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We study CP violation in the two-body decay of a scalar tau into a neutralino and a tau, which should be

probed at the LHC and ILC. From the normal tau polarization, a CP asymmetry is defined which is

sensitive to the CP phases of the trilinear scalar coupling parameter A�, the gaugino mass parameter M1,

and the Higgsino mass parameter �, in the stau-neutralino sector of the minimal supersymmetric standard

model. Asymmetries of more than 70% are obtained in scenarios with strong stau mixing. As a result,

detectable CP asymmetries in stau decays at the LHC are found, motivating further detailed experimental

studies for probing the supersymmetry CP phases.
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I. INTRODUCTION

The surplus of matter over antimatter within the
Universe can only be explained with a thorough under-
standing of CP violation. The CP phase in the quark
mixing matrix of the standard model, which has been
confirmed by B-meson experiments [1], is not sufficient
to understand the baryon asymmetry of the Universe [2].
However, the minimal supersymmetric standard model
(MSSM) [3] provides new physical phases that are mani-
festly CP sensitive. After absorbing nonphysical phases,
we chose the complex parameters to be the Higgsino mass
parameter�, the U(1) and SU(3) gaugino mass parameters
M1 andM3, and the trilinear scalar coupling parameters Af

of the third generation sfermions (f ¼ b, t, �). The corre-
sponding phases violate CP, and are generally constrained
by experimental bounds on electric dipole moments
(EDMs) [4]. However, these restrictions are strongly model
dependent [5–7], such that additional measurements out-
side the low energy EDM sector are required.

Many CP observables have been proposed and studied
in order to measure CP violation. Total cross sections [8],
masses [9], and branching ratios [10], are CP-even quan-
tities. For a direct evidence of CP violation, however,
CP-odd (T-odd) observables are required. Examples are
rate asymmetries of either branching ratios [11], cross
sections [12], or angular distributions [13]. Since these
rate asymmetries require the presence of absorptive phases,
they are typically small, of the order of <10%, if they are
not resonantly enhanced [14]. Larger CP-odd observables
which already appear at tree-level are desirable. These are
T-odd triple products of momenta and/or spins, from which
CP-odd asymmetries can be constructed. Such triple prod-
uct asymmetries are highly CP sensitive, and have been
intensively studied both at lepton and hadron colliders
[15,16].

Third generation sfermions have a rich phenomenology
at high energy colliders like the LHC [17] or ILC [18] due

to a sizable mixing of left and right states. In addition, the
CP phases of the trilinear coupling parameters Af are

rather unconstrained by the EDMs [7,19,20]. The phases
of Ab and At have been studied in stop [21–24] and sbottom
[25,26] decays, respectively. Since these are decays of a
scalar particle, the spin-spin correlations have to be taken
into account. The triple product asymmetries can then be
up to 40%, for sizable squark mixing. Similarly for probing
theCP-violating phase of A� in the stau vertex, ~�-~�

0-�, it is
essential to include the tau spin. Only then is there a
sensitivity to the phase of A� [27,28]. If the spin of the
tau is summed over, this crucial information is lost. Triple
product asymmetries including the tau polarization have
been studied in neutralino decays ~�0

i ! ~�� [28], and also
in chargino decays ~��

i ! ~���
� [29]. It was shown that the

normal tau polarization itself is CP sensitive, and that the
asymmetries are large and of the order of 60% to 70%.
We are thus motivated to study CP violation, including

the tau polarization, in the two-body decay of a stau

~� m ! �þ ~�0
i ; m ¼ 1; 2; i ¼ 2; 3; 4; (1)

followed by the subsequent chain of two-body decays

~�0
i ! ‘1 þ ~‘n; (2a)

~‘n ! ~�0
1 þ ‘2; n ¼ L; R; ‘ ¼ e;�: (2b)

See Fig. 1 for a schematic picture of the entire stau decay.
This process is kinematically open for a mass hierarchy

m~� > m~�0
i
> m~e ¼ m ~�; (3)

where the staus are heavier than the smuons and selectrons.
We thus work in MSSM scenarios with heavier stau soft
supersymmetry (SUSY) breaking parameters

M ~E�
> M ~Ee

¼ M ~E�
; (4)

M ~L�
>M ~Le

¼ M ~L�
: (5)

PHYSICAL REVIEW D 83, 095012 (2011)

1550-7998=2011=83(9)=095012(12) 095012-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.095012


We show that the normal tau polarization, with respect to
the plane spanned by the � and ‘1 momentum, is a triple
product asymmetry which is sensitive to the phases of A�,
M1, and � in the stau-neutralino sector. For nearly degen-
erate stau masses, M ~E�

� M ~L�
, a strong stau mixing is

obtained which results in tau polarization asymmetries of
more than 70%. This should be measurable at colliders.1

Since the stau is a scalar particle, its particular production
does not contribute to CP-sensitive spin-spin correlations,
and can thus be considered separately. This allows a
collider-independent study, where we only discuss the
boost dependence of the CP asymmetries.

The paper is organized as follows. In Sec. II we review
stau mixing and the stau-neutralino Lagrangian with com-
plex couplings. We calculate the amplitude squared for the
entire stau decay in the spin-density matrix formalism [30].
We construct the CP asymmetry from the normal tau
polarization, and discuss its MSSM parameter dependence,
as well its boost dependence for colliders like the ILC and
LHC. In Sec. III, we numerically study the phase and
parameter dependence of the asymmetry, and the stau
and neutralino branching ratios. We comment on the im-
pact of the ~�2 decay in scenarios with nearly degenerate
stau masses. We summarize and conclude in Sec. IV. The
Appendices contain the definitions of momenta and spin
vectors, the analytical expressions for the stau decay am-
plitudes in the spin-density matrix formalism, and formu-
lae for the stau decay widths.

