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We study the implementation of global SOð4Þ � SUð2ÞL � SUð2ÞR symmetry in general potentials with

N-Higgs-doublets in order to obtain models with custodial SOð3ÞC symmetry. We conclude that any

implementation of the custodial SOð4Þ symmetry is equivalent, by a basis transformation, to a canonical

one if SUð2ÞL is the gauge factor, Uð1ÞY is embedded in SUð2ÞR, and we require N copies of the doublet

representation of SUð2ÞR. The invariance by SOð4Þ automatically leads to a CP-invariant potential and the

basis of the canonical implementation of SOð4Þ is aligned to a basis where CP symmetry acts in the

standard fashion. We show different but equivalent implementations for the 2-Higgs-doublets model,

including an implementation not previously considered.
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I. INTRODUCTION

Despite the enormous success of the standard model of
particle physics (SM) in accounting for all the known ex-
perimental data on high energy physics to date, several
theoretical and observational ingredients pressure the SM
for extensions.One can list naturalness problems such as the
hierarchy problem or observational facts such as the need
for new sources of CP violation, the need for nonordinary,
weakly interacting stable matter (dark matter), or a natural
explanation for the smallness of nonzero neutrino masses.

The simplicity of the scalar sector of the SM, however,
has some unique features owing to its minimality. Because
of the presence of one Higgs doublet, the Higgs potential
possesses a global accidental SOð4Þ symmetry larger than
the usual electroweak gauge symmetry SUð2Þ �Uð1ÞY [1].
Even after electroweak symmetry breaking (EWSB),
through the only symmetry-breaking pattern, the SOð3ÞC
portion of the global symmetry, usually called custodial
symmetry [2–4], remains in the potential. The symmetry is
only approximate because it is respected by the gauge
interactions only in the gY ! 0 limit and by the Yukawa
interactions only if the quarks in the same doublet have
degenerate masses (it is then related to isospin symmetry).
Nevertheless, such approximate symmetry guarantees the
gauge bosons W

�
a transform as a triplet of SOð3ÞC in the

gY ! 0 limit and explains the absence of large radiative
corrections to the � parameter from its tree-level value

�ð0Þ ¼ M2
W=M

2
Zcos

2�w ¼ 1, hence the name custodial
symmetry.

When we try to extend the SM, the most simple exten-
sions of the SM consider some enlargement of the scalar
sector of the theory since it is the least verified sector,
either because the only elementary scalar of SM, the
physical Higgs boson, has escaped discovery so far or we
have had no final confirmation about the mechanism
behind EWSB [5] and the origin of all the masses of the

elementary particles of the SM. The simplest way to extend
the scalar sector is to consider the replication of the
Higgs doublet, leading to the N-Higgs-doublet models
(NHDMs). The minimal version, called 2-Higgs-doublets
model (2HDM), was originally considered to implement
the spontaneous CP violation mechanism [6], and more
recently as simple extensions to address problems such as
the little hierarchy problem [7], the presence and stability
of dark matter candidates , and to provide new sources of
CP violation when extended to a 3HDM [9]. This model
has also been extensively studied in the last years as the
effective scalar sector of the minimal supersymmetric
standard model (MSSM) [10–12]. For example, Ref. [10]
presents a detailed study of the effective 2HDM potential
that arises in the MSSM with explicit CP violation, after
including radiative corrections.
Another reason to study this type of model is the pres-

ence of a horizontal space formed by theN-Higgs-doublets
that possess the same gauge quantum numbers. An
SUðNÞH transformation in such space, then, only amounts
to a reparametrization of the potential [13–17]. At the same
time that the presence of a horizontal space makes the
model more complex and less predictable due to the pro-
fusion of allowed couplings, it also allows the study of the
potential and its possible symmetry-breaking patterns
through the study of the orbit space of the gauge invariants
[18–21].
In the NHDM extensions, with N > 1, the global SOð4Þ

symmetry does not arise naturally as an accidental sym-
metry but has to be imposed. Once it is imposed and leads
to the custodial symmetry SOð3ÞC, it can play its original
role to protect large radiative corrections to the � parame-
ter [22–25]. In the context of the 2HDM, the global SOð4Þ
symmetry leads to the degeneracy of the charged scalar and
one of the neutral scalars [26]. In one version [23], it is
possible to construct a 2HDM model with custodial sym-
metry such that the state degenerate to the charged Higgs is
aCP-even neutral Higgs,MH0 ¼ MH� , instead of the more
usual MA0 ¼ MH� scenario.*celso.nishi@ufabc.edu.br
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We intend to consider here the NHDM extensions of the
SM possessing the custodial SOð4Þ symmetry which, in
turn, can be broken down to the custodial SOð3ÞC symme-
try that protects the � parameter. Larger global symmetries
can be considered [27] but in general it will produce more
pseudo-Goldstone bosons [28] in addition to the usual
three would-be Goldstone bosons absorbed by the Higgs
mechanism. We can separate our goals in this study into
two categories: construction and identification. The first
refers to the construction of general custodial-invariant
NHDM potentials and analysis of the models. The second
goal refers to the methods of identifying the SOð4Þ sym-
metry if it is not manifest and concealed such as the CP
symmetry acting in a general basis [13,14,17]. It is then
important to study the interplay between the imposition of
SOð4Þ symmetry and the reparametrization group SUðNÞH.
In particular, it is important to emphasize that the global
SOð4Þ symmetry, like CP symmetry, is not contained in
SUð2ÞL �Uð1ÞY � SUðNÞH, as most of the symmetries
usually considered for NHDMs are. See, for instance, the
symmetries for 2HDM and 3HDM in Refs. [20,21,29]. The
analysis of basis transformations is also crucial when ex-
tending some symmetries of the potential to the Yukawa
interactions, since some symmetries of the potential might
be broken by the Yukawa terms as well as the converse
[22,24,30,31].

In the context of the 2HDM, many studies [22,24,25]
show that CP invariance and custodial symmetry are in-
timately connected. In fact, we will see that such connec-
tion can be extended to general custodial-invariant
NHDMs. In certain cases, the knowledge of the presence
of the CP symmetry and how it acts on the fields, allows us
to infer if SOð4Þ is also present as a symmetry. We can also
borrow the various methods of identifying CP invariance
independently of the basis [13,15,17]. Compared to the
SM, where global SOð4Þ symmetry, custodial SOð3ÞC
symmetry and CP-symmetry are automatic in the scalar
sector, we will see that a NHDM potential invariant by
SOð4Þ-symmetry and a potential invariant by CP symme-
try differ only minimally in an easily identifiable manner
for N ¼ 2 and N ¼ 3 Higgs doublets. For N � 4, a
custodial-invariant potential is also more constrained than
a CP-invariant potential but the difference is more
involved.

