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We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant

and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative

computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns

out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the

number ND of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the

huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC

model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found

that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the

scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is

considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the

early stage of the LHC.
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I. INTRODUCTION

The direct searches for the standard model (SM) Higgs
boson have been intensively performed at the Tevatron [1]
and at the LHC [2,3]. For these Higgs searches, the sig-
nificant Higgs production process is the gluon fusion chan-
nel. If there are extra colored chiral fermions like in the
fourth generation model [4,5], the Higgs production should
be enhanced and thus even a relatively heavy Higgs boson
can be surveyed at the early stage of the LHC [6,7].

The walking technicolor (WTC) is a candidate of the
dynamical electroweak symmetry breaking scenario
[8–11]. It can resolve the problems of the flavor changing
neutral current, too light fermion masses and too light
pseudo Nambu-Goldstone bosons, which were serious
difficulties in the QCD-like technicolor (TC) [12,13].
Although the QCD-like TC was strongly disfavored by
the precision measurements [14], the estimate of the
S-parameter in the QCD-like TC is not applicable for the
WTC. Evidence of the reduction of the S-parameter is
reported in the ladder Schwinger-Dyson (SD) and Bethe-
Salpeter (BS) approach [15], and also in the lattice simu-
lation [16]. In the holographic WTC model, one can find a
parameter space with a small Sð�0:1Þ [17,18].

A ‘‘light’’ scalar, the so-called techni-dilaton (TD),
which is the pseudo Nambu-Goldstone boson associated
with the scale symmetry breaking, is predicted in the WTC
[9,19,20]. The TD mass near the critical point has been

suggested as MTD � ffiffiffi
2

p
m in the context of the gauged

Nambu-Jona-Lasinio model [21], where m represents
the dynamically generated fermion mass. For recent dis-
cussions on the TD mass in the criticality limit, see
Refs. [22,23]. The straightforward calculation in the ladder

SD and BS approach suggests numerically MTD �
500 GeV for the typical one-family TC model [24].
It is noticeable that the early stage of the LHC has the

sensitivity to such a heavy Higgs [6,7]. Notice that the
gluon fusion process counts the number of the colored
particles and also depends on the magnitude of their
Yukawa couplings. In particular, the estimate of the
Yukawa coupling is not so trivial in the dynamical electro-
weak symmetry breaking scenario, because a nonperturba-
tive computation is inevitably required.
In this paper, we propose an approach for the calculation

of the Yukawa coupling through the scalar decay constant
and the chiral condensate. We will adopt the ladder SD
approach as a nonperturbative method. In principle, these
values would be extracted from the lattice simulation.
Let us derive a relation between the scalar decay con-

stant and the Yukawa coupling.
Suppose that the extended technicolor (ETC) sector

generates the four-fermion interaction,

L 4F ¼ Gf
�c c �ff; (1)

where c and f denote the techni and SM fermions. The
SM fermion mass mf is obtained from the techni-fermion

condensate,

mf ¼ �GfZ
�1
m h �c c iR; (2)

with the renormalization constant Zm �m=�ETC, where
�ETC is the ETC scale and the subscript R represents the
renormalized quantity. The scalar decay constant F� for
the scalar current is defined by

h0jð �c c ð0ÞÞRj�ðqÞi � F�M�; (3)

where M� is the mass of the scalar bound state �.
Equations (2) and (3) immediately yield the following
expression of the Yukawa coupling between � and f,*michioh@isc.chubu.ac.jp
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g�ff ¼ Z�1
m GfF�M� ¼ mf

�h �c c iR
F�M�

: (4)

For a graphical expression, see Fig. 1. Since the SM
Yukawa coupling is given by gSMhff ¼ mf=v with

v ¼ 246 GeV, the ratio of the two is

g�ff

gSMhff
¼ v

�h �c c iR
F�M�

: (5)

We can calculate F� through the correlation function ��

for the scalar operator, which is defined by

F :T :ih0jð �c c ðxÞÞRð �c c ð0ÞÞRj0i � ��ðqÞ: (6)

The scalar mass M� and the scalar decay constant F� can
be read from the pole and residue of ��ðqÞ, owing to the
spectral representation,

��ðqÞ ¼ F2
�M

2
�

�q2 þM2
�

: (7)

Note that ��ð0Þ ¼ F2
� in this normalization. On the other

hand, the (renormalized) second derivative of the effective
potential at the stationary point corresponds to the inverse
of the two point function at the zero momentum,

d2V

d�2
R

¼ ��1
� ð0Þ ¼ 1

F2
�

; (8)

and thereby it holds

�2
R

d2V

d�2
R

¼
��h �c c iR

F�

�
2
; (9)

which is closely connected with the Yukawa coupling via
Eq. (4). We emphasize that this quantity is obviously
independent of the renormalization point.

