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We investigate tensor mesons as quark-antiquark bound states in a fully covariant Bethe-Salpeter

equation. As a first concrete step we report results for masses of JPC ¼ 2þþ mesons from the chiral limit

up to bottomonium and sketch a comparison to experimental data. All covariant structures of the fermion-

antifermion system are taken into account and their roles and importance discussed in two different bases.

We also review the general construction principle for covariant Bethe-Salpeter amplitudes of mesons with

any spin.
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I. INTRODUCTION

In QCD, mesons are viewed as bound states of (anti)
quarks and gluons. Starting with a �qq picture they appear
simpler than baryons and thus represent prime targets for
theoretical investigations. Spin and the corresponding me-
son degrees of freedom are essential for an understanding
of the meson spectrum and properties in general.

In a constituent-quark model (e.g., [1–6]), mesons with
total spin J are easily obtained via adding units of orbital
angular momentum to a quark-antiquark state. In particu-
lar, given the quantum numbers JPC for a meson with
equal-mass constituents, the parity P is given by ð�1Þlþ1

and the C parity C by ð�1Þlþs. Furthermore, the total spin
J, the internal (quark-antiquark) spin s, and the orbital
angular momentum l and their projections have to satisfy
the well-known addition rules for angular momenta.

In the context of the Bethe-Salpeter equation (BSE), the
Lorentz covariant structure of meson amplitudes (also for
arbitrary spin) has in the past been investigated mainly in
setups involving reductions of the BSE (e.g., [7–20]).
Herein we present the first covariant study of tensor me-
sons that is consistent with respect to the axial-vector
Ward-Takahashi identity in the context of a Dyson-
Schwinger–Bethe-Salpeter approach to QCD. This is a
remarkable achievement due to the technical complexity
of the problem and since such a study had not been
attempted before despite the path laid out several decades
ago [7].

The paper is organized as follows: Section II sketches
the formalism used and the corresponding details of im-
mediate necessity, Sec. III contains the explicit construc-
tion of the covariant amplitude for a 2þþ meson, the
construction principle for J > 2 amplitudes is reviewed
in our notation in Sec. IV, the 2þþ results are presented
and discussed in Sec. V, and we conclude in Sec. VI. All
calculations have been performed in Euclidean momentum
space.

II. MESONS FROM THE BSE

In this work, we employ QCD’s Dyson-Schwinger-
equations (DSEs) (see, e.g., [21,22] for recent reviews)
together with the quark-antiquark BSE. The latter is the
covariant bound-state equation for the study of mesons
in this context [7]. An analogous covariant approach to
baryons is possible in a quark-diquark picture (e.g.,
[23–25] and references therein) or a three-quark setup
[26,27].
While the goal of a self-consistent solution of all DSEs

can be held up in investigations of certain aspects of the
theory (see, e.g., [28,29] and references therein), numerical
hadron studies such as ours require employment of a
truncation. For our first covariant look at tensor mesons
we use the so-called rainbow-ladder (RL) truncation. It is
both simple and offers the possibility for sophisticated
model studies of QCD within the DSE-BSE context, since
it satisfies the relevant (axial-vector and vector) Ward-
Takahashi identities (see e.g., [13,14,30–38]).
At this point, a remark regarding corrections to RL

truncation is in order. Even with a sophisticated choice
one cannot guarantee that contributions from the scalar
part of the quark-gluon vertex can be mimicked success-
fully by an effective interaction. On the contrary, RL
studies of light axial-vector mesons (see e.g., [39] and
references therein) indicate that these states are in general
not well described in such a setup; their masses are sub-
stantially underestimated, although this effect depends on
the particular choice of model parameters [39]. Since the
comparison to experimental data for the light scalar me-
sons is more difficult, the reasonable conclusion has been
that the scalar part of the quark-gluon vertex is important
for the description of mesons interpreted as orbital excita-
tions (e.g., P wave).
Notwithstanding this, the overall situation in the meson

spectrum might not be so complicated. In fact, RL trunca-
tion is expected to be a better approximation to QCD for
higher quark masses, and a corresponding effort has been
recently made to construct a quark-mass dependent effec-
tive interaction to account for a diminishing influence of
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the scalar part of the quark-gluon vertex as the quark mass
increases [40,41].