II. FORMALISM

A. Stau mixing

In the complex MSSM, the stau mixing matrix in the
ð~�L; ~�RÞ basis is [3,31]

M~� ¼
m2

~�L
e�i�~�m�j�~�j

ei�~�m�j�~�j m2
~�R

0
@

1
A: (6)

CP violation is parameterized by the physical phase

�~� ¼ arg½�~��; (7)

�~� ¼ A� ��� cot�; (8)

with the complex trilinear scalar coupling parameter A�,
the complex Higgsino mass parameter �, and tan� ¼
v1=v2, the ratio of the vacuum expectation values of the
two neutral Higgs fields. The left and right stau masses
are

m2
~�L

¼ M2
~L�
þ ð�1

2 þ sin2�wÞm2
Z cosð2�Þ þm2

�; (9)

m2
~�R

¼ M2
~R�
� sin2�wm

2
Z cosð2�Þ þm2

�; (10)

with the real soft SUSY breaking parameters M2
~L�; ~E�

, the

electroweak mixing angle �w, and the masses of the Z
boson mZ, and of the tau lepton, m�.
In the mass basis, the stop eigenstates are [3,31]

�
~�1

~�2

�
¼ R~�

�
~�L

~�R

�
; (11)

with the diagonalization matrix

R~� ¼ ei�~� cos�~� sin�~�

� sin�~� e�i�~� cos�~�

 !
; (12)

and the stau mixing angle

cos�~� ¼ �m�j�~�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�j�2
~�j þ ðm1

~�1
�m2

~�2
Þ2

q ; (13)

sin�~� ¼
m2

~�L
�m2

~�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�j�2
~�j þ ðm2

~�1
�m2

~�2
Þ2

q : (14)

The stau mass eigenvalues are

m2
~�1;2

¼ 1

2

�
ðm2

~�L
þm2

~�R
Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

~�L
�m2

~�R
Þ2 þ 4m2

~�j�~�j2
q �

: (15)

B. Lagrangian and complex couplings

The relevant Lagrangian terms for the stau decay ~�m !
�~�0

i are [3,31]

L�~�~�0 ¼ g ��ða~�
miPR þ b~�

miPLÞ~�0
i ~�m þ h:c:; (16)

with PL;R ¼ ð1� �5Þ=2, and the weak coupling constant

g ¼ e= sin�w, e > 0. The couplings are defined as [31]

FIG. 1. Schematic picture of stau decay.

1Note that we do not include the tau decay in our calculations.
However, some of the decay products of the tau have to be
reconstructed in order to measure the tau spin. The main goal of
our work is to motivate such an experimental study, to address
the feasibility of measuring the CP phases at the LHC or ILC.
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a~�
mi �

X2
n¼1

ðR~�
mnÞ�A�

in; b~�
mi �

X2
n¼1

ðR~�
mnÞ�B�

in: (17)

The stau diagonalization matrix R~� is given in Eq. (2),
and

A�
i �

fL�i

hR�i

 !
; B�

i �
hL�i

fR�i

 !
: (18)

In the photino, zino, Higgsino basis ð~�; ~Z; ~H0
a; ~H

0
bÞ, we

have

fL�i ¼
ffiffiffi
2

p �
1

cos�w

�
1

2
� sin2�w

�
Ni2 þ sin�wNi1

�
; (19)

fR�i ¼
ffiffiffi
2

p
sin�wðtan�wN�

i2 � N�
i1Þ; (20)

hL�i ¼ ðhR�iÞ� ¼ �Y�ðN�
i3 cos�þ N�

i4 sin�Þ; (21)

Y� ¼ m�ffiffiffi
2

p
mW cos�

; (22)

with mW the mass of the W boson, and N the complex,
unitary 4� 4 matrix that diagonalizes the neutralino mass
matrix [3]

N� 	M~�0 	 Ny ¼ diagðm~�0
1
; . . . ; m~�0

4
Þ: (23)

The interaction Lagrangian relevant for the neutralino

decay ~�0
i ! ~‘�R;L‘�, for ‘ ¼ e, � is [3]

L‘~‘~�0 ¼ g �‘fL‘iPR ~�
0
i
~‘L þ g �‘fR‘iPL ~�

0
i
~‘R þ h:c:; (24)

with the couplings fL;R‘i given in Eqs. (19) and (20).

C. Tau spin-density matrix

The unnormalized, 2� 2, Hermitian, � spin-density
matrix for stau decay, Eqs. (1) and (2), reads

	
�

0
� �

Z
ðjMj2Þ
�


0
�dLips; (25)

with the amplitude M, and the Lorentz invariant phase-
space element dLips, for details see Appendix B. The �
helicities are denoted by 
� and 
0

�. In the spin-density
matrix formalism [30], the amplitude squared is given by

ðjMj2Þ
�

0
� ¼ j�ð~�0

i Þj2j�ð~‘Þj2
� X


i

0
i

	Dð~�Þ
�

0
�


i

0
i
	D1

ð~�0
i Þ
i


0
iD2ð~‘Þ; (26)

with the neutralino helicities 
i, 

0
i. The amplitude squared

decomposes into the remnants of the propagators

�ðjÞ ¼ i

sj �m2
j þ imj�j

; (27)

with massmj, and width �j of particle j ¼ ~�0
i or

~‘, and the

unnormalized spin-density matrices for stau decay 	Dð~�Þ,

and neutralino decay 	D1
ð~�0

i Þ. The decay matrix of the

spinless slepton is a factor since the polarizations of the
final lepton and lightest supersymmetric particle (LSP) are
not accessible. The corresponding amplitude is denoted by

D2ð~‘Þ. Defining a set of spin basis vectors sa� for the tau, see
Eqs. (A10) in Appendix A, and sb

~�0
i

for the neutralino [32],

the spin-density matrices can be expanded in terms of the
Pauli matrices �

	Dð~�Þ
�

0
�


i

0
i
¼ D�
�


0
��
i


0
i
þ�a

Dð�aÞ
�

0
��
i


0
i

þ�b
D�


�

0
�ð�bÞ
i


0
i
þ �ab

D ð�aÞ
�

0
�ð�bÞ
i


0
i
; (28)