We perform the calculations of F� and h �c c iR by using
the improved ladder SD equation [22]. For a givenM�, the
Yukawa coupling is estimated from Eq. (4). We then find
the ratio of the Yukawa coupling g�ff=g

SM
hff ’ 1:2 for the

typical one-family TC model with NTC ¼ 2 and M� ¼
500 GeV under the realistic setup m=�ETC � 10�3–10�4.

The Yukawa coupling was estimated also by using the
Ward-Takahashi identity and a hypothesis of the partially
conserved dilaton current (PCDC) [19]. The numerical
result via the scalar decay constant agrees with the
PCDC approach [22].
In the one-family TC model, the colored techni-

fermions contribute to the production of �, furthermore.
The cross section is thus considerably enhanced. Such a
model should be confirmed/excluded at the early stage of
the LHC. On the other hand, it is not the case for the model
having only one weak doublet and no techni-quark.
This paper is organized as follows: In Sec. II, we study

the improved ladder SD equation. An analytical expression
for the mass function is derived. In Sec. III, we first review
the formalism of the effective potential. By using the
analytical expression of the mass function, we calculate
F� and h �c c iR. We then obtain the Yukawa coupling g�ff.

Also, the phenomenological implications are briefly dis-
cussed. Section IV is devoted to summary and discussions.

II. GAP EQUATION

We adopt the ladder SD equation as a nonperturbative
approach. In order to incorporate the running effects of the
gauge coupling, the improved one has been studied [25].
With the bare mass m0, it is written by

BðxÞ ¼ m0 þ
Z �2

0
dy

yBðyÞ
yþ B2ðyÞ

�ðmaxðx; yÞÞ
maxðx; yÞ ; (10)

where x and y represent the Euclidean momenta, and the
normalized gauge coupling �ðxÞ is defined by

�ðxÞ � 3CF�ð�2 ¼ xÞ
4�

: (11)

We also introduced the cutoff� for the ladder SD equation.
In the two-loop approximation, the renormalization

group equation of � is [26]

�2 @

@�2
� ¼ �ð�Þ ¼ �b0�

2 � b1�
3; (12)

with

b0 ¼ 1

12�
ð11CA � 4NfTRÞ; (13)

and

b1 ¼ 1

24�2
½17C2

A � 2NfTRð5CA þ 3CFÞ�; (14)

where Nf represents the number of flavor and the group

theoretical factors are

CA ¼ NTC; TR ¼ 1

2
; CF ¼ N2

TC � 1

2NTC

; (15)

for SUðNTCÞ gauge theories.

FIG. 1. Yukawa coupling between the SM fermions f and the
scalar bound state � in the framework of the ETC. The techni-
fermion loop generates the mass of f and also intermediates
between f and �.
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When b0 > 0 and b1 < 0, the Caswell–Banks–Zaks in-
frared fixed point (IRFP) [27] emerges,

�� � b0
�b1

: (16)

By using the Caswell–Banks–Zaks IRFP �� and the
Lambert function W [28], which is the inverse of xex, we
can express �ðxÞ analytically [29],

�ðxÞ ¼ ��
1þWðzðxÞÞ ; (17)

where z is defined by

zðxÞ � 1

e

�
x

�2
I

�
b0��

; (18)

with the intrinsic scale �Ið��ETCÞ, which is analogous to
the QCD scale �QCD.

