO results for the Mf

with finite mf is considerably deviated from the available

LQCD data [17–19]. In Refs. [36,39], it was suggested
that the correct mf dependence of Mf can only be

achieved by the inclusion of the MLC which is related
to the next-to-leading order (NLO) of the large-Nc

corrections. It has been also discussed that this NLO
contributions play a critical role to reproduce the appro-
priate universal-class pattern of the chiral restoration as a
function of T [19]. Consequently we will discuss the
inclusion of the MLC and the magnetic field in the next
Section.

III. E�A WITH MLC AND B FIELD

Here we use a standard functional method [36,39] to
tackle the MLC corresponding to the large-Nc corrections.
Taking into account the mesonic fluctuations around their
saddle-point values, one can write the E�A via a standard
functional method as follows:

S eff½mf� ¼ CþN ln�þ 2�2 �
Z d4q

ð2�Þ4 Trc;f;� ln
�
ka þ i �Ma

ka þ imf

�
LO

þ 1

2

X4
i¼1

Z d4k

ð2�Þ4 ln

�
1� 1

4�2

Z d4k

ð2�Þ4 Trc;f;�

�
Ma

ka þ i �Ma

�i

Mb

kb þ i �Mb

�i

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NLO

; (8)

where �i ¼ ð1; �5; i�; i��5Þ relates to the fluctuations from
the isoscalar-scalar, isoscalar-pseudoscalar, isovector-
scalar, and isovector-pseudoscalar mesons with the Pauli
matrix denoted by �. As for the saddle-point values, we
integrated out all the meson contributions except for the
scalar one which signals for the SB�S. For more details for
Eq. (8) can be found in Refs. [36,39]. The ka and kb denote
k and kþ q, respectively.

To study the impact of the external electric and magnetic
(EM) field on the QCD matter we need embed the external
EM field in the E�A. Since we are only interested in the

external magnetic field, assuming that it is static and
aligned along the z axis as B ¼ B0ẑ, we can choose the
EM field configuration as follows:

A� ¼
�
�B0

2
y;
B0

2
x; 0; 0

�
: (9)

This EM field configuration in Eq. (9) makes the field-
strength tensor, satisfying B0 ¼ F12. Employing the linear
Schwinger method [17,18,35], one can write the E�A in
Eq. (8) as a function of the EM field strength:
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Seff½mf;F���

�CþN ln�þ2�2
F�

Z d4k

ð2�Þ4 Trc;f;� ln
�
Kaþ i �MA

Kaþ imf

�

þ1

2

X4
i¼1

Z d4q

ð2�Þ4 ln
�
1� 1

4�2
F

Z d4k

ð2�Þ4 Trc;f;�

�
�

Ma

kaþ i �Ma

�i

Mb

kbþ i �Mb

�i

��
: (10)

Here, the subscript F denotes the quantities under the
external EM field. In Eq. (10), we use the notation K� ¼
k� þ efA�. Here ef ¼ Qfe; here e is the electric charge of

the proton. Note that we have assumed that the NLO part is
not modified by the external EM field, since the EM
contribution from the NLO is small in comparison to the
leading one. In the presence of the external EM field,
the quark propagator is modified and approximated as
[17,18,40]

1

Kaþ i �Ma

�Ka� i½ �MaþefNað� �FÞ�
k2aþ �M2

a

þOðQn�3
f Þ; (11)

where we have ignored the terms proportional toOðQn�3
f Þ,

taking into account that ðQu;QdÞ ¼ ð2=3;�1=3Þ. The rele-
vant mass functions are also defined by the following
expressions:

�Ma ¼ mf þMa ¼ mf þMf

�
2

2þ k2a ��
2

�
2
;

Na ¼ � 4Mf ��
2

ð2þ k2a ��
2Þ3 :

(12)

From Eq. (10), the LO contributions for the instanton-
number density N in Eq. (5) and chiral condensate in
Eq. (6), in the presence of the external magnetic field, can
be derived up to OðQ2

fÞ:

N LO;F¼2NcNf

Z d4k

ð2�Þ4
�
Ma

�Ma

k2aþ �M2
a

þ 2N2
aB2

f

k2aþ �M2
a

�
;

hiqyqiLO;F¼4Nc

Z d4k

ð2�Þ4
� �Ma

k2aþ �M2
a

� mf

k2aþm2
f

�
;

