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In anomaly-mediated supersymmetry breaking models, superpartner masses are proportional to

couplings squared. Their hidden sectors therefore naturally contain WIMPless dark matter, particles

whose thermal relic abundance is guaranteed to be of the correct size, even though they are not weakly

interacting massive particles. We study viable dark matter candidates in WIMPless anomaly-mediated

supersymmetry breaking models with non-Abelian hidden sectors and highlight unusual possibilities that

emerge in even the simplest models. In one example with a pure SUðNÞ hidden sector, stable hidden

gluinos freeze out with the correct relic density, but have an extremely low, but natural, confinement scale,

providing a framework for self-interacting dark matter. In another simple scenario, hidden gluinos freeze

out and decay to visible Winos with the correct relic density, and hidden glueballs may either be stable,

providing a natural framework for mixed cold-hot dark matter, or may decay, yielding astrophysical

signals. Last, we present a model with light hidden pions that may be tested with improved constraints on

the number of nonrelativistic degrees of freedom. All of these scenarios are defined by a small number of

parameters, are consistent with gauge coupling unification, preserve the beautiful connection between the

weak scale and the observed dark matter relic density, and are natural, with relatively light visible

superpartners. We conclude with comments on interesting future directions.
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I. INTRODUCTION

The thermal relic density of a dark matter candidate X is

�X / 1

h�anvi �
m2

X

g4X
; (1)

where h�anvi is the thermally averaged annihilation cross
section, and mX and gX are the characteristic mass scale
and coupling determining this cross section. For weakly
interacting massive particles (WIMPs), the characteristic
values are mX�mweak�100GeV and gX � gweak ’ 0:65,
and the thermal relic density is roughly of the desired order
of magnitude, �X � 0:1. This coincidence, the WIMP
miracle, is a leading motivation for WIMPs and has
guided many searches for dark matter in particle physics
experiments.

At the same time, the relic density constrains only one
combination ofmX and gX. In the standard model (SM), the
only possible value for gX is gweak, since dark matter with
significant electromagnetic or strong interactions is essen-
tially excluded. However, if dark matter is in a hidden
sector with its own interactions, other combinations of
mX and gX can yield the correct thermal relic density.
This is the possibility realized in WIMPless models [1,2],
where dark matter is hidden, with no SM gauge interac-
tions. In these models, the dark matter’s mass mX is not
necessarily near mweak, and its hidden sector gauge cou-
plings gX are not necessarily near gweak, but

m2
X

g4X
�m2

weak

g4weak
: (2)

WIMPless dark matter particles therefore have the correct
thermal relic density, but with a broad range of possible
masses and couplings. In addition, their interaction
strengths with SM particles may vary greatly, depending
on the presence or absence of connector particles that
induce dark matter-SM interactions through nongauge in-
teractions. The WIMPless framework therefore preserves
key virtues of WIMPs, but is far more general, leading to
novel implications for direct [1,3] and indirect dark matter
searches [4–7], precision experiments [8–11], high energy
colliders [12,13], and cosmology [14].
Equation (2) is required for a thermal relic to match

cosmological observations, but it is also motivated by
particle physics considerations alone. For example, the
new physics flavor and CP problems motivate supersym-
metric (SUSY) models with gauge-mediated SUSY break-
ing (GMSB), where generation-blind superpartner masses
are generated by gauge interactions. The resulting masses
aremX / g2X. If the constant of proportionality is similar in
both the visible and hidden sectors, a stable hidden super-
partner will satisfy Eq. (2) and be an excellent WIMPless
dark matter candidate [1,2]. Beyond GMSB, however, the
model-building possibilities for WIMPless dark matter
have not been extensively studied.
In this work, we explore possible realizations of the

WIMPless miracle in SUSY models with anomaly-
mediated SUSY breaking (AMSB) [15,16]. As in the
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case of GMSB, AMSB models are motivated in large part
by their potential to solve the new physics flavor and CP
problems through generation-blind superpartner masses.
These masses are again proportional to couplings squared,
and so AMSBmodels are also natural homes forWIMPless
dark matter. In the AMSB framework, one assumes that
the minimal supersymmetric standard model (MSSM) is
‘‘sequestered’’ from the SUSY-breaking sector, that is, it
does not have tree-level couplings to the SUSY-breaking
sector. The visible sector’s superpartner masses are then
generated purely by the Weyl anomaly,

mv � g2v
16�2

m3=2; (3)

where m3=2 � 100 TeV is the gravitino mass. The same

would hold for any hidden sector of the theory that is
similarly sequestered from SUSY breaking, leading to

mX � g2X
16�2

m3=2: (4)

As a result

mX

g2X
� 1

16�2
m3=2 �mv

g2v
; (5)

and, since mv �mweak and gv � gweak, Eq. (2) holds.
In both GMSB and AMSB, the visible sector does not

have a good thermal relic candidate. In GMSB, SM super-
partners decay to the gravitino.1 In AMSB, the Wino is
typically the lightest supersymmetric particle (LSP) and is
stable, but it typically annihilates too efficiently to have the
correct thermal relic density. The possibility of a hidden
dark matter candidate with the correct thermal relic density
is therefore as welcome in AMSB as in GMSB. In fact, in
several other aspects, AMSB models are more ideally
suited for WIMPless dark matter than GMSB models.
First, Eqs. (3) and (4) immediately imply Eq. (2), and so
the WIMPless miracle does not require any ‘‘model
building’’ to make the constant of proportionality similar
in the visible and hidden sectors. And second, since
m3=2 � mweak, hidden superpartners cannot decay to grav-

itinos, and WIMPless candidates are automatically stable,
at least in the absence of couplings to the MSSM. Indeed,
in some of our examples, the WIMPless dark matter is
stable merely by virtue of spacetime symmetry and gauge
symmetry.

Thanks to these properties, the models we will consider
are extremely simple. The hidden sector is just an SUðNÞ
gauge theory with some number NF of ‘‘quarks’’ in the
fundamental representation. The simplest example is pure
SUðNÞ, where the stable SUðNÞ ‘‘gluino’’ is WIMPless

dark matter, and the theory is completely specified by N
and the hidden gauge coupling gX. Even in this simplest
example, we will find the possibility of interesting astro-
physical implications. We will then consider slightly more
complicated theories with NF > 0 flavors and connector
particles mediating hidden sector-visible sector interac-
tions, again with unusual implications for experiments
and observations. In all cases, however, the WIMPless
miracle naturally preserves the beautiful connection be-
tween the weak scale and the correct dark matter density.
Although we will not exhaustively explore the phenome-
nological consequences of these scenarios here, we will
consider several qualitatively different model-building
possibilities, highlight key constraints, and briefly mention
some of the many possible implications for dark matter
properties and the early Universe.
In Sec. II we derive results for AMSB superpartner

spectra in the visible and hidden sectors, and we discuss
relic densities and cosmological constraints in Sec. III. In
Secs. IV, V, VI, and VII, we then present a number of
models that satisfy these constraints, but have qualitatively
different features. We summarize our conclusions and
potentially interesting future directions in Sec. VIII.

