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We observe that a recently proposed supersymmetric model with Q6 flavor symmetry admits a new CP

violating ground state. A new sum rule for the quark mixing parameters emerges, which is found to be

consistent with data. Simple extensions of the model to the neutrino sector suggest an inverted hierarchical

mass spectrum with nearly maximal CP violation (j�MNSj ’ �=2). Besides reducing the number of

parameters in the fermion sector, these models also provide solutions to the supersymmetric flavor

problem and the supersymmetry CP problem. We construct a renormalizable scalar potential that leads to

the spontaneous breaking of CP symmetry and the family symmetry.
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I. INTRODUCTION

Non-Abelian discrete symmetries have found applica-
tions in explaining aspects of the flavor question not ad-
dressed by the standard model (SM) of particle physics.
Restrictions imposed by such symmetries can lead to pre-
dictions for the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing angles in terms of the quark mass ratios
[1]. Such symmetries have been employed successfully
to generate a geometric structure for the leptonic mixing
angles, independent of the lepton mass ratios [2].

The non-Abelian discrete symmetric structureG appears
to bode well within the supersymmetric (SUSY) standard
model, since the same symmetry can also provide a natural
solution to the excessive flavor change that occurs with
generic soft SUSY breaking terms [3]. The three families
of quarks and leptons will transform as doublets or triplets
of the group G, which would result in the degeneracy of
their masses. Degenerate squarks (and sleptons) would
alleviate the SUSY flavor violation problem. If the non-
Abelian symmetry is continuous [4] and gauged [5], there
is flavor violation arising from the D-terms of the flavor
group [6]. Continuous global symmetries are susceptible to
explicit violation from quantum gravity. Non-Abelian dis-
crete symmetries which have a gauge origin are free from
these problems and deserve special considerations [7].

In Ref. [8] we presented a SUSY model based on the
non-Abelian discrete groupQ6—the binary dihedral group
of order 12. This group has two inequivalent doublet
representations, one real doublet, and one pseudoreal dou-
blet, which can be handy for model building. In the flavor
sector this symmetry results in one prediction for a combi-
nation of the CKM mixing parameters, which was shown
to be consistent with data. The quark and lepton superfields
are assigned to doublets and singlets of Q6, with the

singlets identified as belonging to the third family. In the
Q6 symmetric limit the squarks of the first two families
would be degenerate, which is sufficient to solve the SUSY
flavor problem. Furthermore, by assuming that CP viola-
tion has a spontaneous origin, this model also solves the
SUSY CP problem. Excessive CP violating processes
arising from the SUSY breaking sector are absent, since
the parameters are all real. Yet the model admits CP
violation in the quark mixing matrix.
One major purpose of the present paper is to show that

the Q6 model studied in Ref. [8] admits a new minimum
which violates CP, but leaves a new interchange symmetry
intact. By virtue of this interchange symmetry, we derive a
new sum rule among the quark mixing parameters and CP
violation, which is found to be consistent with observations.
Such an interchange symmetry was present in Ref. [8] as
well, but the new one presented here is different, although it
arises from the same Higgs potential. We extend this sym-
metry to the lepton sector and obtain interesting correla-
tions between the neutrino oscillation parameters. We also
compare the predictions of the new minimum with those of
the old, and in the process update our old predictions. We
use the most recent values of light quark masses where the
errors have decreased significantly as a result of improved
lattice calculations. We compare the model predictions
to the best fit values obtained in the SM as well as by
including certain new physics contributions in Bd;s � �Bd;s

mixings as obtained by the CKMfitter group [9]. These new
contributions are motivated by certain discrepancies ob-
tained in the SM CKM fits—such as the differences of
order 20% in the CP violation parameter �� obtained from
fits to �K and B ! J=�KS decay. Small new physics
contributions naturally arise in our Q6 based model. For
example, there are contributions to meson-antimeson mix-
ing via SUSY box diagrams, which may be important for
the Bd;s meson system since the third family squark is not

degenerate with the first two family squarks.
We also present a complete Higgs potential that leads to

the spontaneous breaking of CP symmetry and the Q6
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flavor symmetry without leading to pseudo–Nambu-
Goldstone bosons. In addition to the Q6, a flavor universal
Z4 symmetry is introduced. Owing to this Z4, even after
spontaneous symmetry breaking, an unbroken interchange
symmetry survives in the Higgs potential, for which there
are two possible choices, denoted as P I;II. These symme-

tries, along with Q6, reduce significantly the number of
parameters in the fermion mass matrices. This reduction of
parameters leads to a sum rule involving quark masses and
mixings [8]. Moreover, CP violation has a spontaneous
origin, which is perhaps more satisfying than the usual
assumption of explicit CP violation. Nevertheless, the
dominant source of CP violation in the quark sector is
the Kobayashi-Maskawa mechanism. The sum rule involv-
ing quark masses and mixings that has been derived relies
on the spontaneous violation of CP. With this, the problem
of excessive CP violation that generically exists in the soft
SUSY breaking sector can be solved in a rather simple way.
Various phenomenological aspects of this model in mini-
mum P I have been studied in Refs. [8,10,11].