(13)

where we assigned Bf as efB0 ¼ QfðeB0Þ for simplicity,

and the terms proportional to OðQfÞ do not appear in the

N LO;F, due to Tr�ð� � FÞ ¼ 0. If B0 ¼ 0, the expressions

for the N and chiral condensate in Eq. (13) recover those
for vacuum given in Sec. II. Note that, although we do not
have the explicit terms / B2 for the chiral condensate as
far as we employ the quark propagator in Eq. (11), the
condensate depends on the magnetic field because the Mf

itself does implicitly. Moreover, the constituent-quark
mass under the external magnetic field, which is deter-
mined from the saddle-point equation in the first line of
Eq. (13), becomes different for the two flavors u and d, i.e.
Mu;F � Md;F. It is because of that they behave distinctively

according to their electric charges. Similarly the chiral
condensate also becomes flavor-dependent as shown in
the second line of Eq. (13). Here is one caveat: For all
the ingredients discussed so far, we have assumed that the
instanton-packing fraction, N , is immune from the exter-
nal magnetic field as well as the flavor degrees of freedom
by considering that the (anti)instanton is electrically neu-
tral and nonflavored object.
It is worth mentioning the differences between our

theoretical framework and other chiral models. For in-
stance, using the NJL model, Refs. [20,21] obtained the
magnetic-field dependent effective action. Most apparent
difference between the present approach and theirs is how
to regularize the UV divergence appearing in relevant
physical quantities. The UV divergence is regularized by
the nonlocal quark-instanton interaction in the present
approach [see the quark form factors given in Eqs. (3) and
(4)], whereas the regularization is achieved by adding and
subtracting the lowest-Landau level (LLL) and the vacuum
contribution of the chiral order parameters in the NJL
model [20,21]. In this sense, in our approach, all the
Landau levels are taken into account by construction in
principle. Hence we do not need any specific analytic
manipulations. A more detailed discussions on this regu-
larization process based on the Landau level for the chiral
models is given in Ref. [41], where the highest levels are
naturally cut off, since the constituent mass at large mo-
menta is suppressed when the magnetic becomes strong.
The numerical value for �F in Eq. (13) is obtained from

the relation �2 ¼ N =2 in the LO contributions as in
Ref. [34]. Thus, using the LO part in the right-hand side
of Eq. (13), we can write as follows:

�2
F ¼ N LO;F

2
þ NLO contributions � N LO;F

2
; (14)

where we have rather safely ignored the NLO ones for the
numerical calculations, since the NLO contributions are
finite but much small in comparison to the LO one. By
doing this, one can express the �2

F simply as a function of
the external magnetic field. Considering all the ingredients
discussed so far, we write theN containing both of the LO
and NLO (MLC) contributions, using Eq. (14):

N � 2NcNf

Z d4k

ð2�Þ4 ½F1ðkÞ þ F2ðkÞB2
f�

þ 3

2

R d4q
ð2�Þ4

d4k
ð2�Þ4 F3ðk; qÞR

d4k
ð2�Þ4 ½F1ðkÞ þ F2ðkÞB2

f�
; (15)

where the reduced functions F1–3 are defined as
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F1ðkÞ¼Ma
�Ma

D2
a

; F2ðkÞ¼2N2
a

D2
a

;

F3ðk;qÞ¼
MaMb½ka �kbþ �Ma

�MbþMaMbþmf

2 ðMaþMbÞ�
D2

aD
2
b

:

(16)

Here, we have used the notations D2
a;b ¼ k2a;b þ �M2

a;b.

Similarly, the chiral condensate can be evaluated from
Eq. (6) as follows:

hiqyqiLOþNLO;F�4Nc

Z d4k

ð2�Þ4 ½G1ðkÞþG2ðkÞ�

þ 3

2Nf

R d4q
ð2�Þ4

d4k
ð2�Þ4G3ðk;qÞR

d4k
ð2�Þ4 ½F1ðkÞþF2ðkÞB2

f�
: (17)

Here, the functions G1–3 are assigned as

G1ðkÞ¼
�Ma

D2
a

; G2ðkÞ¼�mf

D2
0

;

G3ðk;qÞ¼MaMbð �Maþ �MbÞ
D2

aD
2
b

;

(18)

whereD2
0 ¼ k2 þm2

f. It is interesting to see from Eqs. (13)

and (17) that, if the isospin symmetry is almost intact,
mu � md, the difference between the condensates of the
two flavors, i.e hiuyui � hidydi, becomes negligible for
the case with B ¼ 0. However, as the strength of the
magnetic-field increases, the difference is also proportional
to ðe2u � e2dÞB2

0. For a better look on the isospin breaking

effect, we define a quantity indicating the strength of the
isospin breaking effect as follows:

R � hiuyui � hidydi
hiuyui þ hidydi : (19)

We also note that the ratio R is deeply related to the low-
energy constant of the �PT Lagrangian, h3 [42,43].

