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The recently evaluated two-pion contribution to the muon g� 2 and the phase of the pion electro-

magnetic form factor in the elastic region, known from �� scattering by Fermi-Watson theorem, are

exploited by analytic techniques for finding correlations between the coefficients of the Taylor expansion

at t ¼ 0 and the values of the form factor at several points in the spacelike region. We do not use specific

parametrizations, and the results are fully independent of the unknown phase in the inelastic region. Using

for instance, from recent determinations, hr2�i ¼ ð0:435� 0:005Þ fm2 and Fð�1:6 GeV2Þ ¼ 0:243þ0:022
�0:014,

we obtain the allowed ranges 3:75 GeV�4 & c & 3:98 GeV�4 and 9:91 GeV�6 & d & 10:46 GeV�6 for

the curvature and the next Taylor coefficient, with a strong correlation between them. We also predict a

large region in the complex plane where the form factor cannot have zeros.
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I. INTRODUCTION

The pion electromagnetic form factor FðtÞ, defined by
the matrix element

h�þðp0ÞjJelm� j�þðpÞi ¼ ðpþ p0Þ�FðtÞ (1)

where q ¼ p� p0 and t ¼ q2, plays a central role in strong
interaction dynamics. From the general principles of quan-
tum field theory, it follows that FðtÞ is normalized to
Fð0Þ ¼ 1 and is a real analytic function in the t-plane cut
along the real axis from the unitarity threshold tþ ¼ 4M2

�

to infinity. At low energies, its properties are described by
chiral perturbation theory (ChPT), the low energy effective
theory of the strong interactions [1,2], calculations of the
pion form factor being available in ChPT up to two loops
[3–6]. Lattice gauge theory has recently become another
useful tool for the calculation of the form factor at low
energies [7]. On the other hand, perturbative QCD predicts
the behavior at large momenta along the spacelike axis,
where Q2 � �t > 0. The leading order (LO) asymptotic
term is [9–12]

Fð�Q2Þ � 16�F2
��sðQ2Þ
Q2

; Q2 ! 1; (2)

where F� is the pion decay constant and �sðQ2Þ ¼
4�=½9 lnðQ2=�2Þ� is the running strong coupling to one
loop. Next-to-leading order corrections to (2) were calcu-
lated by various groups [13–16,8]. As discussed, for in-
stance in [10,17,18], the transition to the perturbative QCD
regime seems to occur quite slowly in this case.

The experimental information available on the pion
form factor is very rich. This quantity was measured
at spacelike values Q2 > 0 with increasing precision
from electron-pion scattering and pion electroproduction
from nucleons [19–23]. On the timelike cut, where the

form factor is complex, the Fermi-Watson theorem implies
that in the elastic region its phase is equal to the phase-shift
of the P-wave of the �� amplitude, calculated recently
with precision using Roy equations and fixed-t dispersion
relations [24–26]. The modulus has been measured from
the cross section of eþe� ! �þ�� by several groups in
the past [27–36], and more recently to high accuracy by the
BABAR [37] and KLOE [38,39] collaborations. These data
have been used for an accurate evaluation of the
two-pion contribution to the muon anomalous magnetic
moment [40,41].
The constraints imposed on the pion form factor by

analyticity and unitarity have been exploited in many
works (the list [42–67] covers only partly a very rich
literature). Different analytic representations, either as
standard dispersion relations [17], phase (Omnès-type)
[18,46,50,52,53,65] or modulus [52] representations,
as well as expansions based on conformal mappings
[18,46,51] or Padé-type approximants [64], have been
constructed in order to correlate the low- and high-energy
properties of the form factor. Of special interest is
the issue of the zeros of the form factor, investigated by
means of dispersive sum-rules [18,43–45,52] or by the
more powerful techniques of analytic optimization theory
[42,47,48]. In [61–63,66], similar functional-analytic tech-
niques were applied for deriving bounds on the expansion
coefficients at t ¼ 0, from an weighted integral of the
modulus squared along the cut, known from unitarity and
dispersion relations for a related QCD correlator.
In the present paper, we address the same problem, i.e. to

find constraints on the coefficients appearing in the Taylor
expansion

FðtÞ ¼ 1þ 1

6
hr2�itþ ct2 þ dt3 þ � � � (3)
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from a well-defined input on the timelike axis, and also
include information coming from high precision experi-
ments that measure the form factor in the spacelike region.
We also consider the problem of the zeros, and obtain a
region in the complex t-plane where zeros are excluded.
The main reason of revisiting the problem is the recent
high statistics measurement of the modulus jFðtÞj on the
unitarity cut by BABAR [37] and KLOE [38,39] experi-
ments. As we will show, this information leads to stringent
constraints, of a remarkable level for a prediction indepen-
dent of any specific parametrization.

We apply a technique discussed in [61,68], which makes
use of information on both the phase and modulus, and was
shown recently [69,70] to place stringent bounds on the
K� weak form factors. As first input, we use the Fermi-
Watson theorem, according to which one has, modulo �,

Arg ½Fðtþ i�Þ� ¼ �1
1ðtÞ; tþ < t < tin; (4)

where �1
1ðtÞ is the phase-shift of the P-wave of �� elastic

scattering and tin the first inelastic threshold. As discussed
previously [18,46], inelasticity in the case of the pion
vector form factor is negligible below the opening of �!
channel, so we take tin ¼ ðM� þM!Þ2. Below this
energy, the phase �1

1ðtÞ is known with precision from
Roy equations and fixed-t dispersion relations for ��
scattering [24–26].