	D1
ð~�0

i Þ
0
i
i ¼ D1�


0
i
i þ�b

D1
ð�bÞ
0

i
i ; (29)

with an implicit sum over a, b ¼ 1, 2, 3, respectively. The
real expansion coefficients D, D1, �

a
D, �

b
D, �

b
D1

and �ab
D

contain the physical information of the process. D denotes
the unpolarized part of the amplitude for stau decay ~�m !
�0
i �, D1 denotes the unpolarized part for neutralino decay

�0
i ! ~‘R‘1, respectively. �

a
D gives the tau polarization,

�b
D, and �

b
D1

describe the contributions from the neutralino

polarization, and �ab
D is the spin-spin correlation term,

which contains the CP-sensitive parts. We give the expan-
sion coefficients explicitly in Appendix C.
Inserting the density matrices, Eqs. (28) and (29), into

Eq. (26), we get for the amplitude squared

ðjMj2Þ
�

0
� ¼ 2j�ð~�0

i Þj2j�ð~‘Þj2
�
ðDD1 þ �b

D�
b
D1
Þ�
�


0
�

þ ð�a
DD1 þ�ab

D �b
D1
Þð�aÞ
�


0
�

�
D2; (30)

with an implicit sum over a, b ¼ 1, 2, 3. The amplitude

squared ðjMj2Þ
�

0
� is now decomposed into an unpolar-

ized part (first summand), and into the part for the tau
polarization (second summand), in Eq. (30). By using the
completeness relations for the neutralino spin vectors,
Eq. (A12), the products in Eq. (30) can be written,2

�b
D�

b
D1

¼ þ
ð�Þ

g4

2
ðja~�

mij2 � jb~�
mij2ÞjfR‘ij2

�
�
m2

~�0
i

ðp� 	 p‘1Þ � ðp~�0
i
	 p�Þðp‘1 	 p~�0

i
Þ
�
;

(31)

2The formulas are given for the decay of a negatively charged
stau ~�m ! �� ~�0

i , followed by ~�0
i ! ‘þ1 ~‘�R . The signs in paren-

theses in Eqs. (31) and (32) hold for the charge conjugated stau
decay ~��m ! �þ ~�0

i ; ~�
0
i ! ‘þ1 ~‘�R . In order to obtain the terms for

the decay ~�ð�Þm ! �� ~�0
i , however followed by the neutralino

decay into a positively charged slepton, ~�0
i ! ‘�1 ~‘þR , one has

to reverse the signs of Eqs. (31) and (32). This is due to the sign
change of �b

D1
, see Eqs. (C6)C6. In Appendix C, we also give the

terms for the neutralino decay into a left slepton, ~�0
i ! ‘�1 ~‘�L .

Note that the term proportional to m� in Eq. (32) is negligible at
high particle energies E 
 m�.
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�ab
D �b

D1
¼ þ

ð�Þ
g4

2
ðja~�

mij2 þ jb~�
mij2ÞjfR‘ij2m�

h
ðsa� 	 p~�0

i
Þðp~�0

i
	 p‘1Þ �m2

~�0
i

ðsa� 	 p‘1Þ
i

þ
ð�Þ g

4Refa~�
miðb~�

miÞ�gjfR‘ij2m~�0
i

h
ðp� 	 p~�0

i
Þðsa� 	 p‘1Þ � ðp� 	 p‘1Þðsa� 	 p~�0

i
Þ
i

þ
ð�Þ g

4jfR‘ij2m~�0
i
Imfa~�

miðb~�
miÞ�g

h
p~�; p‘1 ; p�; s

a
�

i
: (32)

The spin-spin correlation term�ab
D �b

D1
, Eq. (32), explicitly

depends on the imaginary part Imfa~�
miðb~�

miÞ�g of the stau-
tau-neutralino couplings, Eq. (16). Thus this term is man-
ifestly CP sensitive, i.e., it depends on the phases �A�

, �1,
�� of the stau-tau-neutralino sector. The imaginary part is
multiplied by the totally antisymmetric (epsilon) product,

Ea � ½p~�; p‘1 ; p�; s
a
�� � ��	�p

�
~� p

�
‘1
p
	
�sa;�� ; (33)

with the convention 0123 ¼ 1. Since each of the spatial
components of the four-momenta p, or the spin vectors sa�,
changes sign under a time transformation, t ! �t, the
epsilon product Ea is T-odd. In the stau rest frame, p

�
~� ¼

ðm~�; 0Þ, the epsilon product reduces to the T-odd triple
product T a

½p~�; p‘1 ; p�; s
a
�� ¼ m~�ðp‘1 � p�Þ 	 sa� � m~�T a: (34)

The task in the next section is to define an observable, that
projects out from the amplitude squared the part propor-
tional to Ea (or T a), in order to probe the CP-sensitive
coupling combination Imfa~�

miðb~�
miÞ�g.

D. Normal tau polarization and CP asymmetry

The � polarization is given by the expectation value of
the Pauli matrices � ¼ ð�1; �2; �3Þ [33]

P ¼ Trf	�g
Trf	g ; (35)

with the � spin-density matrix 	, as given in Eq. (25). In
our convention for the polarization vector P ¼
ðP 1;P 2;P 3Þ, the components P 1 and P 3 are the trans-
verse and longitudinal polarizations in the plane spanned
by p‘1 and p�, respectively, and P 2 is the polarization

normal to that plane. See our definition of the tau spin
basis vectors sa� in Appendix A.

The normal � polarization is equivalently defined as

P 2 � Nð"Þ � Nð#Þ
Nð"Þ þ Nð#Þ ; (36)

with the number of events N with the � spin up ð"Þ or down
ð#Þ, with respect to the quantization axis p‘1 � p�, see

Eq. (A10). The normal � polarization can thus also be
regarded as an asymmetry

P 2 ¼ �ðT > 0Þ � �ðT < 0Þ
�ðT > 0Þ þ �ðT < 0Þ ; (37)

of the triple product

T ¼ ðp‘1 � p�Þ 	 ��; (38)

where �� is the direction of the � spin vector for each event.
The triple product T is included in the spin-spin correla-
tion term �ab

D �b
D1
, Eq. (32), cf. Eq. (34), and the asymme-

try thus probes the term which contains the CP-sensitive
coupling combination Imfa~�

miðb~�
miÞ�g.