II. SUPERPARTNER SPECTRA AND LSPS

A. Visible sector

In AMSB models the soft SUSY-breaking masses are
determined by the gravitino mass m3=2 and the values of

the dimensionless couplings of the theory at the SUSY-
breaking scale. These expressions are well known [15,16]
and are given in Appendix A for a general SUSY model.
In the visible sector, which we assume has the low-

energy field content of the MSSM, this implies that the
superpartner spectrum is highly constrained. For gaugino
masses, the �-function coefficients are ðb1; b2; b3Þ ¼
ð33=5; 1;�3Þ, and so the gaugino and gravitino mass pa-
rameters are in the ratio

M1: M2: M3: m3=2 ’ 3:31: 1: � 10:5: 372: (6)

Because SUð2Þ is nearly conformal in the MSSM, the
Wino is the lightest MSSM gaugino. The current bound
from LEP2, m ~W * 100 GeV, implies m3=2 * 37 TeV.
In the scalar superpartner sector, the soft slepton masses
squared turn out to be negative. There are many solutions
to this problem [17–25]. Most of these do not modify the
gaugino spectrum and therefore do not affect our discus-
sion here.
As mentioned in Sec. I, the main assumption in AMSB is

that the MSSM is sequestered from the SUSY-breaking
sector. One way to achieve this is in the context of extra
dimensions, with the two sectors localized on different
branes and separated by an extra dimension [15]. If the
hidden sector is localized on the same brane as the MSSM,
it is likewise sequestered from the SUSY breaking. This

1Recall that in GMSB models, the gravitino mass is generi-
cally much smaller than the weak scale, whereas in AMSB
models, the gravitino mass is roughly a loop factor above the
weak scale [see Eq. (3)].
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scenario allows for the presence of tree-level couplings of
the hidden sector to the MSSM. Sequestering also results if
the SUSY-breaking sector is near-conformal over some
energy range [26]. In this case, not just the MSSM, but
any other sector of the theory is sequestered from the
SUSY breaking, so no extra assumptions are needed re-
garding the dark matter hidden sector.

B. Hidden sector

In contrast to the visible sector, there is a great deal of
flexibility in defining the hidden sector’s field content. For
a gauge theory with matter, the results of Appendix A
imply that the gaugino and scalar masses have the form

m1=2 � bg2
1

16�2
m3=2 (7)

m2
0 � ðy4 � y2g2 � bg4Þ

�
1

16�2
m3=2

�
2
; (8)

where g and y represent gauge and Yukawa couplings, b
represents one-loop �-function coefficients, and positive
numerical coefficients have been neglected.

For a pure gauge theory, the theory must be non-Abelian
so that the gauginos are massive and can potentially be
WIMPless dark matter. For a gauge theory with matter
there are many possibilities. We will consider only theories
without Yukawa couplings and restrict our attention to
theories without tachyonic scalars. These are not neces-
sarily requirements, and there may well be interesting
examples of WIMPless models in the cases we neglect.
But given these assumptions, Eq. (8) shows that even with
matter, we are led to consider only non-Abelian gauge
groups. Non-Abelian gauge groups and strongly interact-
ing dark matter have been explored previously [27–33], but
we are led to this possibility for completely different
reasons than those explored previously.

To be concrete, we focus in this work on hidden sectors
that are SUðNÞ gauge theories with NF � 0 light flavors of
matter in N þ �N representations, and no Yukawa cou-
plings. We will refer to the hidden gauginos and gauge
bosons as gluinos ~gh and gluons gh, and the hidden matter
as squarks ~qh and quarks qh. In addition, in what follows,
X will denote the hidden LSP (hLSP), and �X �
gXðmXÞ2=4� will denote the hidden sector’s fine structure
constant at the scale mX.

Above the hidden gluino and squark mass scale, the one-
loop �-function coefficient is bH ¼ �3N þ NF. The
gluino and squark masses are then

m~gh ¼ ð3N � NFÞ�X

4�
m3=2 (9)

m2
~qh
¼ ð3N � NFÞN

2 � 1

N

�
�X

4�
m3=2

�
2
: (10)

We require NF < 3N so that the supersymmetric theory is
asymptotically-free and the squarks are nontachyonic.

For NF � 2N, the squark is the hLSP, and for NF > 2N
(and, of course, for NF ¼ 0) the gluino is the hLSP.
In the absence of couplings to the MSSM, the hLSP is

stable, because it is odd under the SUðNÞ sector R parity. In
fact, for some values of N, the stability follows just from
spacetime symmetry and gauge symmetry. A particularly
simple case is pure SUðNÞ for which the gluino is clearly
stable, since it is the lightest fermion. More generally, a
gluino hLSP must decay to an odd number of quarks plus
some number of gluons, but for even N, an odd number of
fundamentals and antifundamentals does not contain the
adjoint representation. Similarly, a squark hLSP cannot
decay to quarks and gluons for even N.
Below the scale of the hLSP mass mX, we are left with a

nonsupersymmetric SUðNÞ gauge theory with NF flavors.
For NF < N�, with N� � ð2:5–3ÞN, this theory is believed
to confine [34–40]. As explained above, we needNF < 3N,
and so, at least for small values of N, the theory always
confines. The confinement scale is

��mX exp

�
2�

bL�X

�
; (11)

where bL ¼ � 11
3 N þ 2

3NF is the �-function coefficient of

the nonsupersymmetric theory. Below this scale, the quarks
and gluons form color-neutral SUðNÞ composites. Note
that we always take mX >�H, where �H is the strong
coupling scale of the supersymmetric theory; otherwise,
we would need to work directly in the low-energy effective
theory of the SUðNÞ composites.

III. COSMOLOGICAL CONSTRAINTS
AND RELIC DENSITIES

We begin by outlining various requirements that all
models must satisfy. This is not a complete list. In particu-
lar, there are important constraints from structure forma-
tion and halo profiles on self-interactions and charged dark
matter, and from big bang nucleosynthesis (BBN) and
other observations on scenarios where hidden sector parti-
cles decay to visible ones. We will discuss these where
relevant when we present concrete models, starting in
Sec. IV.

A. Relic density of visible LSPs

Given the assumption that the neutral Wino is the visible
sector’s LSP, it is natural to consider it as a dark matter
candidate. Unfortunately, its thermal relic density is typi-
cally small, because it annihilates efficiently through the
S-wave process ~W ~W ! WW [41]. To obtain � ~W � 0:23
the Winos must be very heavy, with m ~W � 2 TeV [16].
This problem is exacerbated in AMSB by the hierarchy in
gaugino masses, as it implies m~g � 20 TeV, which is far

above the weak scale and undermines the motivation of
SUSY as a solution to the gauge hierarchy problem. To
restore Wino dark matter as a possibility, previous attempts
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have abandoned the WIMP miracle and explored the pos-
sibility that Winos are produced not by thermal freeze-out,
but through nonthermal mechanisms, such as the late de-
cays of moduli [42] or Q balls [43], or by thermal freeze-
out, but in a nonstandard cosmology [44].