The integral form (10) can be rewritten by the differen-
tial equation with the IR and UV boundary conditions
(BC’s). Ignoring x d�

dx ð/ � � �Þ, the differential form is

x2
d2

dx2
BðxÞ þ 2x

d

dx
BðxÞ þ �ðxÞ xBðxÞ

xþ B2ðxÞ ¼ 0; (19)

and the two BC’s are

ðUV-BCÞ: x d

dx
BðxÞjx¼�2 þ Bð�2Þ ¼ m0; (20)

ðIR-BCÞ: x2 d

dx
BðxÞjx!0 ! 0: (21)

Let us solve analytically the improved ladder SD equa-
tion (19) in the following approximations.

By using the bifurcation method and also the parabolic
deformation of the renormalization group equation [22],

�ð�Þ ! �b0�ð�� � �Þ; (22)

whose solution is

�ðxÞ ¼ ��
1þ e�1ð x

�2
I

Þb0��
; (23)

we analytically obtain the solution of the linearized ladder
SD equation,

BðxÞ
B0

¼ c1

�
x

B2
0

��ð1�!Þ=2
F

�
�1�!

2s
;
1þ!

2s
;1þ!

s
;1� ��

�ðxÞ
�

þd1

�
x

B2
0

��ð1þ!Þ=2

�F

�
�1þ!

2s
;
1�!

2s
;1�!

s
;1� ��

�ðxÞ
�
; ðx�B2

0Þ;
(24)

where Fð�;�; �; zÞ represents the Gauss’s hypergeometric
function and B0 is the normalization factor of the mass
function defined by Bðx ¼ B2

0Þ ¼ B0. We also introduced

the normalized IRFP ��,

�� � 3CF��
4�

; (25)

the power factor s,

s � b0�� > 0; (26)

and

! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

�cr

s
; �cr � 1

4
: (27)

The integration constants c1 and d1 are determined through
the IR BC and the normalization of BðxÞ. In the limit of
B0 � �I, we obtain

c1 ¼ 1þ!

2!
; d1 ¼ � 1�!

2!
: (28)

The UV BC yields a relation among m0, B0, �I and !. In
the chiral limit m0 ! 0, it turns out that there appears a
nontrivial solution B0 ! m � 0, only when ! is purely
imaginary ! ¼ i ~!,

~! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��
�cr

� 1

s
> 0; i:e:; �� > �cr: (29)

This approximation qualitatively works well. For details,
see Ref. [22].
Another linearizing method is to replace the denomina-

tor of the last term of Eq. (19) by xþ B2
0 [12]. Introducing

� � ðB0=�IÞ2s and BðxÞ=B0 � �ð0ÞðxÞ þ ��ð1ÞðxÞ þ 	 	 	 ,
and also expanding �ðxÞ by �, we can solve the linearized

ladder SD equation owing to the analytic form of �ð0ÞðxÞ,
�ð0ÞðxÞ ¼ Fðð1þ!Þ=2; ð1�!Þ=2; 2;�x2=B2

0Þ [12]. The

solution in the region x 
 B2
0 and j�ðxÞ=�� � 1j � 1 is

similar to the bifurcation solution (24).
For both linearized solutions, we find the behavior of the

mass function in the region where the momentum is large
in the sense that x 
 B2

0 and the gauge coupling is slowly

running, �ðxÞ=�� � 1,

BðxÞ
B0

’ A

~!

�
x

B2
0

��1=2
sin

�
~!

2
ln

x

B2
0

þ 	

�
; (30)

where A and 	 are

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~!2

p
; 	 ¼ arctan ~!; (31)

for the former approximation, and

A ¼ 2jCj; e2i	 ¼ C

C� ; C � �ð1þ i ~!Þ
�ð1þi ~!

2 Þ�ð3þi ~!
2 Þ ;

(32)

for the latter one. In particular, for the former and the latter,
A ! 1 and A ! 4=� in the limit ~! ! 0, respectively. It
means that the analytic property of the mass function
can be qualitatively approximated by Eq. (30), while there
are quantitatively ambiguities about the values of A and 	.
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In the next section, we will fix this quantitative uncertainty
by using the numerical analysis of the ladder SD equation
with the two-loop running coupling [22].