Since under naive time reversal, t ! �t, the triple prod-
uct T changes sign, the tau polarization P 2, Eq. (37), is
T-odd. Because of CPT invariance [34], P 2 would thus be
CP-odd at tree level. In general, P 2 also has contributions
from absorptive phases, e.g. from intermediate s-state
resonances or final-state interactions, which do not signal
CP violation. Although such absorptive contributions are a
higher order effect, and thus expected to be small, they can
be eliminated in the true CP asymmetry [28]

ACP
� ¼ 1

2ðP 2 � �P 2Þ; (39)

where �P 2 is the normal tau polarization for the charged
conjugated process ~��m ! �þ ~�0

i . For our analysis at tree
level, where no absorptive phases are present, we find
�P 2 ¼ �P 2, see the sign change in Eqs. (31) and (32),
and thus ACP

� ¼ P 2. We study ACP
� in the following,

which is however equivalent to P 2 at tree level.
Inserting now the explicit form of the density matrix 	,

Eq. (25), into Eq. (35), together with Eq. (30), we obtain
the CP asymmetry

ACP
� ¼ P 2 ¼

R
�a¼2;b

D �b
D1
dLipsR

DD1dLips
; (40)

wherewe have used the narrowwidth approximation for the
propagators in the phase-space element dLips, see
Eq. (D9). Note that in the denominator of ACP

� , Eq. (40),
the spin correlation terms vanish,

R
�b

D�
b
D1
dLips ¼ 0, see

Eq. (31), when integrated over phase space. In the numera-
tor only the spin-spin correlation term �ab

D �b
D1
, for a ¼ 2

contributes, which contains the T-odd epsilon product Ea,
see Eq. (33).

E. Parameter dependence of the CP asymmetry

To qualitatively understand the dependence of the asym-
metry ACP

� , Eq. (40), on the MSSM parameters, we study
in some detail its dependence on the ~�m-�-~�

0
i couplings,

a~�
mi and b~�

mi, see Eq. (D3). From the explicit form of the
decay terms �b

D�
b
D1

Eq. (31), and D, D1, Eqs. (C1) and

(C5), respectively, we find that the asymmetry
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ACP
� ¼ �mi

m~�0
i

R½p~�; p‘1 ; p�; s
a¼2
� �dLips

ðp~�0
i
	 p�Þðp~�0

i
	 p‘1Þ

R
dLips

; (41)

with ðp~�0
i
	 p�Þ ¼ ðm2

~� �m2
~�0
i

Þ=2, and ðp~�0
i
	 p‘1Þ ¼

ðm2
~�0
i

�m2
~‘
Þ=2, is proportional to the decay coupling factor

�mi ¼ Imfa~�
miðb~�

miÞ�g
1
2 ðja~�

mij2 þ jb~�
mij2Þ

; (42)

with �mi 2 ½�1; 1�. We thus expect maximal asymmetries
for equal moduli of left and right couplings, ja~�

mij � jb~�
mij,

which have a phase difference of about �=2, where the
coupling factor can be maximal �mi ¼ �1, see Eq. (42).

To study the dependence of � on the CP phase�~� of the
stau sector, and the stau mixing angle �~�, we expand the
imaginary part of the product of ~�m-�-~�

0
i couplings

Im

�
a~�
miðb~�

miÞ�
�
¼ Im

�
jRm1j2fL�ihR�i þ jRm2j2f�R�i hR�i

þRm1R�
m2½ðhR�iÞ2 � fR�if

�L
�i �
�
; (43)

in terms of the stau mixing matrixR, the gauge couplings

fL;R�i and the Higgs couplings hL;R�i . In particular, for a
CP-conserving neutralino sector, �1 ¼ �� ¼ 0, we have

Imfa~�
miðb~�

miÞ�g ¼ þ
ð�Þ sin�~� sinð2�~�Þ 12 ½ðh

R
�iÞ2 � fR�if

L
�i�;
(44)

for m ¼ 1, and the sign in parentheses holds for m ¼ 2.
Thus we expect a maximal � and thus maximal asymme-
tries formaximal staumixing,3 �~� � ��=4, and amaximal
CP phase in the staumixingmatrix,�~� � ��=2. Note that,
in particular, the dependence of �~� on �A�

is strong for

jA�j> j�j tan�. We will study numerically the phase and
parameter dependence on ACP

� and � further in Sec. III.

F. Boost dependence

The triple product asymmetry ACP
� , Eq. (40), is not

Lorentz invariant but depends on the boost of the decaying
stau,

�~� ¼ jp~�j
E~�

: (45)

In Fig. 2, we show the boost dependence of the asymmetry
ACP

� ð�~�Þ, normalized by ACP
� ð�~� ¼ 0Þ. The SUSY pa-

rameters are given in Table I, and we have chosen three sets
of different ~� soft-breaking parameters fM ~E�

;M ~L�
g ¼

f195; 200g GeV (solid, red); f395; 400g GeV (dashed,

green); and f998; 1000g GeV (dotted, blue). The corre-
sponding stau masses are fm~�1 ; m~�2g ¼ f194; 209g;
f395; 404g; f998; 1002g GeV, respectively. The corre-
sponding asymmetries in the stau rest frame are
ACP

� ð�~�Þ ¼ �66%; �72%, �71%. Note that we have
chosen nearly degenerate stau masses which lead to an
enhanced stau mixing and thus to maximal asymmetries;
see also the discussion in Sec. III.
For the stau masses fm~�1 ; m~�2g ¼ f194; 209g GeV, the

staus can be produced at the ILC with
ffiffiffi
s

p ¼ 500 GeV, and
have a fixed boost of �~� ¼ 0:63. The corresponding asym-
metry is then reduced to ACP