IV. INSTANTON PARAMETERS AT FINITE T

To investigate the physical quantities in hand at finite T,
we want to discuss briefly how to modify the instanton
parameters, �� and �R, at finite T. We will follow our
previous work [34] and Refs. [31,44] to this end. Usually,
there are two different instanton configurations at finite T,
being periodic in Euclidean time, with trivial and nontrivial
holonomies. They are called the Harrington-Shepard [31]
and Kraan-van Baal-Lee-Lu calorons [32,33], respectively.
The nontrivial holonomy can be identified as the
Polyakov line as an order parameter for the confinement-
deconfinement transition of QCD. However, since we are
not interested in the confinement-deconfinement transition
in the present work, we choose the Harrington-Shepard
caloron for the parameter modifications at finite T. We

write the instanton distribution function at finite T with
the Harrington-Shepard caloron as follows:

dð�;TÞ¼CNc
�b

RS	̂
Nc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

�b�5 exp½�ðANc
T2þ �	�N ��2Þ�2�:

(20)

Here, the abbreviated notations are also given as

	̂ ¼ �b ln½�RS�cut�; �	 ¼ �b ln½�RShRi�;

CNc
¼ 4:60e�1:68
RSNc

�2ðNc � 2Þ!ðNc � 1Þ! ;
(21)

ANc
¼ 1

3

�
11

6
Nc � 1

�
�2; � ¼ 27

4

�
Nc

N2
c � 1

�
�2;

b ¼ 11Nc � 2Nf

3
; N ¼ N

V
:

(22)

Note that we defined the one-loop inverse charge 	̂ and �	
at a certain phenomenological cutoff value �cut and
hRi � �R. As will be shown, only �	 is relevant in the
following discussions and will be fixed self-consistently
within the present framework. �RS stands for a scale
depending on a renormalization scheme, whereas V3 stands
for the three-dimensional volume. Using the instanton
distribution function in Eq. (20), we can compute the
average value of the instanton size, ��2, straightforwardly
as follows [45]:

�� 2ðTÞ ¼
R
d��2dð�; TÞR
d�dð�; TÞ

¼ ½A2
Nc
T4 þ 4� �	�N �1=2 � ANc

T2

2 �	�N
; (23)

where � ¼ ðb� 4Þ=2. Substituting Eq. (23) into Eq. (20),
the distribution function can be evaluated further as

dð�; TÞ ¼ C�b�5 exp½�MðTÞ�2�;

MðTÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ � �	�N

�
1=2

:
(24)

The instanton-number density N can be computed
self-consistently as a function of T, using the following
equation:

N 1=�MðTÞ ¼ ½C�ð�Þ�1=�; (25)

where we have replaced NT=V3 ! N , and �ð�Þ indicates
a � function with an argument �. Note that C and �	 can be
determined easily using Eqs. (23) and (25), incorporating
the vacuum values of the N and ��: C � 9:81� 10�4 and
�	 � 9:19. At the same time, using these results, we can
obtain the average instanton size �� as a function of T with
Eq. (23).
Finally, in order to estimate the T dependence of the

constituent-quark mass Mf, it is necessary to consider the

normalized distribution function, defined as follows:
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dNð�; TÞ ¼ dð�; TÞR
d�dð�; TÞ ¼

�b�5M�ðTÞ exp½�MðTÞ�2�
�ð�Þ :

(26)

Now, we want to employ the large-Nc limit to simplify the
expression of dNð�; TÞ. Since the parameter b is in the
order ofOðNcÞ as shown in Eq. (21), it becomes infinity as
Nc ! 1, and the same is true for �. In this limit, as
understood from Eq. (26), dNð�; TÞ can be approximated
as a � function [37]:

lim
Nc!1dNð�; TÞ ¼ �ð�� ��Þ: (27)

Remember that the constituent-quark mass can be repre-
sented by [37]

Mf /
ffiffiffiffiffiffiffi
N

p Z
d��2�ð�� ��Þ ¼

ffiffiffiffiffiffiffi
N

p
��2; (28)

where N and �� are functions of T implicitly. We can
modify Mf as a function of T as follows:

Mf ! Mf

� ffiffiffiffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffi
N 0

p ��2

��2
0

�
� MfðTÞ; (29)

where N 0 and ��0 are those at T ¼ 0. The numerical
results for the normalized ��= ��0 and N =N 0 as functions
of T are in the left panel of Fig. 1. As shown there, these
quantities are decreasing with respect to T as expected:
decreasing instanton effect. However, even beyond T�

c �
�QCD � 200 MeV, the instanton contribution remains fi-

nite. In the right panel of Fig. 1, we draw the quark mass as
a function of T and absolute value of three momentum of a
quark jkj:

Mðk2; TÞ ¼ MfðTÞ
�

2

2þ ��2ðTÞk2
�
: (30)

Note that we have ignored the Euclidean-time component
of the four momentum by setting k4 ¼ 0. This tricky treat-
ment simplifies the calculations in hand to a large extent,
and we also verified that only a small deviation appears in
comparison to the full calculations. Moreover, �� in
Eq. (30) is now a function of T as demonstrated by
Eqs. (23) and (29) previously. As shown in the figure,
Mðjkj; TÞ is a smoothly decreasing function of T and jkj,
indicating that the effect of the instanton is diminished.
Here, we choose Mf ¼ 325 MeV at T ¼ 0 in drawing the

curve as a trial. For more details, one can refer to the
previous work [34].