It is perhaps worthwhile to compare the present approach
based on non-Abelian flavor symmetries to those based on
Abelian flavor symmetries. The latter can also lead to pre-
dictive scenarios for quark and lepton mixings with ‘‘texture
zeros’’ in the fermion mass matrices [12,13]. While for two
families of fermions, such symmetric matrices with nearest
neighbor interactions work well, the three family general-
ization is inconsistent with data [13]. Furthermore, these
models by themselves do not solve the SUSY flavor prob-
lem. Our approach here based on Q6 symmetry is similar in
spirit to the texture zero models in that certain entries in the
fermion mass matrices are zero, and thus the model has a
precise prediction for one of the quark mixing parameters.
The non-Abelian symmetry also enables us to solve the
SUSY flavor problem, due to the degeneracy of the first
two families implied by the Q6 symmetry. After Q6 sym-
metry breaking, flavor changing operators can be generated,
but as shown in Refs. [8,10,11], these are all sufficiently
suppressed. Higher dimensional operators are suppressed by
the Planck scale and have negligible effects.

With Abelian flavor symmetries, one has the prospect
for explaining the mass hierarchy via the Froggatt-Nielsen
mechanism [14]. This involves the use nonrenormalizable
operators for light family mass generation, or equivalently,
the introduction of new fermionic degrees of freedom that
generate such operators. While such an approach can lead
to a qualitative understanding of the mass and mixing
hierarchies, because of uncertainties involved with order
one Yukawa couplings, quantitative explanation of the
observed fermion spectrum is difficult to achieve. In the
Q6 model presented here, we aim for a quantitative pre-
diction for the quark mixing parameter, which can be used
to confirm or rule out the model. As such, we do not
explain the hierarchies in the Yukawa couplings, but we
rather accommodate them. No new fermions beyond those

of the minimal supersymmetric standard model (MSSM)
are employed, unlike the Froggatt-Nielsen models, at the
price of having an extended Higgs sector.
In our model, the effective theory below a TeV has the

MSSM spectrum plus two additional Higgsino doublets
arising from the extended Higgs sector. The new spin zero
Higgs bosons will have to be heavier than a few TeV, in
order to be compatible with flavor changing processes, and
thus are unlikely to be discovered at the LHC. On the other
hand, the two Higgsino doublets beyond the MSSM are
predicted to be light (with masses of order 100 GeV), in
order to solve the SUSY CP problem. Spontaneous break-
ing of CP implies that the MSSM soft SUSY breaking
parameters are real, which solves bulk of the strong CP
problem. Since the vacuum expectation values (VEVs) of
the Higgs fields are complex, after symmetry breaking,
there is residual CP violation, which is however small if
the Higgsinos are light [11].
The plan of the paper is as follows. In Sec. II we present

the supersymmetric Q6 model. In Sec. III we analyze the
predictions of model P I. In Sec. IV we provide the new
model P II and analyze its predictions for the quark mixing
angles and CP violation. Section V discusses a simple
extension of model P II to the neutrino and charged lepton
sector and the resulting predictions. In Sec. VI we have our
concluding remarks.

II. CP INVARIANT SUSY Q6 MODEL

A.Q6 group theory and the Yukawa sector of the model

We work within the context of supersymmetric standard
model, with a non-Abelian flavor symmetry Q6 acting on
the three families of quarks, leptons, and their superpart-
ners. The group theory of Q6 is discussed in detail in
Ref. [8]. We briefly recall its salient features relevant for
model building. Q6 is a binary dihedral group, a subgroup
of SUð2Þ, of order 12. It has the presentation

fA; B;A6 ¼ E; B2 ¼ A3; B�1AB ¼ A�1g: (2.1)

The irreducible representations of Q6 fall into 2, 20, 1, 10,
100, 1000, where the 2 is complex-valued but pseudoreal,
while the 20 is real valued. The f1; 10; 100; 1000g singlets
form a Z4 subgroup with the 1 and 10 being real and the
100 and 1000 being complex conjugates of each other. The
group multiplication rules are given as

10 � 10 ¼ 1; 100 � 100 ¼ 10; 1000 � 1000 ¼ 10;

100 � 1000 ¼ 1; 10 � 1000 ¼ 100; 10 � 100 ¼ 1000
(2.2)

2� 10 ¼ 2; 2� 100 ¼ 20; 2� 1000 ¼ 20;

20 � 10 ¼ 20; 20 � 100 ¼ 2; 20 � 1000 ¼ 2
(2.3)

2� 2 ¼ 1þ 10 þ 20; 20 � 20 ¼ 1þ 10 þ 20;

2� 20 ¼ 100 þ 1000 þ 2:

(2.4)
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The Clebsch-Gordon coefficients for these multiplications
can be found in Ref. [8].

In Table I we list theQ6 assignment of the quark, lepton,
and Higgs chiral supermultiplets in our model,1 where Q,
Q3, L, L3 stand for the SUð2ÞL quark and lepton fields, and
Hu,Hu

3 ,H
d,Hd

3 are the Higgs doublets. The SUð2ÞL singlet

supermultiplets for quarks, charged leptons, and neutrinos
are denoted by uc, uc3, d

c, dc3, e
c, ec3, and �

c, �c
3. Three pairs

of Higgs doublets are introduced in order to generate
fermion masses directly in the presence of Q6 symmetry
using renormalizable couplings. The singlet field T3 is
needed to generate the Majorana mass for �c

3. The other

singlet scalar fields are needed to achieve spontaneous
breaking of Q6 symmetry as well as CP symmetry without
giving rise to pseudo–Nambu-Goldstone bosons. This point
will be clarified in the next subsection. Table I also shows a
flavor universal Z4 symmetry, the purpose of which is to
realize an unbroken interchange symmetry in the scalar
sector even after spontaneous symmetry breaking. Such
an interchange symmetry, for which we have two solutions,
enables us to predict one quark mixing parameter.