� ¼ �53% if the stau rest
frame cannot be reconstructed. Typical ILC cross section
for these masses are of the order of some 20 fb [35].
If the staus are produced at the LHC, they will have a

distinct boost distribution, depending on their mass, which
typically peaks at high values �~� � 0:9, for stau masses of
the order of a few 100 GeV up to a 1 TeV, see e.g. Refs
[21,26]. Then the normal tau polarization in the laboratory
frame is obtained by folding the boost dependent polariza-
tionACP

� with the normalized stau boost distribution [21],

ACP
� lab ¼

1

�P

Z 1

0

d�P

d�~�

ACP
� ð�~�Þd�~�; (46)

FIG. 2 (color online). Boost distributions of the � polarization
asymmetry ACP

� , Eq. (39), normalized by ACP
� ð�~� ¼ 0Þ, for

three different sets of stau masses, m~�1;2 � 200 GeV (solid, red),

400 GeV (dashed, green), and 1000 TeV (dotted, blue), see text,
for stau decay ~�1 ! �~�0

2, followed by ~�0
2 ! ‘1 ~‘R, and ~‘R !

~�0
1‘2 (‘ ¼ e or�), see Fig. 1, The SUSY parameters are given in

Table I.

TABLE I. Benchmark scenario. The mass parameters M2, j�j,
A�, M ~E, M ~L M ~E�

, and M ~L�
are given in GeV.

�1 �� �A�
M2 j�j A� tan�

0 0 �=2 250 250 2000 3

M ~E�
M ~L�

M ~E M ~L

495 500 150 200

3Note that a maximal mixing is naturally achieved for nearly
degenerate staus. However then the asymmetries for ~�1 and ~�2
decay typically have similar magnitude but opposite sign, and
thus might cancel. See the discussion at the end of the numerics
in Sec. III D.
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with the production cross section �P ¼ �ðpp ! ~�þ~��Þ.
The typical reduction of the normal tau polarization
ACP

� lab is of the order of two-thirds of the asymmetry

compared to that in the stau rest frame ACP
� ð0Þ.

However, it has been recently shown (for similar asymme-
tries in stop decays at the LHC), that the rest frame can be
partly reconstructed event by event using on-shell mass
conditions, see Ref. [22]. The LHC cross section for stau
pair production, �ðpp ! ~�þ1 ~�

�
1 Þ, also sensitively depends

on the stau masses, e.g., for our benchmark scenario in
Table I, we find cross sections up to 10 fb at

ffiffiffi
s

p ¼ 14 TeV
[35].

III. NUMERICAL RESULTS

We quantitatively study the tau polarization asymmetry,
and the branching ratios for the two-body decay chain

~�1!�þ ~�0
2; ~�0

2!‘þ1 þ ~‘�R ; ~‘�R ! ~�0
1þ‘�2 ; (47)

for ‘ ¼ e,�. The asymmetry probes theMSSM phases�1,
�� and �A�

, of the neutralino and stau sector. We center

our numerical discussion around a general MSSM bench-
mark scenario, see Table I. We choose heavier soft-
breaking parameters in the stau sector than in the ~e, ~�
sector, to enable the mass hierarchy

m~�m > m~�0
i
> m~‘R

> m~�0
1
: (48)

Further we choose almost degenerate staus which enhances
their mixing, leading to maximal asymmetries. We choose
a large value of the trilinear scalar coupling parameter,
jA�j> j�j tan�,4 to enhance the impact of �A�

in the stau

sector. Finally, to reduce the number of MSSM parameters,
we use the (grand unified theory inspired) relation jM1j ¼
5=3M2tan

2�w [3] for the gaugino mass parameters. The
resulting masses of the staus, neutralinos and charginos are
summarized in Table II.

A. Phase dependence

For the benchmark scenario given in Table I, we study the
phase dependence of the asymmetry ACP

� in the stau rest
frame. In Fig. 3(a), we show the dependence on the CP
phases in the neutralino sector,�1 and��. In Fig. 3(b), we

show the dependence on the phases in the stau sector �A�

and ��. The asymmetry strongly depends on �A�
� �~�,

which we expect for jA�j 
 j�j tan� as in our benchmark
scenario, see Table I. In particular for �� ¼ 0 in Fig. 3(b),

the asymmetry follows the approximation formula Eq. (44),
and attains its maximal values at �~� � �A�

� ��=2.

B. jA�j-tan� dependence and stau mixing

In Fig. 4(a), we show the jA�j and tan� dependence of
the asymmetryACP

� in the stau rest frame. We can observe
that the asymmetry obtains its maximum, ACP

� � �77%,
where also the coupling factor is maximal, � � 0:95, see
Fig. 4(b). As discussed in Subsection II E, the imaginary
part of the product of the stau couplings Imfa~�

miðb~�
miÞ�g is

maximal for a maximal CP phase �~� ¼ �=2 in the stau
sector, which we show in Fig. 4(c). Note that the location
of the maximum of ACP

� is not at maximal stau mixing,

sinð�~�Þ ¼ 1=
ffiffiffi
2

p � 0:7, since � / sinð2�~�Þ=ðja~�j2 þ jb~�j2Þ
starts to decrease for increasing A� and tan�.
To study the stau mixing, we show the M ~E�

�M ~L�

dependence of the asymmetry ACP
� in Fig. 5(a). In the

entire M ~E�
�M ~L�

plane, the CP phase in the stau sector is

almost maximal, �~� ¼ 0:61�. However, the asymmetry
obtains its maxima in the small corridor M ~E�

� M ~L�
,

where the stau mixing is maximal, �~� ¼ �=4.

C. j�j �M2 dependence and branching ratios

We show the j�j �M2 dependence of the asymmetry
ACP

� in Fig. 5(b). The maxima ofACP
� are obtained where

the coupling factor � is also maximal, see Eq. (42).
In Fig. 6(a), we show the corresponding stau branching

ratio, BRð~�1 ! �~�0
2Þ, which can be as large as 40%.