V. E�A WITH MLC AND EXTERNAL MAGNETIC
FIELD AT FINITE T

In this section, we generalize our model to the finite
temperature to explore the chiral restoration at finite T. For
this purpose, we employ the Matsubara formula for the
fermions. In this Euclidean-time description, it can be done
by replacing the four-dimensional integral measure in the
E�A into a three-dimensional one with a summation over
the fermionic Matsubara frequency, wm ¼ ð2mþ 1Þ�T:

Z d4k

ð2�Þ4 ! T
X1

m¼�1

Z d3k

ð2�Þ3 : (31)

Using this simple replacement we can rewrite the saddle-
point equation in Eq. (15) as follows:

N � 2NcNf

Z d3k

ð2�Þ3 ½F 1ðkÞ þF 2ðkÞB2
f�

þ 3�

4�

R d3q
ð2�Þ3

d3k
ð2�Þ3 ½F 3ðk; qÞ þF 4ðk; qÞ�R

d3k
ð2�Þ3 ½F 1ðkÞ þF 2ðkÞB2

f�
: (32)

Summing over the Matsubara frequency, we define func-
tions F i as follows:
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FIG. 1 (color online). Normalized ��= ��0 and N =N 0 as a function of T for Nc ¼ 3, where N � N=V (left). The Mðk2; TÞ in Eq.
(30) as a function of T and absolute value of the momentum jkj (right).
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F i � T
X
m

Fi: (33)

The analytic expressions for those functions are given in
the Appendix. Note that the above equation recovers the
expression of Eq. (16) in Ref. [24] when B ¼ 0. Before
going further, it is worth mentioning several assumptions
made for deriving Eq. (32):

(i) The instanton-packing fraction, N is a decreasing
function of T indicated by the previous Section.
However, we assume that the N is not affected by
the external magnetic field, since the (anti)instantons
are electrically neutral. Moreover, the immunity of
N to flavors are assumed.

(ii) In the momentum-dependent quark mass Ma;b, we

replace k2 into k2, ignoring the temporal term /
k4 ¼ ð2mþ 1Þ�T. We verified that this treatment
makes the numerical calculations much simpler, and
only small deviation was observed in comparison to
the full calculations. Hence, the mass-related func-
tions in Eqs. (4) and (12) are redefined as follows:

Ma¼
4Mf

ð2þk2 ��2Þ2 ; Na¼� 4Mf ��
2

ð2þk2 ��2Þ3 : (34)

As for the Mb and Nb, we replace k with kþ q.
(iii) Similarly, the term ka � kb ¼ k2 þ k � q in the func-

tions of Fi and Gi is replaced by w2
m þ k2 þ k � q.

Moreover, the denominator is also replaced by
D2

a;b ¼ w2
m þ k2a;b þ �M2

a;b.

(iv) We also replace the integral variable q4, which
corresponds to the fourth-component of the pion
momentum, into an additional parameter � as in
Ref. [36]. Since the isovector-pseudoscalar meson,
i.e. pion dominates the meson fluctuations, it is
reasonable to set the cutoff � proportional to m�

as follows:

� � m�

��0

��
: (35)

Note that, in the above equation, we have multi-
plied a factor ��0= �� to m� in order to include T
dependence of the cutoff mass. Moreover, this
multiplication factor represents a correct chiral-
restoration pattern of m�, i.e. the mass of the
pion, as a Nambu-Goldstone (NG) boson increases
as SB�S restored partially.

Similarly the chiral condensate in Eq. (17) reads

hiqyqi � 4Nc

Z d3k

ð2�Þ3 ½G1ðkÞ þG2ðkÞ�

þ 3�

4�Nf

R d3q
ð2�Þ3

d3k
ð2�Þ3 G3ðk; qÞR

d3k
ð2�Þ3 ½F 1ðkÞ þF 2ðkÞB2

f�
: (36)

Again, the relevant functionsGi � T
P

mGi are defined and
given in the Appendix.

VI. NUMERICAL RESULTS

We present and discuss our numerical results in this
Section. We choose �R � 1:0 fm and �� � 0:34 fm which
give Mf � 315 MeV in the present framework [43]. The

values for the current-quark mass are reported as mu ¼
ð1:7–3:3Þ MeV and md ¼ ð4:1–5:8Þ MeV [46]. Thus, we
take the average values, ðmu;mdÞ � ð2:5; 5Þ MeV. For
simplicity we introduce an positive integer n. The mag-
netic field is assigned in terms of the pion mass as eB0 ¼
nm2

�. In the Gauss unit for the magnetic field, we have the
convention, B0 � nð1:2� 1018Þ G. For instance, n � 1
corresponds to a neutron star or magnetar with very strong
magnetic field. The case with n � 10 or more may be
observed inside the quark-gluon plasm created in the ultra
high-energy peripheral heavy-ion collisions, such as RHIC
and LHC, as the main source for the nontrivial QCD
vacuum effect, i.e. chiral magnetic effect [7–16].

