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Determination of y, and Y, polarizations from dilepton angular distributions in radiative decays
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The angular distributions of the decay products in the successive decays x.(x,) — J/#(Y)y and
J/¢(Y) — €€ are calculated as a function of the angular momentum composition of the decaying y
meson and of the multipole structure of the photon radiation, using a formalism independent of production
mechanisms and polarization frames. The polarizations of the y states produced in high-energy collisions
can be derived from the dilepton decay distributions of the daughter J/¢ or Y mesons, with a reduced
dependence on the details of the photon reconstruction or simulation. Moreover, this method eliminates

the dependence of the polarization measurement on the actual details of the multipole structure of the
radiative transition. Problematic points in previous calculations of the y. decay angular distributions are

identified and clarified.
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I. INTRODUCTION

The existing J/ and Y polarization measurements
make no distinction between directly produced states and
those resulting from the decay of higher-mass states. J/
and Y mesons coming from y decays have, in principle,
very different polarizations with respect to the directly
produced ones. In fact, directly produced y and directly
produced J/ s or Y have different angular momentum and
parity properties, and originate from different partonic
processes. Moreover, the angular momentum composition
of the indirectly produced states is influenced by the pres-
ence of the accompanying decay photon. Therefore, y,. and
X polarization measurements, together with the knowl-
edge of how these states transmit their polarizations when
they decay, are essential in the understanding of the ob-
served J/¢ and Y polarization patterns. An improved
account of feed-down effects in quarkonium polarization
measurements, and calculations, can shed new light in the
interpretation of the significant discrepancy existing today
between the theory predictions and the experimental
data [1].

In this paper, we examine how the polarization is trans-
mitted in the decays from P to S quarkonium states. We
study the angular distributions of the successive decays
xexp) — I/ p(Y)y and J/ (YY) — €7 €. We discuss the
sensitivity of these observable distributions to the angular
momentum composition (“‘polarization’”) of the decaying
x meson and their additional dependence on the orbital
angular momentum of the photon. As a result of the study,
we propose a convenient way of measuring y polarizations
in high-energy experiments, essentially independent of the
details regarding the photon detection and of the magni-
tude of the higher-order multipoles of the radiative tran-
sition. This method is valid irrespective of the production
process (hadroproduction, photoproduction, etc.). The
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paper finishes with a critical review of previous calcula-
tions of the y, decay angular distributions, identifying and
clarifying the causes of their seemingly contradictory
results.

I1. RADIATIVE DECAY AMPLITUDES

Throughout this paper, we generically denote by V the
charmonium and bottomonium S | states, J /¢ and Y, and
by yx the 3Pj states, x.; and x;;, with j = 1, 2. Without loss
of generality for the discussions in this paper, we assume
that the 3P ; state x; is produced in a single “subprocess”
as a given superposition of J, eigenstates (z being the
quantization axis chosen for the y angular momentum),

J
X)) =2 bulx:jm) (1)

m=—j

with J?|x;j,m) = j(j + Dlx:jom) and I |x;jm)y=
m|x; j, m). Notations for axes and angles are shown in
Fig. 1(a). The total angular momentum carried by the
photon can have any (nonvanishing) value, while its pro-
jection along the momentum direction of the y (and of V),
the 7' axis, can only be kK’ = +1 or —1, because the orbital
component has, by definition, zero projection along this
direction. In other words, the photon angular momentum
state is an eigenstate of J./ but, in general, neither of J* nor
of J,. It can be represented as a complete expansion over
eigenstates of J? and J, as

V201
k) =3 3 D@ @)yl k), @
=1

kk!
k=1
where J?|y; L ky = I(1 + Dly; L k), I ly; L k) = kly; 1, k)

and the coefficients ‘Di (0, @) [2] are the matrix elements
of the rotation corresponding to the change of quantization
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FIG. 1 (color online).
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Definition of axes and decay angles for y — V7 (a) and for V — €€~ in two options, with the dilepton

polarization axis being the V direction in the y rest frame (b) or parallel to the y polarization axis (c).

axis from z’ (“‘natural” quantization axis of the photon) to
Z (x quantization axis adopted in the measurement).