The paper is organized as follows: In Sec. II we study
one particular implementation of the global custodial
SOð4Þ symmetry called canonical implementation and
how it is related to the CP symmetry and basis trans-
formations. In particular, in Sec. II D we show any imple-
mentation of the global symmetry SOð4Þ is equivalent to
the canonical implementation. Section III shows the vari-
ous implementations for the 2HDM considered in the
literature, shows their equivalence to the canonical imple-
mentation and also shows one different but equivalent
implementation. We discuss some consequences of this

work in Sec. IV, followed by the conclusions. To clarify
the nomenclature regarding the various groups involved in
the study of the custodial symmetry, e.g., SOð3Þ, SOð4Þ and
SUð2ÞL � SUð2ÞR, we refer to Appendix A, where we list
the group/subgroup structure of the global symmetries
involved in the SM. Instead of distinguishing the various
(custodial) symmetries by names, we will denote them by
their group structure and use the isomorphic groups inter-
changeably, often considering their local structure only.
Wewill often include a subscript ‘‘C’’ (custodial) to denote
the groups, as in SOð4ÞC.

II. CANONICAL IMPLEMENTATION
OF SOð4ÞC IN NHDM

Let us consider N-Higgs-doublets of SUð2ÞL of hyper-
charge Y ¼ 1: �a, a ¼ 1; . . . ; N.
Let us also define a 2� 2 complex matrix of fields [4,5]

�a � ð ~�aj�aÞ ¼
�0�

a �þ
a

���
a �0

a

 !
; (1)

where ~�a � ���
a (� � i�2) defines the tilde (~) operation

on a doublet which transforms a Y ¼ 1 doublet to a
Y ¼ �1 doublet. We can also define the ð~Þ operation on
any 2� 2 complex matrix h as

~h � �h��y: (2)

It is straightforward to see that such operation is trivial on
�a of Eq. (1), i.e.,

~� a ¼ �a: (3)

We can define the canonical implementation (CI) of the
custodial group SUð2ÞL � SUð2ÞR by the universal action
upon �a, a ¼ 1; . . . ; N,

�a ! UL�aU
y
R; UL 2 SUð2ÞL and UR 2 SUð2ÞR:

(4)

The action (4) sets the representation of �a as (2, 2) under
the custodial group SUð2ÞL � SUð2ÞR. Therefore, each
Higgs-doublet �a has the same transformation property
under SUð2ÞL � SUð2ÞR as the SM Higgs-doublet.
Within this section we will focus on the canonical

implementation of the custodial group SOð4ÞC and any
mention to the custodial group will denote this implemen-
tation. Within the 2-Higgs-doublet model, this implemen-
tation was named type I in an early work [22].
It is clear that the identity (3) preserves the action (4)

since

�U��y ¼ U; for any U 2 SUð2Þ:
Using the operation (2) we can write the previous identity
as

~U ¼ U; for any U 2 SUð2Þ: (5)

C. C. NISHI PHYSICAL REVIEW D 83, 095005 (2011)

095005-2



If the transformation (4) is promoted to a symmetry of
the N-Higgs-doublet potential, we say the potential is
custodial-invariant. As in the SM, such symmetry is ex-
plicitly broken by the gauge interactions that are invariant
only by the gauged SUð2ÞL �Uð1ÞY subgroup. In the usual
EWSB scenario, the three would-be Goldstone bosons that
appear in the breaking of SUð2ÞL � SUð2ÞR ! SUð2ÞLþR

coincide with the usual would-be Goldstone bosons of the
breaking of SUð2ÞL �Uð1ÞY ! Uð1Þem. They are then ab-
sorbed as the longitudinal components of the gauge bosons
W�, Z0 by the Higgs mechanism, such that no physical
Goldstone bosons appear. Other symmetry-breaking pat-
terns exist where physical pseudo-Goldstone bosons ap-
pear. That is the case of certain 2-Higgs-doublet potentials
with global symmetries equal or larger than SOð4ÞC (see
Sec. II B and Ref. [27]).

The correspondence between the representation (2, 2) of
SUð2ÞL � SUð2ÞR and the vector representation 4 of
SOð4ÞC guarantees we can construct a 4-vector out of the
real and imaginary parts of the two components of �a.

The usual correspondence is found by defining four real

fields �ðaÞ ¼ ð�ðaÞ
� Þ ¼ ð�ðaÞ

0 ;�ðaÞÞ, �ðaÞ ¼ ð�ðaÞ
1 ; �ðaÞ

2 ; �ðaÞ
3 Þ,

from the relation

�a ¼ �ðaÞ1þ i� 	 �ðaÞ ¼ �ðaÞ
0 þ i�ðaÞ

3 i�ðaÞ
1 þ �ðaÞ

2

i�ðaÞ
1 � �ðaÞ

2 �ðaÞ
0 � i�ðaÞ

3

0
@

1
A:
(6)

We can rewrite (6) in a more compact form

�a ¼ �ðaÞ
� e�; (7)

by defining ðe�Þ � ð1; i�1; i�2; i�3Þ.
The custodial symmetry SUð2ÞL � SUð2ÞR acting as (4)

induces in �ðaÞ the transformations

�ðaÞ
� ! R��ðUL;URÞ�ðaÞ

� ; RðUL;URÞ 2 SOð4Þ; (8)

where the convention of summation of repeated indices is
implicit for �, � ¼ 0, 1, 2, 3. It can be shown that
RðUL;URÞ defines a two-to-one mapping between
SUð2ÞL � SUð2ÞR and SOð4ÞC with the explicit function

R��ðUL;URÞ � 1

2
Tr½ey�ULe�U

y
R
: (9)

Hence �ðaÞ can be regarded as vectors in a four-
dimensional euclidean space. We can also recover the
SUð2ÞLþR ! SOð3Þ mapping for UR ¼ UL [17].

We can also define a 4-component complex vector (in a
four-dimensional real vector space) that transforms more
directly under SUð2ÞL � SUð2ÞR. Let us define

	a � �a

� ~�a

 !
: (10)

The action (4) is then translated into

	a ! UR �UL	a: (11)

The transformation property (11) can be deduced if
we rewrite (4) as �aij ! ULii0U

�
Rjj0�ai0j0 [note that 	a ¼

ð� � 12Þð�a11;�a21;�a12;�a22ÞT implies the transforma-
tion property 	a ! ð� � 12ÞðU�

R �ULÞð�y � 12Þ	a] and
finally use the identity (5).
One can also write explicitly the linear relation between

	a and �ðaÞ as

	a ¼ B�ðaÞ; (12)

where the transformation matrix B can be read off from
(6). With this change of basis it is possible to write ex-
plicitly how the generators of SUð2ÞL � SUð2ÞR acting on

	a are related to the generators of SOð4ÞC acting on �ðaÞ.
Such generators can be found in appendix B.

A. Custodial invariants and explicit CP invariance

For the construction of a renormalizable N-Higgs-
doublet potential that is invariant by the custodial group
SOð4ÞC in the canonical implementation (4), we need to
identify the minimal custodial invariants.
The terms that are invariant by (4), up to mass order 4,

are

Tr½�y
a�b
 ¼ �y

a�b þ H:c:;

Tr½ð�y
a�bÞð�y

c�dÞ
 ¼ �y
a�b�

y
c�d ��y

a�c�
y
b�d

þ�y
a�d�

y
b�c þ H:c: (13)

It was necessary to use some reordering identities such as

�y
a
~�b

~�y
c�d ¼ �y

a�d�
y
b�c ��y

a�c�
y
b�d by making use

of the identity �ij�kl ¼ 
ik
jl � 
il
jk. There are no other

invariants of the same orders and apparently independent
invariants are reducible to the ones in Eq. (13). For

instance, det�a ¼ 1
2 Tr½�y

a�a
, and �ii0�jj0�aij�bi0j0 ¼
1
2 Tr½�y

a�b
, due to (3).