In addition, meson studies beyond RL truncation have
confirmed the large effects from correction terms, but at the
same time shown the enormous numerical complexity of
such an endeavor together with the uncertainty of how
large even further corrections are. With this in mind, RL
truncation with an effective interaction was our preferred
choice for the present study despite the expectation that
P-wave states are possibly badly described in the light-
meson sector. As our results show, this expectation is not
entirely justified a posteriori. For completeness we note
that the two main directions of improvement beyond RL
truncation come on the one hand from employing correc-
tions to the bare quark-gluon vertex from the DSE of the
full quark-gluon vertex, and on the other hand from con-
struction valid for more general forms of the quark-gluon
vertex. The literature regarding these two possibilities can
be traced back from e.g., [42,43], respectively.

The axial-vector Ward-Takahashi identity is essential to
see chiral symmetry and its dynamical breaking correctly
realized in the model calculation from the very beginning.
As the most prominent result, one satisfies Goldstone’s
theorem [35] and obtains a generalized Gell-Mann–
Oakes–Renner relation valid for all pseudoscalar mesons
and all current-quark masses [44,45]. We note that this
relation can be checked numerically and is satisfied at the
per-mill level in our calculations. This model approach
to mesons in QCD is well established and has been suc-
cessfully applied to many, in particular, pseudoscalar- and
vector-, meson properties in recent years (see e.g., [22,39]
for comprehensive bibliographies).

The general structure of the BSE for a meson with spin
J, total q �qmomentum P and relative q �qmomentum k or q,
respectively, is

���...ðk;PÞ ¼
Z �

q
Kðk;q;PÞSðqþÞ���...ðq;PÞSðq�Þ; (1)

where the semicolon separates four-vector arguments.
���...ðk;PÞ is the Bethe-Salpeter amplitude (BSA) and
has J open Lorentz indices �� . . . . The dressed-quark
propagator SðpÞ is obtained from the quark DSE, the
QCD gap equation. Since our focus here is the BSA, we
refer the reader to [39,44,46] for more details on the quark
DSE and to [47] for a description of our corresponding
numerical solution method. In the BSE the quark and
antiquark propagators depend on the (anti)quark momenta
qþ ¼ qþ �P and q� ¼ q� ð1� �ÞP, where � 2 ½0; 1�
is a momentum partitioning parameter usually set to 1=2
for systems of equal-mass constituents (which we do as
well).

R
�
q ¼ R

� d4q=ð2�Þ4 represents a translationally in-

variant regularization of the integral, with the regulariza-
tion scale � [44].

The kernel K in the homogeneous, ladder-truncated q �q
BSE is essentially characterized by an effective interaction

GðsÞ, s :¼ ðk� qÞ2. Following [39], an ansatz used exten-
sively for many years [46] is employed here,

GðsÞ
s

¼ 4�2D

!6
se�ðs=!Þ2 þ 4��m�F ðsÞ

1=2 ln½�þ ð1þ s=�2
QCDÞ2�

:

(2)

This form provides the correct amount of dynamical chiral
symmetry breaking as well as quark confinement via the
absence of a Lehmann representation for the dressed quark
propagator. Furthermore, it produces the correct perturba-
tive limit, i.e., it preserves the one-loop renormalization
group behavior of QCD for solutions of the quark DSE.
As given in [46], F ðsÞ ¼ ½1� expð�s=½4m2

t �Þ�=s, mt ¼
0:5 GeV, � ¼ e2 � 1, Nf ¼ 4, �

Nf¼4

QCD ¼ 0:234 GeV, and

�m ¼ 12=ð33� 2NfÞ. Note that the same effective inter-

action appears also in the corresponding rainbow-truncated
quark DSE. This function, which mimics the behavior of
the product of quark-gluon vertex and gluon propagator, is
mainly phenomenologically motivated. While currently
debated on principle grounds (e.g., [29,48]) the impact of
its particular form in the far IR on meson masses is
expected to be small (see also [49] for an exploratory study
in this direction).
D and !, in principle free parameters of the model

interaction, can be used to investigate certain aspects of
both the interaction and the bound states in the BSE. In
particular one can interpret D as an overall strength and !
as an inverse effective range of the interaction (for more
details and a thorough discussion of parameter dependence
of the results see [39]), a notion first investigated in the
study of radial meson excitations [45,50]. In the range
! 2 ½0:3; 0:5� GeV, the prescription D�! ¼ const fol-
lows from fitting of the model parameters to ground-state
properties [46] and defines a one-parameter model, which
is the setup and range used in [39] and also here. With all
ingredients specified, the BSE is solved numerically, a
procedure well under control [51].