The amplitude of the radiative transition from the y;
state to the V state plus a photon having spin projection k'
along 7’ is

j o0 1
A, = Vy) = > b, > V20+1 > Dk (6,)
I=1

m=—j =—1

X Vyw; Lm —k 1L k| H | x; j, m). (3)

The matrix element of the elementary transition can be
parametrized as

Vys L,m =k L k| H | x; j, m)
= (=) H (1, m — k1 klj, m), 4)

where we have factored out the k’-dependent sign, deter-
mined by imposing that the photon distribution

Wi0,®) = > |A(x;— Vyo)l? (5)

K==1
is parity invariant and using the property

D! (m—0,7+d) = (—1)’_k’62ik/(bei_k,

(0, D).
(6)

The sums in Eq. (3) only include terms in which the
Clebsch-Gordan coefficient (1, m — k, I, k|j, m) is well
defined, i.e. when

l=l=j+1, |lm —kl = 1. (7)

The partial amplitudes H;; denote y; — V transitions
with the emission of a photon of total angular momentum /.
In the spectroscopic language they represent electric and
magnetic 2/-pole radiations (dipole, quadrupole, octupole,
etc.), indicated with E/ and M/, respectively. The two types
of transitions differ in their parity properties: the electric

2l-pole radiation has parity (—1)!, while the magnetic
2l-pole radiation has parity (—1)'*'. Since the *P; and
3S, quarkonium states have opposite parities, the only
allowed transitions are E1 (for all y states), M2 (for y;
and y»), and E3 (for the y,). Hereafter we use the short
notations

hl == Hl,l with [ = 1, 2,
. 3
81 = H2,l with [ = 1, 2, 3,
with the normalizations
hi+hs=gl+gi+g=1 9)

In short, h; and g, represent, respectively for y; and y»,
the relative amplitude of the E1 transition, 4, and g, the
corresponding relative amplitudes of the M2 transition, and
g3 the relative amplitude of the E3 transition (only for the
X2 case). The hierarchies g3 < g, < g; and h, < h, are
expected. In fact, in the generic expansion of the radiation
field around a system of oscillating charges in terms of
angular momentum eigenfunctions, the /-th term vanishes
more and more rapidly, at large distance from the origin,
as [ increases. This behavior reflects the fact that
the wavelength of the emitted photon, A, = hc/E, =
hc/(0.4 GeV) = 3 fm, is sizeable with respect to the di-
mensions of the quarkonium ( = 0.4-0.7 fm), so that at the
typical distance scale r = A, the electromagnetic field is
already only weakly sensitive to the internal charge and
current distributions of the radiating object. With respect to
the first nonvanishing term, higher multipole terms, pro-
duced by more complex charge/current configurations, are
therefore foreseen to be increasingly smaller, even if not
necessarily as suppressed as in nuclear y-ray transitions,
where the emitted radiation has a wavelength several or-
ders of magnitude larger than the nuclear dimensions. The
study of the cc¢ radiation multipoles addresses aspects of
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TABLE I. Higher-order photon multipoles in x 2 — J/¢y
decays.

Experiment hy [%] g5 [%] g3 [%]
Crystal Ball [4] —-0.279% -33*1 e
E760 [5] : —14*6 0+¢
E835 [6] 02=*32 —9.3739 2.073¢
CLEO [7] —6.26 = 0.67 —93=*16 1.7+ 14

the quark model, including the properties of the bound-
state wave functions and the electromagnetic properties of
the charm quark. For example, the relative contribution of
the M2 amplitudes is significantly dependent on the cor-
— 2 _e

rections to the charm quark magnetic moment p, = 5 55

[3]. The existing &5, g,, and g3 measurements, for the y,,
are shown in Table I. The M2 amplitude contribution is of
order 10% for the y, and even smaller for the y,.,
although the two most precise y,; results are incompatible
with each other. No experimental information exists for y,
decays. We will discuss in Sec. V the effects induced by the
higher-order multipole contributions on the observable
angular distributions.