Other competing channels can reach BRð~�1 ! �~�0
1Þ �

65%, and BRð~�1 ! �� ~�
�
1ð2ÞÞ � 20ð10Þ%. The stau decay

into the chargino ~��
1 is always open since typically the

second lightest neutralino and the lightest chargino are
almost degenerate, m~�0

2
� m~��

1
. The neutralino branching

ratio BRð~�0
2 ! ‘~‘RÞ, summed over ‘ ¼ e, �, is shown in

Fig. 6(b), which reaches up to 100%. The other important
competing decay channels are BRð~�0

2 ! �‘~�‘Þ, and

BRð~�0
2 ! ‘~‘LÞ, which open around � � 250 GeV and

� � 300 GeV, respectively, for M2 ¼ 250 GeV. Note
that in our benchmark scenario, see Table I, we have

BRð~‘R ! ~�0
1‘Þ ¼ 1.

D. Impact of ~�2 decay

As we discussed in Sec. III B, we find large asymmetries
for nearly degenerate staus, where we naturally obtain a
maximal stau mixing. However, then typically the

TABLE II. Mass spectrum for the scenario in Table I.

~‘ m [GeV] ~� m [GeV]

~eR, ~�R 155 ~�0
1 112

~eL, ~�L 204 ~�0
2 190

~�e, ~�� 192 ~�0
3 254

~�� 497 ~�0
4 327

~�1 495 ~��
1 181

~�2 504 ~��
2 325

4The value of jA�j is restricted by the vacuum stability
condition as jA�j2 < 3ðm2

~� þm2
~��
þM2

H þ�2Þ [36].
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asymmetries for ~�1 and ~�2 decay are similar in magnitude,
but opposite in sign. For example in our benchmark sce-
nario we find ACP

� ¼ �71% for ~�1 decay, but ACP
� ¼

þ32% for the decay of ~�2. If the production and decay

process of ~�1 cannot be experimentally disentangled from
that of ~�2 properly, the two asymmetries might cancel. We
show their sum in Fig. 7(a) in the M ~E�

�M ~L�
plane. In

Fig. 7(b), we show the corresponding stau mass splitting.
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FIG. 3 (color online). Phase dependence of (a) the � polarization asymmetry ACP
� , Eq. (39), in percent, in the �1 ��� plane (for

�A�
¼ 0), and (b) in the �A�

��� plane (for �1 ¼ 0), in the stau rest frame. We consider the decay ~�1 ! �~�0
2, followed by ~�0

2 !
‘þ1 ~‘�R , and ~‘�R ! ~�0

1‘
�
2 where ‘ ¼ e or �, cf. Figure 1. The other MSSM parameters are defined in Table I.
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FIG. 4 (color online). jA�j � tan� dependence of (a) the � polarization asymmetry ACP
� , Eq. (39), in percent, in the stau rest frame

[for the decay ~�1 ! �~�0
2, followed by ~�0

2 ! ‘þ1 ~‘�R , and ~‘�R ! ~�0
1‘

�
2 for ‘ ¼ e or �, cf. Fig. 1], (b) the coupling factor �, Eq. (42),

(c) the phase �~� in the stau sector, Eq. (7), and (d) sinð2�~�Þ, with �~� the stau mixing angle, Eqs. (13) and (14). The plots are for
�A�

¼ �=4, the other MSSM parameters are given in Table I.
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Note that also the stau branching ratios are similar in
size; for example, in our benchmark scenario we have
BRð~�1 ! �~�0

2Þ ¼ 18%, and BRð~�2 ! �~�0
2Þ ¼ 30%. For

theM ~E�
�M ~L�

plane shown in Fig. 5, the decay branching

ratio BRð~�1 ! �~�0
2Þ is at least 10%, and that of ~�2 is larger

by roughly a factor of 2 to 4.

IV. SUMMARYAND CONCLUSIONS

We have analyzed the normal tau polarization and the
corresponding CP asymmetry in the two-body decay chain
of a stau

~� 1 ! �þ ~�0
2: (49)

The CP-sensitive parts appear only in the spin-spin corre-
lations, which can be probed by the subsequent neutralino
decay

~� 0
2 ! ‘1 þ ~‘R; ~‘R ! ~�0

1 þ ‘2; (50)

for ‘ ¼ e, �. The T-odd tau polarization normal to the
plane spanned by the � and ‘1 momenta, can then be used
to define a CP-odd tau polarization asymmetry. It is based
on a triple product, which probes the CP phases of the
trilinear scalar coupling parameter A�, the Higgsino mass
parameter �, and the U(1) gaugino mass parameter M1.
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FIG. 5 (color online). Dependence of the � polarization asymmetry ACP
� , Eq. (39), in percent, in the stau rest frame (for the decay

~�1 ! �~�0
2, followed by ~�0

2 ! ‘þ1 ~‘�R , and ~‘�R ! ~�0
1‘

�
2 for ‘ ¼ e or �, see Fig. 1), on (a) the soft-breaking parameters in the stau sector

M~�R , M~�L , Eqs. (9) and (10). In (b) the dependence of ACP
� on the gaugino and Higgsino parameters j�j, M2. Below the contour

m~eR ¼ m~�0
2
the two-body decay ~�0

2 ! ‘~‘R is kinematically forbidden, above the contourm~eR ¼ m~�0
1
the lightest neutralino is no longer

the LSP since m~eR < m~�0
1
. Below the contour m~��

1
¼ 100 GeV the lightest chargino is lighter than 100 GeV. The MSSM parameters

are given in Table I.
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FIG. 6 (color online). Contour lines in the j�j �M2 plane of (a) the stau branching ratio BRð~�1 ! �~�0
2Þ in percent, and (b) the

neutralino branching ratio BRð~�0
2 ! ‘~‘RÞ, in percent, summed over both lepton flavors ‘ ¼ e, � and charges, for the MSSM

parameters as given in Table I. Below the contours m~eR ¼ m~�0
2
in Figs. 6(a) and 6(b) the two-body decay ~�0

2 ! ‘~‘R is kinematically

forbidden, above the contours m~eR ¼ m~�0
1
the lightest neutralino is no longer the LSP since m~eR < m~�0

1
. Below the contours m~��

1
¼

100 GeV the lightest chargino is lighter than 100 GeV.
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We have analyzed the analytical and numerical de-
pendence of the asymmetry on these parameters in de-
tail. In particular, for nearly degenerate staus where the
stau mixing is strong, the asymmetry obtains its maxima
and can be larger than 70%. The normal tau polarization
can thus be considered as an ideal CP observable to
probe the CP phases in the stau and neutralino sector of
the MSSM.