III. TENSOR-MESON BSA

The BSA ���...ðq;PÞ of a meson as a bound state of a
quark-antiquark pair depends on two four-vector variables:
the total as well as the relative q �q four-momenta P and q,
respectively. They can be parameterized in terms of the
Lorentz-invariant scalar products P2, q2, and q � P. The
fermion-antifermion spin properties are encoded in
the 4� 4 matrix structure of ���... [7], where the open
Lorentz indices appear in connection with the total spin of
the state. A corresponding basis of linearly independent
structures fT��...

i g (i ¼ 1; . . . ; N) involving Dirac matrices
allows one to expand the BSA into a sum of Dirac cova-
riants and the corresponding scalar coefficients Fi, which
we will subsequently refer to as components [51]. The
latter only depend on the aforementioned scalar products
P2, q2, and q � P, and one gets
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���...ðq;P;�Þ ¼ XN
i¼1

T
��...
i ðq;P;�ÞFiðq2; q � P; P2Þ; (3)

where the dependence on �� has been made explicit and a
generalized scalar product for the covariants T��...

i is de-
fined via the Dirac traceX

��...

Tr½T��...
i T

��...
j � ¼ tijfði; jÞ: (4)

One may also choose the basis elements orthogonal such
that tij ¼ �ij, with the fði; jÞ functions of q2, P2, and q � P,
or orthonormal such that in addition fði; jÞ ¼ 1 for all i, j.
The sum is carried out over the J indices �; �; . . . .

Note that for an on-shell BSA P2 ¼ �M2 is fixed, while
one artificially varies P2 in the solution process of the
homogeneous BSE. In the corresponding inhomogeneous
BSE one has P and therefore also P2 as a completely
independent variable (see, e.g., [51–53]).

Thus, the on-shell scalar components Fiðq2; q � P; P2Þ
effectively depend on the two variables q2 and q � P, the
latter of which can be parameterized by the variable
z 2 ½�1; 1� related to the cosine defining the angle
between the four-vectors P and q. In principle, the com-
ponents Fi can be expanded further in Chebyshev poly-
nomials, but we do not use such an expansion here (for
details and an illustration of Chebyshev moments, see
[44,54]). With the independent four-momenta and �� one
can construct four independent Lorentz-scalar structures,

1 ; � � P; � � q; i	q;P; (5)

where 	q;P :¼ i=2½� � q; � � P�. These four covariants,
which provide a basis corresponding to scalar mesons
(JP ¼ 0þ), serve as the basic building blocks for anymeson
BSA. Together with pseudoscalar covariants (JP ¼ 0�) as
well as the bases for J ¼ 1 for all corresponding quantum
numbers, these were explicitly constructed in [39]. Here we
concentrate on J ¼ 2 and higher.

For J ¼ 2 one has eight independent covariant struc-
tures in the BSA. Let

qT� :¼ q� � P�

q � P
P2

; (6)

�T
� :¼ �� � P�

� � P
P2

; (7)

�TT
� :¼ �� � P�

� � P
P2

� qT�
� � qT
ðqTÞ2 (8)

be transverse projections of � and q with respect to the
total meson momentum P and each other (in particular the
vectors fP�; q

T
�; �

TT
� g are orthogonal to each other).

Defining furthermore the transverse projection of the
metric

gT�� ¼ ��� �
P�P�

P2
(9)

and the two transverse, symmetric, and traceless structures

M�� ¼ �T
�q

T
� þ qT��

T
� � 2

3
gT��� � qT (10)

N�� ¼ 1

�
qT�q

T
� � 1

3
gT��q � qT

�
(11)

one obtains the following set of tensor (JP ¼ 2þ)
covariants [7]:

T��
1 ¼ iM�� T��

2 ¼M��� �qq �P�2N��q �P
T��
3 ¼M��� �P T��

4 ¼ 2M��	q;P�4iN��� �P
T
��
5 ¼N�� T

��
6 ¼ iN��� �q

T
��
7 ¼ iN��� �Pq �P T

��
8 ¼�2iN��	q;P (12)