III. PHOTON DISTRIBUTION

The angular distribution of the photon direction in the y
rest frame, as a function of the y angular momentum
composition {b,,} and of the photon multipole amplitudes,
is obtained by expanding Eq. (5). The resulting y, distri-
bution is spherically symmetric, reflecting the rotational

)g1—>¢/Yv

e | 28
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FIG. 2 (color online).
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invariance of the j = 0 angular momentum state and the
imposed parity invariance of the decay. As for the y;
decay, the expression of the angular distribution is

3
W(0,P)=— (1 + Agcos’®
1 ) nG T A@))( ©COS
+ Agsin?@ cos2® + Agg sin20 cosd
+ Agsin?@sin2d + A, sin2@ sin®),  (10)
where
1
Ao = 5(1 = 3A)2|bol* = (164 1> + [6-417)]
2
/\q) = _5(1 - 3A) Re(bj_lb,l),
\/z P
Aow = = (1 = 38)Relby(bsy = b-y)] (11)
2
)\$ = _B(l —3A)Im(b%,b-y),
V2
Moo =5 (1 = 38) Il + b))
with
D =2(1 + A)lbol* + B — A)([by* + |64 1%,
(12)

A = _2]11]’12.

The angular distribution of the photon from the y,
decay, significantly more complex, is

25 g [ x> /Ty
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Dependence of the parameters Ag (a) and Ay (b) of the y; photon and dilepton distributions and of the

parameters /\g) (c) and Ay (d) of the y, photon and dilepton distributions on the relative contribution of the magnetic quadrupole

transition amplitude.
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15
W, (0, ®) = T a1+ Ag)coszﬁ) + Ag)cos“@ + )\g)sinz(@ cos2® + Ag)sin“@ cos2®
4m(15 + 525 + 329)
g)mn“@ cos4d + A(I)Lsmz(@ sin2® + A(z)lsm4® sin2® + )\(3)lsm4® sindd + )‘((%Zb sin2® cos®
+ /\g(bsmz@) sin20 cos® + /\g(bsm2® sin20 cos3d + Aggl sin20 sin® + )\g)qfsmz® sin2® sin®
+ /\gzﬁ' sin?0 sin20 sin3 D), (13)
where
3 2 5 1 5
Xy = _5[2(1 + A))lbol* + (1 - §A1 - gAz)(|b+1|2 + 164 - (2 + gAl - gAz)(|b+2|2 + |b—2|2)],
A
g = S [6lbgP = 41bo > + b1 P) + 1bol + 16,
2
A = 5 Re[V6(1 + A)b(byy + b_y) + (3 = 281 — SA,)b% by ],
AP = —ARe[Vobi(b.y + b_y) — 4b* b ],
2D = ARe(b*,b_»),
2 3k ES
AWt =2 Im[—\/g(l + ADDbE(byy — by) + (3 — 24, — 5A,)b% b 4], 14

AL = AIm[\/_ 6b%(by —
AP = Am(b*,b ),

b_,) +4b% b_1]

1 2 5 . 8 10 . .
Agh = 3 Re[ V(1 =581 =3 8 by — b+ (64581 = 50 )b — b7 |
A2y = ARe[V6by(bsy — by) — (bybay — b7 yb_))],
ASL = ARe(b%,b_| — b*,by),

! 20 5\ 8§, 10,1\, .
/\(@;g_ = B Iml:—\/g(l - gA] - §A2>b0(b+l + b,]) + (6 + gA] - ?A2>(b+2b+l + b_zbfl)],

