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We extend the renormalization group transformation based on the two-lattice matching to the complex

inverse temperature plane for Dyson’s hierarchical Ising model. We consider values of the dimensional

parameter above, below, and exactly at the critical value where the ordered low temperature phase

becomes impossible for a real positive temperature. We show numerically that, as the volume increases,

the Fisher’s zeros appear to accumulate along lines that separate the flows ending on different fixed points.

We justify these findings in terms of finite size scaling. We argue that the location of the Fisher’s zeros at

large volume determine the phase diagram in the complex plane. We discuss the implications for

nontrivial infrared fixed points in lattice gauge theory.
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Classical field equations suggest the existence of mass-
less Nambu-Goldstone modes in low temperature spin
models with continuous symmetries, or massless gauge
bosons in weakly coupled models with local symmetries.
However, in some cases, quasiparticle excitations or in-
stantons destroy the long-range order and generate a mass
gap [1]. This theoretical framework provides a justification
for the absence of long-range order for the D ¼ 1 Ising
model or the D ¼ 2 nonlinear Oð3Þ sigma model with
nearest neighbor interactions, and the D ¼ 3 Uð1Þ or
D ¼ 4 SUð2Þ lattice gauge theories with a compact
Wilson’s action.

For gauge theories, the absence of long-range order is
associated with confinement. The possibility of almost
losing confinement by adding a suitable number of fermi-
ons, in order to have a ‘‘walking’’ coupling constant, has
been considered for models of electroweak symmetry
breaking beyond the standard model [2]. This has moti-
vated an intense activity in the lattice gauge theory com-
munity [3,4]. From this point of view, it is crucial to decide
unambiguously if an unusual infrared behavior will be
present for a given number of fermion fields. More gen-
erally, proving the (non)existence of a mass gap is often
important and difficult for condensed matter and particle
physics models.

In the renormalization group (RG) approach, confine-
ment means that the RG flows go uninterrupted from the
weak coupling region to the strong coupling region [3,5].
Recently, the loss of long-range order or the appearance of
confinement when a parameter is varied has been explained
in terms of RG fixed points disappearing in the complex
coupling or temperature plane [6–9]. In this article, we
provide a direct illustration of this mechanism with nu-
merical calculations of the RG flows in the complex in-
verse temperature (�) plane using the two-lattice matching
procedure [10,11] for Dyson’s hierarchical model [12,13]
with an Ising measure. The choice of this model is justified
by the feasibility of difficult numerical calculations

explained below. The complex RG flows for three values
of D are illustrated in Fig. 1.
From a practical point of view, our main point is that as

the volume increases, the zeros of the partition function in

FIG. 1 (color). RG flows in the complex � plane for D ¼ 3
(top), 2 (middle), and 1.7 (bottom) and Fisher’s zeros fornmax ¼ 3
and 4. A darker background indicates an ambiguous solution.
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the � plane (Fisher’s zeros) accumulate along lines that
separate the flows ending on different fixed points and thus
determine the complex phase diagram.

The Hamiltonian of Dyson’s hierarchical model with
2nmax sites is

H ¼ � 1

2

Xnmax

n¼1
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where BðnÞ denotes hierarchically nested blocks of size 2n.
For details, we refer to a recent review article [14]. The
parameter c controls the decay of the interactions with the
size of the blocks. From the scaling of a free massless
Gaussian field under a change of the lattice spacing by a
scaling factor b, we can include a dimensionD through the
relation c=4 ¼ b�2�D. Since the number of sites is divided
by 2 at every blockspin transformation, we have bD ¼ 2.

For D ¼ 3 (c ¼ 21=3), and more generally for D> 2, the
Ising hierarchical model has a second-order phase transi-
tion and has many common features with the D ¼ 3 near-
est neighbor interaction Ising model; however, the critical
exponent � is zero. ForD ¼ 2 (c ¼ 1), and more generally
for D � 2, the model has no phase transition at finite
temperature [12] unlike its D ¼ 2 nearest neighbor inter-
action counterpart. Our numerical study will focus on
D ¼ 3, 2, and 1.7. The case D ¼ 2 is at the boundary
and is quite interesting, as are other models playing this
role [for instance, the D ¼ 2 nonlinear Oð2Þ sigma model
with nearest neighbor interactions].