Note that T5 . . .T8 were only given implicitly in [7]. All Ti

as given here are even under charge conjugation (for de-
tails, see e.g., [39,44]). Thus, to obtain a JPC ¼ 2þþ state,
all components Fi must be even functions of q � P, which
for the present setup is indeed the property of the ground
state in the system. It is interesting to note at this point that
all solutions reported here have positive canonical norm,
since the BSE allows negative norm states and the appear-
ance of spurious excitations in relative time (for an explor-
atory study of these issues and a possible connection
between them, see e.g., [55] and references therein).
Note also that the above covariants are in general neither
orthogonal nor normalized; orthonormal covariants can be
generated via a Gram-Schmidt procedure applied to the set
of terms in (5), leading to

1 ; � � P; � � qT; i	q;P: (13)

To orthogonalize the above 2þ covariants one introduces
the symmetric and transverse expressions

~M�� ¼ �TT
� qT� þ qT��

TT
� and (14)

~N �� ¼ qT�q
T
�; (15)

which automatically satisfy Eq. (4). The next step is to
implement the tracelessness, which is equivalent to or-
thogonality with respect to gT��. This yields

M�� ¼ ~M�� � gT��

~M
	g
T

	

ðgTÞ2 (16)

N�� ¼ ~N�� � gT��

~N
	g
T

	

ðgTÞ2 ; (17)

which corresponds to Eqs. (10) and (11), and by multi-
plication with the four scalar covariants in (13) gives the
eight desired orthogonal tensor covariants. Note, however,
that Eqs. (10) and (16) are slightly different. Subsequently,

normalization is achieved via T̂i ¼ Ti=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½Ti � Ti�

p
.
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IV. BSA FOR ANY MESON SPIN

To consider mesons of any particular spin J, one has to
construct Lorentz tensors of rank J which are totally
symmetric, transverse in all open indices and Lorentz
traceless (see, e.g., [56]): such an object has the 2J þ 1
spin degrees of freedom as demanded in quantum mechan-
ics of a massive particle. These restrictions, together with
the properties of the Dirac matrices, lead to eight covariant
structures for J � 1 [12,15]. More precisely, the two ten-
sors M�� and N�� defined above can be generalized such

that N��...� is the traceless part of

qT�q
T
� . . . q

T
� (18)

and M��...� is the traceless part of the totally symmetric

sum constructed from

�TT
� qT� . . . q

T
� : (19)

Each of these multiplied by the four terms in (13) defines
four rank-J tensor covariants, in total eight, orthogonal in
the sense of Eq. (4).

Obviously, Eqs. (16) and (17) follow from this construc-
tion. As a further quick check we consider the simplest
such example, namely, a vector meson: from J ¼ 1 one
immediately obtains N� ¼ qT� to give the first four, and

M� ¼ �TT
� to give the second four covariants.

V. RESULTS AND DISCUSSION

Here we present results for JPC ¼ 2þþ states that extend
the study of Ref. [39]. Consequently, we present corre-
spondingly augmented figures here. Figure 1 shows the
meson masses for pseudoscalar, scalar, vector, axial-
vector, and tensor q �q states as functions of the pion

mass, obtained from the BSE in RL truncation employing
the effective interaction of Eq. (2). The three vertical dotted
lines indicate the positions of the n �n, s�s, and c �c states,
respectively, (in the usual notation, n here denotes light
quarks). Note that in RL truncation one cannot easily
employ arbitrary flavor mixing between SUð3Þ-flavor octet
and singlet states; all states are either purely n �n or s�s,
which corresponds to ideal mixing. As expected, the 2þþ
mass lies above all other states for the entire range from the
chiral limit to bottomonium. Furthermore, the quark model
predicts [1] that the states with 0þþ, 1þþ, and 2þþ are
close together, consistent with experiment. While a similar
pattern is realized also here for heavy quarks, the onset of
which is visible in Fig. 1 and apparent from the rightmost
column in Fig. 2, this is not the case for light mesons. The
reason is that, in rainbow-ladder truncation with an effec-
tive interaction, the missing influence of the scalar part in
the dressed quark-gluon vertex, which is essential for a
good description of P-wave mesons, destroys the expected
pattern of these l ¼ 1 states for light quark masses. This is
clearly the case for our results, where the corresponding
splittings between 0þþ and 1þþ as well as 1þþ and 2þþ
are too large.
However, the splittings of the 2þþ states to the S-wave

states is reproduced better, even for light mesons, and, in
particular, if one takes the dependence of the meson masses
on the model parameters into account. Comparison to
experimental data is shown in Fig. 2 via the dotted lines
in appropriate colors, where for the n �n, s�s, c �c, and b �b cases
separately the dependence of the bound-state masses on the
model parameters is studied. More precisely, as mentioned
in Sec. II, the inverse effective range ! is used to explore
the state’s sensitivity to the details of the long-range part of
the strong interaction [39,45]. Two observations are
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FIG. 1 (color online). Dependence of meson masses on m�

(the pseudoscalar-meson mass calculated for a given current-
quark mass). Vertical dotted lines correspond to positions for
light, strange, and charm �qq states.
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noteworthy: First, the 2þþ mass shows the same ! depen-
dence as the other orbital excitations for each of the four
columns. Second, the agreement with experimental data is
significantly better than for the often-quoted axial-vector
states. In the case of the latter, reconciliation of an RL
study constrained by pseudoscalar- and vector-meson ob-
servables seems unlikely, while this need apparently not be
the case for tensor mesons, indicating that the latter are
simpler and not as sensitive to the details of the quark-
gluon vertex employed in a DSE-BSE study as the axial-
vector states. For our present study, this also a posteriori
justifies the choice of RL truncation with an effective
interaction, which appears to be able to provide a reason-
able description of tensor-meson masses, contrary to the
expectations.

A further technical note concerns the 2þþ results for
! ¼ 0:5 GeV: Because of the analytic structure of the
quark propagators for this parameter choice, the masses
of the 2þþ mesons are only accessible to us via extrapo-
lation techniques (see the Appendix for a detailed discus-
sion). The uncertainty is always smaller than the size of the
symbols in Fig. 2 except for the u=d case, where we get an
uncertainty of �75 MeV.

In order to elucidate approximation effects or facilitate
comparison to other studies, we investigate the effect of
leaving out each individual covariant and recompute the
mass of the state with the remaining seven. Small differ-
ences to the full result then indicate covariants of minor
importance. Naturally there is a caveat for such an inves-
tigation, namely, that the choice of the covariants is some-
what arbitrary.

In our case we used two sets of covariants: the one given
explicitly above in Eq. (12) and the other, orthonormal,
constructed according to the principles detailed in Sec. IV.
We have performed this test for both sets of covariants and
present the results in Table I. We enumerate the orthonor-
mal covariants in the following way: the four terms in (13)
multiplied with (17) are numbered 1 to 4, and (13) multi-
plied with (16) yield covariants 5 to 8. For either set, one
needs five of the eight covariants to arrive at a number
which is within 1% of the full result. Furthermore, omitting
the contribution from N�� as indicated in [7] for this
particular case yields a number which is 7% too low
compared to the full result.

VI. CONCLUSIONS AND OUTLOOK

We have reviewed the complete set of Dirac covariants
for mesons of spin 2 and the corresponding explicit con-
struction principle for analogous bases for mesons with
arbitrary spin J. We have furthermore explored 2þþ states
in a well-established RL truncated model setup of QCD’s
DSEs and solved the corresponding q �q BSE numerically
for the first time. The results are both reasonable and
surprising in that they follow expected patterns, but are
closer to experimental data than axial-vector mesons, even
in the present simple setup. Our work thus enables an
immediate, comprehensive, and fully covariant study of
the meson spectrum in a DSE-BSE model setup of QCD.
Consequently, the numerical calculation of further states
with JPC ¼ 2�þ, 3��, etc. is work in progress and will be
presented in future publications. Naturally, this includes
radial excitations of these states and opens up the concrete
possibility to investigate Regge trajectories in the covariant
DSE-BSE approach.
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APPENDIX: EXTRAPOLATION TECHNIQUE

As described in Sec. II, the meson BSE, Eq. (1) contains
the dressed (anti-)quark propagators SðqþÞ and Sðq�Þ,
where qþ and q� are the (anti-)quark momenta, given by

qþ ¼ qþ �P ¼: qþ �þP (A1)

q� ¼ q� ð1� �ÞP ¼: q� ��P: (A2)

For a meson with massM studied in Euclidean momentum
space, the total momentum P, taken on shell in the
rest frame of the bound state, is purely imaginary,
since the on-shell condition implies P2 ¼ �M2. Together

TABLE I. Meson mass of the s�s 2þþ state with ! ¼ 0:4 GeV with all covariants included as well as with single covariants left out.
The change in bound-state mass is given compared to the full result. The results are presented for both the covariants of Eq. (12) and
the orthonormal set of covariants constructed thereafter. All numbers are given in GeV.