We also include information on the modulus, generically
expressed by an integral relation

1

�

Z 1

tin

dt�ðtÞjFðtÞj2 � I; (5)

where �ðtÞ is a positive definite weight in the region of
integration and I is a known quantity. Actually, (5) does not
fully account for the present information on jFðtÞj; indeed,
except for a small region near the threshold tþ ¼ 4M2

�, the
modulus is measured also below the inelastic threshold tin,
i.e jFðtÞj is measured more or less pointwise, at every t, not
only in averaged form as in (5). In principle, the accurate
knowledge of the phase and modulus on a region on the
unitarity cut is sufficient to pin down the form factor
everywhere due to analyticity. In practice, however, due
to the well-known ‘‘instability’’ of analytic continuation,
the uncertainties, however small, lead to solutions which
are very different at points outside the original data inter-
val. Therefore, we do not proceed by constructing parame-
trizations of the form factor on the timelike axis, but
consider instead the global class of functions compatible
with the adopted input, and derive constraints on various
quantities of interest from this class of functions. As we
shall see, even the input (5) leads to quite strong constraints
on the properties of the form factor near t ¼ 0 and in the
complex plane. Thus, the chosen method is fully justified
by the results that have been obtained.

A further open point is the choice of the weight �ðtÞ in
(5). In principle, a large class of positive weights, leading

to a convergent integral for jFðtÞj compatible with the
asymptotic behavior (2), can be adopted. The optimal
procedure is to vary �ðtÞ over a suitable admissible class
and take the best result. This approach will be investigated
in a future work. In the present paper, we make the par-
ticular choice that corresponds to the two-pion contribution
to the muon g� 2, when the weight �ðtÞ has the form

�ðtÞ ¼ �2M2
�

12�

ðt� tþÞ3=2
t7=2

KðtÞ;

KðtÞ ¼
Z 1

0
du

ð1� uÞu2
1� uþM2

�u
2=t

;

(6)

and the right-hand side (rhs) of (5) is the two-pion con-
tribution to the muon anomaly in the range t > tin,

I ¼ â��� : (7)

The practical motivation of this particular choice is that an
accurate evaluation of the two-pion contribution to the
muon anomaly, taking into account the correlations be-
tween different points, is available from the refs. [40,41].
As a result, this choice guarantees a very precise input.
We must emphasize that, once the input (4)–(7) is adopted,
the treatment is optimal and no information is lost. A
posteriori, it turns out that the results given by this choice
are quite stringent.
In addition to the above input from the timelike axis, we

include the values of FðtÞ measured experimentally at
some spacelike points

FðtnÞ ¼ fn � �fn; tn < 0; n ¼ 1; . . . :; N; (8)

where we use the most recent high precision experimental
information from [22,23]. Thus, we will be employing as
input Eqs. (4)–(8) in order to obtain correlations between
the coefficients of the Taylor expansion (3). We will
investigate also the issue of the possible zeros of the
form factor, deriving regions where zeros are forbidden.
In Sec. II, we briefly review the mathematical method

and in Sec. III the experimental information that goes into
our computation. In Sec. IV, we present our results for the
parameters ðc; dÞ and compare them with results available
in the literature. In Sec. V we derive regions where zeros
are excluded along the real axis and in the complex t-plane,
and in Sec. VI some discussions and our conclusions are
presented.

II. BASIC FORMULAE

For solving the problem, we follow a mathematical
method presented in [61,68]. We first define the Omnès
function

O ðtÞ ¼ exp

�
t

�

Z 1

tþ
dt0

�ðt0Þ
t0ðt0 � tÞ

�
; (9)

where �ðtÞ ¼ �1
1ðtÞ for t � tin, and is an arbitrary function,

sufficiently smooth (i.e., Lipschitz continuous) for t > tin.
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As shown in [68], the results do not depend on the choice of
the function �ðtÞ for t > tin. A crucial remark is that the
function hðtÞ defined by

FðtÞ ¼ OðtÞhðtÞ (10)

is analytic in the t-plane cut only for t > tin. The equality
(5), written in terms of hðtÞ as

1

�

Z 1

tin

dt�ðtÞjOðtÞj2jhðtÞj2 ¼ â��� ; (11)

can be expressed in a canonical form, if we perform the
conformal transformation

~zðtÞ ¼
ffiffiffiffiffi
tin

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
tin � t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tin � t

p ; (12)

which maps the complex t-plane cut for t > tin onto the
unit disk jzj< 1 in the z-plane defined by z � ~zðtÞ, and
define a function gðzÞ analytic in jzj< 1 by

gðzÞ ¼ wðzÞ!ðzÞFð~tðzÞÞ½Oð~tðzÞÞ��1: (13)