A. Constituent-quark mass for each flavor: Mf

Here we present the numerical result of the T and B0

dependencies of the constituent-quark mass Mf which is

one of the order parameters for the (partial) chiral restora-
tion. According to the universal class of the restoration
pattern, as for the chiral limit mu;d ¼ 0, the restoration

pattern shows the second order, whereas it becomes the
crossover for the case with the physical quark mass, i.e.
mu;d ¼ ð2:5; 5Þ MeV. In our previous work [24], the MLC

contributions, as the large-Nc corrections, play a critical
role to reproduce the universality in an appropriate manner.
Similar observation was also reported in Ref. [47]. Here we
study the impact of the external magnetic field on the two
light-flavor QCD matter at finite T.
In Fig. 2, we depict the results of theMf at T ¼ 0 for the

chiral limit in the panel (A) and physical quark mass case
in the panel (B). In the absence of the magnetic field
(n ¼ 0), we have Mu;d ¼ 315:02 MeV for the chiral limit

and Mu;d ¼ ð316:16; 317:04Þ MeV for the physical quark

mass. Accounting for mu < md and that the constituent-
quark mass becomes Mu;d �Mf þmf, the observed re-

sults can be easily understood. As the external magnetic
field emerges the constituent-quark mass becomes heavier.
It is due to the magnetic catalysis. Since the effects of the
magnetic catalysis is proportional to e2f as in Eqs. (32) and

(36), the Mu grows rapidly more than the Md with respect
to the external magnetic field, i.e. e2u > e2d. Beyond n ¼
ð17–18Þ, the curve for theMu starts decreasing slightly. It is
interesting to see that, for the physical quark mass case in
the panel (B), there appears a point at which theMu andMd

coincide each other (n � 7:5). It is because that the broken
isospin symmetry (mu � md) is compensated by the effect
from the external magnetic field. From our results, this
interesting phenomena appears at the magnetic field B0 �
1019 G, which can be created at the heavy-ion collision
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experiments. Beyond this point, the ordering of the u- and
d-quark constituent masses are reversed.

Here, we want to discuss briefly the saturation behavior
of the constituent-quark mass observed in the panel (A)
and (B) beyond n � 15 for theMu. This can be understood
as follows: As discussed in the previous Sections (see
Eq. (11) for instance), we have taken into account the
contributions up to OðQ2

fÞ. Hence, as for the stronger

magnetic fields, higher-order contributions which are not
included in the present work will be no longer negligible.
Accordingly, we verified that this saturation behavior be-
comes weaker in the presence of higher-order contribu-
tions. Nevertheless, the complete and systematic treatment
of those higher-order terms is left for the future work.

In the panel (C) and (D) the results for the case at T ¼
50 MeV are demonstrated. Note that, for all the cases, the
absolute values for theMf decrease in comparison to those

at T ¼ 0. But the shapes and behaviors of the curves are
similar. This decreasing tendency can be understood by the
diluting instanton ensemble at finite T. For more details on
the diluting ensemble in the present framework, one may
refer to Refs. [34]. It turns out that the decreasing rate of
the constituent-quark mass is a few percent from T ¼ 0 to
T ¼ 50 MeV: Mu;d ¼ ð302:96Þ MeV for the chiral limit

and Mu;d ¼ ð304:44; 305:62Þ MeV for physical quark

mass at n ¼ 0. Similarly to the vacuum case T ¼ 0, there
appears a point n � 8 at which the u- and d-quark con-
stituent masses are very close to each other. Moreover, the
isospin breaking effect (md � mu) becomes more obvious
at T ¼ 50 MeV compared to that for T ¼ 0. It is because
of the decreasing dynamically-generated quark mass at
finite T. All of these observations are all based on a non-
trivial competition between the magnetic catalysis and
diluting instanton effects at finite T: The former tends to
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FIG. 2 (color online). Constituent-quark mass (Mf) as a function of n � eB0=m
2
� for the chiral limit (left column) and physical

quark mass (right column). In the upper and lower rows, we show the numerical results for T ¼ 0 and T ¼ 50 MeV, respectively. For
more details, see the text.
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enhance the constituent-quark mass, whereas the latter
suppress it. Hence, the position of the equal mass point is
a consequence of this nontrivial competition between the
two mechanisms, on top of the explicit isospin symmetry
breaking. The reversing order of mass beyond the equal
mass point is also observed at finite T. In Ref. [21], the
authors found qualitatively the same results; monotonically
increasing curves for the Mf with respect to the external

magnetic field was observed and the Mu is more sensitive
to it. However, the rate of increasing is much higher
than ours.