We immediately notice that the custodial invariants (13)
are invariant by the canonical CP (CCP) transformations

�aðx0;xÞ!CCP��
aðx0;�xÞ; a ¼ 1; . . . ; N: (14)

Such transformations act linearly upon 	a (10) as

	a !CCP
0 �

�� 0

 !
	a; (15)

and upon �ðaÞ (6) as

ð�ðaÞ
0 ; �ðaÞ

1 ; �ðaÞ
2 ; �ðaÞ

3 Þ!CCPð�ðaÞ
0 ;��ðaÞ

1 ; �ðaÞ
2 ;��ðaÞ

3 Þ: (16)

We realize that �ðaÞ
0 , �ðaÞ

2 are CP-even fields while �ðaÞ
1 ,

�ðaÞ
3 are CP-odd fields. Such transformation is in accor-

dance with �a ! ��
a ¼ ��a�

y.
Since any custodial-invariant potential can be written as

functions of the basic custodial invariants (13), we can
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conclude that an N-Higgs-doublet potential which is in-
variant by the custodial group SOð4ÞC in its canonical form
(4) is automatically explicitlyCP-invariant in its canonical
form (14). This result was established in Ref. [22] for the
2HDM potential considering the canonical implementation
(type I) as well as a different implementation named type
II. The latter, in fact, can be shown to be equivalent to the
canonical implementation in a different basis [24,25]. We
will discuss basis transformations in Sec. II C and show in
Sec. II D that any implementation of SOð4ÞC in a NHDM
potential is equivalent to the canonical implementation in
some basis.

We can ask the converse: Is an explicitly CP-invariant
NHDM potential automatically invariant by the custodial
group SOð4ÞC? We know from the 2HDM potential
[22,24,25] that the answer is negative. The immediate fol-
lowing question is: what additional feature makes a
CP-invariant potential also custodial-invariant? We will
show in the following, within the canonical implementa-
tion, that the additional condition isminimal forN � 3. The
characterization forN � 4will be seen to bemore involved.

For the 2HDM potential, the relation between custodial
invariance and CP symmetry was already explored in
Refs. [24,25]. When basis transformations are allowed,
such a relation can be related to the existence of a basis
where the implementation of both the custodial group
SOð4ÞC and the CP symmetry are the canonical ones. We
will generalize this notion to general N-Higgs-doublets.

To distinguish between a NHDM potential invariant by
the CCP (14) and by the custodial group SOð4ÞC (4), we
need to analyze the terms allowed by each symmetry to
appear in a general potential.

We know the most general renormalizable NHDM po-
tential can be written in terms of the linear and quadratic
combinations of the minimal gauge invariants [17]

�y
a�b; a; b ¼ 1; . . . ; N: (17)

Only 4N � 4 of them are algebraically independent [19]
when the fields are considered as c-numbers. This fact
affects the minimization procedure.

Instead of working with complex quantities, we can
consider the equivalent set of real quantities

Reð�y
a�bÞ; a � b ¼ 1; . . . ; N;

Imð�y
a�bÞ; a < b ¼ 2; . . . ; N: (18)

If we succeed in writing the gauge invariants (18) in
terms of the custodial invariants (13), then we can write a
general custodial-invariant potential.

For the terms of mass order 2, we can check the corre-
spondence is

Re ð�y
a�bÞ¼1

2
Tr½�y

a�b
; a�b¼1; . . . ;N; (19)

Im ð�y
a�bÞ¼ i

2
Tr½�y

a�b�3
; a<b¼2; . . . ;N: (20)

The term (20), however, is not custodial-invariant but
transforms as the third component of a vector zab ¼ ðzAabÞ
of SUð2ÞR defined as

zAab � i

2
Tr½�y

a�b�A
; A ¼ 1; 2; 3: (21)

In fact, the components 1 and 2 of zab ¼ ðzAabÞ are not

Uð1ÞY invariants as

z1ab ¼ Imð�T
a��bÞ; z2ab ¼ Reð�T

a��bÞ: (22)

Notice zaa ¼ 0 and there is no such term in the SM
(N ¼ 1).
Both custodial invariance and CCP symmetry forbid any

terms of the form below in the potential:

Im ð�y
a�bÞ; a < b ¼ 2; . . . ; N; (23)

Reð�y
a�bÞImð�y

c�dÞ; a�b¼1; . . . ;N; c<d¼2; . . . ;N;

(24)

On the other hand, both custodial invariance and CCP
symmetry allow the terms

Re ð�y
a�bÞ; a � b ¼ 1; . . . ; (25)

Reð�y
a�bÞReð�y

c�dÞ; a�b¼1; . . . ;N; c�d¼1; .. . ;N:

(26)

The only missing fourth-order terms are CCP-invariant
but not custodial-invariant. They are

Imð�y
a�bÞImð�y

c�dÞ; a<b¼2; . . . ;N; c<d¼2; . . . ;N:

(27)

However, if combined with other terms as

zab 	 zcd ¼ Imð�y
a�bÞ Imð�y

c�dÞ
þ Reð��y

a�d�
y
b�c þ�y

a�c�
y
b�dÞ; (28)

it becomes custodial-invariant. This term is contained in
the second expression of (13) since

1

2
Tr½ð�y

a�bÞð�y
c�dÞ
¼Reð�y

a�bÞReð�y
c�dÞ�zab 	zcd:

(29)

Considering the properties zba ¼ �zab and zaa ¼ 0, we
note that if some of the indices of (28) are equal, excluding

a ¼ b or c ¼ d, the term Imð�y
a�bÞ Imð�y

c�dÞ is effec-
tively canceled out. For example, for b ¼ c,

z ab 	 zbd ¼ Reð�y
a�bÞReð�y

b�dÞ ��y
b�b Reð�y

a�dÞ:
(30)
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Hence terms zab 	 zcd with two equal indices do not gen-
erate new genuine fourth-order custodial invariants besides
the product of two quadratic invariants.

The property (30) means that custodial-invariant poten-
tials with N ¼ 2 and N ¼ 3-Higgs-doublets do not contain

terms of the form Imð�y
a�bÞ Imð�y

c�dÞ. The custodial-
invariant 2HDM in its canonical form is, in fact, equivalent
to a CP-invariant (real) potential without the quartic term

Im2ð�y
1�2Þ [24,25,27].

Therefore, we can state that a NHDM potential, with
N � 3, invariant by the custodial group SOð4ÞC in its
canonical implementation (4) is equal to a potential invari-
ant by CCP (14) with the additional elimination of terms of

the form Imð�y
a�bÞ Imð�y

c�dÞ. From a CP-invariant
potential in its real basis, the latter elimination corresponds
to the elimination of one term for N ¼ 2 and six terms for
N ¼ 3. In this case, it is straightforward to construct a
general SOð4ÞC-invariant potential: only consider the terms
in Eqs. (25) and (26). Such potential will have 9 and 27 real
parameters for the 2HDMand 3HDM, respectively. [A total
of 2þ 2ðrþ qÞ þ ðrþ qÞðrþ qþ 1Þ=2 real parameters,
where r ¼ N � 1 and q ¼ NðN � 1Þ=2.]