In this relation, ~tðzÞ is the inverse of z ¼ ~zðtÞ, for ~zðtÞ as
defined in (12), and the last two factors give the function
hð~tðzÞÞ defined in (10), which is analytic in jzj< 1. Finally,
wðzÞ and !ðzÞ are outer functions, i.e. functions analytic
and without zeros in jzj< 1, defined in terms of their

modulus on the boundary, related to
ffiffiffiffiffiffiffiffiffi
�ðtÞp

and jOðtÞj,
respectively. Equivalent integral representations of the
outer functions in terms of their modulus can be written
either in the z or t variables. In particular, we use

wðzÞ ¼ exp

�
1

2�

Z 2�

0
d�

� þ z

� � z
lnjwð�Þj

�
; � ¼ expði�Þ;

(14)

where

jwð�Þj2 ¼ �ð~tð�ÞÞ
��������
d~tð�Þ
d�

��������; (15)

and

!ðzÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin � ~tðzÞp

�

Z 1

tin

lnjOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 � tin

p ðt0 � ~tðzÞÞ
�
: (16)

Then (11) can be written as

1

2�

Z 2�

0
d�jgð�Þj2 ¼ â��� : (17)

From (12), it follows that the origin t ¼ 0 of the t-plane is
mapped onto the origin z ¼ 0 of the z-plane. Therefore,
from (13) it follows that each coefficient gk 2 R of the
expansion

gðzÞ ¼ g0 þ g1zþ g2z
2 þ g3z

3 þ . . . (18)

is expressed in terms of the coefficients of order lower
or equal to k, of the Taylor expansion (3). Moreover, the
values FðtnÞ of the form factor at a set of real points tn < 0,
n ¼ 1; 2; . . . ; N, lead to the values

gðznÞ ¼ wðznÞ!ðznÞFðtnÞ½OðtnÞ��1; zn ¼ ~zðtnÞ:
(19)

Then the L2 norm condition (17) implies the determinantal
inequality (for a proof and older references, see [68]):��������������������������������

�I �	1
�	2 � � � �	N

�	1
z2K
1

1�z2
1

ðz1z2ÞK
1�z1z2

� � � ðz1zNÞK
1�z1zN

�	2
ðz1z2ÞK
1�z1z2

ðz2Þ2K
1�z2

2

� � � ðz2zNÞK
1�z2zN

..

. ..
. ..

. ..
. ..

.

�	N
ðz1zNÞK
1�z1zN

ðz2zNÞK
1�z2zN

� � � z2KN
1�z2N

��������������������������������

� 0; (20)

where K � 1 is an arbitrary integer and

�I ¼ â��� � XK�1

k¼0

g2k;
�	n ¼ gðznÞ �

XK�1

k¼0

gkz
k
n: (21)

The same relation (20) holds if we replace â��� by an upper

bound of this quantity and the equality sign in (17) by the
� sign. Moreover, as shown in [68], the results depend in a
monotonic way on the value of the rhs of (17), becoming
weaker when this value is increased.
The extension to the case of complex points tn, which

enters in pairs since Fðt	Þ ¼ F	ðtÞ, is straightforward and
will be discussed in Sec. V.

III. EXPERIMENTAL INPUT

We take
ffiffiffiffiffi
tin

p ¼ 0:917 GeV, which corresponds to the
first important inelastic threshold, due to the !� pair. The
choice of a lower value of tin is legitimate in the present
formalism, and we will work also with

ffiffiffiffiffi
tin

p ¼ 0:8 GeV,
which will allow us to compare the constraining power of
the input conditions (4) and (5).
Very precise parametrizations of the phase-shift �1

1 are
given in [24,26]. We use as phenomenological input the
phase parametrized as [26]

cot�1
1ðtÞ ¼

ffiffi
t

p
2k3�

ðM2
� � tÞ

�
2M3

�

M2
�

ffiffi
t

p þB0 þB1

ffiffi
t

p � ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
ffiffi
t

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
�
;

(22)

where k� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=4�M2

�

p
andffiffiffiffi

t0
p ¼ 1:05 GeV; M� ¼ 773:6� 0:9 MeV;

B0 ¼ 1:055� 0:011; B1 ¼ 0:15� 0:05:
(23)

The function �1
1 obtained from (22) is practically identical

with the phase-shift obtained in [24] from Roy equations
for

ffiffi
t

p � 0:8 GeV. The uncertainty is very small and we
have checked that the results are practically insensitive to
the variation of the phase-shift within the errors.
Above tin we use in (9) a smooth phase �ðtÞ, which

approaches asymptotically �. As shown in [68], the
dependence on �ðtÞ of the functions O and !, defined in
(9) and (16) respectively, exactly compensate each other,
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leading to results fully independent of the unknown phase
in the inelastic region.

The two-pion contribution to muon anomaly was eval-
uated to great precision in [40,41]. The most recent
evaluation [41], based on all the available experimental
data, gives for the total �þ�� contribution to muon anom-
aly the value a��� ¼ ð507:80� 1:22� 2:50� 0:56Þ 

10�10. In our method, we need the specific contribution
â��� of the energies from

ffiffiffiffiffi
tin

p
to infinity. The values given

below1 are based on the BABAR data [37], whose spec-
trum extends up to 3 GeV.

For the interval 0.917—3 GeV, the two-pion contribu-
tion is ð21:73� 0:24Þ 
 10�10. Increasing the central
value by the error, and adding an estimate of about
0:2
 10�10 for the interval from 3 GeV to 1, gives the
close upper bound â��� � 22:17
 10�10 for the two-pion

contribution from 0.917 GeV to1. As mentioned above, if
we use in (17), instead of the exact value of â��� an upper

bound on this quantity, the results are still valid but are
weaker. In order to obtain results which are in the same
time unbiased and stringent, we need a conservative and
accurate estimate of â��� .