B. Relic density of hidden LSPs

Whether the hLSP is the gluino or the squark, its anni-
hilation cross section, just like the visible Wino’s, is not
helicity suppressed. Thanks to the WIMPless miracle, the
two cross sections are very roughly comparable, irrespec-
tive of the hidden superpartner mass scale. However,
there are N- and NF-dependent factors that may enhance
the hLSP thermal relic density significantly relative to the
Wino case, because SUð2Þ in the MSSM is nearly confor-
mal and so the Wino thermal relic density may be thought
of as accidentally low. Keeping track of these factors,
we find

�~gh

� ~W

� ð3N � NFÞ2 (12)

�~qh

� ~W

� ð3N � NFÞ2
�
N2 � 1

N

�
2
: (13)

The N- and NF-dependent factors may be large. For a pure
SUð3Þ gauge theory, for example, we find enhancements
of �100, compensating for the too-low value of � ~W . We
will also consider scenarios in which the hLSP decays to
the Wino. In this case, the relic abundance will be diluted
by mX=m ~W , but there is still a significant enhancement to
the Wino relic density for a givenm3=2. Note that the gauge

couplings factor out of the ratio of abundances, but do
appear in mass ratios.

What happens to the hLSP relic density after freeze-out?
Conventional dark matter candidates are neutral under
preserved gauge symmetries. In this case, however,
the hLSP is charged, leading to new phenomena. At
temperatures T * �, the hLSPs may annihilate through
Sommerfeld-enhanced cross sections. At T & �2

XmX, they
may also form hLSP-hLSP bound states, which then rap-
idly leads to hLSP pair annihilation. These effects
have been analyzed previously in various contexts
[14,29,45–47]. For the present scenario, they have a small
�Oð10%Þ effect on the hLSP relic density, essentially
because both Sommerfeld-enhanced and bound-state cata-
lyzed annihilation rates are small compared to the Hubble
expansion rate [14].

For T & �, however, the hLSPs will hadronize, poten-
tially enhancing their annihilation [27–33]. In particular,
the resulting ‘‘R hadrons’’ now have �1=�2 interactions,
and pairs of R hadrons can form bound states, which
potentially leads to rapid hLSP-hLSP annihilation [33].
This annihilation depends sensitively on the existence of
light states with mass below �, since, for the two hLSPs to

annihilate, the bound states of pairs of R hadrons must lose
energy by radiating light particles. These issues were
studied for the case of SM QCD, but their importance in
the context of a general strongly interacting hidden sector
merits further study. Note, however, that hadronization
effects become irrelevant if, for example, the hLSP decays
to the visible sector before T ��, or if� is so low that the
hidden gluinos and gluons have never been cold enough to
confine.

C. Relic density of hidden quark-gluon composites

At T ��, the hidden sector quarks and gluons form
SUðNÞ gauge-invariant composites, including ‘‘mesons,’’
‘‘glueballs,’’ and ‘‘baryons,’’ with masses of order �. The
relic abundance of these composites is model-dependent,
and it is useful to distinguish between three qualitatively
different scenarios:
(c1) The hidden sector contains massless particles, such

as Goldstone bosons or a photon associated with a new
Uð1Þ. These provide a thermal bath to allow the SUðNÞ
composites to annihilate to sufficiently low densities. Note
that in this case, the composites have the usual thermal
freeze-out, so that for� 	 mX, their abundances are much
smaller than the hLSP abundance. We will see an example
of this type in Sec. VII.
(c2) There are connector fields that efficiently mediate

decays of the unstable hidden SUðNÞ composites to mass-
less particles in the visible sector. This is realized in the
models of Secs. VC 2 and VIC 2.
(c3) There are no massless fields in the hidden sector and

no efficient decays to the visible sector. Some SUðNÞ
composites will then be stable, either because they are
charged under some symmetry, or because they are the
lightest states in the hidden sector. Requiring that the
SUðNÞ composites not overclose the Universe then places
an upper bound on �. For example, consider the simplest
case of pure SUðNÞ, whose lightest glueballs are stable. Let
the visible sector’s temperature be T, and assume the
hidden temperature is similar. For T * � the gluons have
thermal energy density �th / T4, at T �� the gluons form
glueballs with mass ��, and for T & �, the glueball
energy density is ð�=TÞ�th / �T3. The resulting glueball
relic density now is ���=100 eV. Requiring that the
glueballs not have relic density larger than the observed
dark matter density, and, even more stringently, not be
too large a contribution to hot dark matter [48,49] implies
� & 10eV. The model of Sec. IV is an example of this
type.

D. Hidden sector contributions to g�
Light degrees of freedom contribute to the expansion

rate of the Universe and are constrained by BBN [50,51].
In the context of hidden sectors, the current bound from
BBN requires [2]
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gh�
�
Th
BBN

Tv
BBN

�
4 � 2:52ð95%C:L:Þ; (14)

where gh� is the effective number of nonrelativistic degrees
of freedom in the hidden sector at the time of BBN, and
Th
BBN and Tv

BBN are the temperatures of the hidden and
visible sectors at the time of BBN, respectively.

If Th
BBN ¼ Tv

BBN, the constraint from BBN on gh� is
stringent. For mX > Th

BBN, the superpartners in the hidden
sector are too heavy to contribute to gh� . However, if
�< Th

BBN, the hidden quarks and gluons contribute gh� ¼
2ðN2 � 1Þ þ 7

2NF. Even in the minimal case with N ¼ 2

and NF ¼ 0, this exceeds the bound of Eq. (14) by more
than a factor of 2.

The bound may be evaded in several ways, however,
depending on the confinement scale �:

(d1)� & Th
BBNð�MeVÞ. In this case, the counting above

applies, and to evade the bound, the hidden sector must be
colder than the visible sector at the time of BBN. If the
hidden sector is completely hidden, it is quite natural for
Th
BBN and Tv

BBN to be different [52–54]. The model of
Sec. IV is an example of this type. If, on the other hand,
there are connector fields coupling the visible and hidden
sectors, the reheat temperature must be below the mass of
the connector fields. This possibility is realized in the
models of Secs. VC1 and VIC 1, where the connectors
are very heavy, and this requirement is not very stringent.
As an added bonus, in this scenario, the connector fields
may be stable, as they are inflated away and not regener-
ated after reheating, avoiding overclosure constraints.

(d2) � * Th
BBNð�MeVÞ. At temperatures below � and

above Th
BBN, the (unstable) SUðNÞ composites decay to

visible sector (MSSM) fields. We will see examples of
this type in Secs. VC2 and VIC 2.

(d3) � * Th
BBNð�MeVÞ. At temperatures below � and

above Th
BBN, the (unstable) SUðNÞ composites decay to

light hidden sector fields. A simple realization of this
possibility is decays to massless Goldstone bosons in the
hidden sector. We will consider such an example in
Sec. VII, with NF ¼ 2, so that there are 3 massless scalar
Goldstone bosons, which is marginally consistent with
Eq. (14).