One important remark concerning the description above
is that for the full quantum theory considering radiative
corrections, since gauge interactions do not respect the full
custodial group SOð4ÞC, the effective potential will almost

inevitably contain terms of the form Imð�y
a�bÞ Imð�y

c�dÞ
generated by finite radiative corrections. But since CP
symmetry is a good symmetry of the potential and gauge
interactions, the terms (23) and (24) can only be generated
from other sectors that violate CP, such as Yukawa
interactions.

For N � 4, the terms Imð�y
a�bÞ Imð�y

c�dÞ might be
present in the potential contained in new genuine fourth-
order custodial invariants such as

z12 	 z34 ¼ Imð�y
1�2Þ Imð�y

3�4Þ
þ Reð��y

1�4�
y
2�3 þ�y

1�3�
y
2�4Þ: (31)

We note, however, that the custodial invariants zab 	 zcd,
with a � b � c � d, still contain quadratic combinations

of second-order custodial invariants Reð�y
a�bÞ, and we

conclude they are reducible in some way. We are obviously
interested in identifying the irreducible piece.

The irreducible fourth-order invariants can be con-
structed most easily by using the real components (6).
We begin by rewriting the second-order invariants

�ðaÞ 	 �ðbÞ ¼ 1

2
Tr½�y

a�b
 ¼ Reð�y
a�bÞ: (32)

The only SOð4ÞC invariant that can be constructed out of

four 4-vectors �ðaÞ, �ðbÞ, �ðcÞ, �ðdÞ which is also indepen-
dent of (32) is the pseudoscalar

Ið4Þabcd � ������
ðaÞ
� �ðbÞ

� �ðcÞ
� �ðdÞ

� ; (33)

where the ����� is the totally antisymmetric tensor in four

dimensions obeying �0123 ¼ 1. We could have also written

Ið4Þabcd ¼ det�ðabcdÞ for �ðabcdÞ � ð�ðaÞj�ðbÞj�ðcÞj�ðdÞÞ as a

4� 4 matrix. The SOð4Þ invariant (33) is the genuine
custodial invariant that only appears for 4 or more vectors
(doublets). If any two of the indices a, b, c, d are equal the
invariant is null.

We can rewrite Ið4Þ in terms of Higgs-doublets or zab
(21) as

Ið4Þabcd ¼ Imð�y
a�bÞ Imð�y

c�dÞ þ Imð�y
a�dÞ Imð�y

b�cÞ
þ Imð�y

a�cÞ Imð�y
d�bÞ; (34)

¼ zab 	 zcd þ zac 	 zdb þ zad 	 zbc: (35)

We note that the imaginary parts of the gauge invariants

Imð�y
a�bÞ only appear through the combination (34) since

zab 	 zcd ¼ ð�ðaÞ 	 �ðcÞÞð�ðbÞ 	 �ðdÞÞ
� ð�ðaÞ 	 �ðdÞÞð�ðbÞ 	 �ðcÞÞ þ Ið4Þabcd: (36)

The invariant Ið4Þabcd changes sign by exchange of any pair

of indices among ðabcdÞ and hence by any odd permuta-
tion. An even permutation of ðabcdÞ, on the other hand,

leaves Ið4Þabcd invariant. Thus each term Ið4Þabcd is invariant by

an A4 � SOð4ÞH discrete symmetry in each horizontal
subspace spanned by f�a;�b;�c;�dg.
Another useful formula is

detðImKð1234ÞÞ ¼ ðIð4Þ1234Þ2; (37)

where Kð1234Þ is the submatrix of K, given by Kab ¼ �y
b�a

[16,19], constructed from the intersection of the rows 1, 2,
3, 4 with columns 1, 2, 3, 4.
Notice that the doublets live in the space C2 and then at

most two doublets can be linearly independent. Instead,
when we are transported to R4 through Eq. (6), four
4-vectors can be linearly independent, as they should be.
For example, if �3 ¼ ��1 þ ��2 for �1, �2 is linearly

independent, then still f�ð3Þ; �ð1Þ; �ð2Þg are linearly inde-
pendent if Im� � 0 or Im� � 0.
For completeness, we can rewrite the SUð2ÞR vectors

(21) as vectors of SOð3ÞC:
z ab ¼ �ðaÞ

0 �ðbÞ � �ðbÞ
0 �ðaÞ þ �ðaÞ � �ðbÞ: (38)

The most general custodial-invariant NHDM potential
for N � 4 can be written as the most general linear combi-
nation of terms of Eqs. (25), (26), and (34). For the invar-

iants Ið4Þabcd, there is only one invariant for each set ðabcdÞ
with all distinct indices. For example, for N ¼ 4, we know
there is only one invariant. For N � 5, there will be ðN4 Þ
invariants.
To perform the minimization of the potential with

N � 5, however, we need to know additionally how
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many invariants Ið4Þ are functionally independent among
the ðN4 Þ invariants.

B. Isotropy groups and symmetry breaking

Let us analyze here what are the possible symmetry
groups that are left invariant when the N-Higgs-doublets
acquire nonzero vacuum expectation values (VEVs), re-
quired from successful EWSB, in a potential invariant by
the custodial group SOð4ÞC. The VEVs are realized as the
absolute minimum of the Higgs potential and their isotropy
groups define the spontaneous symmetry-breaking pattern.
The specific patterns depend on the parameters of the
potential but one can study the maximal realizable
symmetry-breaking patterns from the possible isotropy
groups of general VEVs with respect to both SOð4ÞC
(global) and SUð2ÞL �Uð1ÞY (gauge).

Let us begin with the custodial group and consider
N-Higgs-doublets �a, together with their corresponding

natural forms �a and �ðaÞ, upon which SUð2ÞL � SUð2ÞR
and SOð4ÞC act naturally as in Eqs. (4) and (8), respec-
tively. We want to study how the possible isotropy groups
HC change as N grows. We will assume that all h�ai � 0.
Otherwise, it will coincide with the VEVs for smaller N. In

any case, successful EWSB also requires
P

ah�y
a�ai ¼

v2
L=2, where vL � 246 GeV.
For N ¼ 1-Higgs-doublet �1 (SM), SOð4ÞC is an auto-

matic global symmetry of the Higgs potential and the
custodial symmetry SOð3ÞC always remains in the poten-
tial after EWSB breaking because we can rotate away any
corresponding VEV h�1i by a global symmetry SUð2ÞL
alone and obtain

h�1i ¼ v11; (39)

where
ffiffiffi
2

p
v1 ¼ 246 GeV within the SM. The isotropy

group is HC ¼ SUð2ÞLþR � SOð3ÞC. The VEV above au-

tomatically conservesCP. In terms of the real field�ð1Þ it is
also obvious that any VEV h�ð1Þi ¼ ðv1; 0; 0; 0Þ would
leave an SOð3ÞC group invariant.