For the interval 0.8—3 GeV, the two-pion contribution
in [41] is ð94:25� 0:77Þ 
 10�10. Increasing as before the
central value by the error, and adding 0:2
 10�10 for the
interval from 3 GeV to1, we obtain â��� � 95:23
 10�10

for the two-pion contribution from 0.8 GeV to1. The final
numbers for the two choices of tin are compiled in Table I.

Finally, we use additional spacelike data coming from
[22,23], which are collected for completeness in Table II,
where the first error is statistical and the second is
systematical.

IV. ALLOWED DOMAIN IN THE c� d PLANE

In this section, we present the constraints on the coef-
ficients c and d entering the Taylor expansion (3) using the

formalism developed in Sec. II. We list in Table III the
various quantities required in the basic inequality (20), for
two choices of tin. We implemented the normalization
Fð0Þ ¼ 1, but kept arbitrary the charge radius hr2�i and
the spacelike values F1 and F2. Using the input from
Tables I and III, one obtains easily from (20) a convex
quadratic condition for the coefficients c and d, repre-
sented as the interior of an ellipse in the c� d plane.
We consider first the constraints obtained without any

information at spacelike points, when the determinant (20)
has only one element, �I, and the condition (20) becomes

g20 þ g21 þ g22 þ g23 þ . . . � â��� : (24)

The quantities gi are calculated for tin ¼ ð0:8 GeVÞ2 using
the first line of Table I and the first column of Table III, and
for tin ¼ ð0:917 GeVÞ2 using the quantities written in the
second line of Table I and the second column of Table III.
In order to investigate the influence of the choice of the

threshold tin, we show in Fig. 1 the domains obtained
with the two values of tin considered in Tables I and III.
For convenience, we take hr2�i ¼ 0:43 fm2 [55,25,53,54].
The figure shows that the ellipse corresponding to
tin ¼ ð0:917 GeVÞ2 is smaller and lies fully inside that of
the ellipse with tin ¼ ð0:8 GeVÞ2, proving that the best
results are obtained by exploiting the known phase along
the whole elasticity region. Therefore, in what follows we
shall adopt the choice tin ¼ ð0:917 GeVÞ2.
A precise estimate hr2�i ¼ ð0:435� 0:005Þ fm2 is given

in [25]. In Fig. 2 we present the domains described by (20)
for tin ¼ ð0:917 GeVÞ2 and two values of the charge radius
hr2�i ¼ 0:43 fm2 and hr2�i ¼ 0:44 fm2 resulting from this
estimate. The allowed domain is quite sensitive to the
variation of hr2�i, being shifted towards the upper right
end if hr2�i is increased. To account for the uncertainty of
the charge radius, we take as allowed domain the union of
the two ellipses in Fig. 2, which leads to the ranges

3:48 GeV�4 & c & 3:98 GeV�4;

9:36 GeV�6 & d & 10:46 GeV�6;
(25)

with a strong correlation between the values of c and d.
We implement now the value at a point on the spacelike

axis, using the input given in Table II. In this case, the
determinant in (20) has two rows and two columns. We
choose the input at the spacelike point t1 given in Table II
and account for the errors by varying F1 inside the
error bars. In Fig. 3, we present the allowed domain in
the c� d plane obtained for hr2�i ¼ 0:43 fm2 and three
values of F1: the central value 0.243 given in Table II, and
the extreme values 0.265 (0.228) obtained by adding (sub-
tracting) the corresponding errors added in quadrature. The
additional information on the spacelike axis improves in a
dramatic way the constraints on the c and d coefficients.
The small ellipses are entirely included in the larger ellipse
obtained without information on the spacelike axis, which
confirms the consistency of the various pieces of the input

TABLE I. �þ�� contribution to the muon anomaly for ener-
gies above

ffiffiffiffiffi
tin

p
.

ffiffiffiffiffi
tin

p
â���

0.800 GeV 95:23
 10�10

0.917 GeV 22:17
 10�10

TABLE II. Spacelike data from [22,23].

t Value [GeV2] FðtÞ
t1 �1:60 0:243� 0:012þ0:019

�0:008

t2 �2:45 0:167� 0:010þ0:013
�0:007

1We are grateful to Bogdan Malaescu for providing us these
numbers.
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information. Varying F1 inside the error bars, we obtain the
allowed domain of the c and d parameters at the present
level of knowledge as the union of the three small ellipses
in Fig. 3. This gives, for hr2�i ¼ ð0:435� 0:005Þ fm2, the
allowed ranges

3:75 GeV�4 & c & 3:98 GeV�4;

9:91 GeV�6 & d & 10:45 GeV�6;
(26)

with a strong correlation between the two coefficients. The
comparison with (25) shows that the information at the
spacelike point improves the lower bounds on both c and d,
a feature seen actually from Fig. 3.

Similar results are obtained using as input the second
Huber datum t2 in Table II. Note that the formalism allows
the simultaneous inclusion of several spacelike points in
the determinant (20). In practice, as discussed in [62,63],
when more points are included the results are extremely
sensitive to the values used as input, which requires ade-
quate numerical methods for treating the problem.