AL = — ATm[Vobi(byy + b_y) + biybyy + b*ob ]
AL = Atm(b* b, + b b)),

with

D= (10+ A, — Ay)|bo|* +

1,3
+ (6= 580+ 382 )boal? + 1b-aP),
Ay =483 + 658,83 — 25818, — 283 + 14gg;,

Ay =483 + 458,85 + 2V5g,8, + 383 + 48185

(9 = A6y > + 1b41%)

As shown in Fig. 2, the dependence of the photon
distribution on the y angular momentum configuration is
very sensitive to the contribution of the higher photon
multipoles. Figure 2(c) shows, in particular, that the polar

anisotropy parameter Ag), at the average value of g, mea-
sured for the y., (assuming g3 = 0), is 30% higher than
the value expected in the El-dominance case if the y,
polarization state is m = =1 or 70% higher if m = *=2.
This shows that the derivation of the average polarization

state in which the y is produced from the observed photon
angular distribution relies crucially on the knowledge
of the multipole amplitudes. Seen from the opposite per-
spective, we see that the so-called E1 approximation
(h, = g, = g3 = 0) is clearly not applicable in the calcu-
lation of the y — Vy decay kinematics expected for a
given y production mechanism.

IV. LEPTON DISTRIBUTION

In the parity-conserving case here considered, the gen-
eral expression for the angular distribution of the dilepton
decay of a vector state is [8]

w(d, @) = (1 + Agcos?d

3
47 (3 + Ay)
+ A sin? P cos2¢ + Ay, sin2d cose
+ Agsin® 9 sin2¢ + Ay, sin2d sing),  (16)
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analogous in form to Eq. (10). The traditional choice
of axes, adopted in calculations [9,10] and measurements
[4-7] of the full decay angular distribution for ), mesons
produced at low laboratory momentum, is represented in
Fig. 1(b), where the V polarization axis, 7/, is the V
direction in the y rest frame. With respect to this system
of axes, any measurement will always find, for instance in
the case of the polar anisotropies for y; and y, dileptons
(neglecting, for simplicity, the E3 contribution in the latter
case), the following values:

3
i[1_80\/§
13 13

= =3[ o]
a7

=2 _
Ay ==

g+ @(g%)].

The dilepton distribution in the x/, y', 7’ coordinate system
is independent on the y polarization state. This choice of
axes, while suitable for measuring the contribution of the
higher-order multipoles, does not provide any information
on the polarization of the y and, hence, on its production
mechanism.

We propose here an alternative definition of the V
polarization frame, enabling the determination of the y
polarization in high-momentum experiments without the
need of measuring the full photon-dilepton kinematic cor-
relations. This definition, shown in Fig. 1(c), “‘clones” the
X polarization frame, defined in the y rest frame, into the V
rest frame, taking the x”, y”, 7"/ axes to be parallel to the x,
y, 7 axes.

The coefficients of the dilepton distribution can be writ-
ten as a function of the angular momentum composition of
the decaying vector state [8], |[V) = 3"=*1q,|V; 1, n), as

n=-—1

N — 3|Cl()|2
Ny =20
N + laol
_ 2Rela’ ja_]
¢ N+ lagl* ’

Ao — V2Re[aj(a,, —a_)] (18)
e N + |agl? ’
AL — 2Im[a’ a_]

¢ N+ |a0|2 ’

AL = —V2Im[aj(a,, +a_,)]

do N + |ao|2 ’

where N = |apl® + lay|* + |a_,|*. The partial ampli-
tude of the y; decay into a vector state with angular
momentum projection n (= —1, 0, 1) along 7z and a
photon with angular momentum projection k' (= — 1, 1)
along 7/, from Egs. (3) and (4), is

PHYSICAL REVIEW D 83, 096001 (2011)

o joojtl o1
al(©,®)x Y 3 Y 5, 4,b,V20+ 1DL(O, D)

m=—jl=1k=—1
X (=D H (L, m =k, Lkl j,m).  (19)