The most general Yukawa superpotential involving the
quark and lepton fields invariant under the Q6 � Z4 sym-
metry, assuming matter parity in the usual way, is

WYukawa ¼ fauQ3u
c
3H

u
3 þbuðQ�HuÞuc3þb0uQ3ðHu �ucÞ

þcuðQ?ucÞHu
3 þu! dgþ fa‘L3e

c
3H

d
3

þbeðL�HdÞec3þb0eL3ðHd �ecÞþceðL?ecÞHd
3

þe! �gþM1

2
�c ��cþa�c

2
�c
3�

c
3T3; (2.5)

where we have defined

x � y ¼ x1y1 þ x2y2;

x � y ¼ x1y2 þ x2y1;

x ? y ¼ x1y2 � x2y1:

(2.6)

We have used the explicit basis forQ6 given in Ref. [8] and
the notation uc � ð�uc1; u

c
2Þ, etc., for the right-handed Q6

doublet fermion fields. Note that the Z4 symmetry plays no
role in the construction of Eq. (2.5).

B. The Higgs sector

In order to break the Q6 symmetry spontaneously while
avoiding pseudo–Nambu-Goldstone bosons one needs to
introduce SM singlet Higgs fields. The minimal such set

will involve a 2, 20, 10, and two 1s ofQ6. These are listed in
Table I. The SM singlet Ss are needed to mix the Q6

doublets Hu;d with the Q6 singlets Hu;d
3 . Without the Q6

doublet T there will be an accidental Oð2Þ symmetry in
the Higgs potential. The Oð2Þ symmetry is violated by the
cubic coupling of T. The field T3 is introduced for the
Majorana mass for �c

3, and theQ6 singletU is introduced to

generate a spontaneous CP violation and also to enable the
spontaneous breaking of Q6 � Z4 within the SM singlet
sector. Thus the SM singlet Higgs sector employed appears
to be the minimal set consistent with the demands we wish
to meet.
The most general Higgs superpotential involving the

Higgs fields of Table I invariant under the Q6 � Z4 sym-
metry along with the usual matter parity (with all the Higgs
fields being even) has the form

WHiggs ¼ WU þWST þWH; (2.7)

where

WU ¼�UU
2 þ�U3 þð�1S

2
3 þ�2T

2
3 þ�3T �TÞU; (2.8)

WST ¼�S3S
2
3 þ�TT �Tþ�T3

T2
3 þ�0

3T � ðT �TÞ
þ�0

1½�2S2S1T1 þðS21 � S22ÞT2�þ�0
2S �ST3; (2.9)

WH ¼ �00
1H

u
3 ðHd � SÞ þ �00

2 ðHu � SÞHd
3 þ �00

3 ðHu �HdÞS3
(2.10)

with the notation

A � ðB � CÞ ¼ A1ð�B1C1 þ B2C2Þ þ A2ðB1C2 þ B2C1Þ:
(2.11)

Thus T � ðT � TÞ ¼ 3T1T
2
2 � T3

1 . The Z4 symmetry has

restricted the form of Eqs. (2.8), (2.9), and (2.10); without
the Z4, the following couplings would be allowed:

W 0
Higgs ¼ ð�Hu

1H
d
1 þHu

2H
d
2 ÞT1 þ ðHu

1H
d
2 þHu

2H
d
1 ÞT2:

(2.12)

We wish to avoid these terms, since in their absence we can
define an unbroken discrete symmetry, as discussed below.
The Higgs potential contains F terms derived from

Eqs. (2.8), (2.9), and (2.10), D terms associated with
SUð2ÞL �Uð1ÞY breaking, and the following soft SUSY
breaking Lagrangian2:

TABLE I. Particle content of the Q6 model along with their transformation under Q6 � Z4.

fQ;Lg fQ3; L3g fuc; dc; �c; ecg fuc3; dc3; �c
3; e

c
3g Hu;d Hu;d

3 S S3 T T3 U

Q6 2 10 20 1000 20 1000 2 1 20 10 1

Z4 �i �i þ þ i i � � þ þ þ

1Essentially the same model can be realized with anyQ2N if N
is odd and a multiple of 3.

2We have used the same symbol for the scalar components as
the superfields.
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Lsoft ¼ m2
UjUj2 þm2

SðjS1j2 þ jS2j2Þ þm2
S3
jS3j2 þm2

TðjT1j2 þ jT2j2Þ þm2
T3
jT3j2 þm2

Hu
3
jHu

3 j2 þm2
Hd

3

jHd
3 j2

þm2
HuðjHu

1 j2 þ jHu
2 j2Þ þm2

HdðjHd
1 j2 þ jHd

2 j2Þ þ fBUU
2 þ BS3S

2
3 þ BTT � T þ BT3

T2
3 þ ½AU2 þ A1S

2
3 þ A2T

2
3

þ A3ðT � TÞ�Uþ A0
3T � ðT � TÞ þ A0

1½�2S2S1T1 þ ðS21 � S22ÞT2� þ A0
2S � ST3 þ A00

1H
u
3 ðHd � SÞ þ A00

2 ðHu � SÞHd
3

þ A00
3 ðHu �HdÞS3 þ H:c:g; (2.13)

where the � and � products are defined in (2.6). We assume
CP invariance, which implies that all the Yukawa cou-
plings and the parameters in the Higgs potential are real.
The Higgs potential would then admit two interesting
minima which leave two separate discrete symmetries P I

or P II unbroken. We analyze these two ground states in the
next two sections.