To illustrate the issues that arise in this context, a small
digression is in order: the formalism presented in this work
can be used to obtain limits on the value Fðt2Þ at the second
spacelike point, given the value Fðt1Þ at the first one. This
range results from the general inequality (20), written as��������������������

â��� � g20 � g21
�	1

�	2

�	1
z4
1

1�z2
1

ðz1z2Þ2
1�z1z2

�	2
ðz1z2Þ2
1�z1z2

ðz2Þ4
1�z2

2

��������������������
� 0; (27)

where zi ¼ ~zðtiÞ and �	i ¼ gðz1Þ � g0 � g1zi.
Using as input the coefficients given in the second

column of Table III, we obtain from the above inequality
a strong correlation between the values Fðt1Þ and Fðt2Þ. For
instance, taking the radius to be 0:435 fm2 and Fðt1Þ at its
central value in Table II, (27) restricts Fðt2Þ to the narrow
range (0.159, 0173). The central experimental value of
Fðt2Þ quoted in Table II is contained in this range, which
means that the central Huber values are consistent with

TABLE III. Tabulation of the quantities entering as input in (20) for obtaining the constraints on the c, d coefficients, for two choices
of tin. The numbers zn � ~zðtnÞ are obtained using (12) and tn given in Table II. The numerical coefficients include the information on
the phase below tin and the normalization Fð0Þ ¼ 1, while the charge radius hr2�i (expressed in fm2) and the values Fn � FðtnÞ are left
arbitrary.

Quantity tin ¼ ð0:8 GeVÞ2 tin ¼ ð0:917 GeVÞ2
g0 0:2284
 10�4 0:1238
 10�4

g1 ð0:2503hr2�i � 0:0414Þ 
 10�3 ð0:1783hr2�i � 0:0431Þ 
 10�3

g2 ð0:1497c� 0:9547hr2�i � 0:1160Þ 
 10�3 ð0:1401c� 0:9773hr2�i � 0:0985Þ 
 10�3

g3 ð�0:8704cþ 0:3833dþ 0:3879hr2�i � 0:7260Þ 
 10�3 ð�1:0481cþ 0:4712dþ 0:3589hr2�i � 0:9154Þ 
 10�3

z1 �0:3033 �0:2603
z2 �0:3745 �0:3285
gðz1Þ F1 
 0:3051
 10�4 F1 
 0:2066
 10�4

gðz2Þ F2 
 0:3984
 10�4 F2 
 0:2210
 10�4

3 3.2 3.4 3.6 3.8 4

c [GeV
-4

]

8.5

9

9.5

10

10.5

d 
[G

eV
-6

]

tin = (0.8 GeV)
2

tin = (0.917 GeV)
2

<rπ
2
> = 0.43 fm

2

FIG. 1 (color online). Comparison of the c� d domain
obtained with tin ¼ ð0:917 GeVÞ2 and tin ¼ ð0:8 GeVÞ2 for
hr2�i ¼ 0:43 fm2.

3.5 3.6 3.7 3.8 3.9 4

c [GeV
-4

]

9.5

10

10.5

d 
[G

eV
-6

]

<rπ
2
> = 0.43 fm

2

<rπ2> = 0.44 fm
2

FIG. 2 (color online). Allowed domain in the c� d plane
obtained with tin ¼ ð0:917 GeVÞ2, for hr2�i ¼ 0:43 fm2 and
hr2�i ¼ 0:44 fm2.
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each other in the analytic framework that we have adopted.
On the other hand, taking Fðt1Þ at the lower end of the
experimental interval, we obtain the allowed range of Fðt2Þ
as (0.135, 0.153), below the experimental interval, while
fixing Fðt1Þ at the upper end yields the range (0.199,
0.201), above the experimental interval. It follows that
an allowed range of Fðt2Þ consistent with the experiment
can be obtained only by reducing the input range of Fðt1Þ.
By varying simultaneously the value of Fðt1Þ and the
radius, hr2�i ¼ ð0:435� 0:005Þ fm2, we obtain for Fðt2Þ
the range (0.130, 0.201), which may be expressed as
Fðt2Þ ¼ 0:166� 0:036. The result is consistent with the
numbers in Table II, but the error is a bit larger than the
actual experimental one.

The digression above shows also that, by imposing
simultaneously the experimental values at t1 and t2, we
can only obtain a slight improvement of the allowed do-
main of the parameters c and d. The reason is the fact that,
as already noted above, the information on Fðt2Þ forces
Fðt1Þ to lie within a slightly smaller range around the
central value. Since the gain is expected to be small, we
keep for simplicity as input only one spacelike point,
which is sufficient to produce the narrow ranges reported
in (26).