Inserting these amplitudes into the expressions of the
coefficients in Eq. (18) and averaging over the photon
states k' = *1 according to the sum rule

f(k’:+l)N(k/:+])X(k’:+]) f(k/:—l)N(k’:—l)X<k’:—|)
3+AX=D 3+AW=D

X = f'(k’:+l)j\[(k’:+]) f(k/:—l)w(k’:—]) ’ (20)

(K ==+1) K'=-1)
3+ 3+

with X = Ay, A, etc. and f¥="1 = fK=D =1/2 for
parity conservation, it is possible to obtain the expression
of the full angular distribution W(®, ®, 19, ¢) of the decay
process y — Vy — V{* €. In the following discussion,
however, we only consider the dilepton distribution, ob-
tained by integrating W(0, ®, 19, ¢) over O and O.

In the frame defined in Fig. 1(c), the dilepton decay
distribution of V mesons originating from Y, decays
is isotropic. In what concerns the state |y;) =
Sm=*1p, |x; 1, m), the coefficients of the dilepton angular

m=—1
distribution are:

1
Ay = D—[2|bo|2 — (b1 > + 1b-11P)]
|

2 *
)l¢ = _Fl Re(b+1b-l),

2
Ay = —g—: Re[bg(byy — b_y)], 1)

2 *
Ag = Do Im(b* ,b_,),

N

)t$¢ = D—l Im[bS(b+1 +b_y)],

with

D, = D/(1 - 39),
D =2(1 + 8)|bol* + 3 = 8)(b4 > + b, ), (22)
2

8=
5

2.

The corresponding coefficients for the decay of the state
Ix2) = Xn=23 byl x; 2, m) are
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3
Ay = _D_[2|bo|2 F1o P+ 10412 =2(1b4o 1> + [b51P)]
2
2
A, =D—2Rew6b;§(b+2 +b_y)+3b%,b ]
/\1950 =D—2Re[\/gb0(b+l - b—l) + 6(b+2b+1 - b—zb_l)]’

2 « *
AE =D—21m[—\/5b0(b+2 —b2)+3b%,b-])

A5, = Dizlm[—\/ébz;(b+1 +b_ ) +6(b5,by +b b)),
(23)
with
D, = D/(1 - ),
D =2(5—8)|bol> + (9 = 8)(Ibs 11> + [b_4I?)
+23+ )b wal* + 1627,
5 =22+ ; o (24)

Without experimental separation between the y; and y»
signals (the y, — V7 contribution is negligible), the di-
lepton distribution measurement effectively yields the cor-
responding average polarization parameters, implicitly
weighted by NU=1 and NU=2) respectively the numbers
of reconstructed dileptons coming from y; and y, decays
X = Ay, Ag,, etc.):

NU=Dx(=1) NU=2 x(=2)
(=1 (G=2)
X = 3+/\§ 3+/\§ (25)
NG=D NU=2)
(=1 (=2
3+ /\0 3+ )t19

V. MEASUREMENT OF y POLARIZATION AT
HIGH MOMENTUM

The formulas obtained in the previous two sections
suggest two remarks. First, with the choice of the x”, y”,
7' axes, the dilepton distribution contains as much infor-
mation as the photon distribution regarding the y polariza-
tion state. The two distributions are even identical when
higher-order multipoles are neglected, as can be recog-
nized by comparing Eq. (21) with Eq. (11) as well as
Eq. (23) with Eq. (14) for h, = g, = g3 = 0. In this limit,
for example, Ay = Ag = —1/3 and +1, respectively, for
pure |j, m) = |1, =1) and |1, 0) y states, and Ay = /\8) =
+1, —1/3 and —3/5, respectively, for pure |2, =2),
|2, =1) and |2, 0) states, while the additional terms of the
photon distribution in the y, case (/\g), )\g), )\g), /\gzb, and
/\g)@) vanish. Second, the dependence of the dilepton dis-
tribution on the higher photon multipoles is negligible, as
shown in Figs. 2(b) and 2(d) for Ay.