For N ¼ 2-Higgs-doublets �1, �2, the global symmetry
SOð4ÞC is not automatic and has to be imposed in the
potential. But once it is imposed, CP is an automatic
symmetry of the potential. If we consider that EWSB
proceeds through the VEVs h�1i � 0, h�2i � 0, then we
can rotate h�1i to the form (39) by a global SUð2ÞL trans-
formation. We can still apply a SUð2ÞLþR transformation
[UR ¼ UL in Eq. (4)] which leaves h�1i invariant but
allows us to write

h�2i ¼ v2e
�i’2�3 : (40)

We have parametrized h�ð2Þi ¼ ðv2 cos’2; 0; 0;�v2 sin’2Þ
for convenience. If ’2 � 0, 
, the isotropy group left
invariant by h�1i and h�2i in Eqs. (39) and (40) is HC ¼
Uð1ÞT3RþT3R

� SOð2ÞC.

For N � 3-Higgs-doublets, the isotropy group can be
reduced to the trivial HC ¼ f1g or some discrete group. If
h�1i, h�2i � 0, we can rotate h�1i, h�2i to the forms (39)
and (40) through global transformations. For h�3i � 0, we
can use the Uð1ÞT3RþT3R

freedom to write

h�3i ¼ h�ð3Þ
0 i1þ h�ð3Þ

2 ii�2 þ h�ð3Þ
3 ii�3: (41)

If h�ð3Þ
2 i � 0, there is no continuous symmetry left and the

isotropy group isHC ¼ f1g or some discrete group. For the
nonzero VEVs h�ai, a � 4, all the possible components
are meaningful because there is no continuous symmetry.
In terms of the gauge group SUð2ÞL �Uð1ÞY , the

possible isotropy groupsH for N ¼ 1; 2; 3; . . . , are known.
For N ¼ 1, H ¼ Uð1Þem and the conventional form for
h�1i is

h�1i ¼ 0
v1

� �
; v1 > 0: (42)

It is the equivalent of Eq. (39) in terms of doublets.
For N ¼ 2, we can preserve the form of (42). The

isotropy group H is trivial if a2 is nonzero for the general
form

h�0
2i ¼ v2

a2
b2

� �
; v2 > 0; a2 � 0; (43)

where b2 is a nonzero complex number. For nonzero a2,
this VEV corresponds to charge breaking vacuum. This
VEV contrasts to Eq. (40) whose doublet version is

h�2i ¼ v2
0

ei’2

� �
; v2 > 0: (44)

It corresponds to a vacuum that spontaneously breaks CP
in a real potential. In a general 2HDM potential, the VEVs
(43) and (44) correspond to physically very different situ-
ations. In a custodial-invariant potential, however, they are
in the same SOð4ÞC stratum and have the same SOð2ÞC
isotropy group with respect to SOð4ÞC.
In fact, in a custodial-invariant potential, a CPB vacuum

and a CB vacuum are always degenerate at tree level. In
other words, if a VEVof the form (44) is a minimum of the
potential, then there are infinite continuously related
VEVs of the form (43) corresponding to the same mini-
mum value of the potential. The reason is that

VðULh�1iUy
R; ULh�2iUy

RÞ ¼ Vðh�1i; h�2iÞ and we can re-
late the matrices h�ai in Eqs. (39) and (40) to the following
matrices through a SUð2ÞLþR transformation:

ULh�1iUy
R ¼ h�1i; (45)

ULh�2iUy
R ¼ v2ðcos’21� sin’2i� 	 nÞ; (46)

where n ¼ ðsin� cos�; sin� sin�; cos�Þ and

UL ¼ UR ¼ e�i�3�=2e�i�2�=2: (47)
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The VEV (46) corresponds to the form (43) if we associate
b2 ¼ cos’2 þ i sin’2 cos� and a2 ¼ sin’2 sin� for � ¼
3
=2 in Eq. (47).

Another way of looking into the degeneracy between a
CPB vacuum and a CB vacuum is to analyze the basis
invariant that signals CB [18]: hr0i2 � jhrij2 � 0. Only the
equality signals a neutral vacuum. The variables r�,

� ¼ 0, 1; . . . ; N2 � 1 are linear combinations of �y
a�b

(17) that will be properly defined in Eq. (87). In the
simplest case of 2HDM, the r� variables are 2r0 ¼
j�1j2 þ j�2j2, 2r3 ¼ j�1j2 � j�2j2, r1 ¼ Reð�y

1�2Þ and
r2 ¼ Imð�y

1�2Þ, which allow us to write

hr0i2 � jhrij2 ¼ jh�1ij2jh�2ij2 � ½Reh�y
1�2i
2

� ½Imh�y
1�2i
2: (48)

Notice that the first two terms are custodial invariants while

the third is not (20). The latter, Imh�y
1�2i ¼ hz312i � 0,

signals spontaneous CP violation (SCPV) in the real basis.
Therefore, if a potential minimum obeys hr0i2 � jhrij2 ¼ 0

but Imh�y
1�2i � 0, one can use SUð2ÞR to rotate hz12i in

(21) to decrease the 3-component and then increase
hr0i2 � jhrij2 in a SOð4ÞC-invariant manner.

If we recall the identity (28) for ðcdÞ ¼ ðabÞ ¼ ð12Þ,
jz12j2 ¼ j�1j2j�2j2 � Re2ð�y

1�2Þ; (49)

one can see that

jhz12ij2 ¼ 0 (50)

signals a neutral and CP-invariant vacuum in a custodial-
invariant manner. In this case, the first two terms and the
third term in Eq. (48) are independently null.

The generalization of Eq. (50) to NHDM is given byX
a<b

jhzabij2 ¼ 0: (51)

This condition ensures the symmetry-breaking pattern
SOð4ÞC ! SOð3ÞC.

If the symmetry-breaking pattern SOð4ÞC ! SOð3ÞC is
realized in a NHDM potential, the residual symmetry
SOð3ÞC guarantees that all the VEVs of the doublets are
aligned as

h�ai ¼ va1; a ¼ 1; 2; . . . ; N; (52)

restricted by

2
X
a

v2
a ¼ v2

L; (53)

with vL � 246 GeV from successful EWSB. The residual
symmetry also guarantees that spontaneous CP violation is
not possible.

It is important to emphasize that the degeneracy between
CB and CPB vacua happens at tree level. Radiative cor-
rections coming from the gauge sector and the Yukawa
sector may break the degeneracy in the effective potential
due to interactions that are not SOð4ÞC symmetric. Such

tree-level degeneracy is a consequence of the symmetry-
breaking pattern SOð4ÞC ! SOð2ÞC which generates 5
Goldstone bosons. If the low-lying vacuum, after radiative
corrections, is neutral and then CPB, three of them will be
absorbed as the longitudinal components of the massive
gauge fields. The remaining two scalars will combine to
form a charged pseudo-Goldstone boson [28] that acquires
a small mass due to radiative corrections [27]. The same is
true for any NHDM potential with only two nonzero VEVs
that can be reduced to (39) and (40). We are not interested
in such a scenario due to the absence of the custodial
symmetry that protects the � parameter and the lightness
of such charged pseudo-Goldstone boson.
The other scenario, i.e., the 2HDM scenario with a low-

lying CB vacuum (with radiative corrections) or a NHDM,
with N � 3, with a third doublet with nonzero VEVobey-
ing Eq. (41) (tree-level), has no Uð1Þem symmetry and
contains one more would-be Goldstone boson that gives
the photon a mass through the Higgs mechanism. This
possibility is thus phenomenologically excluded.
The actual parameter space that avoids the possibility

of realizing ’ � 0, 
 in Eq. (40) or h�ð3Þ
1 i � 0 in Eq. (41)

for the global minimum can only be mapped by construct-
ing and analyzing the potential. For a 2HDM custodial-
invariant potential with additional Z2 symmetry,
�2!��2, both SOð4ÞC!SOð3ÞC and SOð4ÞC!
SOð2ÞC symmetry-breaking patterns are realizable and
the explicit parameter ranges for them can be found in
Refs. [2,27].