IV. A PURE SUðNÞ HIDDEN SECTOR
WITHOUT CONNECTORS

We begin with a very simple model in which the hidden
sector is a pure SUðNÞ gauge theory without matter, and
there are no connector fields coupling the visible and
hidden sectors. The stable hidden gluino is WIMPless
dark matter. The model is completely specified by m3=2,

mX, and N. In terms of these, the hidden gauge coupling is
determined by

mX ¼ 3N
�X

4�
m3=2; (15)

and the confinement scale is

��mX exp

� �6�

11N�X

�
¼ mX exp

��9m3=2

22mX

�

’ mX10
�66m ~W=mX : (16)

Because there are no connectors, the hidden gluons gh

(and glueballs ðghghÞ, if they form) are also stable. As a
result, the constraint (c3) on the glueball relic density
discussed in Sec. III C applies, requiring � & 10 eV. The
hidden sector is therefore weakly coupled at BBN and
contributes gh� ¼ 2ðN2 � 1Þ relativistic degrees of freedom
at BBN. The bound of Eq. (14) then implies

�BBN � Th
BBN

Tv
BBN

�
�

1:26

N2 � 1

�
1=4

; (17)

although the hidden sector cannot be at the same tempera-
ture as the visible sector, the BBN constraint is satisfied if
the hidden sector is just slightly colder. Note that, without
connectors, it is quite natural for the visible and hidden
sectors to be at different temperatures.
Hidden gluinos annihilate to hidden gluons through

S-wave processes with cross section

�ð~gh~gh ! ghghÞv ’ �0; (18)

where

�0 ¼ k
��2

X

m2
X

; (19)

and k is anOð1Þ N-dependent coefficient. Using the results
of Appendix B for thermal freeze-out in a hidden sector
[2,55], the hidden gluino’s thermal relic density is, then,

�X ’ 0:23�f

1

k

�
0:025

�X

�
2
�
mX

TeV

�
2

’ 0:23�f

N2

k

�
m3=2

170 TeV

�
2
; (20)

where we have used Eq. (15). The relic density is indepen-
dent of �X and mX, and is automatically of the right order
of magnitude because the hierarchy problem implies
m3=2 � 100 TeV; in short, this scenario realizes the

WIMPless miracle. Of course, although �X is insensitive
to mX and �X, the dark matter’s properties are not. In
particular, the confinement scale � is extremely sensitive
to these parameters.
As an example, consider N ¼ 3. In this case, k ¼ 27=64

[29], and �BBN, the hidden to visible temperature ratio at
BBN, may be as large as 0.63. Taking this temperature ratio
at freeze-out to be �f ¼ 0:5, the correct hidden gluino relic

density is achieved for m3=2¼52 TeV and m ~W ¼140GeV.
In terms of mX, the coupling is

�X ’ 0:027
mX

TeV
; (21)
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and the confinement scale is

��mXð5:8
 10�10ÞTeV=mX : (22)

The constraint � & 10 eV implies mX & 850 GeV.
Hidden gluons have a temperature that is roughly similar
to the cosmic microwave background temperature in the
visible sector. Hidden gluinos have velocity dispersions
that drop to �10�8, corresponding to temperatures
mXv

2 � 10�4 eV, at redshifts z� 100 [14,56,57], before
being sped back up to the current velocity v� 10�3. For
0:1 eV & � & 10 eV, then, both the hidden gluons and
gluinos cool to a temperature below � before redshift
z� 100, and so form ðgh~ghÞ bound states. If these remain
intact, these bound states interact through a short-range
force with cross section ����2. This violates Bullet
Cluster bounds on dark matter self-interactions, which
require �=mX&3000GeV�3 [58,59]. On the other hand,
when the bound states are sped back up to v� 10�3,
collisions may disassociate the bound states, and the rele-
vant bound is on long-range interactions, as we now
discuss.

For � & 0:1 eV (mX & 750 GeV), there is never a time
at which both hidden gluinos and gluons have a tempera-
ture below �, and so at least some of the hidden gluinos
and gluons remain unbound. In this case, the result is a
hidden gluon and gluino plasma, and the relevant bounds
are not those on short-range interactions, but those on dark
matter interacting through long-range forces [14,60–62].
The self-interactions are generically weak enough to avoid
constraints from the Bullet Cluster, and formX � 750 GeV
are marginally consistent with other bounds, such as those
from the observation of elliptical halos [14]. Further work
is required to determine if such scenarios are truly viable.
Note, however, that extremely low values of � occur
naturally in this scenario, and it is remarkable that this first
example already leads to potentially interesting dark mat-
ter properties and provides an extremely simple framework
for studying such phenomena.

V. A PURE SUðNÞ HIDDEN SECTOR WITH
CONNECTORS TO MSSM GAUGINOS

We now consider models with heavy connector fields
that mediate interactions between the hidden and visible
sectors. As in the previous section, we consider a hidden
sector that is pure SUðNÞ, that is, without light flavors, so
the hidden particle content consists of just gluons and
gluinos, with the gluino mass of Eq. (15). The gluinos
freeze out, but then decay to visible sector particles
through connector-induced higher-dimension operators.
Dark matter will be the conventional MSSM Winos, but,
unlike in standard scenarios, these Winos will inherit their
relic density from hidden gluinos, and this relic density
will be naturally in the correct range because of the
WIMPless miracle.

In these scenarios, the hidden gluons may form glue-
balls, and these, too, can in principle decay to MSSM fields
via loops of connector fields. The decay times and final
state are determined by the details of the connector fields.
We will discuss two examples of connectors. In this sec-
tion, we consider connectors that give rise to dimension-
eight operators coupling the hidden and visible gauge
sectors. In the next section, we will discuss a larger con-
nector sector that couples the hidden gauge sector to the
MSSM Higgs fields through dimension-six operators.

A. Connectors

To preserve the possibility of gauge coupling unification
[63–67], we introduce connectors in complete multiplets of
the MSSM SUð5Þ gauge group. We will add NY vectorlike
connectors Y and �Y that transform as (5, N) and ð�5; �NÞ
under SUð5Þ 
 SUðNÞh, respectively, with a large super-
symmetric massMY . This scenario is therefore specified by
5 fundamental parameters: m3=2, mX, N, NY and MY .

As we will see below, we will need the hidden gluinos to
be short-lived enough to avoid bounds from BBN. This can
be arranged by having many light connectors. What are the
bounds on MY and NY?
ForMY abovem3=2, the connectors have no effect on the

AMSB soft masses to leading order in the supersymmetry
breaking. Their contributions to the soft masses are there-
fore suppressed by m3=2=MY compared to the AMSB soft

masses. In fact, the size of these contributions is known,
since the connectors behave just like the messengers of
gauge mediation. We can obtain the connectors’ spectrum
by rescaling their superpotential mass term by the com-
pensator, MYY �Y ! MYð1þm3=2�

2ÞY �Y, leading to fer-

mion mass MY and scalar masses

m2
~Y
¼ M2

Y

�
1�m3=2

MY

�
; (23)

just like GMSB messengers with mass MY and a
supersymmetry-breaking parameter F ¼ MYm3=2.