B. Chiral condensate: hiqyqi
Now we are in a position to discuss the (partial) chiral

restoration in the presence of the external magnetic field.
It is indicated by the chiral order parameter, i.e. quark
condensate. In Fig. 3, we show the numerical results of
the chiral condensate for the d (left column) as well as u

(right column) quarks, separately. We observe the second-
order chiral phase transition for the both flavors in the
chiral limit case shown in the panel (A) and (B). This
result is expected from the universal class of the restoration
pattern. Note that this correct restoration pattern in the
present instanton framework is only achieved by the in-
clusion of the MLC as the large-Nc corrections [24].
Turning on the external magnetic field, one finds that the
SB�S is enhanced, that is, the values for the quark con-
densate and Tc both increase for the two flavor. Among
them we see that the u quark condensate is more sensitive
with respect to the magnetic field. It is due to the larger
quark electric charge of the u quark. The critical T for the
both flavors, Tu

c and Td
c , is listed in Table I. We observed

that hiuyui � hidydi � ð247 MeVÞ3 at T ¼ 0, which is
just compatible to the empirical value of the isospin-
symmetric quark condensate about ð250 MeVÞ3.
Considering the physical quark mass case, the chiral

phase transition for the two flavors are shown in the
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FIG. 3 (color online). Chiral condensate as a function of T. We draw the numerical results for the chiral limit and physical quark
mass in the left and right columns. The results for the d and u quarks are given in the upper and lower rows, respectively. For more
details, see the text.
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panel (C) and (D) of Fig. 3. Following the universal class of
the restoration pattern, the curves represent the crossover.
The magnetic-field effects are negligible for the d-quark
condensate in the panel (C), due to the smaller quark
electric charge, whereas u-quark condensate in the panel
(D) shows visible changes in the vicinity of T � 180 MeV
with respect to the magnetic field. The Tc can be obtained
by computing the inflection point of the curves for the
crossover phase transition [48], resulting in that Td

c �
200 MeV for all the n values and Tu

c ¼ ð180–200Þ MeV
for n ¼ ð0–20Þ. It is worthy of noting that the changes in
the Tc for the physical quark mass, due to the magnetic
field, are relatively small in comparison to those for the
chiral limit. This tendency is qualitatively consistent with
the lattice QCD estimations [49]. As for the physical quark
mass case, the quark-condensate values for the both flavors
at T ¼ 0 are about ð248 MeVÞ3, which almost coincides
with those for the chiral limit.

C. Ratio of the two-flavor quark condensates: R

In the previous Subsections, we discussed the competi-
tion between the magnetic catalysis and diluting instanton
effect at finite T on top of the explicit isospin breaking. In
the present Subsection, we want to take a more careful
look on the isospin breaking of the quark condensates by

defining a quantity as in Eq. (19). We also note that the
ratio R is deeply related to the low-energy constant of the
�PT Lagrangian, h3 [42,43]. In Fig. 4, we depict theR for
the chiral limit in the panel (A) and physical quark mass
case in the panel (B). In the chiral limit without the external
magnetic field, the u- and d-quark condensates are the
same so that R ¼ 0 for any T values. As the magnetic
field increases from n ¼ 0, the R becomes a positive and
stiffly increasing function. It is because that the u-quark
condensate increases more rapidly than that for the d quark
and the magnetic-catalysis effect is proportional to e2f as in

Eq. (36). At the critical T, the values for the R diverge,
signaling the second-order chiral phase transition.
The situation becomes quite different for the physical

quark mass case in the panel (B). Without the magnetic
field the R decreases then becomes negative beyond T �
100 MeV. As the magnetic field increases, the curves are
shifted to higher T and there appears a bump around T ¼
180 MeV for n ¼ 20. The apparent difference between the
two cases is not hard to understand. In the chiral limit, there
is as a sort of intact degeneracy between u and d-quark
condensates. Such that nonzeroR values are only possible
in the presence of the finite external magnetic field which
breaks this degeneracy [50]. This is also true for the non-
zero degenerated quark mass of the flavors, mu ¼ md � 0.
On the contrary, if this degeneracy between the quark
condensates is lifted up beyond T � 100 MeV with de-
creasing nonperturbative effect (instanton), the explicit
isospin breaking becomes more pronounced and results
in the negative difference of the condensates at the zero
magnetic field. It is due to the fact that the heavier quark
causes the larger quark condensate in general. On the
hand the u quark is more sensitive to the magnetic
catalysis because of its larger electric charge. In other

TABLE I. Critical temperature for the u and d flavors, Tu
c and

Td
c , for the chiral limit in the presence of the external magnetic

field, n ¼ eB0=m
2
�.

n ¼ 0 n ¼ 10 n ¼ 20

Tu
c 170.4 MeV 173.9 MeV 183.1 MeV

Td
c 170.4 MeV 171.3 MeV 174.1 MeV

FIG. 4 (color online). ðu; dÞ-quark condensate ratio R in Eq. (19) as function of T for different n � eB0=m
2
� values. We present the

numerical results for the chiral limit and physical quark mass in the left and right panels, respectively.
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words, the explicit isospin breaking effect pushes the
R downward but the magnetic catalysis pushes the R
upward. This competition also causes a bump around
T ¼ 180 MeV for the R. Nevertheless R goes down
when T increases beyond T ¼ 180 MeV indicating the
explicit isospin breaking effect due to the quark mass
difference wins over magnetic catalysis there.