III. ESTIMATE OF THE YUKAWA COUPLING

In order to calculate F� and g�ff, we study the effective

potential for �.
Following Refs. [30,31], we review the formalism on the

effective potential.
The generating functional is defined by

W½J� � 1

i
ln
Z
½dc d �c �½gauge�ei

R
d4xðLþJ �c c Þ: (33)

and also the effective action is

�½�� � W½J� �
Z

d4xJ�; (34)

where

�ðxÞ � �c ðxÞc ðxÞ: (35)

For constants � and J, the effective potential is defined by
V ¼ ��½��=R d4x. Noting that

dVð�Þ
d�

¼ J; (36)

the effective potential is formally given by

Vð�Þ ¼
Z

d�J; (37)

where J should be regarded as a function of � in this
expression.

In the context of the ladder SD equation, it is convenient
to use the IR mass B0 in the expressions of � and J. We
then obtain

Vð�Þ ¼
Z

dB0

d�ðB0Þ
dB0

JðB0Þ; (38)

where B0 should be transformed into � after the integral.
Also, the second derivative of the effective potential is

d2V

d�2
¼ dJ

dB0

�
d�

dB0

��1
: (39)

Let us explicitly calculate the effective potential and its
second derivative. In the following calculation, it is enough
to take the cutoff � in the ladder SD equation (10) to the
ETC scale,

� ! �ETC: (40)

We consider only the case with �� > �cr.
The effect of the constant source J is obtained by the

replacement

m0 ! m0 � J: (41)

Note that the UV BC (20) yields

�2
ETCB

0ð�2
ETCÞ þ Bð�2

ETCÞ ¼ m0 � J; (42)

where B0ðxÞ � dBðxÞ
dx . The bare chiral condensation is

� � h �c c i ¼ �NTCNf

4�2

Z �2
ETC

0
dxx

BðxÞ
xþ B2ðxÞ : (43)

By using the ladder SD equation (10), we also find

� ¼ NTCNf

4�2

�4
ETC

�ETC

B0ð�2
ETCÞ; (44)

where �ETC � �ð�2
ETCÞ � �� and we ignored

x d�ðxÞ
dx / � � �.

We may employ the approximation (30) in the UV
region, and hence obtain

m0�J¼A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~!2

p

2 ~!

B2
0

�ETC

sin

�
~! ln

�ETC

B0

þ	þ arctan ~!

�
;

(45)

and

� ¼ �NTCNf

4�2

B2
0�ETC

�ETC

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~!2

p

2 ~!

� sin

�
~! ln

�ETC

B0

þ 	� arctan ~!

�
: (46)

The stationary condition dV
d� ¼ J ¼ 0 in the chiral limit

m0 ! 0 gives the solution of the ladder SD equation,
~! ln�ETC=B0 þ 	þ arctan ~! ¼ n�, (n ¼ 1; 2; 3; 	 	 	 ). It

is known that the zero node solution B0 ¼ Bð1Þ
0 � m cor-

responds to the true vacuum [12].
We renormalize � with fixing the zero node solution m.

The renormalized quantity at the true vacuum B0 ¼ m is

�R ¼ Zm� ! h �c c iR ¼ �NTCNf

4�2

A

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~!2

p m3; (47)

where Zm �m=�ETC and �ETC is also renormalized to ��.
It is straightforward to calculate the vacuum energy, i.e.,
the value of the effective potential at the true vacuum,

Vsol ¼ VjB0¼m ¼ �NTCNf

4�2

A2

16��
m4: (48)

Note that in the limit of ~! ! 0 (�� ! �cr ¼ 1=4), Eq. (48)
with A ! 4=� reproduces the expression of the vacuum
energy in Ref. [32]. We also find the renormalized second
derivative of the effective potential at the true vacuum,
which corresponds to the inverse of the square of the scalar
decay constant,

1

F2
�

¼ d2V

d�2
R

��������B0!m
¼ 1þ ~!2

NTCNf

4�2 ð5� ~!2Þ
��
m2

: (49)

The square of the chiral condensate over the scalar decay
constant is then��h �c c iR

F�

�
2 ¼ �2

R

d2V

d�2
R

¼ NTCNf

4�2

A2

��
1

5� ~!2
m4: (50)
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We determine the value of A so as to reproduce
the vacuum energy in the numerical analysis of the im-
proved ladder SD equation with the two-loop running
coupling [22],

h
��i ¼ 4Vsol � �NTCNf

2�2
�Vm

4: (51)

We show the numerical values of �V and the determined A
in Table I.