The partition function is obtained by integrating e��H

with a local measureW0ð�Þ. It can be calculated iteratively
because the block variables are not mixed in H. If we call
Wnð�Þ the unnormalized, unrescaled, probability distribu-
tion of � in a block of size 2n, we obtain the (implicitly
�-dependent) recursion relation:

Wnþ1ð�Þ ¼
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In the following, we consider an Ising measureW0ð�Þ ¼
�ð�2 � 1Þ and Eq. (2) reduces to finite sums. This allows
an exact calculation ofWnð�Þ as a function of � as long as
we have enough computer memory to keep track of the
terms. At finite volume, the partition function is an entire
function of the form

Z½�� ¼ X

k

Nke
Ek�: (3)

The zeros of Z can be obtained from the intersections of the
zero level curves for the real and imaginary parts or from
logarithmic residue methods used in Ref. [15].

In Fig. 2, we compare the lowest (closest to the real axis)
Fisher’s zeros for different volumes. The distribution of the
Fisher’s zeros is symmetric about the real axis, and we only
show the zeros in the upper half plane. For theD ¼ 3 case,

the system has a second-order phase transition at �c ’
1:179 [14], and we can check the consistency of our results
with finite size scaling [16,17]. In Fig. 2, the lowest
Fisher’s zeros accumulate toward �c as the volume in-
creases. The departure from a linear behavior is significant
and requires subleading corrections. The singular part of
the free energy can only depend on the linear size of the
system L through the combination KiL

yi , where Ki are the
nonlinear scaling variables. Under an RG transformation,
L ! L=b and Ki ! byiKi. If we only keep the relevant
variable (y1 ¼ 1=�) and the first irrelevant variable
(y2 ¼ �!), the requirement that �1ðLÞ is the (lowest)
zero imposes a relation of the form

KL1=� ¼ Aþ BL�! þOðL�2!Þ: (4)

Using the approximation K ’ �1ðLÞ � �c for the lowest
zero, we obtain

Reð�1ðLÞÞ � �c ¼ ReðAÞL�1=� þ ReðBÞL�1=��!;

Imð�1ðLÞÞ ¼ ImðAÞL�1=� þ ImðBÞL�1=��!: (5)

Using the known values for �c, �,, and ! [14] and fitting
for A and B, we obtain results displayed in Fig. 2. The fits

FIG. 2 (color online). The lowest Fisher’s zeros for D ¼ 3
(filled circle ending on �c), 2 (crosses), and 1.7 (filled square)
with nmax from 2 to 11. As nmax increases, the imaginary part
decreases for D ¼ 3 and 2 (top panel). Real and imaginary parts
of Fisher’s zeros for D ¼ 3 and nmax going from 2 to 11 (bottom
panel).
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are in very good agreement with the data except for the
smallest volume.

Complex RG flows have been studied and discussed for
a variety of statistical mechanics, many-body and lattice
models [7–9,18,19]. Here we construct the RG flows in the
complex � plane by using a two-lattice matching method
inspired by Refs. [10,11]. At level n in the block hierarchy,
we split the system into two blocks B1 and B2 each with
2n�1 sites. The observable we considered is

Rð�; nÞ �
hð P
x2B1

�xÞð
P

y2B2

�yÞi�;n
hð P
x2B1

�xÞð
P

y2B1

�yÞÞi�;n : (6)

This ratio measures how the blocks are correlated. It does
not require any division by the partition function. The field
rescaling which needs to be calculated to write down a full
RG transformation cancels out. UsingWn�1ð�Þ for the two
block variables, we obtain

Rð�; nÞ

¼
R
d�1d�2e

ð�=2Þðc=4Þnð�1þ�2Þ2�1�2Wn�1ð�1ÞWn�1ð�2ÞR
d�1d�2e

ð�=2Þðc=4Þnð�1þ�2Þ2�2
1Wn�1ð�1ÞWn�1ð�2Þ

:

(7)

Unlike RG transformations based on decimation for one-
dimensional Ising models [18,19], the measures obtained
by iterating Eq. (2) are not Ising measures. Instead, we rely
on the assumptions that after enough RG transformations,
the flows become approximately one-dimensional and that
we can use� as a coordinate for the unstable direction. The
matching condition reads

Rð�; nÞ ¼ Rð�0; n� 1Þ; (8)

with n as large as possible. Given an initial �, the numeri-
cal calculation of �0 can be done with the methods used to
find Fisher’s zeros.