Since the CP-sensitive parts appear only in the subse-
quent stau decay products the stau production process can
be separated. Thus both, ILC, and LHC collider studies are
possible. Concerning the kinematical dependence, the
asymmetry is not Lorentz invariant, since it is based on a
triple product. At the LHC, staus are produced with a
distinct boost distribution. Evaluated in the laboratory
frame, the resulting tau polarization asymmetries get typi-
cally reduced by a factor of two-thirds, compared to the
stau rest frame.

We want to stress that a thorough experimental analysis,
addressing background processes, detector properties, and
event rate reconstruction efficiencies, will be needed in
order to explore the measurability of CP phases in the stau
sector at the LHC or ILC. We hope that our work motivates
such a study.
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APPENDIX A: MOMENTA AND SPIN VECTORS

For the stau decay ~�m ! �~�0
i , we choose the coordinate

frame in the laboratory (lab) system, such that the momen-
tum of decaying ~� points in the z direction.

p�
~� ¼ ðE~�; 0; 0; jp~�jÞ; (A1)

p�
� ¼ E�ð1; sin��; 0; cos��Þ; (A2)

with the decay angle �� ¼ \ðp~�;p�Þ, and

E� � jp�j �
ðm2

~� �m2
~�0
i

Þ
2ðE~� � jp~�j cos��Þ ; (A3)

in the limit m� ! 0. The momenta of the leptons from the

subsequent neutralino decay ~�0
i ! ‘1 ~‘; ~‘ ! ~�0

1‘2 (1), can
be parameterized by

p
�
‘1
¼ E‘1ð1; sin�1 cos�1; sin�1 sin�1; cos�1Þ; (A4)

p
�
‘2
¼ E‘2ð1; sin�2 cos�2; sin�2 sin�2; cos�2Þ; (A5)

with the energies

E‘1 ¼
m2

~�0
i

�m2
~‘

2ðE~�0
i
� jp~�0

i
j cos�D1

Þ ; (A6)

E‘2 ¼
m2

~‘
�m2

~�0
i

2ðE~‘ � jp~‘j cos�D2
Þ ; (A7)

and the decay angles �D1
¼ \ðp~�0

i
;p‘1Þ, �D2

¼
\ðp~‘;p‘2Þ, that is,

cos�D1
¼ ðp~� � p�Þ 	 p̂‘1

jp~� � p�j ; (A8)
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FIG. 7 (color online). Contour lines of (a) the sum of the �
polarization asymmetries ACP

� , Eq. (39), in percent, for the
decays ~�1 ! �~�0

2 and ~�2 ! �~�0
2, each in the stau rest frame

and followed by ~�0
2 ! ‘þ1 ~‘�R , ~‘�R ! ~�0

1‘
�
2 , for ‘ ¼ e or �, see

Fig. 1, and (b) the stau mass splitting m~�2 �m~�1 in GeV. Both

plots are shown in the plane of the soft-breaking parameters of
the stau sector, M ~E�

�M ~L�
, see Eqs. (9) and (10). The other

MSSM parameters are given in Table I.
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cos�D2
¼ ðp~� � p� � p‘1Þ 	 p̂‘2

jp~� � p� � p‘1 j
; (A9)

with the unit momentum vector p̂ ¼ p=jpj. We define the
tau spin vectors by

s1;�� ¼
�
0;

s2� � s3�
js2� � s3�j

�
; s2;�� ¼

�
0;

p‘1 � p�

jp‘1 � p�j
�
;

s3;�� ¼ 1

m�

�
jp�j; E�

jp�jp�

�
: (A10)

The spin vectors sa�, a ¼ 1, 2, 3, for the tau, and sb
~�0
i

, b ¼ 1,

2, 3, for the neutralino ~�0
i , fulfil completeness relations

X
a

s
a;�
� sa;�� ¼ �g�� þ p�

� p�
�

m2
�

; (A11)

X
b

s
b;�

~�0
i

sb;�
~�0
i

¼ �g�� þ
p
�

~�0
i

p�
~�0
i

m2
~�0
i

; (A12)

and they form orthonormal sets

sa� 	 sc� ¼ ��ac; sa� 	 p̂� ¼ 0; (A13)

sb
~�0
i

	 sc
~�0
i

¼ ��bc; sb
~�0
i

	 p̂~�0
i
¼ 0; (A14)

with p̂� ¼ p�=m. Note that the asymmetryACP
� , Eq. (40),

does not depend on the explicit form of the neutralino spin
vectors, since they are summed in the amplitude squared,
see Eq. (31), using the completeness relation.

APPENDIX B: PHASE SPACE

The Lorentz invariant phase-space element for the stau
decay chain, see Eqs. (1) and (2), can be decomposed into
two-body phase-space elements [37]

dLipsðs~�;p‘1 ; p‘2 ; p~�0
1
Þ ¼ 1

ð2�Þ2 dLipsðs~�;p�; p~�0
i
Þ

� ds~�0
i
dLipsðs~�0

i
;p‘1 ; p~‘Þds~‘dLipsðs~‘;p‘2 ; p~�0

1
Þ: (B1)

The different contributions are

dLipsðs~�;p�; p~�0
i
Þ ¼ 1

4�

jp�j2
m2

~� �m2
~�0
i

sin��d��; (B2)

dLipsðs~�0
i
;p‘1 ; p~‘Þ ¼

1

2ð2�Þ2
jp‘1 j2

m2
~�0
i

�m2
~‘

d�1; (B3)

dLipsðs~‘;p‘2 ; p~�0
1
Þ ¼ 1

2ð2�Þ2
jp‘2 j2

m2
~‘
�m2

~�0
1

d�2; (B4)

with sj ¼ p2
j and d�j ¼ sin�jd�jd�j.