The pseudoscalar decay constant F� is connected with
the weak scale. For the estimate of F�, it is convenient to
employ the Pagels-Stokar formula [33],

F2
� ¼ NTC

4�2

Z �2
ETC

0
dxx

B2ðxÞ � x
4
dB2ðxÞ
dx

ðxþ B2ðxÞÞ2 : (52)

The numerical factor �F between m and F� is defined by

v2 ¼ NDF
2
� � NTCND

4�2
�2
Fm

2; (53)

where ND denotes the number of the weak doublets for
each TC index. By definition, ND � Nf=2. In Table I, we

show the values of �F calculated in Ref. [22]. Since the
normalization of the mass function Bðx ¼ m2Þ ¼ m yields
	 ¼ arcsinð ~!A�1Þ in the approximation (30), we can esti-
mate F� by using Eq. (30) with the values of A in Table I.
We found that the differences of �F are about 2%, 2% and
1% from the top to bottom in Table I, respectively.
Although the approximation (30) is inapplicable in the IR
region, it practically works well.

We now describe F�, h �c c iR and g�ff more explicitly.

Equations (49) and (53) yield

F�

v
¼

ffiffiffiffiffiffiffi
Nf

ND

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ~!2

ð1þ ~!2Þ��

s
1

�F

; (54)

the renormalized chiral condensate is

�h �c c iR
v3

¼ Nf

ND

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTCND

p 4�
ffiffiffiffiffiffiffiffiffi
2�V

p

�3
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ~!2Þ��
p ; (55)

and hence the ratio of the Yukawa coupling (5) reads

g�ff

gSMhff
¼

ffiffiffiffiffiffiffiffiffi
NTC

Nf

s
ND

�2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ~!2

p

4�
ffiffiffiffiffiffiffiffiffi
2�V

p M�

v
: (56)

We show the numerical values of F�=v and g�ff=g
SM
hff in

Table I. The Yukawa coupling for the techni-fermions

should be almost the same.
We here note that Nf ’ 4NTC in the walking gauge

theory. For the Yukawa coupling in Table I, we have al-

ready putNf ¼ 4NTC. On the other hand, the numberND is

model-dependent: If all flavors have the weak charge like

in the typical one-family TC model, ND ¼ Nf=2. The

minimum case is ND ¼ 1.
The scalar massM� is closely related to the dynamically

generated techni-fermion mass m in the ladder SD ap-

proach. The values of m are estimated from Eq. (53). For

the typical one-family TC model with NTC ¼ 2, Nf ¼ 8

and ND ¼ 4, it reads m ¼ 390 GeV, 380 GeV, 370 GeV

from top to bottom in Table I. The handy mass formula in

the critical limit of the gauged Nambu-Jona-Lasinio

model, M� ’ ffiffiffi
2

p
m [21], then yields M� ’ 560 GeV,

540 GeV, 520 GeV, respectively. These are consistent

with the estimate in the BS approach, M� � v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17=ND

p �
500 GeV [24]. For a fixed value of the scalar mass,

M� ¼ 500 GeV, the ratios of M� and m are M�=m ¼
1:3, 1.3, 1.4, respectively.
In Ref. [19], by using the Ward-Takahashi identity and

the PCDC relation, F2
TDM

2
TD ¼ �4h
��i, the Yukawa cou-

pling yTD between the TD and the SM fermions was

estimated as yTD ¼ ð3� �mÞmf=FTD. Note that in general,

the scalar decay constant F� discussed in this paper is

different from the TD decay constant FTD, which is

h0j
��ð0ÞjTDi ¼ FTDM
2
TD. The estimate of v=FTD is 3=5

for the typical one-family TC model with NTC ¼ 2 and

MTD ¼ 500 GeV [22]. This yields yTD=g
SM
hff ¼ 1:2 and

thus numerically agrees with the corresponding result of

g�ff=g
SM
hff.

Let us briefly discuss the phenomenological
implications.
As suggested above, we may identify the scalar bound

state � to the TD. We have already shown that the Yukawa

coupling is different from that in the usual dilaton [34],

when the masses of the SM fermions are originated from

the four-fermion interactions as in the ETC. On the other

hand, it is reasonable to assume the couplings of � and the

weak bosons are g�WW=g
SM
hWW ¼ g�ZZ=g

SM
hZZ ¼ v=FTD, as

usual [34], where gSMhWW;hZZ are the SM values.