D. Pion properties at finite T under the magnetic field:
F� and m�

Finally we want to make an analysis on the pion prop-
erties such as the pion weak-decay constant and pion mass
at finite T in the presence of the external magnetic field,
below the critical T. Since in the Nambu-Goldstone phase
(T is below 100 MeV), the isospin symmetry is only slight
broken as shown in Fig. 4. Hence, in what follows, we
focus on the properties with the isospin symmetry. For this
purpose we employ the Gell-Mann–Oakes-Renner (GOR)
relation defined as

m2
� ¼ X

f¼u;d

mf

F2
�

hiqyfqfi !
2 �mf

F2
�

hiqyqimf¼0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
isospin symmetric

: (37)

Here, we defined �mf ¼ ðmu þmdÞ=2. Since the quark

condensates have been already computed as functions of
T as well as B0 in the previous Sections, it is enough to
calculate the pion-weak decay constant F� in the same
framework. For simplicity, we ignore the MLC contribu-
tion to compute the F� and the nonlocal contribution for
the time being [51]. Then the analytical expression for the
F� reads in the instanton framework for the vacuum as
follows:

F2
� � 4�Nc

Z d4k

ð2�Þ4
M2

k � k2MkNk

ðk2 þM2
kÞ2

; (38)

where we again have assumed the isospin symmetry.
The � denotes a correction factor for the case without
the nonlocal contribution. From Ref. [51], the value
for the � can be estimated as about 0.5 to obtain the
empirical value for the pion-weak decay constant, i.e.
F� � 93 MeV. Although some dynamical information
from the nonlocal contributions are missing by this sim-
plification, it is still useful for a simple and qualitative
analysis. If we induce the EM field externally, we can
replace the constituent-quark mass squared approximately
as M2

K ! M2
k þ 2N2

kB
2
f, according to Eq. (13). Moreover,

taking into account that the term MkNk can be obtained
by differentiating M2

k=2, we have MKNK�MkNkþ
2Nkð@Nk=@kÞB2

f. Hence, we can write the expression for

the F� as a function of T and B0, employing the fermionic
Matsubara formula:

F2
��4�NcT

X
m

Z d3k

ð2�Þ3
M2

a�ðk2þw2
mÞMaNaþ2N2

a
�B2
f

ðw2
mþk2þM2

kÞ2

¼4�Nc

Z d3k

ð2�Þ3 ½K1þK2þK3
�B2
f�: (39)

Here, we have defined a flavor-averaged external magnetic

field, i.e. the �B2
f � 1

2 ðB2
u þB2

dÞ, considering the isospin-

symmetric matter. Analytic expressions for the relevant
functions K1–3 are given in the Appendix.
In Fig. 5, we preset the numerical results of the pion

weak-decay constant F� (A) and pion mass m� (B) as
functions of T and the strength of the magnetic field. In
our numerical calculations, we have chosen 2 �mf �
10 MeV in Eq. (37) as a trial, although we evaluated the
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FIG. 5 (color online). Pion weak-decay constant F� (A) and pion mass m� (B) as a function of T, varying the strength of the
magnetic field.
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analytical expression for the F� near the chiral limit.
In the panel (A), the F� smoothly decreases with
respect to T indicating the partial chiral-restoration.
At T ¼ 100 MeV, the value of the F� is about 10%
reduced. Increasing the strength of the magnetic field one
finds that the value of F� is enhanced by a few percent.
At T ¼ 0, we have F� ¼ ð93:47; 93:81; 94:16Þ MeV
for n ¼ ð0; 10; 20Þ, respectively. The effect from the
magnetic catalysis appears more important in the higher
T region.

The numerical results for the m� are given in the panel
(B). As a signal for the partial chiral restoration, the pion
mass increases with respect to T but decreases with respect
to B0. In other words, the enhancement of the SB�S due to
the magnetic catalysis is quite small. Only about 0.5 MeV
decease in the pion mass is observed for n ¼ ð0 ! 20Þ.
Again, the magnetic catalysis plays an more significant
role in the higher T region.