Integrating out the connectors, we get loop corrections to
the soft masses of the visible and hidden sectors. These are
known for arbitrary F=M2

Y [68,69]. The leading-order term
in F=M2

Y cancels the connectors’ contributions to the
AMSB soft masses above MY [17,19]. The higher-order
terms give corrections to the leading-order AMSB soft
masses that are less than 4% even for MY ¼ 2m3=2, and

so we may takeMY as light as 2m3=2 without distorting our

other results.
As for NY , there is no strict upper bound, but the desire

for perturbativity up to high scales and gauge coupling
unification provides a strong motivation for low NY .
For MY � 100 TeV, the requirement that gauge couplings
remain perturbative up to the grand unified theory scale
is that the effective number of 5þ �5 multiplets satisfies
N5 � 5. In this case,N5 ¼ NNY ; givenN � 2, this implies
NY � 2. For larger MY , this constraint is weaker.
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B. Decay lifetimes

Box diagrams with Y particles in the loop mediate
decays ~gh ! ghg~g, ghW ~W, ghB ~B. At energies below
MY , the box diagrams induce the operator

g2Xg
2
SM

16�2

2NY

M4
Y

Z
d4� �Wh

_�
�W _�Wh�W�

¼�X�SM

2NY

M4
Y

½ ��hð� �@Þ�Fh��F��þFh
	
F

	
Fh��F��
;
(24)

where the bars stand for complex conjugation, and gSM
stands for the appropriate SM gauge coupling. A priori,
decays to all SM gauge bosons are allowed. In some cases,
some of these decays may be kinematically forbidden.
For example, the constraint � & 10 eV, together with
Eq. (16), implies mX & 6m ~W , and so decays to MSSM
gluinos are not allowed. In the following, we will focus
on the decay to visible Winos, since this decay channel is
always allowed if any of them are.2

For hidden gluinos and visible Winos that are compa-
rable in mass, but not particularly degenerate, the decay
width to Winos is

�ð~gh ! ghW ~WÞ �mX

8�

1

16�2
3

�
�X�2

2NY

M4
Y

�
2
m8

X; (25)

where 1=ð16�2Þ is the 3-body decay suppression factor,
and the factor of 3 comes from summing over the 3
possible charge combinations of Winos and W bosons in
the final state. Using �2 � 1=30 and Eq. (15), we find that
the hidden gluino lifetime is

�ð~gh ! ghW ~WÞ � 0:3s
N2

N2
Y

�
m3=2

100mX

�
10
�

MY

2m3=2

�
8 TeV

mX

;

(26)

where we have normalized MY to a fairly low value, as
discussed in Sec. VA.

The operator of Eq. (24) also mediates glueball decay to
pairs of MSSM gauge bosons (see also [70]). The dominant
decay is to SM gluons, with a decay width

�ððghghÞ ! ggÞ � �

8�
8

�
�X�3

2NY

M4
Y

�
2
�8; (27)

implying a lifetime of roughly

�ððghghÞ ! ggÞ � 10�4

�
mX

�

�
9
�ð~gh ! ghW ~WÞ: (28)

Note that here we have not distinguished between the
glueball mass and�. Glueball masses in pure glue theories
have been calculated on the lattice and are typically larger

than �; for example, see Ref. [71] for the case of SUð3Þ,
which is a good example, since we will focus here on small
N. The glueball lifetime of Eq. (28) is extremely sensitive
to the glueball mass, so a more careful treatment of glue-
ball masses would result in a significantly faster glueball
decay than the estimate of Eq. (28). This would make it
easier to satisfy the BBN constraints discussed below, but
to be conservative, we will not include such refined esti-
mates. Note, however, that a very small change inmX or�X

may produce a large change in � to compensate for such
missing factors, and so we expect the qualitatively distinct
possibilities we identify below to remain in more detailed
analyses.
The implications of the lifetime estimates of Eqs. (26)

and (28) may be clarified if we further require that the
Winos from ~gh decay have the correct relic density to be all
of dark matter. To implement this constraint, it will be
convenient to define the ratio of hidden gluino to Wino
masses,

R � mX

m ~W

: (29)

The Wino relic density is the ~gh relic density of Eq. (20)
diluted by the ratio of masses, or

� ~W ’ 0:23�f

N2

k

1

R

�
m3=2

170 TeV

�
2

’ 0:23�f

N2

k

1

R

�
m ~W

460 GeV

�
2
: (30)

For �f � k� 1, Winos from hidden gluino decays are all

of the dark matter for

m ~W �
ffiffiffiffi
R

p
N

500 GeV: (31)

Assuming this, the ~gh lifetime is

�ð~gh ! ghW ~WÞ � 1 s
N3

N2
Y

�
MY

2m3=2

�
8
�
3:0

R

�
11:5

; (32)

and the glueball lifetime is

�ððghghÞ ! ggÞ � 10�410594=R�ð~gh ! ghW ~WÞ: (33)

C. Viable scenarios

What are the constraints on the ~gh and ðghghÞ lifetimes?
For the hidden gluino, one might think that it must decay
before temperature �2

XmX to prevent gluino-gluino bound
states from forming, thereby enhancing gluino annihilation
and ruining the WIMPless miracle. As noted in Sec. III B,
though, this is not required. The most stringent constraints
are associated with BBN. The decay ~gh ! ghW ~W, fol-
lowed by W ! q �q0, produces protons and neutrons, which
are very dangerous for BBN. Hidden gluinos must there-
fore have lifetimes under �1 s.

2We will discuss examples in which decays to gluinos are
important in Sec. VC 2. Decays to Binos are negligible in all our
examples.
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For glueballs, there are two possibilities. If they are
effectively stable, they must not contribute too much to
hot dark matter, and so � & 10 eV. On the other hand, if
they are unstable, their decays are also subject to con-
straints from BBN. These may be avoided if glueballs
decay before 1 s. Of course, this may be too stringent a
requirement: the constraints depend on whether the glue-
balls decay to SM gluons,W bosons or photons, and on the
decay time. There are clearly many possibilities, leading to
different constraints and also many possible signals.

For simplicity, however, here we consider only the two
clearly viable possibilities in which either � & 10 eV and
hidden gluons or glueballs are long lived, or� * MeV and
glueballs decay before BBN.

1. Low �: � & 10 eV

For � & 10 eV, we need R & 6, where we have used
Eq. (16). We then see immediately from Eq. (33) that
glueballs are extraordinarily long-lived in this case. At
the same time, for the hidden gluinos to decay before
BBN, we need R * 3:0. Given choices of N, NY and MY ,
and assuming the correct Wino relic density, there is then a
one-parameter family of viable models parametrized by R
in the range 3 & R & 6.

As an example, consider N ¼ 3, NY ¼ 1, and
MY ¼ 2m3=2. For R ¼ 5:5, we find m ~W � 400 GeV,
mX � 2 TeV, �X � 0:02, and �� eV. Assuming
�f � k� 1, hidden gluinos freeze out with �X � 1, and

then decay at 0.02 s to MSSM Winos with the right relic
density to be all of dark matter. Because the hidden gluinos
decay early, constraints on dark matter self-interactions do
not apply.

Alternatively, taking R ¼ 4 and N ¼ NY ¼ 2, we find
very similar values for the masses of the Wino and the
hidden gluino, but the confinement scale is much smaller,
with �� 10�5 eV. The hidden gluinos decay to Winos at
0.07 s, but the hidden gluons remain unbound and con-
stitute a negligible fraction the Universe’s energy density.

Note that the value of �may vary widely. For � near its
upper bound, these scenarios predict mixed hot-cold dark
matter, with observable implications for small-scale struc-
ture. Note also that some connectors are stable, as there are
no gauge-invariant decays, so that the reheat temperature
must be below MY . In this scenario, however, this is not a
very stringent constraint, as the connectors are very heavy,
with MY � 100 TeV, and it is already motivated by the
BBN constraint on gh� .