It is of interest to compare our predictions with previous
determinations available in the literature. First, the range
of c given in (26) considerably improves the bounds ob-
tained with similar techniques in [61–63,66]. The improve-
ment is due mainly to the very accurate information
available now on the modulus, expressed in the values in
Table I. On the theoretical side, a fit based on ChPT to
two-loop accuracy for 
 decays gives c ¼ ð3:2� 0:5exp �
0:9theorÞ GeV�4 [4]. Subsequent calculations of the

electromagnetic form factors in two-loop ChPT lead to
the values c ¼ ð3:85� 0:60Þ GeV�4 [5], in agreement
with the range given in (26), and c ¼ ð4:49�
0:28Þ GeV�4 [6], slightly above that range. Finally, both
the prediction c ¼ ð4:00� 0:50Þ GeV�4, based on the
quark-mass dependence of the form factor [65], and the
range c ¼ ð4� 2Þ GeV�4 quoted as a conservative next-
to-next-to-leading order ChPT result in the same reference,
are consistent with (26). On the other hand, a recent lattice
calculation with chiral extrapolation based on two-loop
ChPT gives a slightly lower value, c ¼ 3:22ð17Þ

ð36Þ GeV�4 [7]. It must be noted however, that the lattice
data are generated at rather high spacelike momenta,
t 2 ð�0:3;�1:7Þ GeV2. Therefore, the extraction of the
radius and the curvature can not be very precise and
the corresponding uncertainties might be larger than
estimated.
Other determinations of the curvature are based on fits of

experimental data with specific analytic parametrizations
of the form factor. The value c ¼ ð3:90� 0:10Þ GeV�4

was obtained in [59] by a usual dispersion relation, while
a fit of the ALEPH data [57] on the hadronic 
 decay rate
with a Gounaris-Sakurai formula for the form factor [58]
gives c ¼ ð3:2� 1:0Þ GeV�4. Several analyses are based
on phase (Omnès-type) representations, with various pa-
rametrizations of the phase along the whole unitarity
cut. Their predictions, like c ¼ ð3:79� 0:04Þ GeV�4

[53], c ¼ ð3:84� 0:02Þ GeV�4 [55], and more recently
c ¼ ð3:75� 0:33Þ GeV�4 [65], are in overall agreement
with (26). We note also that the value c ¼ ð3:30�
0:03stat � 0:33systÞ GeV�4, obtained recently from a fit of

spacelike data with Padé approximants [64], is below our
prediction (26). It may be worth investigating whether the
fact that the unitarity cut and the precise data available
along it are not included in this analysis is responsible for
the mismatch.
As in the case of c, the range of d given in (26) consid-

erably improves the bounds obtained with similar tech-
niques in [61–63,66]. The information available in the
literature on the cubic term in the Taylor expansion (3) is
not rich. Theoretical results from ChPT and lattice calcu-
lations are not yet available. From fits of the data, the value
d ¼ ð9:70� 0:40Þ GeV�6 was obtained by means of usual
dispersion relations in [59], while the Taylor expansion of
the Gounaris-Sakurai parametrization [57], mentioned
above, leads to d ¼ 9:80 GeV�6. Both values are consis-
tent with the range (26).

V. DOMAIN WHERE ZEROS ARE EXCLUDED

As we discussed in the Introduction (see also [70]),
the formalism developed in Sec. II allows one to find
rigorously the domain where the form factor cannot have
zeros. The method amounts to testing the consistency of
the assumption that a zero is present with the other pieces
of the input. Let us assume first that FðtÞ vanishes at some

3.5 3.6 3.7 3.8 3.9
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-4

]
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F(t1) (min)

<rπ
2
> = 0.43 fm

2

FIG. 3 (color online). Allowed domain in the c� d plane
calculated with tin ¼ ð0:917 GeVÞ2 and hr2�i ¼ 0:43 fm2, for
three values of Fðt1Þ at the spacelike point t1 ¼ �1:6 GeV2

(central value in Table II and the extreme values obtained from
the error intervals). Also shown is the large ellipse when no
spacelike datum is included.
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real point t0. From (13), it follows that gðz0Þ ¼ 0, where
z0 ¼ ~zðt0Þ. We therefore include this value in the determi-
nant (20) and test the validity of the inequality: if it is
satisfied, a zero is possible, if it is violated, the zero is
forbidden. In particular, if we use only the information on
the normalization Fð0Þ ¼ 1 and the charge radius, with no
input on the spacelike axis, we obtain from (20) and (21)
the following condition

�����������
â��� � g20 � g21 �g0 � g1z0

�g0 � g1z0
z4
0

1�z2
0

�����������<0; (28)

for the points z0 such that the form factor cannot vanish at
t0 ¼ ~tðz0Þ. Here g0 and g1 are expressed cf. Table III in
terms of the charge radius.

If we include in addition the value at a point z1 ¼ ~zðt1Þ,
the condition reads

��������������������

â��� � g20 � g21 �g0 � g1z0 �	1

�g0 � g1z0
z40

1�z2
0

ðz0z1Þ2
1�z0z1

�	1
ðz0z1Þ2
1�z0z1

ðz1Þ4
1�z21

��������������������
<0; (29)

with �	1 ¼ gðz1Þ � g0 � g1z1.
With the values given in Tables I and III for

tin ¼ ð0:917 GeVÞ2 and hr2�i ¼ 0:43 fm2, the inequality
(28) implies that simple zeros are excluded from the inter-
val �1:93 GeV2 � t0 � 0:83 GeV2 of the real axis. If we
impose the additional constraint at a spacelike point
t1 ¼ �1:6 GeV2, the interval for the excluded zeros is
much bigger. The left end of the range is actually quite
sensitive to the input value F1 ¼ Fðt1Þ. Using the central
value F1 ¼ 0:243 given in Table II, we find from (29) that
the form factor cannot have simple zeros in the range
�5:56 GeV2 � t0 � 0:84 GeV2. By varying F1 inside
the error interval given in Table II (with errors added in
quadrature), we find that zeros are excluded from the range
�12:67 GeV2 � t0 � 0:84 GeV2 for F1 ¼ 0:265 at the
upper limit of the error interval, while for the lower limit
F1 ¼ 0:228 the range is �4:46 GeV2 � t0 � 0:84 GeV2.