VII. SUMMARYAND CONCLUSION

In the present work, we have investigated the (partial)
chiral restoration at finite T in QCD matter for the SU(2)
light-flavor sector, under the strong and static external
magnetic field. To this end, we employed the T-modified
instanton-liquid model together with the linear Schwinger
method and fermionic Matsubara formula. We also took
into the meson-loop corrections as the large-Nc corrections
to reproduce the correct phase transition pattern. We then
present the numerical results for the constituent-quark
mass, chiral condensate, and isospin-symmetry breaking
effect as functions of T, B0, and flavor degrees of freedom.
Below, we list important theoretical observations of the
present work:

(i) Relevant instanton parameters �R and �� are modified
as functions of T, resulting in the diluting instanton
ensemble with respect to T, i.e. decreasing the SB�S
effects. The external magnetic field enhances the
SB�S in terms of the magnetic catalysis, which is
proportional to ðefB0Þ2. Hence, the u-quark constitu-
ent mass is more sensitive to the magnetic field and
increases considerably more with respect to the field
strength compared to the d quark.

(ii) On top of the explicit isospin-symmetry breaking,
there appears a point at which the constituent-quark
masses for the u and d quarks coincide each
other for the strong magnetic field eB0 � 1019 G.
In the chiral limit, we observe the second-order
chiral phase transition, as expected from the
universal restoration pattern, effected much by the
meson-loop corrections. Naturally, the crossover
phase transition takes place for the physical quark
masses.

(iii) The effects from the magnetic catalysis becomes
more pronounced in the higher T region because
as T increases the SB�S effects generated from

the instanton is weakened so that the magnetic-
catalysis effects become relatively more important.
The critical T, i.e. Tc, is shifted to higher T due to
the magnetic catalysis, whereas the change of the
chiral condensate values is relatively small. Tc

becomes flavor-dependent because the magnetic
catalysis effect depends on the electric charge of
the quarks.

(iv) The isospin breaking between the quark conden-
sates is explored by defining the ratio R as a
function of T. As for mu ¼ md case the ratio is
zero at B0 ¼ 0 and monotonically increases with
respect to T for the finite magnetic field. For the
physical quark mass case, the ratio R shows non-
trivial structures with respect to T and B0 due to the
complicated competition between the magnetic ca-
talysis and the explicitly isospin breaking effect
which becomes more important at higher T because
of the decreasing nonperturbative effects.

(v) According to our simple and qualitative analysis
using the GOR relation, we observe correct
partial chiral-restoration and magnetic-catalysis be-
haviors for the pion-weak-decay constant F� and
pion mass m�. They decrease and increase about
10% at T � 100 MeV in comparison to those at
T ¼ 0, respectively. However, the changes due to
the magnetic field are relatively small, just a few
percent.

Now we obtain an effective chiral action at finite T as
well as the magnetic field for the physical quark mass. If
the strong magnetic field is created in the peripheral heavy-
ion collisions as reported, it is worthy of studying the
hadronization processes in the presence of the magnetic
field, i.e. the dilepton production via the vector-meson
dominance under the magnetic field for instance.
Moreover, the QCD phase diagram on the �-T plane and
critical values, such as the CEP and TCP, are also able to be
explored in our model in principle. Inclusion of finite � to
the effective action in the instanton framework is under
progress and related works will appear elsewhere.
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APPENDIX

The relevant functions in Eq. (32) and (36) are given as
follows:
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F 1 ¼ Ma
�MaH 2; F 2 ¼ 2N2

aH 2;

F 3 ¼ MaMbH 4 þMaMb½k � ðkþ qÞ�H 3;

F 4 ¼ MaMb

�
�Ma

�Mb þMaMb þ
mf

2
ðMa þMbÞ

�
H 3

G1 ¼ �MaH 2; G2 ¼ �mfH 1;

G3 ¼ MaMbð �Ma
�MbÞH 3;

K1 ¼ ðM2
a � k2MaNaÞH 5; K2 ¼ �MaNaH 6;

K3 ¼ 2N2
aH 5:

H 1–6 are explicitly given as follows:

H 1 ¼ T
X
m

1

w2
m þ E2

0

¼ 1

2E0

tanh

�
E0

2T

�
;

H 2 ¼ T
X
m

1

w2
m þ E2

a

¼ 1

2Ea

tanh

�
Ea

2T

�
;

H 3 ¼ T
X
m

1

ðw2
m þ E2

aÞðw2
m þ E2

bÞ

¼ 1

2EaEbðE2
a � E2

bÞ
�
Ea tanh

�
Eb

2T

�
� Eb tanh

�
Ea

2T

��
;

H 4 ¼ T
X
m

w2
m

ðw2
m þ E2

aÞðw2
m þ E2

bÞ

¼ 1

2ðE2
a � E2

bÞ
�
Ea tanh

�
Ea

2T

�
� Eb tanh

�
Eb

2T

��
;

H 5 ¼ T
X
m

1

ðw2
m þ E2

aÞ2

¼ 1

8TE3
a

sech2
�
Ea

2T

��
T sinh

�
Ea

T

�
� Ea

�
;

H 6 ¼ T
X
m

w2
m

ðw2
m þ E2

aÞ2

¼ 1

8TEa

sech2
�
Ea

2T

��
Ea þ T sinh

�
Ea

T

��
:
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