The definition of the x, y, z axes (and, therefore, of the
X", y", 7" axes) uses the momenta of the colliding hadrons

PHYSICAL REVIEW D 83, 096001 (2011)

as seen in the x rest frame, so that it requires, in general,
the knowledge of the photon momentum. However, for
sufficiently high (total) momentum of the dilepton, the y
and V rest frames coincide and the x”, y”, 7/ axes can be
approximately defined using only momenta seen in the V
rest frame. For example, if the y polarization axis (z) is
defined along the bisector of the beam momenta in the y
rest frame (Collins—Soper frame [11]), the corresponding
7/ axis is approximated by the bisector of the beam mo-
menta in the J/¢ or Y rest frame. The relative error
induced by this approximation on the polar anisotropy

parameter is
AM\2
-]
p

where AM is the y — V mass difference and p is the rotal
laboratory momentum of the dilepton. Therefore, for not-
too-small momentum, the frame definition we propose
coincides with the frame defined in the measurement of
the polarization of inclusively produced J/ ¢ or Y mesons
(Collins—Soper or helicity, for example). In other words,
the measurement of the dilepton distribution at sufficiently
high laboratory momentum provides a direct determination
of the y polarization along the chosen polarization axis.
This determination is cleaner than the one using the photon
distribution in the y rest frame, because it is independent of
the knowledge of the higher-order photon multipoles.
The above-mentioned approximation, in which the sys-
tem of axes x, y”, 7/ is set without any knowledge of the
photon momentum, becomes rapidly invalid as p — 0. The
Xo case, although of little practical importance in the scope
of this paper (the branching ratio of the y,, decay to I/,
for example, is only = 1%), can be used to give a simple
illustration of what happens going from high to low p. As
discussed above, at high p the polarization of dileptons
from y, vanishes in the helicity frame (as well as in any
other frame defined ignoring the photon momentum), mir-
roring the perfect isotropy of the photon emission in the
rest frame. On the other hand, the 1S state coming from the
j =0 x state has an intrinsic spin alignment, always
opposite to the one of the photon (Jy +J, =J, = 0);
in other words, a fully transverse 1§ polarization is ob-
served if the direction of the photon in the y, rest frame
[z in Fig. 1(b)] is taken as reference axis. In the low-p
limit, when the y, tends to be produced at rest in the
laboratory, that direction tends to coincide with the
center-of-mass helicity axis. In short, if we choose
the center-of-mass helicity frame, the V polarization equals
the zero polarization of the y, only at high momentum,
while it changes to fully transverse at low momentum,
where it simply reflects the intrinsic photon polarization.
This example shows that the possibility to measure the y
polarization from the dilepton distribution ignoring the
photon momentum is strictly limited to a kinematic domain
where p > AM. However, the error in Eq. (26) is already

Ady

X (26)
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FIG. 3 (color online). Allowed regions for the angular parame-
ters of the dilepton distributions produced by the decay of vector
states of any origin (light-shaded [8]), of y, daughters (darker)
and of y; daughters (darkest).

as small as 1% when p > 4 GeV/c, a condition fulfilled, in
particular, by essentially all the quarkonium events col-
lected by the LHC experiments.

The parameters of the dilepton distribution at high
momentum (Egs. (21) and (23) with 6 = 0) satisfy char-
acteristic inequalities. In the y; case,

1 1= Ay
— =)y = +1, A = ,
3 s | ¢| 4
9 1\2 V3 1
Z()‘”_§) TN, =1, '%'§7<A”§)’
1
(6A, — 1)* + 6)@% =1 forA,> 5 (27)
In the y, case,
5 1\2 1
Ay — <) FAZ+ A%, =_. 28
16( ? 5) ¢ e Ts 28

These inequalities continue to be valid in the presence of a
superposition of production processes leading to different
angular momentum compositions of the y; (see the analo-
gous discussion in Ref. [8] for the direct production of a
vector state). The corresponding parameter domains are
represented in Fig. 3, compared with the most general
constraints valid for vector states, directly or indirectly
produced.