We now turn to the study of complex zeros. The formal-
ism presented in Sec. II can be easily adapted to include
complex values of the form factor outside the real axis.
Since the form factor is real analytic, its zeros occur in
complex conjugate pairs, i.e. if Fðt0Þ ¼ 0, then also
Fðt	0Þ ¼ 0 (a double zero occurs as t0 approaches the real

axis). One can show that the determinant condition (28) for
the domain without zeros is generalized to

��������������������

â��� � g20 � g21 �g0 � g1z0 �g0 � g1z
	
0

�g0 � g1z
	
0

ðz0z	0Þ2
1�jz0j2

ðz	
0
Þ4

1�ðz	
0
Þ2

�g0 � g1z0
z4
0

1�z2
0

ðz0z	0Þ2
1�jz0j2

��������������������
<0:

(30)

The determinant is real since the corresponding matrix is
Hermitian. The 4
 4 determinant that includes in addition
a value at a spacelike point t1 can be easily written down.
We first apply the inequality (30) to illustrate the depen-

dence of the domain without zeros on the value of tin used
in the calculations. As seen from Fig. 4, the larger value
tin ¼ ð0:917 GeVÞ2 leads to a domain that extends to high
values of jtj in all the directions of the complex plane,
which shows that, like in the case of the c� d domain, the
best results are obtained if the phase condition (4) is used
along the whole range of validity.
The dependence of the domain on the variation of hr2�i is

shown in Fig. 5. As expected, for a larger charge radius,
hr2�i ¼ 0:44 fm2, the zeros are excluded from a bigger
complex domain around the timelike axis, while the left
end of the domain, around the spacelike axis, is almost
insensitive to the slope at t ¼ 0.
The effect of an additional input at a spacelike point

is illustrated in Fig. 6, where we show the domain in
the complex plane where zeros are excluded, using
t1 ¼ �1:6 GeV2 and the value Fðt1Þ ¼ 0:243 (the central
experimental value given in [22,23]). By comparing Fig. 6
with the large domain in Fig. 4, one can see that the
knowledge of the form factor at a spacelike point excludes
zeros in a larger domain near the spacelike axis, while it
has a smaller influence on the right part of the domain.
This feature is present also in Fig. 7, which shows the
sensitivity of the domain to the input value of Fðt1Þ. As
is seen in the figure, the larger value Fðt1Þ ¼ 0:265 ob-
tained from the upper limit of the error bar, excludes the
zeros in a domain extending to considerably larger values
along the spacelike axis.
The results on the zeros reported in the literature

[18,42–44,47,48] are rather controversial. The best results
for the regions free of zeros were obtained in [42,47,48], by
a method related to ours. However, since the experi-
mental information at that time was poor, the authors

FIG. 4 (color online). Comparison of the domains without
zeros obtained from (30) using tin ¼ ð0:8 GeVÞ2 (smaller do-
main) and tin ¼ ð0:917 GeVÞ2 (bigger domain), for hr2�i ¼
0:43 fm2.
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were forced to make some ad-hoc assumptions, especially
on the modulus on the timelike axis. At present, the precise
measurement of the modulus gives a solid basis to our
results.

The issue of zeros is of relevance for the analytic repre-
sentation of the form factor using phase (Omnès)- or

modulus-type representations, which require the knowl-
edge of the zeros. Such representations were extensively
studied in the past [18,46,50,52,53,65], and often are based
on the assumption that zeros are absent. Our results, which
show that the zeros are excluded from a rather large region
at low energies, give support to such representations, and
confirm also theoretical expectations based on ChPT or
more general physical arguments [18].

VI. DISCUSSIONS AND CONCLUSION

The experimental information available at present on the
pion electromagnetic form factor is very rich. The recent
high statistics measurements of the modulus by BABAR
and KLOE collaborations [37–39], supplemented by the
phase in the elastic region known with accuracy from the
P-wave of �� scattering [24–26], are expected to consid-
erably constrain the behavior on the timelike axis. The
values of the form factor on the spacelike axis are also
measured with increasing precison. Theoretically, predic-
tions on the pion form factor at low energies are available
from ChPT and lattice QCD, while perturbative QCD
predicts the behavior at high energies along the spacelike
axis. The transition to the perturbative regime is known to
be an open problem that deserves further study in the case
of the pion form factor.
Analyticity is the ideal tool for connecting the low- and

high-energy regimes for physical quantities like the pion
form factor. The full treatment of the present rich experi-
mental and theoretical input, which might overconstrain
the system, is a challenge for the future investigations
based on analyticity. In the present work we do not perform
such a complete analysis, but exploit only in part the
present information on the modulus on the unitarity cut.
However, even in this limited frame we obtain quite
stringent conclusions on the low energy properties of the
form factor.
The conditions used as input in our approach are ex-