Covariant missing None 1 2 3 4 5 6 7 8

Equation (12) Mass 1.448 1.575 1.455 1.502 1.509 1.502 1.287 1.452 1.450

Change þ0:000 þ0:127 þ0:007 þ0:054 þ0:061 þ0:054 �0:161 þ0:004 þ0:002
Orthonormal Mass 1.448 1.502 1.445 1.540 1.420 1.669 1.457 1.446 1.508

Change þ0:000 þ0:054 �0:003 þ0:092 �0:028 þ0:221 þ0:009 �0:002 þ0:060
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with the real integration momentum q and the real
momentum-partitioning parameters �� it is clear that the
four-momenta q� and, in particular, also their squares q2�
are complex numbers. It is important to consider the latter,
since in our calculations all variables can be defined in
terms of scalar products of four-vectors and thus parame-
terized in terms of the relevant momenta squared, and
angle-type variables.

In Fig. 3 we illustrate the typical situation in numerical
studies of the coupled quark-DSE–meson-BSE system. As
it turns out, the meson massM (or more generally, the total
four-momentum squared P2) determines the size of the
parabolas needed for the sampling of the (anti-)quark
propagators as function of their momenta squared. In par-
ticular, the parabola is fully defined once M and �� are
known, as indicated by the filled circle and the filled boxes
in the figure. Since the entire interior of the parabola is
sampled in the numerical integration in the BSE, singular-
ities inside this domain have to be treated with care. In
particular, a fully numerical treatment is nontrivial and has
not been realized so far. An important conceptual step in
the direction of dealing with singularities in the BSE’s
integration domain has been taken in [58], where also a
more thorough discussion of the problem can be found. If,
however, for a given meson mass M singularities appear
only outside the domain of integration, e.g., as depicted by
the two ‘‘X’’ in Fig. 3, one can use standard numerical
integration techniques, as it has been done in the past two
decades.

If the meson mass M is expected to lie only a small
amount too high for the particular singularity structure of
the given (anti-)quark propagators, one can use extrapola-
tion techniques to obtain an estimate for the meson mass
from a set of off-shell solutions of the homogeneous BSE.
It is important to note here that a priori the homogeneous
BSE is derived under an on-shell condition; the procedure
described here is merely a computational trick to obtain the
result. In fact, this strategy is also applied to find the actual
on-shell solution, since when solving the homogeneous
BSE one has to already know part of the solution, namely,
the value of M, in order to numerically solve the equation.
The way out of this dilemma is a self-consistency argu-
ment, where one introduces an eigenvalue � in the BSE,
Eq. (4), and studies the eigenvalue as a function of the total
momentum squared. One obtains

�ðP2Þ���...ðk;PÞ ¼
Z �

q
Kðk;q;PÞSðqþÞ���...ðq;PÞSðq�Þ;

(A3)

and then is able to preset P2 or M to several different
values, and in this way search for that particular value of
M where �ðMÞ ¼ 1, which restores Eq. (1). In the case
where a direct solution is not possible due to singularities
in the integration domain, such a procedure leads to a set of
data points, which can be extrapolated to �ðMÞ ¼ 1. In our
case, a reasonable possibility is to use polynomials of
degree N

�ðMÞ ¼ XN
i¼0

aiM
i; (A4)

where for reasons of stability we choose N ¼ 3, 4, 5. In
Fig. 4 we have plotted the resulting curves for the case with

Re q 2

Im
q

2

0 , 2 2M2

2 M2,0

FIG. 3 (color online). The parabola in the complex q2�-plane
sampled in the BSE for a meson of mass M together with the
typical positions of singularities, marked by ‘‘X’’ (see also the
text).

0.8 1.0 1.2 1.4
M GeV

0.5

1.0

1.5

2.0

M

FIG. 4 (color online). Extrapolation of calculated eigenvalues
(dots), by polynomials of degree 3 (solid), 4 (dashed), and
5 (dash-dotted), to the value �ðMÞ ¼ 1, demarcated by the
horizontal dotted line. The central value of the final result
(box) and the uncertainty (solid horizontal line) are plotted in
the graph as determined (see text).
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the largest uncertainty: the dots represent the calculated
eigenvalues and the curves show the extrapolations with
N ¼ 3 (solid line), N ¼ 4 (dashed line), and N ¼ 5 (dash-
dotted line) to the on-shell point �ðMÞ ¼ 1, demarcated by

the horizontal dotted line. The uncertainty is determined by
the largest difference among these three extrapolations and
represented by the horizontal solid line on the final result
(box).
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