III. GROUND STATE WITH UNBROKEN
INTERCHANGE SYMMETRY P I

The following symmetry P I is respected by theQ6 � Z4

invariant Higgs superpotentials, Eqs. (2.8), (2.9), and (2.10)
, and (2.13) the D terms:

Hu
1 $ Hu

2 ; Hd
1 $ Hd

2 ; S1 $ S2; T2 ! �T2;

Hu
3 ! Hu

3 ; Hd
3 ! Hd

3 ; S3 ! S3; T1 ! T1;

T3 ! T3; U ! U: (3.1)

The VEVs of the various Higgs fields can be consistently
chosen such that this symmetry remains unbroken,

hHu;d
1 i ¼ hHu;d

2 i ¼ vu;d
1 ei�

u;d
þ ; hHu;d

3 i ¼ vu;d
3 ei�

u;d
3 ;

hS1i ¼ hS2i ¼ vSe
i�S ; hT1i ¼ vTe

i�T ;

hT2i ¼ 0; hS3i ¼ vS3e
i�S3 ;

hT3i ¼ vT3
ei�T3 ; hUi ¼ vUe

i�U :

(3.2)

In Eq. (3.2), we have explicitly displayed the complex
phases. It should be noted that this symmetry P I is an
accidental symmetry of the Higgs potential, and is not
respected by the full theory. For example, the Yukawa
sector explicitly breaks this symmetry. Nevertheless, the
existence of P I enables us to choose a ground state given
as in Eq. (3.2) consistently.

We have explicitly verified that the minimum of
Eq. (3.2) is indeed a local minimum and that spontaneous
breaking of Q6 � Z4 and CP symmetries occurs without
generating pseudo–Nambu-Goldstone bosons. The scalar
spectrum of our model is in fact arrived at by meeting these
requirements.

In the ground state P I, the mass matrices for the up and
down quarks take the form

Mu;d ¼
0 Cu;d

Bu;d
ffiffi

2
p ei��u;d

�Cu;d 0
Bu;d
ffiffi

2
p ei��u;d

B0
u;d
ffiffi

2
p ei��u;d

B0
u;d
ffiffi

2
p ei��u;d Au;d

0

B

B

B

@

1

C

C

C

A

: (3.3)

Here we have defined the following parameters:

Au;d ¼ au;dv
u;d
3 ; Bu;d ¼

ffiffiffi

2
p

bu;dv
u;d
1 ;

B0
u;d ¼

ffiffiffi

2
p

b0u;dv
u;d
1 ; Cu;d ¼ cu;dv

u;d
3 ;

��u;d ¼ �u;d
3 ��u;d

1 :

(3.4)

We have ignored irrelevant overall phases of the two mass
matrices. CP invariance of the Lagrangian implies that the
parameters ðAu;d; Bu;d; B

0
u;d; Cu;dÞ are all real. In this case,

after a common 45� rotation in the (1-2) sector that would
set the (1,3) and (3,1) entries of Mu;d of Eq. (3.3) to zero

without inducing CKM mixing, we can write

Mu;d ¼ Pu;dM̂u;dPu;d; (3.5)

where M̂u;d are real matrices given as

M̂ u;d ¼
0 Cu;d 0

�Cu;d 0 Bu;d

0 B0
u;d Au;d

0

@

1

A; (3.6)

and Pu;d are diagonal phase matrices given as

Pu;d ¼ diagfe�i��u;d ; ei��u;d ; 1g: (3.7)

The CKM matrix is then given by

VCKM ¼ OT
uPOd; (3.8)

where Ou;d are the orthogonal matrices that diagonalize

M̂u;d via

OT
u;dM̂u;dM

T
u;dOu;d ¼ diagfm2

u;d; m
2
c;s; m

2
t;bg; (3.9)

and P is a diagonal phase matrix

P ¼ diagfei�; e�i�; 1g (3.10)

with � ¼ ��d � ��u. Since M̂u and M̂d each has four
real parameters, once the six quark masses are fixed, Ou

and Od will have one undetermined parameter each. These
two parameters and the phase � appearing in the matrix P
of Eq. (3.10) will completely fix the three CKM mixing
angles and the one CP violating phase. That will lead to
one sum rule involving the CKM mixing angles, the CP
violating phase, and the quark mass ratios. This prediction
was analyzed in Refs. [8,15] and shown to be fully con-
sistent with data.
Here we update the results of Ref. [8] for the quark

mixing parameter prediction. We use the most recent val-
ues of the quark masses. Lattice calculations have reduced
the errors in the light quark masses, which we adopt for our
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fits. Furthermore, we compare the model prediction with
the global fits provided recently in Refs. [9,16] assuming
specific new physics contributions. The new physics con-
tributions are motivated by certain discrepancies that have
been observed in the CKM fits. For example, the CP
violation parameter �� determined from �K differs from
that obtained from the decay B ! J=cKS by more than 2
standard deviations. We compare our model fits with the
best fit of the standard model, as well as with the best fit for
scenario 1 of Refs. [9,16]. This scenario is characterized by
independent new contributions �d;s to Bd;s � �Bd;s mixing

amplitude. It turns out that there is room for small (	 25%)
new contributions to these mixings in our model, arising
from gluino-squark box diagrams. The Q6 assignment of
quarks implies that the third family squark is not degener-
ate with the first two family squarks (which are nearly
degenerate). Once the quark mass matrices are diagonal-
ized, there will be small off-diagonal entries in the squark
mass matrix, which leads to Bd;s � �Bd;s mixings. These

diagrams have been evaluated in Ref. [11]. While real,
these amplitudes are still in the interesting range for new
physics to influence the CKM parameter fits. In Ref. [17]
the radiative corrections to these mixing parameters, aris-
ing through Higgs boson exchange, have been computed,
and have been shown to be complex. Thus, it appears that
the Q6 model admits small deviations in the CKM fits to
Bd;s � �Bd;s mixings. It should be noted, however, that the

prediction of the present model agrees well with the best fit
values of the CKM fits, with or without new physics
assumed.