This procedure yields very simple flows for real values
of �. They can be described in terms of a discrete Callan-
Symanzik � function defined as

��ð�Þ ¼ �� �0: (9)

The existence of zeros of �� implies the existence of
fixed points. Figure 3 shows �� forD ¼ 3, 2, and 1.7. It is
not surprising that there is only one zero at the origin for
D ¼ 2 and 1.7 since it has been proven [12] that there is no
phase transition at finite temperature. For D ¼ 3, another
nontrivial zero appears near �c. As the volume increases,
the nontrivial zeros approach �c.
For D ¼ 2, a low temperature expansion can be used to

show that at leading order

��ð�Þ / e�Bn�: (10)

The lowest-order contributions to Rð�; nÞ forD ¼ 2 comes
from flipping all the spins in one of the blocks of size 2n�1.
The energy cost is only �1=2 and is n independent. The
leading-order contribution to �� comes from the first
n-dependent energy cost. Numerically, B3 ¼ 35=32, B4 ¼
155=128, and B5 ¼ 651=512. The general formula is Bn ¼
ðð11þ 1=4n�1Þ=6Þ � 1=2n�1 � 1=2 and B1 ¼ 4=3.
The exponential decay is in contrast with �� for
D ¼ 2 nearest neighbor OðNÞ models in the large N limit
that has been calculated for the two-lattice matching [10]
and a simple rescaling of cutoff in the gap equation [9],
where at infinite volume, �� approaches lnb=ð2�Þ asymp-
totically. It is possible to find simple models for the con-
tinuous Callan-Symanzik �-function with continuous
parameters that interpolate qualitatively among the various
behaviors of�� in Fig. 3 and that have zeros moving in the
complex plane when D ¼ 2. Functional conjugation
methods [20] provide a more systematic approach of the
relationship.
In the complex case, the matching equation has in

general more than one solution. This is obvious for
D ¼ 2 where the matching equation reduces to a polyno-
mial equation in expð�=4nmaxÞ. In order to resolve this
ambiguity, we picked the �0 that minimizes j�� �0j.
Under some circumstances, there is only one �0 close to
� and this seems quite natural but this is not always the
case. In order to quantify this ambiguity, we defined

fð�Þ � logj�� �0
2j � logj�� �0

1j; (11)

where �0
1 is the closest solution and �

0
2 the second closest.

In Fig. 1, we made a contour plot of fð�Þ. The darker the
color, the more ambiguous is the selection of �0. In dark
regions, the flow is rather erratic. This reflects the existence
of several competing solutions rather than some intrinsic
‘‘chaos’’ as for the D ¼ 1 Ising model [19]. On the other
hand, the mostly unambiguous flows of Fig. 1 show simple
patterns. For D ¼ 3, the zeros appear near the boundary of
the basins of attraction of the two stable fixed points at 0
and 1. As D decreases, the unstable fixed point moves to
larger� and becomes infinite atD ¼ 2. For lowerD, a pair
of complex conjugated zeros appears.FIG. 3 (color online). Discrete� function forD ¼ 3, 2, and 1.7.
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Figure 1 indicates that Fisher’s zeros for the two vol-
umes matched appear in regions where the flows are am-
biguous and at the end of flow lines that neither go to zero
or other fixed points. The zeros for larger volumes move
approximately ‘‘backward’’ along the set of flow lines that
separate the flows going to different fixed points. This is
illustrated in Fig. 4 for D ¼ 2, where all the zeros corre-
sponding to volumes up to 27 fitting in the frame and the
lowest zeros for volumes up to 211 have been displayed.
This behavior is in approximate agreement with the argu-
ment [18] that under an RG transformation, Fisher’s zeros
for 2n sites should map into Fisher’s zeros for 2n�1 sites. In
view of this argument, the general shape of the flows, and
the absence of transition on the real axis, it is plausible that
as the volume increases, the line extends to infinity. Lines

of Fisher’s zeros are quite common [17]. Surfaces were
also observed in the complex variable sinhð2�Þ [21].
In summary, we have calculated the complex RG flows

for three values of D. For D ¼ 3, the Fisher’s zeros pinch
the real axis at �c and separate the flows going to 0
(symmetric phase) and 1 (broken symmetry phase). For
D � 2, it is plausible that the line of Fisher’s zero goes to
infinity with no contact with the real axis. This hypotheti-
cally infinite line separates the flows going to 0 from those
curling back to either a complex fixed point or infinity. This
suggests that the basins of attraction of the various fixed
points in the complex plane are separated by lines of
Fisher’s zeros. From a practical point of view, it is easier
to calculate Fisher’s zeros than to construct complex RG
flows. A direct interpretation of complex flow would be
desirable. In problems involving oscillations, the addition
of an imaginary part to the energy or frequency corre-
sponds to dissipation, skin depth, or a finite lifetime. A
simple example is the electric permittivity � becoming
complex as a result of damping. From this point of view,
a complex energy density ð�=2ÞE2 is an effective descrip-
tion of the interactions with matter. Complex eigenvalues
for the transfer matrix were also found [22] and could
suggest a more complete picture of complex RG flows.
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