2. Hidden glueballs decaying before BBN

For the glueballs to decay before BBN, we need
�ððghghÞ ! ggÞ & 1 s. At the same time, the hidden
gluino must decay after Wino freeze out at t� 10�10 s.
As we will see, these requirements imply a large R, for
which the hidden gluino can decay to the visible gluino.
We therefore require

�ððghghÞ!ggÞ
�ð~gh!ghg~gÞ �30 �10�4
10594=R<1010)R*45;

(34)

where the factor of 30� 8�2
3=ð3�2

2Þ arises from the en-

hancement of the decay width to MSSM gluinos over the
decay to MSSM Winos. As an example, consider N ¼ 6,
and R ¼ 55, for which m ~W � 600 GeV, mX � 30 TeV,
�X � 0:1, m3=2 � 200 TeV, and �� 2 TeV. The hidden

gluino mass, mX, is quite large, but it is below the unitarity
bound for thermal relics [72]. Taking one set of connector
fields, NY ¼ 1, atMY ¼ 10m3=2,

3 one finds that the hidden

gluino decays at t� 10�8 s, and the glueball decays at
t� 1 s, avoiding BBN constraints. The Wino thermal relic
density is negligible, but nonthermal production from hid-
den gluino decays gives it the desired relic density.
Note that the hidden gluino decay occurs at temperatures

somewhat below �, and so after the hidden gluino freezes
out, it hadronizes and forms hidden R hadrons before it
decays to the Wino. In principle, this could lead to renewed
hidden gluino annihilations, since the cross section for
R-hadron interactions is now raised to �1=�2. For these
annihilations to occur, the R hadrons must first form bound
states, and later lose energy so that the hidden gluino pair
in the R-hadron bound state can actually annihilate; see, for
example, the discussion in Ref. [33]. Both of these pro-
cesses require the emission of light particles, which carry
away the binding energy and the energy released when the
initial excited R-hadron bound state relaxes to the ground
state. These energies are characterized by two quantities:�
and �2

XmX. In the scenarios given here, however, the light-
est particles in the hidden sector are the glueballs, with
masses * �, and �2

XmX <�. Therefore, the hidden glui-
nos cannot annihilate effectively even after they hadronize,
and they survive in R hadrons until they decay to Winos.
As in the previous case, this scenario has implications for

observations.We expect that glueball decay times below 1 s
are allowed, but for lifetimes near this upper bound,
these scenarios predict astrophysical signals, in BBN or
other observables sensitive to late decays. Finally, note
that, also as in the previous case, the connector fields are
stable, and the reheat temperature must again be below
MY � 1000 TeV. However, gh� ¼ 0 at BBN in this case,
since the hidden glueballs decay to SM fields before BBN.

VI. A PURE SUðNÞ HIDDEN SECTOR WITH
CONNECTORS TO MSSM HIGGSINOS

A. Connectors

We now consider an alternative scenario in which the
hidden gluinos decay not to SM gauge bosons, but to SM

3Note that for N ¼ 6, the connectors constitute six additional
flavors of the visible SUð3Þ, which still gives a perturbative
coupling at the grand unified theory scale for MY ¼ 2000 TeV.
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Higgs bosons. We add one copy (NY ¼ 1) of the same
connector fields as before, as well as a vectorlike SUðNÞ
pair Q and �Q, which are singlets under the SM, so that, in
all, the new heavy fields and their representations under
SUð5Þ 
 SUðNÞh are

Yð5; NÞ; �Yð�5; �NÞ; Qð1; NÞ; �Qð1; �NÞ: (35)

We couple the Q and the (SUð2Þ doublets of the) Y con-
nectors to the MSSM through the superpotential4

W ¼ yY �QHd þ �y �Y QHu þMYY �Y þMQQ �Q; (36)

where Hu and Hd are the MSSM Higgs supermultiplets.
For simplicity, we set MY ¼ MQ � M and �y ¼ y. As in

Sec. V, we expect M * 2m3=2 to be acceptable. The con-

nector sector is effectively N pairs of 5þ �5 (and 6 SUðNÞ
flavors), and so gauge coupling unification is preserved for
N � 5.

B. Decay lifetimes

As in Sec. V, the connectors induce ~gh decay through a
box diagram, this timewithQ and Y connectors in the loop.
Integrating out the connector fields yields the operator

g2Xy
2

16�2

2

M2

Z
d2�Wh�Wh

�HuHd

¼ 2�X�y

M2
ð ��h�	 ��
 ~HdF

h
	
Hu þ Fh

	
F
h	
HuHdÞ:

(37)

The decay width is roughly

�ð~gh ! ghHu
~HdÞ �mX

8�

1

16�2
2

�
�X�y

2

M2

�
2
m4

X; (38)

where the loop factor is as in Eq. (25), and the factor of 2
accounts for the 2 possible charge assignments for the
Higgs boson and Higgsino in the final state. Using
Eq. (15), the ~gh lifetime is, then,

�ð~gh ! ghHu
~HdÞ � 1
 10�8 s

�
N

2

�
2
�
0:01

�y

�
2
�

m3=2

100mX

�
6



�

M

2m3=2

�
4 TeV

mX

: (39)

The operator of Eq. (37) also mediates glueball decay to
two Higgs bosons. If kinematically accessible, the glueball
decay width is

�ððghghÞ ! HuHdÞ � �

8�
2

�
�X�y

2

M2

�
2
�4; (40)

corresponding to a lifetime of

�ððghghÞ ! HuHdÞ � 10�2

�
mX

�

�
5
�ð~gh ! ghHu

~HdÞ;
(41)

subject to the same uncertainties discussed below Eq. (28).
As in Sec. V, we may include the constraint from the

relic density. The relic density is again diluted by the
hidden gluino decay to Winos, and so Eq. (30) again
applies. Using Eq. (31), we find

�ð~gh!ghHu
~HdÞ�1
10�4 s

�
N

2

�
3
�
0:01

�y

�
2
�

M

2m3=2

�
4 1

R7:5
;

(42)

and the glueball lifetime satisfies

�ððghghÞ ! HuHdÞ � 10�210330=R�ð~gh ! ghHu
~HdÞ:
(43)

C. Viable scenarios

Wemay again identify two qualitatively different classes
of viable scenarios, depending on whether the hidden
gluons are effectively stable, or whether they form glue-
balls and decay before BBN. In contrast to Sec. V, how-
ever, where the operator of Eq. (24) was dimension 8, here
the operator of Eq. (37) is only dimension 6. It is therefore
easy to arrange for very small lifetimes, and the discrep-
ancy between the gluino and glueball lifetimes is reduced.

1. Low �: � & 10 eV

If glueballs are effectively stable, we need � & 10 eV
and R & 6. There are many possible choices of parameters
that are viable. For example, let N ¼ 2, �y ¼ 0:01, and

R ¼ 4. The hidden gluino decays may be anywhere in the
desired range 1ns & t & 1 s for M in the range 2m3=2 &
M & 350m3=2. Hidden gluons are very long-lived. The

other parameters are as in Sec. VC1: m ~W ¼ 400 GeV,
mX � 2 TeV, �X � 0:02, and �� eV. The hidden gluino
freezes out with�X ’ 1, and then decays to MSSMWinos
with the right relic density to be all of dark matter. For �
near its upper bound, this scenario provides a very simple
framework for mixed dark matter, with both MSSM Wino
cold and hidden glueball hot components.
The hidden sector gluons contribute gh� ¼ 6 at BBN, and

so the temperatures of the two sectors must be somewhat
different. This is also motivated by the fact that some
connectors are stable, and the reheat temperature must be
below their mass.