C. Basis transformation

Since the N-Higgs-doublets have the same gauge quan-
tum numbers, any unitary change of basis will maintain the
form of the kinetic terms and gauge interactions for the
doublets but may modify the form of the potential as well
as the Yukawa interactions without changing the physical
content of the theory. It amounts to a reparametrization of
the potential and Yukawa coefficients.
The most general set of unitary transformations that

commutes with the gauge group SUð2ÞL �Uð1ÞY is given
by the basis transformations

�a ! UH
ab�b; UH 2 SUðNÞH: (54)

We are already factoring out the globalUð1Þ factor because
it corresponds to Uð1ÞY transformations.
We can equally write the basis transformation law (54)

for �a (1) as [32]

�a!ðUH�
ab

~�bjUH
ac�cÞ¼ReðUH

abÞ�bþ ImðUH
abÞ ��b; (55)

where

�� a � ið� ~�aj�aÞ ¼ �að�iÞ�3: (56)

Notice ~��a ¼ ��a under (2). If UH is a complex transfor-
mation, it is clear that linear combinations of f�ag in the
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horizontal space of doublets will correspond to linear

combinations of f�ag and f ��ag, i.e., only the set f�ag is
not sufficient. From the definition (56) we see that a com-
plex basis transformation implicitly induces a transforma-
tion in SUð2ÞR and it shows that SUðNÞH is not

independent of SUð2ÞR. The transformation law for �ðaÞ
can be easily extracted from Eq. (55).

As extensively discussed [13,17,29], basis transforma-
tions might conceal the presence of symmetries by chang-
ing how a symmetry acts. That is the case of CP symmetry,
for example [13,14,17]. That is also the case of the canoni-
cal implementation (4) of the custodial group SOð4ÞC.
Hence, it is important to study how the representation (4)
of the custodial group SOð4ÞC is viewed in other bases
connected by (54).

To that end, it is useful if we use a representation space
where all the groups in question, i.e., SOð4ÞC and SUðNÞH,
act linearly through one matricial representation. It is
better to treat SOð4ÞC as in (11).

If we define a complex column vector of size 4N (it lives
in a 4N-dimensional real vector space) by

	 � �

� ~�

 !
; (57)

where

� �

�1

�2

..

.

�N

0
BBBBBB@

1
CCCCCCA; (58)

the canonical representation (11) of SUð2ÞL � SUð2ÞR
translates into

	 ! ðUR � 1N �ULÞ	: (59)

Notice ~� in Eq. (57) denotes the application of the tilde
operation on each doublet of � in Eq. (58).

If we define new Higgs-doublets �0 related by a change
of basis (54),

� ¼ U1�
0; ~� ¼ U�

1
~�0; (60)

we can see the canonical representation (59) changes into

�0

� ~�0

 !
! Uy

1

UT
1

 !
ðUR�1N �ULÞ

U1

U�
1

 !
�0

� ~�0

 !
:

(61)

We can see the representations of SUð2ÞL is not modified
and we will omit such factor within this analysis. The
change in the representation of SUð2ÞR can be completely
specified if we know the new representation of its gener-
ators fT0

kRg:

T0
kR¼ Uy

1

UT
1

 !
TkR

U1

U�
1

� �
; k¼1;2;3: (62)

Obviously TkR ¼ 1
2�k � 1N for the canonical implementa-

tion and we obtain explicitly

T0
1R ¼ 1

2

0 Uy

U 0

 !
T0
2R ¼ 1

2

0 �iUy

iU 0

 !

T0
3R ¼ 1

2
�3 � 1N ¼ T3R; (63)

where

U ¼ UT
1U1: (64)

As expected, the representation of T3R � 1
2Y is not

modified since the basis transformations (54) preserve
the gauge structure. Only the representation of the gener-
ators T1R, T2R of the coset space SUð2ÞR=Uð1ÞY is
modified.
We can also note that the representation for SUð2ÞR will

be modified only whenU1 in Eq. (60) is complex. In fact, if
we restrict the basis transformation group SUðNÞH to
SOðNÞH, U1 is orthogonal, U ¼ 1N in Eq. (64) and the
(representation of) generators (63) are the canonical ones.
The converse is also true: the only subgroup of SUðNÞH
which preserves the representation of SUð2ÞR in Eq. (63) is
the group of matrices U1 obeying UT

1U1 ¼ 1N , which is
equivalent to U�

1 ¼ U1, i.e., they form the real subgroup
SOðNÞH. This fact is also in accordance with Eq. (60),
which can be rewritten as 	a ¼ ðU1Þab	0

b for U1 2
SOðNÞH. Hence, there are infinitely many canonical im-
plementations of the custodial group SOð4ÞC related by
SOðNÞH.
We can interpret the previous fact as the realization that

only the real SOðNÞH subgroup of the basis transformation
group SUðNÞH commutes with the custodial group SOð4ÞC.
This also means that the whole global symmetry of the
potential can still be enlarged by discrete or continuous
subgroups ofSOðNÞH without affecting the custodial group.

D. Equivalence among different implementations

We will show in this section the following: Any imple-
mentation of the custodial group SUð2ÞL � SUð2ÞR=Z2 on
a potential containing N-Higgs-doublets corresponds to a
canonical implementation (4) in some basis provided that
(1) the Higgs kinetic term is invariant by the custodial

group;
(2) the association T3R ¼ 1

2Y fix Uð1ÞY � SUð2ÞR;
(3) SUð2ÞR acts through a reducible representation of N

copies of the fundamental 2-representation.
We already analyzed the converse in Sec. II C, i.e., a

canonical implementation of the custodial symmetry sat-
isfies conditions 1, 2 and 3 in any basis.
To prove the statement, we begin by considering 	 in

Eq. (57) as the appropriate representation space of the
N-Higgs-doublets �a. It has the same degrees of freedom
of considering the real and imaginary parts of each com-
ponent of each doublet as independent (4N real fields).
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Then we note that the representation of SUð2ÞL is fixed by
the gauge interactions and each doublet �a transforms
according to the same fundamental representation 2. If
UL is one element of SUð2ÞL in the fundamental represen-
tation, it acts reducibly on 	 as

	 !SUð2ÞLð12N �ULÞ	: (65)

The action above defines the explicit representation
DðULÞ ¼ 12N �UL.