For a typical mass, M� ¼ 500 GeV, we estimate the

enhancement factor of the production cross section of �
via the gluon fusion process and the branching ratios,

assuming that there are no other light resonances like the

techni-pion. The results for the typical one-family TC

model and others are shown in Table II.
For the one-family TC model, which contains

NTQ ¼ 2NTC extra quarks (colored techni-fermions), the

enhancement factor of the production of � compared with
the SM is huge �36 in the heavy quark limit, even for

TABLE I. Estimates of A, F�=v and g�ff=g
SM
hff for several

values of ��. We read the corresponding values of m=�ETC, �V

and �F from the numerical analysis of the ladder SD equation
with the two-loop running coupling [22].

�� m
�ETC

�V �F A
ffiffiffiffiffi
ND

Nf

q
F�

v

g�ff
gSM
hff

v
NDM�

0.305 1:12� 10�3 0.685 1.38 1.29 2.59 0.142

0.287 1:08� 10�4 0.709 1.42 1.28 2.71 1.148

0.258 5:88� 10�10 0.756 1.48 1.25 2.93 0.157
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NTC ¼ 2. Such a model should be confirmed/excluded at
the early stage of the LHC.

Concerning this large enhancement over 10 times, NTQ

and also ND are crucial. As a demonstration, we may just
reduce the numbers NTQ and/or ND. The results are shown

in Table II. For the models with NTQ ¼ 4, ND ¼ 1 and

NTQ ¼ 0, ND ¼ 4, the production cross section is fairly

comparable to the SM one. However, for the model having
only one weak doublet of the techni-fermion and no techni-
quark, the production cross section gets much smaller.

It might be worthwhile to mention that compared with
the SM, the branching ratio to the top-pair is increasing and
that to the weak bosons is decreasing.

We have studied the Yukawa coupling in the framework
of the ETC. However the ETC sector might not produce
fully the top quark mass [13,35]. In such a class of models,
the gluon fusion would not be the main production channel.
This is out of scope in this paper.

IV. SUMMARYAND DISCUSSIONS

We proposed the alternative approach to estimate the
Yukawa coupling via the scalar decay constant and the
chiral condensate. By using the improved ladder SD ap-
proach, we calculated F�, h �c c iR and g�ff.

For the typical one-family TC model with NTC ¼ 2, we
numerically found g�ff=g

SM
hff ’ 1:2 under the realistic

setup m=�ETC � 10�3–10�4, where we took M� ¼
500 GeV. This numerically agrees with that in the PCDC
one [19,22].

The gluon fusion process depends on the number NTQ of

the techni-quarks and also the Yukawa coupling, which is
proportional to the number ND of the weak doublets for

each TC index through the relation between v2 and m2.
The result g�ff=g

SM
hff �Oð1Þ for the one-family TC model

near conformality with M� � 500 GeV implies that the
production cross section of � is extremely enhanced. This
is noticeable, because the early stage of the LHC has the
sensitivity to such a ‘‘Higgs’’ boson [6,7]. On the other
hand, in the models with smallerNTQ and/orND, such a big

enhancement is unlikely to occur. In particular, the pro-
duction cross section of � is suppressed in the model
having only one weak doublet of the techni-fermion and
no techni-quark.
The branching ratios are also changed from the SM ones.

The main decay channel is expected to be the top pair,
when the mass of � is above the threshold of t�t.
In this paper, we employed the ladder SD approach.

In the holographic WTC model, it is possible to cal-
culate directly the two point function ��ðqÞ, and
thus F� and also M�. The analysis will be performed
elsewhere [36].
In passing, we comment that several dynamical

models predict existence of a (relatively) heavy
Higgs, which can be surveyed at the early stage of the
LHC. For example, the top condensate model with
extra dimensions predicts successfully the top mass
mt ’ 175 GeV [37]. The Higgs mass is predicted as
mH� 200–300 GeV. The Yukawa coupling is almost the
same as the SM one.
The Higgs boson might reveal itself soon at the LHC.

The coming few years will be exciting.
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