pressed by the phase condition (4) and the integral of the
modulus squared (5), which we further restricted by choos-
ing the weight �ðtÞ as the kernel relevant for the two-pion
contribution to the muon anomaly, cf. (6) and (7). A more
general class of suitable weights will be investigated in a
future work. Once the input is chosen, it is exploited in an
optimal way by a mathematical formalism presented in
Sec. II, leading to strong correlations between the coeffi-
cients of the Taylor expansion (3) at t ¼ 0 and the values of
the form factor on the spacelike axis.
Our basic results are contained in Eqs. (20) and (21),

where the input quantities are defined in Tables I, II, and
III. The numerical coefficients in Table III depend on the
normalization Fð0Þ ¼ 1 and the phase of the form factor
below the inelastic threshold tin, being vary stable with
respect to small variations of the phase. Moreover, as
emphasized in Sec. II, the results are independent of the
unknown phase of the form factor above the inelastic

FIG. 5 (color online). Domain without zeros obtained from
(30) using tin ¼ ð0:917 GeVÞ2, for two values of the pion charge
radius, hr2�i ¼ 0:43 fm2 (smaller domain) and hr2�i ¼ 0:44 fm2

(bigger domain).

FIG. 6 (color online). Domain without zeros obtained with
tin ¼ ð0:917 GeVÞ2 and hr2�i ¼ 0:43 fm2, using in addition the
central experimental value Fðt1Þ ¼ 0:243 at the spacelike point
t1 ¼ �1:6 GeV2.

FIG. 7 (color online). Comparison of the domains with no
zeros obtained with tin ¼ ð0:917 GeVÞ2 and hr2�i ¼ 0:43 fm2,
for the spacelike input F1 ¼ 0:265 (bigger domain) and
F1 ¼ 0:228 (smaller domain).
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threshold tin. In Table III, the charge radius hr2�i, the
higher-order Taylor coefficients c and d, and the values
of the form factor at several spacelike points are kept free,
so the formalism can be easily applied for finding model
independent correlations between the values of the form
factor at different points and for testing the consistency of
input values known from different sources.

In Sec. IV, we derived stringent constraints on the
allowed values of the higher-order coefficients c and d of
the Taylor expansion (3). The best results are obtained
with tin ¼ ð0:917 GeVÞ2, which corresponds to the physi-
cal inelastic threshold produced by the !� channel.
The charge radius and an additional information at a
spacelike point were used as input. In (25) and (26) and
in Figs. 1–3 we illustrated the results for hr2�i in the
range ð0:43–0:44Þ fm2 and Fð�1:6 GeV2Þ ¼ 0:243�
0:012þ0:019

�0:008 [22,23]. It is remarkable that the allowed

ranges are already comparable in precision with other
determinations in the literature based on specific
parametrizations.

The present method can be used also to obtain bounds on
the values of the form factor along the spacelike axis, using
as input the information on the timelike axis, together with
some values inside the analyticity domain. As discussed in
Sec. IV, using as input the value Fðt1Þ at the first Huber
point, we obtain stringent limits on the value Fðt2Þ at the
second point, with a strong correlation between the two. Of
course, the method can be applied in principle also to
higher spacelike energies. However, with our choice of
the weight �, we expect that the predictions will become
gradually weaker when the energy is increased. Indeed,
since � decreases rapidly at large momenta, the condition
(5) provides stringent constraints on the low energy pa-
rameters like c and d, but in the same time it imposes weak
constraints on the behavior of the form factor at large
energies. A different choice of � could lead to interesting
results also for the behavior at higher energies, but this is
beyond the scope of the present analysis and will be
investigated in a future work.

In Sec. V, we showed that the same formalism leads to an
analytic description for the regions of the complex plane

where the zeros of the form factor are forbidden. Our
results are contained in Eqs. (28)–(30) and are illustrated
in Figs. 4 and 7, for the same input hr2�i and Fðt1Þ. We
obtain a rather large domain where zeros are excluded,
which gives support to Omnès-type representations, which
often assume the absence of the zeros. Our results also
confirm theoretical expectations on the absence of zeros at
low energy, based on ChPT or general physical arguments
[18]. We note that by our method we can find rigorously the
domains free of zeros, but we can say nothing about the
remaining domains, where zeros may be present or absent.
Alternative methods, based on modulus representations
[18,43,52], can rule out in principle the zeros from the
whole complex plane provided they are absent. However,
these methods are very sensitive to the input and led to
controversial results in the past. An update of such analyses
using the recent precise determination of the modulus
would be of much interest.
We finally note that the mathematical formalism applied

in this paper may be useful also for finding an analytic
parametrization of the form factor suitable for fitting the
rich amount of experimental data. Namely, the representa-
tion of FðtÞ that results from (13) involves the known
functions wðzÞ, which accounts for the weight �ðtÞ, !ðzÞ
and OðtÞ, which implement the phase below tin, and the
arbitrary function gðzÞ, analytic in the t-plane cut for
t > tin, or equivalently in the unit disc jzj< 1 of the
z-plane defined by the conformal mapping (12). The ex-
pansion (18) is convergent in jzj< 1, and moreover the
coefficients satisfy the inequality (24), which is very useful
in order to control the higher orders of the expansion and
the truncation error.
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