VI. COMMENT ON PREVIOUS CALCULATIONS

The angular distributions of the cascade decays
Xe — J/ iy — €€~y were calculated in Ref. [9] (denoted

PHYSICAL REVIEW D 83, 096001 (2011)

as OS in the following) and in Ref. [10] (denoted as RSG in
the following) for the specific case of low-energy pp colli-
sions, where, due to helicity conservation, the y, is only
produced in pure J, eigenstates with eigenvalues m = *1
(Xxe1) or =1, 0 (x). The two calculations use the J/ s
momentum in the y, rest frame as quantization axis for the
dilepton, as in Fig. 1(b), and provide the full angular distri-
bution of the correlated photon and lepton directions. The
result of RSG contradicts the one of OS, pointing to a
seemingly wrong sign in the last terms of the y ., distribu-
tion (Eq. (10) of OS, corrected into Eq. (20) of RSG) and of
the y.; distribution (Eq. (15) of OS, Eq. (27) of RSG).

We checked these calculations in two ways, by repeating
the steps described in the two papers and by comparing
them to our own calculation for the full decay distribution
in the special case of pure J, eigenstates. In the latter case,
we have applied a rotation of the lepton variables from the
X", y", 7" system adopted in our calculation to the x/, y', z/
system adopted in OS and RSG. We found that, except for
an apparent misprint of OS (the fifth line of Eq. (11) in
OS has a wrong numerical coefficient, corrected in
Eq. (21) of RSG), both calculations are correct. RSG
argued that OS used two inconsistent conventions for the
reduced rotation matrices d}j, adopting one ordering of the
indices i and j (the one used in RSG) in the description of
the J/4 — €€~ process, and the reverse ordering in the
description of the y.— J/ iy process. We have verified
that, instead, the conventions are everywhere consistently
used, while RSG did not conform to the calculation of OS
and adopted a different definition of the photon angle. OS
refers, for the adopted notation, to Ref. [12], where the axes
definitions are described in the first figure of the paper.
Even if there is no explicit mention in the text, the angle 6
in the figure (which we denote by © in our Fig. 1) is,
unmistakably, the angle formed by the photon momentum
with the antiproton direction in the y, rest frame, while 6’
(which we denote by ¢ in our Fig. 1) is the angle formed by
the lepton momentum in the J/ s rest frame with respect to
the J/ momentum in the y,. rest frame. RSG uses the
same definition of €', but an opposite definition of §: “We
will work in the y/; rest frame with the Z axis taken to be in
the direction of ¢. The p direction is in the X-Z plane,
making an angle 6 with the Z axis”. As a consequence,
when a certain reduced d matrix is used in OS to rotate the
quantization axis by an angle 6, the inverse rotation must
appear in the calculation of RSG. If d}j(ﬁ) represents a
given rotation, the inverse rotation can be denoted either by
exchanging i with j (this induced RSG’s misinterpretation
of the discrepancy) or by replacing 6 with 277 — 6. This
explains the different sign in the term proportional to sin26
resulting from the two calculations. The remaining terms,
depending on cos?#, are not sensitive to such a redefinition
of the angle.

In short, each of the two calculations is correct, if they
are made with the matching angle definition. If, on the
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contrary, the definition of # used by OS is used together
with the distributions functions derived in RSG, or
vice-versa, a wrong sign appears in the term proportional
to sin26, leading to unphysical results. In fact, this artificial
change of sign is not reabsorbed in a different definition of
sign and/or magnitude of the higher-order multipole am-
plitudes: already in the E1 approximation, the physical
correlation between photon and lepton angles is substan-
tially altered by such a mistake. To evaluate the importance
of this problem, we assumed the angle definitions of OS
and used the formulas derived in RSG, transposing them,
by rotation, to the system of axes used in our calculations
[Fig. 1(c)]. As a result of this forced mistake, we arrive to a
physical result which is almost opposite to the correct one:
the lepton distribution, instead of being a perfect clone
of the photon distribution (in the E1 limit), becomes a
consistently smeared, almost isotropic distribution, for
whatever polarization state of the y (in other words, the
domains of the y; and y, dilepton parameters, represented
in Fig. 3, are reduced to small areas around the origin).