Guided by the analytic expressions for the CKM mixing
parameters from (3.6), (3.7), (3.8), (3.9), and (3.10), we
have done a numerical fit to all quark masses and mixings.
An excellent fit is obtained with the following choice of
parameters at � ¼ 1 TeV:

Au=mt ¼ 0:9963; Bu=mt ¼ 0:06051;

B0
u=mt ¼ 0:06051; Cu=mt ¼ 1:748� 10�4;

Ad=mb ¼ 0:8895; Bd=mb ¼ 0:04214;

B0
d=mb ¼ 0:4554; Cd=mb ¼ �5:043� 10�3;

� ¼ 0:71875:

(3.11)

The resulting mass eigenvalues at � ¼ 1 TeV are

mu ¼ 1:25 MeV; mc ¼ 552 MeV;

md ¼ 2:74 MeV; ms ¼ 50:0 MeV;
(3.12)

where we have used mt ¼ 150:3 GeV and mb ¼
2:46 GeV. These values are to be compared with quark
masses extrapolated from low energy scale to � ¼ 1 TeV
[18]

mu¼0:85	1:65MeV; md¼2:05	2:90MeV;

ms¼39:6	64:4MeV; mc¼502	570MeV;

mb¼2:39	2:53GeV; mt¼148:9	151:6GeV;

(3.13)

where we have updated the result of [18] by using the
updated quark masses given in 2011 by the Particle Data
Group [19], while neglecting the uncertainties due to the
renormalization group running. The input values of
Eq. (3.11) give also the following output for the CKM
parameters:

� ¼ 0:2252; A ¼ 0:7962; �	 ¼ 0:1613;

�� ¼ 0:4230; sin2
 ¼ 0:8042; � ¼ 84:1 ½deg�;

 ¼ 26:8 ½deg�; � ¼ 69:1 ½deg�; (3.14)

which should be compared with the fit result of the
CKMfitter group (scenario I) [9]

� ¼ 0:22542
 0:00077; A ¼ 0:801þ0:024
�0:017; (3.15)

�	 ¼ 0:159þ0:036
�0:035; �� ¼ 0:438þ0:019

�0:029;

sin2
 ¼ 0:813þ0:022
�0:068; � ¼ 79þ22

�15 ½deg�;

 ¼ 27:2þ1:1

�3:1 ½deg�; � ¼ 70:0þ4:3
�4:5 ½deg�:

(3.16)

Since there are nine model parameters for six quark
masses and four CKM mixing parameters, we can make
one prediction in a two-dimensional plane if we fix eight of
the nine model parameters. To fix these eight para-
meters we use the quark masses, � and A given in (3.13)
and (3.15), respectively. Figure 1 shows the prediction in
the �	� �� plane, and Fig. 2 shows the prediction in the

FIG. 1 (color online). The prediction in the �	� �� plane for
the model P I, where we have used as the input parameters the
quark masses, �, and A given in Eqs. (3.13) and (3.15), respec-
tively. We also have imposed the constraints on the quark mass
ratios [19]: 2ms=ðmu þmdÞ ¼ 22	 30, ms=md ¼ 17	 22,
mu=md ¼ 0:35	 0:60. The crosses are the CKMfitter group
values [9], top (blue) scenario I and bottom (red) SM.

VARIATIONS ON THE SUPERSYMMETRIC Q6 MODEL . . . PHYSICAL REVIEW D 83, 095008 (2011)

095008-5




� � plane. The CKMfitter group best fit values (3.16) are
also indicated in these figures. We see from Eqs. (3.12),
Figs. 1 and 2 that the model P I reproduces the quark
masses, CKM mixings, and the CP violating phase in an
excellent way.

IV. NEW GROUND STATE WITH UNBROKEN
INTERCHANGE SYMMETRY P II

The same Higgs potential as derived from Eqs. (2.7), and
the soft SUSY breaking Lagrangian (2.13) including the D
terms, with all parameters taken to be real so that CP is an
exact symmetry, admits a new unbroken interchange sym-
metry as given below,

Hu
1 $Hu�

2 ; Hd
1 $Hd�

2 ; S1$S�2; T2!�T�
2 ;

Hu
3 !Hu�

3 ; Hd
3 !Hd�

3 ; S3!S�3; T1!T�
1 ;

T3!T�
3 ; U!U�:

(4.1)

This symmetry P II enables us to choose a ground state
given by

hHu
1 i¼vu

1e
�i�u ; hHu

2 i¼vu
1e

i�u ; hHd
1 i¼vd

1e
�i�d ;

hHd
2 i¼vd

1e
i�d ; hHu

3 i¼vu
3 ; hHd

3 i¼vd
3 ;

hS1i¼vSe
�i�S ; hS2i¼vSe

i�S ; hS3i¼vS3 ;

hT1i¼vT1
; hT2i¼�ivT2

; hT3i¼vT3
; hUi¼vU;

(4.2)

where the complex phases are all explicitly displayed. Note
that there are only three phases, �S, �u, and �d in the
VEVs, along with a purely imaginary VEVof T2.

In the background P II, the fermion mass matrices Mu;d

following from Eq. (2.5) take the form

Mu;d ¼
0 Cu;d

Bu;d
ffiffi

2
p e�i�u;d

�Cu;d 0
Bu;d
ffiffi

2
p ei�u;d

B0
u;d
ffiffi

2
p e�i�u;d

B0
u;d
ffiffi

2
p ei�u;d Au;d

0

B

B

B

@

1

C

C

C

A

(4.3)

with the parameters as defined in Eq. (3.4). CP invariance
of the Lagrangian implies that the parameters
fAu;d; Bu;d; B

0
u;d; Cu;dg are all real.