For the SUð2ÞR factor, wewant the representationDðURÞ
of UR 2 SUð2ÞR to commute with any UL 2 SUð2ÞL, i.e.,
½DðULÞ; DðURÞ
 ¼ 0 for any UL, UR. From the irreduci-
bility of 2 of SUð2ÞL, the only possibility of the action of
SUð2ÞR is

	 !SUð2ÞRðDð2NÞðURÞ � 12Þ	: (66)

We need to specify the representation Dð2NÞðURÞ in the

representation DðURÞ ¼ Dð2NÞðURÞ � 12. The following
consistency condition should be additionally imposed on
such representation in a later stage:

ð� � 1N � �Þ	� ¼ 	: (67)

For the SUð2ÞL factor the condition above is automatic.
Note that Eq. (67) means that complex conjugation acts as
a linear transformation on 	.

We begin now to impose condition (1), which requires
the form-invariance of the Higgs kinetic term

@��
y@�� ¼ 1

2
@�	

y@�	; (68)

under the global symmetry SUð2ÞL � SUð2ÞR. The invari-
ance under SUð2ÞL is automatic. The invariance under

SUð2ÞR implies the representation Dð2NÞ should be unitary,
i.e.,

ðDð2NÞðURÞÞyDð2NÞðURÞ¼12N; for allUR2SUð2ÞR: (69)

Recall that any SUð2Þ representation is equivalent to a
unitary representation because it is a compact Lie group.

The representation Dð2NÞ of the Lie group SUð2ÞR also
induces a representation of the respective Lie algebra
suð2ÞR through the exponential mapping. The unitarity of

Dð2NÞ for SUð2Þ then induces a Hermitian representation
for suð2Þ. We can then work on the group and the algebra
interchangeably if we are only interested in the connected
part of the group modulo the center. We know suð2Þ is a
three-dimensional Lie algebra and the Pauli matrices
�k � 1

2�k, k ¼ 1, 2, 3, can be used as a basis of the

suð2Þ abstract Lie algebra obeying ½�i; �j
 ¼ i�ijk�k. We

can also regard the explicit form of f�kg as the basis for
suð2Þ in the fundamental representation. Using the basis
f�kg, a general element in the suð2Þ real algebra can be
written as �kak, where ak, k ¼ 1, 2, 3, are real coefficients.
The exponential mapping then reads

UR¼ expði�kakÞ; Dð2NÞðURÞ¼ expðDð2NÞði�kÞakÞ: (70)

We want to embed Uð1ÞY into SUð2ÞR by requiring
condition (2), i.e., by associating hypercharge to the unique
diagonal generator of SUð2ÞR: T3R ¼ 1

2Y. The action of

hypercharge is fixed by the gauge quantum number assign-
ments

	 !Uð1ÞY
ei�ð1=2ÞY	 ¼ ðei��3 � 1N � 12Þ	: (71)

Thus, within the N-Higgs-doublet sector, we obtain

T3R ¼ �3 � 1N � 12: (72)

and

Dð2NÞð�3Þ ¼ �3 � 1N: (73)

Now we can identify Uð1ÞY �Uð1ÞT3R
. Notice we could

have associated T3R ¼ �Y=2 and this would only change

Eq. (73) to Dð2NÞð�3Þ ¼ ��3 � 1N , and the rest of the
generators of SUð2ÞR accordingly.
We also know all the representations of SUð2ÞR are

totally reducible and our requirement (3) of the presence
of N irreducible 2-representations implies that there is a
2N � 2N nonsingular matrix U0 for which

U0�1Dð2NÞðURÞU0 ¼UR�1N; for allUR2SUð2ÞR: (74)

In the algebra Eq. (74) translates into

U0�1Dð2NÞð�kÞU0 ¼ �k � 1N; for k ¼ 1; 2; 3: (75)

Notice the usual block diagonal form (direct sum) of N
copies of irreducible 2-representations for �k is 1N � �k ¼
diagð�k; �k; . . . ; �kÞ. But the latter can be transformed into
the form (75) by a similarity transformation.
Now, by using Eqs. (73) and (75), we obtain the

condition

½U0; �3 � 1N
 ¼ 0: (76)

Since �3 � 1N is already diagonal, U0 has to have a block
diagonal form, each block corresponding to distinct eigen-
values of �3 � 1N

U0 ¼ U1 0

0 U2

 !
: (77)

The matrices U1, U2 are nonsingular complex matrices of
size N � N. Additionally, the unitarity of the representa-

tion Dð2NÞ (69) or the hermiticity of (75) implies U1, U2

have to be unitary matrices.
The consistency condition (67) yields

ð� � 1NÞðDð2NÞðURÞÞ�ð� � 1NÞy ¼ Dð2NÞðURÞ: (78)

By using (77) we can rewrite
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0 �1N

1N 0

 !
U�

1 0

0 U�
2

 !
ðU�

R�1NÞ
UT

1 0

0 UT
2

 !
0 1N

�1N 0

 !

¼ U1 0

0 U2

 !
ðUR�1NÞ

Uy
1 0

0 Uy
2

0
@

1
A; (79)

which reduces to

UT
2U1 0

0 UT
1U2

 !
ðUR � 1NÞ

¼ ðUR � 1NÞ
UT

2U1 0

0 UT
1U2

 !
: (80)

The identity (5) was assumed.
Since the previous identity has to be true for the algebra

as well, we can useUR ! i�1 from which we conclude that

UT
1U2 ¼ UT

2U1: (81)

The same condition arises from UR ! i�2. The i-factor in
i�1, i�2 should be present to preserve the condition (67),
which should be valid in the group representation, but the
latter is related to the representation of the algebra by the
relation (70).

The explicit representation for �k (75) is then

Dð2NÞð�1Þ¼ 1

2

0 Uy

U 0

 !
Dð2NÞð�2Þ¼ 1

2

0 �iUy

iU 0

 !

Dð2NÞð�3Þ¼ �3�1N; (82)

where

U ¼ U2U
y
1 : (83)

Notice the matrices in Eq. (82) represent appropriately the
algebra ½�i; �j
 ¼ i�ijk�k.

We can check U is symmetric by using (81)

UT ¼ U�
1U

T
2 ¼ U�

1U
T
1U2U

y
1 ¼ U: (84)

If we compare Eq. (82) to Eq. (63), we conclude immedi-
ately that the matrices in Eq. (82) correspond to the gen-

erators of SUð2ÞR implemented in some basis �0 ¼ Uy
4�.

The unitary basis transformation matrix U4 should satisfy

UT
4U4 ¼ U; (85)

where U is given by (83). It was shown in Ref. [14]
(Appendix B) that the decomposition (85) is always pos-
sible for a unitary symmetric matrix U. Thus, there is
always a basis for which any implementation of the cus-
todial group obeying the requirements 1, 2 and 3 can be
cast into the canonical form (4).

E. Custodial-invariant potential in the canonical form

In this section we want to analyze the most general
NHDM potential invariant by the custodial group SOð4ÞC

in the canonical implementation (CI) and seek general
features. Since any implementation of SOð4ÞC is equivalent
to the CI in some basis, one can always use the latter basis
to treat the potential. There are infinitely many such bases.
We begin by writing the most general renormalizable

NHDM as [17,18]

V ¼ M�r� þ���r�r�; (86)

where r� are variables that depend bilinearly on the fields

(doublets) and fM�;���g are coefficients. The convention
of summation of repeated indices is implicit with
Euclidean metric instead of the Minkowski metric used
in Ref. [17]. In this way, all the indices referring to the
variables r� will be written as lower indices.