2. Hidden glueballs decaying before BBN

For the ratio of glueball lifetime to ~gh lifetime not to
exceed 10 orders of magnitude,

�ððghghÞ ! ggÞ
�ð~gh ! ghg~gÞ � 10�210330=R < 1010 ) R * 27: (44)

4Note that once the MSSM Higgs bosons develop vacuum
expectation values, the first two terms in the superpotential
contribute to the connectors’ masses, but these corrections are
negligible.
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Taking, for example, N ¼ 2, �y ¼ 0:01, R ¼ 30,

and M ¼ 37m3=2, we find that the hidden gluino life-

time is around 1 ns, the hidden glueball decays
around 1 s, m ~W ¼ 1:3 TeV, mX ’ 40 TeV, �X � 0:2, and
�� 200 GeV. The glueball decays may have observable
effects in BBN or other astrophysical signals.

Once again the ~gh decays at temperatures a bit lower
than �, but its abundance is not significantly diluted by
hadronic effects. The hidden sector does not contribute to
g� at BBN, and so the visible and hidden sectors may be at
the same temperature, but the reheat temperature must be
below the mass of the stable connectors MY � 103 TeV.

VII. AN SUðNÞ HIDDEN SECTOR WITH FLAVOR
AND LIGHT GOLDSTONE BOSONS

So far we have studied three kinds of models. In one
(Sec. IV), the hidden sector does not interact with the
visible sector, so that both the hidden dark matter and the
hidden composites are stable. In the second (Sec. VC2 and
VIC 2), the hidden dark matter candidate decays to the
Wino, but the hidden SUðNÞ composites (glueballs, for
the case of pure Yang-Mills) decay to the visible sector.
In the third (Sec. VC 1 and VIC 1) the hidden dark matter
candidate again decays to the Wino, but the hidden com-
posites are effectively stable. In this latter case, there is a
stringent bound on the confinement scale � & 10 eV,
since otherwise the hidden glueballs overclose the
Universe or contribute too much to hot dark matter.

Here we will consider a qualitatively different example,
in which the hidden sector contains light Goldstone bo-
sons, with masses significantly below �. The hidden dark
matter candidate will decay to the Wino through loops of
connector fields, and the glueballs will decay to the hidden
Goldstone bosons. Furthermore, the light Goldstone bo-
sons provide a thermal bath for any stable SUðNÞ compo-
sites, such as baryons, so that the resulting relic abundance
of these composites is negligible.

For concreteness, we will focus on the simplest possi-
bility, N ¼ 3 and NF ¼ 2, that is, hidden SUð3Þ with two
massless flavors. Chiral symmetry breaking results in three
Goldstone bosons, which is marginally consistent with
BBN constraints on gh� , and is testable with future improve-
ments of these constraints. The SUð3Þ confinement scale is
above an MeV, so that the only new light particles at BBN
are the Goldstone bosons. We will also include connector
fields so that the hLSP decays to the Wino shortly after
Wino freeze-out. As wewill see, the connector fields in this
example are not stable, so that the hidden and visible
sectors can be in thermal equilibrium.

Because NF � 2N, the hLSP is now the hidden squark.
Equation (10) implies that its mass is

mX ’ 0:34�Xm3=2; (45)

and using also Eq. (11), we find

�� 10�36=RmX: (46)

To get the correct Wino relic abundance from hidden
squark decays, we need

m ~W � ffiffiffiffi
R

p
300 GeV; (47)

so we can rewrite � as

�� 300 GeVR3=210�36=R: (48)

Requiring � * MeV, we find R * 5.
We will now add connector fields to the theory, so that

the hidden squark eventually decays to the Wino. As
above, we take the connector fields to be vectorlike pairs
transforming as bifundamentals under SUð5Þ 
 SUð3Þh:

Yð5; 3Þ; �Yð�5; �3Þ: (49)

We will need two such pairs, with the superpotential

W ¼ yYd
i �q

h
i Hd þ �y �Yd

i q
h
i Hu þMYY �Y: (50)

Here i ¼ 1, 2, qh, �qh are the hidden SUð3Þ quarks, and the
superscript d on the Y fields denotes the doublet fields of
the 5 and �5. Note that the connectors are unstable: the
doublet Y fields can decay to Higgs fields and hidden quark
fields. Since running effects create a splitting between the
doublet and triplet Y fields (see, for example, Ref. [68]),
the triplets can decay to the doublets.
For simplicity, we will set y ¼ �y. Integrating out the

connector fields we have the following superpotential cou-
pling of the hidden quarks to Higgs fields:

y2

MY

qhi �q
h
i HuHd; (51)

which induces hidden squark decay into a hidden quark,
Higgs and Higgsino with lifetime

�ð~qh ! qhHu
~HdÞ � 3
 10�24 s

�
MY

y2mX

�
2
�
TeV

mX

�

’ 1
 10�18 sR�3:5

�
MY

y2m3=2

�
2
: (52)

Thus, for example, for R ¼ 5, we can have the hidden
squark decay at 10�6 s for MY ¼ 107y2m3=2.

Note that the operator of Eq. (51) induces a small
Goldstone boson mass

m� � y2
hHuHdi
MY

: (53)

As discussed in (c3), such masses are constrained by the
bound on the amount of hot dark matter in the Universe.
For MY ¼ 107y2m3=2, m� � 10 eV, which is consistent

with these bounds.
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VIII. CONCLUSIONS

Supersymmetric extensions of the SM contain a funda-
mental mass scale, the supersymmetry-breaking scale,
which enters the masses of superpartners in the visible
sector as well as in any hidden sector. Furthermore, if a
hidden sector is truly hidden, with no interactions with the
SM, it generically contains a stable superpartner, which is
protected by the R parity of the hidden sector. These two
features allow for the construction of dark matter models in
which the darkmatter relic abundance is related to theweak
scale. InAMSBmodels, this abundance is actually the same
as the usualWIMP abundance, since the darkmatter mass is
proportional to its coupling squared, and only their ratio
enters in the abundance. These models thus offer a particu-
larly simple realization of the WIMPless dark matter idea.

In this paper, we studied dark matter candidates from
non-Abelian hidden sectors with AMSB. The hidden sec-
tors we consider are very simple. They are SUðNÞ gauge
theories, with either nomatter or a few fundamental flavors.
In some of our examples, the hidden LSP is stable simply as
a result of gauge symmetry and supersymmetry, and its relic
abundance is automatically of the correct size by the
WIMPless miracle. In other examples, the hidden and vis-
ible sectors interact through higher-dimension operators, so
that the hidden LSP freezes out and then decays to a visible
Wino. The result is Wino dark matter which, despite its
large annihilation cross section, has the correct abundance,
with favorable implications for indirect detection.