Model P II, while different from model P I, is just as
predictive in the quark sector as P I. It is then interesting to
see if the quark mixing sum rule of P II is consistent with
data. To address this question we proceed to diagonalize
Mu;d of Eq. (4.3). The phases in the matrices of Eq. (4.3)

can be factorized,

Mu;d ¼ Pu;dM
r
u;dPu;d; (4.4)

where

Pu;d ¼ diagfei�u;d ; e�i�u;d ; 1g (4.5)

with Mr
u;d given as in Eq. (4.3), but with �u;d set to zero.

Quark field redefinitions can absorb the phases in Pu;d,

however a phase matrix will then appear in the quark
mixing matrix,

P ¼ diagfei�; e�i�; 1g; (4.6)

where

� ¼ �d ��u: (4.7)

Now we do a 45 degree rotation in the (1-2) plane to bring

Mr
u;d into M̂u;d as given in Eq. (3.6), but this will generate a

nontrivial quark mixing matrix given by

K ¼
cos� i sin� 0
i sin� cos� 0
0 0 1

0

@

1

A: (4.8)

The CKM mixing matrix is then obtained as

VCKM ¼ OT
uKOd; (4.9)

where Ou;d diagonalize the matrices of Eq. (3.6) as speci-

fied in Eq. (3.9).
Using the approximate analytic expressions for the

CKM mixing parameters, we have done a numerical fit
to all quark masses and mixings within this model. An
excellent fit is obtained with the following choice of
parameters at � ¼ 1 TeV:

Au=mt ¼ 0:01389; Bu=mt ¼ �0:003282;

B0
u=mt ¼ 0:9999; Cu=mt ¼ 1:381� 10�3;

Ad=mb ¼ 0:9020; Bd=mb ¼ 0:04512;

B0
d=mb ¼ 0:4297; Cd=mb ¼ 4:554� 10�3;

� ¼ 0:1038:

(4.10)

The resulting mass eigenvalues at � ¼ 1 TeV are

mu ¼ 1:12 MeV; mc ¼ 535 MeV;

md ¼ 2:27 MeV; ms ¼ 50:0 MeV;
(4.11)

FIG. 2 (color online). The prediction in the 
� � plane for
the model P I. The input parameters and the constraints are the
same as for Fig. 1.
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where we have usedmt ¼ 150:3 GeV andmb ¼ 2:46 GeV
as in the case of P I. These values are to be compared with
quark masses given in Eq. (3.13). The input values of
Eq. (4.10) give the output for the CKM parameters,

�¼0:2254; A¼0:7987; �	¼0:1575;

��¼0:4231; sin2
¼0:8021; �¼83:7 ½deg�;

¼26:7 ½deg�; �¼69:9 ½deg�;

(4.12)

which should be compared with the fit result of the
CKMfitter group (3.16).

Figure 3 shows the prediction in the �	� �� plane,
and Fig. 4 shows the prediction in the 
� � plane for

model P II. The CKMfitter group best fit values (3.16) as
well as the SM best fit values are indicated in these plots.
As in the case of P I, we see from Eqs. (4.11), Figs. 3 and 4
that the model P II also reproduces the quark masses, CKM
mixings and the CP violating phase in an excellent way.

V. PREDICTIVE SCENARIO FOR
NEUTRINO MIXING

The lepton sector of model P I with the Q6 assignment
given in Table I has been studied in Ref. [8], and therefore
we will not discuss it further here. It is interesting to see if
there are any constraints on neutrino oscillation parameters
for modelP II. Here we explore an alternative possibility of
the Q6 assignment for the leptons, which is given in
Table II.
In this new scenario, the leptonic part of the superpo-

tential (2.5) becomes

WYukawa‘¼beðL �HdÞec3þb0eL3ðHd �ecÞ
þceðL�ecÞ �Hdþa�L3�

c
3H

u
3 þb0�L3ðHu ��cÞ

þc�ðL��cÞ �HuþM1

2
�c ��cþa�c

2
�c
3�

c
3T3;

(5.1)

where the � and � products are defined in (2.6) and (2.11),
respectively.
The Majorana mass matrix for the right-handed neutri-

nos is given by

M�c ¼
M1 0 0
0 M1 0
0 0 M3

0

@

1

A; (5.2)

where M3 ¼ a�cvT3
. Note that M1 and M3 are both real.

The Dirac neutrino and charged lepton mass matrices are

M�D ¼
�C�e

i�u C�e
�i�u 0

C�e
�i�u C�e

i�u 0

B0
�e

i�u B0
�e

�i�u A�

0

B

B

@

1

C

C

A

;

M‘ ¼
�C‘e

i�d C‘e
�i�d B‘e

i�d

C‘e
�i�d C‘e

i�d B‘e
�i�d

B0
‘e

i�d B0
‘e

�i�d 0

0

B

B

@

1

C

C

A

:

(5.3)

The light neutrino Majorana mass matrix is found (by the
seesaw formula) to be

FIG. 3 (color online). The prediction in the �	� �� plane for
the model P II, where we have used as the input parameters; the
quark masses, �, and A given in Eqs. (3.13) and (3.15), respec-
tively. We also have imposed the constraints on the quark mass
ratios [19]: 2ms=ðmu þmdÞ ¼ 22	 30, ms=md ¼ 17	 22,
mu=md ¼ 0:35	 0:60. The crosses are the CKMfitter group
values [9], top (blue) scenario I and bottom (red) SM.