‘We have noticed that the measurements of E760 [5] and
E835 [6], included in the present world averages of h,, g,
and g5 in the “Review of Particle Physics” [13], seem to be
affected by this kind of misunderstanding. Both analyses
define the photon angle 6 as ‘‘the polar angle of the J/
with respect to the antiproton™, as in OS, but the formulas
are taken from RSG (Table II in the E760 paper and
Tables IV-V in the E835 paper reproduce Egs. (20) and
(27) of RSG). On the other hand, the quality of the global
fits of the data using the adopted parameterization is rather
good and the measurements of the higher-order multipoles
are compatible with the CLEO results [7], suggesting that
the inconsistency between formulas and angle definitions
might simply be an editing mistake in both experimental
papers.

VII. CONCLUSIONS

We have derived the expressions of the angular distri-
butions of the radiative decay from a > P, state to a S, state
and of the dilepton decay of the latter. No selection rules
specific to certain quarkonium production mechanisms
have been used and the choice of the polarization frame
for the directly produced states has been kept completely
general.

We have shown that the y polarizations can be measured
(for not-too-low-momentum experiments) directly from
the angular distribution of the dilepton decay in the J/ i
or Y rest frame, with respect to the same kind of system of
axes (Collins—Soper, helicity, etc.) adopted in inclusive
I/ or Y measurements.

PHYSICAL REVIEW D 83, 096001 (2011)

In fact, the dilepton distribution in the J/¢ or Y rest
frame is a clone of the photon distribution in the y rest
frame, stripped of the contribution of the higher multipoles
of photon radiation.

This represents a significant advantage, given that such
contributions—measured to be quite important in the y, .,
case, poorly known (due to contradictory measurements) in
the y.; case, and still unmeasured for the bottomonium
family—can have a very large impact in the measurement.
Furthermore, a simultaneous determination of y polariza-
tion and of the multipole parameters is scarcely feasible at
hadron colliders.

An additional advantage of this method is that it does not
use the photon measurement to reconstruct the event-by-
event decay topology. This means that, contrary to pre-
vious expectations, the measurement of y polarization is
not intrinsically more challenging than, for instance, the
measurement of the y.;/x., cross section ratio (a mea-
surement presently being done by several experiments at
the LHC). In both cases the analysis needs to identify an
event sample where the J/ ¢ (or Y) dilepton is associated to
a photon giving an invariant mass of the u ™ u~ 7y system in
the y mass region. This is usually done using photons
reconstructed by the conversion method, given that the
tracking of the electron-positron pair gives good enough
resolutions to resolve the x. and Yy, resonances.
Naturally, a larger event sample is needed for a multi-
dimensional angular analysis. But there are no extra diffi-
culties related to photon backgrounds or reconstruction
efficiencies depending on the decay angles, specific to
the measurement of the polarization (as would be the
case using the previously available methods).

It is worth reminding that a certain numerical value of
the observable polarization parameters corresponds to very
different quantum-mechanical states of the y; and y» (e.g.,
Ag = +1 can reflect the J, = 0 state of the y; or the
J, = *2 state of the y;). Therefore, a reliable experimen-
tal discrimination between the J/¢ or Y coming from the
decays of these two states is crucial for a proper under-
standing of y polarization.

We have also pointed out misunderstandings in previous
calculations, which may have affected some of the existing
measurements of the higher-order photon multipoles in y,
decays.
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