APPENDIX C: DENSITY MATRIX FORMALISM

The coefficients of the stau decay matrix, Eq. (28),
are

D ¼ g2

2
ðja~�

mij2 þ jb~�
mij2Þðp~�0

i
	 p�Þ

� g2Refa~�
miðb~�

miÞ�gm~�0
i
m�; (C1)

�a
D ¼ �

ðþÞ
g2

2
ðja~�

mij2 � jb~�
mij2Þm�ðp~�0

i
	 sa�Þ; (C2)

�b
D ¼ �

ðþÞ
g2

2
ðja~�

mij2 � jb~�
mij2Þm~�0

i
ðp� 	 sb~�0

i

Þ; (C3)

�ab
D ¼g2

2
ðja~�

mij2þjb~�
mij2Þðsa� 	sb~�0

i

Þm�m~�0
i
þg2Refa~�

miðb~�
miÞ�g

�
�
ðsa� 	p~�0

i
Þðsb

~�0
i

	p�Þ�ðsa� 	sb~�0
i

Þðp~�0
i
	p�Þ

�

�g2Imfa~�
miðb~�

miÞ�g½sa�;p�;s
b
~�0
i

;p~�0
i
�: (C4)

The formulas are given for the decay of a negatively
charged stau, ~�m ! �� ~�0

i . The signs in parentheses hold
for the charge conjugated decay ~��m ! �þ ~�0

i .
Note that the terms proportional tom� in Eqs. (C1), (C2),

and (C4), are negligible at high particle energies E 
 m�,
in particular �a

D can be neglected.
The coefficients of the ~�0

1 decay matrix, Eq. (29), are

[32]

D1 ¼ g2

2
jfR‘ij2ðm2

~�0
i

�m2
~‘
Þ; (C5)

�b
D1

¼ þ
ð�Þg

2jfR‘ij2m~�0
i
ðsb

~�0
i

	 p‘1Þ; (C6)

and the selectron decay factor is

D2 ¼ g2jfR‘1 j2ðm2
~‘
�m2

�0
1

Þ: (C7)

The signs in parentheses hold for the charge conjugated

processes, that is ~�0
i ! ‘�1 ~‘þR in Eq. (C6).

For the decay into a left slepton ~�0
i ! ‘þ1 ~‘�L , Eqs. (C5)–

(C7) read [32]

D1 ¼ g2

2
jfL‘ij2ðm2

~�0
i

�m2
~‘
Þ; (C8)

�b
D1

¼ �
ðþÞg

2jfL‘ij2m~�0
i
ðsb

~�0
i

	 p‘1Þ; (C9)
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D2 ¼ g2jfL‘1j2ðm2
~‘
�m2

~�0
1

Þ; (C10)

respectively. The expressions for Eqs. (31) and (32) have to
be changed accordingly. The sign in parenthesis in

Eq. (C9) holds for the charge conjugated process ~�0
i !

‘�1 ~‘þL .

APPENDIX D: STAU DECAY WIDTHS

The partial decay width for the decay ~�m ! �~�0
i in the

stau rest frame is [31]

�ð~�m ! �~�0
i Þ ¼

m2
~� �m2

~�0
i

4�m3
~�

D; (D1)

with the decay function D given in Eqs. (C1), and the
approximation m� ¼ 0. For the decay ~�m ! �� ~�

�
j the

width is [31]

�ð~�m ! �� ~�
�
j Þ ¼

ðm2
~� �m2

~��
j
Þ2

16�m3
~�

g2jl~�mjj2; (D2)

with the stau-chargino-neutrino coupling [3,31]

l~�mj ¼ �ðR~�
m1Þ�Uj1 þ Y�ðR~�

m2Þ�Uj2; (D3)

and the stau diagonalization matrix R~�, Eq. (12), the
Yukawa coupling Y�, Eq. (22), and the matrix U, that
diagonalizes the chargino matrix [3],

U� 	M~�� 	 Vy ¼ diagðm~��
1
; m~��

2
Þ: (D4)

The stau decay width for the entire decay chain, Eqs. (1)
and (2), is then given by

�ð~�!�‘1‘2 ~�
0
1Þ

¼ 1

2m~�

Z
jMj2dLipsðs~�;p�;p‘1 ;p‘2 ;p~�0

1
Þ (D5)

¼ �ð~�Þ � BRð~� ! �~�0
i Þ

� BRð~�0
i ! ‘1 ~‘ÞBRð~‘ ! ‘2 ~�

0
1Þ; (D6)

�ð~� ! �‘1‘2 ~�
0
1Þ ¼ ½2mm�

¼ 1

2m~�

Z
jMj2ðs;p�; p‘1 ; p‘2 ; p~�0

1
Þ½2mm�

¼ �ð~�Þ � BRð~� ! �~�0
i Þ � BRð~�0

i ! ‘1 ~‘Þ
� BRð~‘ ! ‘2 ~�

0
1Þ (D7)

with the phase-space element dLips, as given in the
Appendix A, the amplitude squared

jMj2 ¼ 4j�ð~�0
i Þj2j�ð~‘Þj2DD1D2; (D8)

obtained from Eqs. (30) by summing the tau helicities 
�,

0
�. The neutralino branching ratios are given, for example,

in Ref. [32], and we assume BRð~‘ ! ‘2 ~�
0
1Þ ¼ 1. We use

the narrow width approximation for the propagatorsZ
j�ðjÞj2dsj ¼ �

mj�j

; (D9)

which is justified for �j=mj � 1, which holds in our case

with �j & Oð1 GeVÞ. Note, however, that in principle the

naive Oð�=mÞ expectation of the error can easily receive
large off-shell corrections of an order of magnitude, and
more, in particular, at threshold, or due to interferences
with other resonant, or nonresonant processes [38].
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