FIG. 4 (color online). The prediction in the 
� � plane for
the model P II. The input parameters and the constraints are the
same as for Fig. 3.

TABLE II. An alternative Q6 � Z4 assignment for the leptons.

L fec; �cg L3 ec3 �c
3

Q6 20 20 1 1 100
Z4 �i þ �i þ þ
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Mlight
� ¼ m0

2	2
2 cosð2�uÞ 0 �2i	2	4 sinð2�uÞ

0 2	2
2 cosð2�uÞ 2	2	4

�2i	2	4 sinð2�uÞ 2	2	4 �	2
3 þ 2	2

4 cosð2�uÞ

0

B

B

@

1

C

C

A

; (5.4)

where

	2
2 ¼ ðC�Þ2=M1; 	2

3 ¼ �ðA�Þ2=M3; 	2
4 ¼ ðB0

�Þ2=M1:

(5.5)

We have assumed thatM1 is positive, whileM3 is negative.
When �u ¼ 0, the neutrino mass matrix is exactly the
same as the matrix discussed in [20], and yields only a
tinyUe3 	me=m� 	 10�3, whereUe3 is the ðe; 3Þ element
of the Maki-Nakagawa-Sakata (MNS) mixing matrix
UMNS. It was also shown there that the mass matrix (5.4)
with �u ¼ 0 can yield consistent neutrino masses and
mixing only if M3 is negative, and the mass spectrum is
inverted. This conclusion also applies to the present case
with nonvanishing �u. For nonzero �u, we obtain Ue3 	
sin2�u, which can be small or large. We vary jUe3j in its
entire range allowed by experiments and correlate its value
with other observables.

We make the matrix (5.4) real by redefining �1 ¼ i�0
1.

The resulting mass matrix M̂light
� can be diagonalized by an

orthogonal matrix O� as OT
�M̂

light
� O�. As for the charged

lepton mass matrixM‘, we can obtain hierarchical masses,
e.g., me 	 B0

‘, m� 	 C‘, m 	 B‘. Keeping this in mind

we rotate M‘ according to

M̂ ‘ ¼ PLM‘PR; (5.6)

where

PL ¼ 1
ffiffiffi

2
p

e�i�d �ei�d 0

�ie�i�d �iei�d 0

0 0
ffiffiffi

2
p

0

B

B

@

1

C

C

A

;

PR ¼ 1
ffiffiffi

2
p

e�i�d e�i�d 0

�ei�d ei�d 0

0 0
ffiffiffi

2
p

0

B

B

@

1

C

C

A

:

(5.7)

Then we consider M̂‘M̂
y
‘ in the limit B0

‘ ! 0 (i.e.me ! 0)
and find

M̂‘M̂
y
‘ ¼

C2
‘ð3�cosð4�dÞÞ C2

‘ sinð4�dÞ 0

C2
‘ sinð4�dÞ 2B2

‘þC2
‘ð1þcosð4�dÞ 0

0 0 0

0

B

B

@

1

C

C

A

:

(5.8)

The eigenvalues in the limit are

m2
e ¼ 0; m2

� ’ C2
‘ð3� cosð4�dÞÞ;

m2
 ’ 2B2

‘ þ C2
‘ð1þ cosð4�dÞ;

(5.9)

and the (inverse) diagonalizing orthogonal matrix

(OT
‘ M̂‘M̂

y
‘O‘) is found to be

OT
‘ ’

0 0 1

1 � C2
‘

2B2
‘

sinð4�dÞ 0

C2
‘

2B2
‘

sinð4�dÞ 1 0

0

B

B

B

B

@

1

C

C

C

C

A

: (5.10)

Since the relative phase� ¼ �d ��u is fixed in the quark
sector, there are seven independent parameters in the lep-
ton sector. We use [21]

me¼0:511MeV; m�¼105:7MeV;

m¼1:777GeV; jUe2j2¼0:318þ0:019
�0:016

�m2
13¼ð2:40þ0:12

�0:11Þ�10�3 eV2;

�m2
21¼ð7:59þ0:23

�0:18Þ�10�5 eV2

(5.11)

as input parameters. The MNS neutrino mixing matrix is
then given by

UMNS ¼ OT
‘PLP�O� � diagf1; i; 1g; (5.12)

where the last phase factor multiplied with UMNS is the
Majorana phase, and P� ¼ diagfi; 1; 1g, which was intro-
duced to make the matrix (5.4) real. In the lepton sector we
have only one free phase �u, which controls Ue3. In the
following calculations we use �d ¼ �u þ 0:1038 [see
Eq. (4.10)].
Figure 5 shows the Dirac phase �MNS (in the convention

of Ref. [19]) against jUe3j2. We see that the model predicts
nearly maximal CP violation. This can be understood as
follows. Consider the limit me, �u, �d ! 0. In this limit,

0 0.01 0.02 0.03 0.04 0.05
| U

e3
 |

2

-3

-2

-1

0

1

2

3

δ M
N

S

FIG. 5 (color online). The prediction in the jUe3j2 � �MNS

plane for the model P II with the Q6 assignment of the leptons
given in Table II, where we have used the parameters given in
(5.11) and �d ¼ �u þ 0:1038. The dashed vertical lines corre-
spond to the maximal CP violation.