As we have seen, the phenomenology of these models is
very rich, owing partly to the non-Abelian interactions of
the dark matter candidate. As an example, some of these
models have a confinement scale � that is naturally very
small, as a result of renormalization group evolution, with
a wealth of potentially interesting astrophysical implica-
tions. In the model of Sec. IV, the hidden LSP is the dark
matter, and cannot be seen in any direct or indirect detec-
tion experiment. However, the confinement scale is very
small, and the dark matter is self-interacting through a
long-range non-Abelian force. In the examples of
Secs. V and VI, hidden gluinos freeze out and decay to
visible Winos with the correct relic density. The accom-
panying hidden glueballs may either be stable, as discussed
in Secs. VC 1 and VIC 1, providing a natural framework
for mixed cold-hot dark matter, or may decay, as discussed
in Secs. VC2 and VIC 2, yielding astrophysical signals.
We have also presented in Sec. VII a model with 3 light
hidden pions that contribute to the number of nonrelativ-
istic degrees of freedom at BBN, and will be excluded or
favored as constraints on this quantity improve. In all of
these cases, the scenarios are defined by a small number of
parameters, are consistent with gauge coupling unification,
preserve the beautiful connection between the weak scale
and the observed dark matter relic density, and are natural,
with relatively light visible superpartners.

We have only outlined the main features of representa-
tive models here, and it would be interesting to explore
specific models in more detail. The cosmology of (meta)
stable particles with non-Abelian interactions was studied
to some extent for the case of QCD, but even that case has
many unsettled issues. It would also be interesting to study
Abelian hidden sectors, or hidden sectors with no gauge
interactions, but with Yukawa interactions. Such hidden
sectors are theoretically less clean, because some model
building is required to guarantee the stability of the hidden
LSP, but their phenomenology is likely to be simpler.
Finally, the models we studied are very predictive, since,

because the superpartnermasses are determined by anomaly
mediation, they depend on a very small number of parame-
ters. They thus offer a particularly clean realization of
WIMPless dark matter. We emphasize that the simplicity
of the models is related to the fact that the hidden sector and
visible sector are only coupled through higher-dimension
operators, mediated by connector fields whose masses are
much larger than the supersymmetry-breaking scale. The
hidden LSP soft mass therefore only depends on the hidden
sector gauge couplings and the gravitino mass, and does not
involve any ‘‘	 terms.’’ As a result, however, DM consists
either ofWinos, or of hiddenLSPs,which cannot be detected
directly or indirectly. It would be interesting to construct
models in which the hidden LSP has stronger inter-
actions with the visible sector, so that it might explain the
DAMA and CoGeNTanomalies, in the spirit of Refs. [3,4].
This requiresweak-scale connector fields, and therefore new
	 terms. The hidden LSP soft mass would then generically
depend on these new couplings and 	 terms.
It would also be interesting to generalize the WIMPless

idea to other frameworks of supersymmetry breaking, in
which the hidden dark matter abundance does exhibit some
dependence on the hidden dark matter mass and coupling,
but is still related to the weak scale because of the under-
lying supersymmetry-breaking scale.
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APPENDIX A: AMSB SUPERPARTNER MASSES

In AMSB, the soft SUSY-breaking parameters are de-
termined by the gravitino mass m3=2 and the (weak-scale
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values of the) dimensionless couplings of the theory
[15,16]. Consider a supersymmetric model with gauge
group G, gauge coupling g and Yukawa couplings yijk

defined by the superpotential

W ¼ 1
6y

ijkXiXjXk; (A1)

where the Xi are chiral superfields. The gauge and Yukawa
coupling renormalization group equations are

_g ¼ 1

16�2
bg3 (A2)

_y ijk ¼ ypjk�i
p þ yipk�j

p þ yijp�k
p; (A3)

where b ¼ �3CðGÞ þP
iCðiÞ, _ðÞ � d=d lnð	=QÞ, and

�j
i ¼

1

16�2

�
1

2
yimny

jmn � 2
j
ig

2CðiÞ
�
: (A4)

The group theoretic constants are defined by

tata ¼ CðGÞ1 (A5)

Tr tatb ¼ CðiÞ
ab; (A6)

where the matrices ta are the generators for representation
i. Note that in our conventions, asymptotically free theories
have b < 0.

Defining soft SUSY-breaking terms

L soft ¼f�1
2M���� 1

2ðm2Þji��i�j� 1
6A

ijk�i�j�kþH:c:g;
(A7)

the AMSB soft SUSY-breaking parameters are

M� ¼ 1

16�2
bg2m3=2

ðm2Þji ¼
1

2
_�j
im

2
3=2

Aijk ¼ �ðypjk�i
p þ yipk�j

p þ yijp�k
pÞm3=2:

(A8)

APPENDIX B: THERMAL RELIC DENSITY
IN A HIDDEN SECTOR WITH
A DIFFERENT TEMPERATURE

Thermal freeze-out is modified if it occurs in a sector
with a different temperature from the observable sector’s
[2,55]. Here we summarize the main results.

Assume that a particle X with mass mX annihilates
through S-wave processes with cross section

�ðXX ! anythingÞv � �0: (B1)

The particle then freezes out when the hidden and visible
sector temperatures are Th

f and Tv
f , respectively. The

resulting thermal relic density is

�X � s0
�c

3:79xf

ðg�S=
ffiffiffiffiffiffiffi
gtot�

p ÞmPl�0

; (B2)

where s0 ’ 2970 cm�3 is the visible sector’s entropy den-
sity now, �c ’ 0:527
 104 eV cm�3 is the critical density,
xf � mX=T

v
f , g�S � 100 and gtot� � 100 are the visible and

total number of relativistic degrees of freedom at freeze-
out, and mPl ’ 1:2
 1019 GeV is the Planck mass. The
freeze-out temperature is given by

xf ¼ �f lnL� 1
2�f lnð�f lnLÞ; (B3)

where

�f �
Th
f

Tv
f

; (B4)

and

L � 0:038mPlmX�0ðg=
ffiffiffiffiffiffiffi
gtot�

q
Þ�3=2
ð
þ 2Þ; (B5)

where g is the number of X degrees of freedom, and
the parameter 
 is tuned to make these analytical results
fit the numerical results. For �� 0:3–1, 
� 0:2–0:5 gives
a good fit [2].
As is well known,�X is inversely proportional to�0 and

only logarithmically sensitive to mX. Note, however, that
�0 is also only logarithmically sensitive to g. For example,
for the case where X is a gluino of hidden SUðNÞ, the
thermal relic density is not enhanced by N2 � 1, as it
would be for N2 � 1 independent degrees of freedom,
because the N2 � 1 gluino degrees of freedom interact
with each other. As a result, for a wide range of parameters,
xf � 25�f to a good approximation. We then find that the

thermal relic density is

�X � �f

0:17 pb

�0

’ �f

1

�0

�
0:021

TeV

�
2

’ 0:23�f

1

k

�
0:025

�X

mX

TeV

�
2
; (B6)

where in the last step, we have parametrized the cross
section as �0 ¼ k��2

X=m
2
X. The final result is, therefore,

simple: for a thermal relic that freezes out in a hidden
sector with a different temperature, the thermal relic den-
sity is modified by the factor �f � Th

f=T
v
f from the stan-

dard result.
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