K. S. BABU, KENJI KAWASHIMA, AND JISUKE KUBO PHYSICAL REVIEW D 83, 095008 (2011)

095008-8



only P� contributes to �MNS, and the first element of P�,

ei�=2, appears as the Dirac phase.
It is possible to predict the effective neutrino mass

hmeei ¼ jm�1
U2

e1 þm�2
U2

e2 þm�3
U2

e3j for neutrinoless

double beta decay as a function of jUe3j. Note that the first
row of OT

‘PLP� is diagf0; 0; 1g in the me ! 0 limit. Since

O� is real, the first and third elements of the first row of
UMNS are real, while the second element is purely imagi-
nary. Therefore,

hmeei ’ jm�1cos
2�sol �m�2

sin2�solj
’ m�2

cos2�sol ’ 0:4m�2
: (5.13)

In Fig. 6 we plot the prediction in the jUe3j2 � hmeei plane,
which verifies the rough estimate above. The main contri-
bution to jU�3j comes fromO‘. In the limitme,�u ! 0, it

is exactly 1=
ffiffiffi

2
p

, so the maximal mixing. The deviation
from the maximal mixing has terms proportional tome=m�

and to sin2�u. In Fig. 7 we plot jU�3j2 against jUe3j2,

verifying our expectation. Note that the entire range of
jUe3j allowed by experiments currently is also allowed by
atmospheric neutrino oscillations. But once the jUe3j is
measured, the model will make precise prediction for
jU�3j which can be scrutinized with improved precision

experiments.

VI. CONCLUSIONS

TheQ6 model of flavor is constructed to solve the SUSY
flavor problem of the supersymmetric standard model. It
also yields an interesting prediction for the quark mixing
parameters, which compares very well with experimental
data. An unbroken interchange symmetry plays an impor-
tant role in obtaining the quark mixing parameter predic-
tion. In this paper we have updated this prediction, and
compared it with the best fit values within the standard
model as well as with new physics contributions assumed
in Bd;s � �Bd;s mixing amplitudes. The model prediction is

in very good agreement with the data.
A major observation of the present paper is the existence

of a new minimum that violates CP symmetry spontane-
ously, but leaves a new interchange symmetry unbroken. In
this minimum, there is again a prediction for quark mixing
parameters. We have analyzed this prediction and found
that it fits data (within the CKM model and with new
physics included) rather well. We have extended this sym-
metry to the leptonic sector, and have found various corre-
lations between neutrino oscillation parameters.
We conclude with several comments on the newfound

solution.
(1) The SUSY flavor problem is solved in the new

ground state P II in the same way it is solved in
P I. Q6 invariance requires the first two family
squarks and sleptons to be degenerate in mass,
which provides the needed SUSY Glashow-
Iliopoulos-Maiani (GIM) mechanism. Since after
Q6 breaking the Q6 doublet and singlet quark states
mix, there is residual flavor violation mediated by
the SUSY particles, but such flavor-changing
neutral-current (FCNC) processes are well within
experimental limits.

(2) The SUSY CP problem is solved in the model by
virtue of spontaneous CP violation. The fundamen-
tal parameters in the Lagrangian are all real and
complex phases develop only spontaneously via
the VEVs of Hu;d and S, T, U fields. This implies
that the soft SUSY breaking parameters such as the
gluino mass are all real, which alleviates the bulk of
the SUSY phase problem. The trilinear SUSY
breaking A-terms are not proportional to the corre-
sponding Yukawa couplings, however the phases in
these A-terms, since they arise spontaneously, will
align with the phases in the fermion mass matrices.
Thus the A-terms do not generate CP violation.
There is CP violation arising from the �-terms,

0 0.01 0.02 0.03 0.04 0.05
| U

e3
 |

2

0.01

0.015
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0.025

0.03
<

 m
ee

 >
 [

eV
]

FIG. 6 (color online). The prediction in the jUe3j2 � hmeei
plane for the same input parameters as Fig. 5.

0 0.01 0.02 0.03 0.04 0.05
| U

e3
 |

2

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

| U
µ3

 |2

FIG. 7 (color online). jU�3j2 against jUe3j2 for the same input
parameters as Fig. 5.
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but as suggested in Ref. [11], if the Higgsino masses
are parametrically smaller than the squark and slep-
ton masses, this CP violation is not excessive. We
also note that in the new minimum P II, the sponta-
neously induced phase that is necessary for
Kobayashi-Maskawa CP violation is rather small,
	0:1038. One can then assume an approximate CP
symmetry for the entire Lagrangian, where all the
phases remain small, of this order. This will further
suppress the SUSY phase effects.

(3) The new interchange symmetry P II might appear to
be CP transformation, but it actually is not. If it
were CP transformation, when extended to the fer-
mion Yukawa sector, that would make the parame-
ters cu;d;‘;� in Eq. (2.5) purely imaginary. CP
violation will then disappear from the CKM matrix,
as it should, since this symmetry remains unbroken.
The symmetry P II is an accidental symmetry of the
Higgs potential, and is not respected by the Yukawa
couplings, just as it was for the interchange symme-
try P I. This state leads to a new sum rule involving
the quark masses and CKM mixing parameters,
which is found to be in good agreement with data.
Extension of the model to the neutrino sector, by
changing the Q6 assignment of the leptons, can lead
to a predictive scenario. In this version we find that

neutrino mass hierarchy is inverted with nearly
maximal CP violation along with nearly maximal
mixing of atmospheric neutrinos. Thus the model
lends itself to experimental scrutiny in the near
future.

(4) The question of whether it is possible to obtain a
large CP violation in the B0

s � �B0
s mixing for the

case of P II, as in the case of P I [17], remains to be
studied. To distinguish two ground states of the
same model, precise measurements of the CKM
parameters [22] and neutrino oscillation parameters
[23] as well as precise determination of the quark
masses [24] are indispensable.
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