The variables r� are defined as [17,18]

r� � ðT�Þab�y
a�b; � ¼ 0; 1; . . . ; d: (87)

The N � N matrices T� are

T0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

2N

s
1N; Ti � 1

2
�i; (88)

where f�ig are the d ¼ N2 � 1 Hermitian generators of
SUðNÞH in the fundamental representation, obeying the
normalization Tr½�i�j
 ¼ 2
ij.

We can choose fTig to be the generalization of the Gell-
Mann matrices of SUð3Þ to SUðNÞ. We separate them into
three classes: diagonal matrices fhig, off-diagonal symmet-
ric matrices fSabg, and off-diagonal antisymmetric matri-
ces fAabg, with r, q, q elements, respectively [r ¼ N � 1,
q ¼ 1

2NðN � 1Þ]. The matrices fhig correspond to a basis

for the Cartan subalgebra, while the Sab and Aab corre-
spond to the symmetric and antisymmetric combinations
of ladder operators labeled by the pair ðabÞ, a < b, a,
b ¼ 1; . . . ; N. More explicitly, we can write

S ab¼1

2
ðeabþebaÞ and Aab¼ 1

2i
ðeab�ebaÞ; (89)

where eab are the canonical matrices obeying ðeabÞij ¼

ai
bj. We can follow, for instance, the ordering

ðabÞ ¼ ð12Þ; ð23Þ; . . . ; ðN � 1; NÞ; ð13Þ; . . . ;
ðN � 2; NÞ; . . . ð1; NÞ: (90)

For example, for SUð3Þ we would have fh1; h2g ¼
f�3=2; �8=2g, fS12;S23;S13g ¼ f�1=2; �6=2; �4=2g, and
fA12;A23;A13g ¼ f�2=2; �7=2; �5=2g. The ordering
(90) follows the ordering of the lower to higher heights
of the roots and the first r of them correspond to the simple
roots.
We will denote the variables r� corresponding to

fhi;Sab;Aabg respectively by

frðiÞ; rðabÞ; rðabÞg: (91)

Therefore frðiÞg are combinations of �y
a�a while
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rðabÞ ¼Reð�y
a�bÞ; rðabÞ ¼ Imð�y

a�bÞ; a<b: (92)

Then the elimination of the terms (23) and (24) corre-
sponds in Eq. (86) to

M� ¼ 0 for � ¼ ðabÞ (93)

and

��� ¼ 0 for � ¼ ðabÞ or � ¼ ðabÞ; (94)

where or means one of them exclusively. The restriction
(94) leads to the block diagonal form for the d� d sub-

matrix ~� ¼ ð�ijÞ:

~� ¼ Ap�p 0p�q

0q�p Bq�q

 !
; (95)

where p � rþ q ¼ NðN þ 1Þ=2 and 0p�q denotes the

null matrix of the shown dimension.
For N � 3, we have to impose additionally

��� ¼ 0 for � ¼ ðabÞ and � ¼ ðabÞ: (96)

The restriction (96) sets Bq�q ¼ 0q�q in Eq. (95). The

most general custodial-invariant 2HDM and 3HDM poten-
tials are then given by (86) with the restrictions (93), (94),
and (96):

V ¼ X
�¼0;ðiÞ;ðabÞ

M�r� þ X
�;�¼0;ðiÞ;ðabÞ

���r�r�; (97)

where the summation is explicitly shown.
In this case, we can confirm the direct connection be-

tween the presence of only one charged would-be
Goldstone boson and a CP-conserving vacuum. Such con-
nection follows from the complete absence of the terms

Imð�y
a�bÞ in the potential (97), from which we immedi-

ately conclude that independently of r�,

@V

@rðabÞ
¼ 0; a < b ¼ 1; . . . ; N: (98)

Therefore, we can immediately write the extremum
equations as [18]

@V

@�ai
¼ ðMÞab�bi ¼

X
�¼0;ðiÞ;ðcdÞ

@V

@r�
ðT�Þab�bi: (99)

We know hMi, the matrix M computed for the minimal
values (VEVs), is the squared-mass matrix for the charged
scalars for a neutral vacuum [18], including the charged
Goldstone bosons. If there is only one (would-be) charged
Goldstone boson, then the VEVs corresponding to the
second components of each doublet, hwai ¼ h�a2i, form
the unique eigenvector of hMi associated with the null
eigenvalue. We can see from Eq. (99) that M is real and
symmetric because the sum only contains generators T�

that are real and symmetric. Since the eigenvalues of hMi
have to be real, the eigenvector hwi is also real and then

spontaneous CP violation is excluded [33]. Obviously, this
happens because we are implicitly selecting the symmetry-
breaking pattern SOð4ÞC ! SOð3ÞC. The direct connection
above, however, is not apparent for custodial-invariant
NHDM potentials with N � 4.
The independence of the potential on any rðabÞ (98) also

explains why CB and SCPV vacua are degenerate for the
custodial-invariant 2HDM. In this case, the potential does
not depend on r2, which can be changed continuously and
independently in that direction (within the surface and
interior of the light cone in Ref. [21]) without changing
the potential value. The physical range of the variables r�
(87) in the 2HDM corresponds to all the points inside and
on the surface of a cone (light cone) defined by r20 � r2 ¼
0, where r2 ¼ r21 þ r22 þ r23. The VEVs lying on the sur-

face of such a cone correspond to neutral vacua while the
interior points correspond to charge-breaking vacua. Then,
if there is a neutral but CP-violating vacuum hr�i obeying
hr20 � r2i ¼ 0, with hr2i � 0, the vacuum with the same

values of r0, r1, r3 but hr2i ¼ 0 lies at the same depth of the
potential but it is charge breaking since hr20 � r2i> 0. The
same conclusion can be reached for 3HDM if we can find
independent directions to move in the subspace of r2, r5, r7
in the orbit space [19].
For N � 4, the most general custodial-invariant NHDM

potentials are obtained by adding to (97) the term

�V4 ¼
X

a<b<c<d

�abcdI
ð4Þ
abcd: (100)

From the definition of Ið4Þ (34) we can establish the corre-
spondence

�abcd ¼ 2�ðabÞðcdÞ ¼ �2�ðacÞðbdÞ ¼ 2�ðadÞðbcÞ; (101)

for a < b < c < d. Equation (101) restricts ��� for �,

� ¼ ðabÞ. For N ¼ 4, the expression (100) contains only

one term Ið4Þ1234.

Notice that for N � 4, Eq. (98) is not valid. Because
of Eqs. (100) and (101), however, the coefficients ��� in

the sector of rðabÞrðcdÞ is a sparse matrix. For example, for

N ¼ 4, in the subspace of frð12Þ; rð13Þ; rð14Þ; rð23Þ; rð24Þ; rð34Þg,
the submatrix Bq�q in Eq. (95) can be written as

B6�6 ¼ ð�ðabÞðcdÞÞ ¼ �1234

03�3 B1

B1 03�3

 !
;

B1 ¼
0 0 1

0 �1 0

1 0 0

0
BB@

1
CCA: (102)

It is clear that the block matrix in Eq. (102) has eigenvalues
��1234, each one with multiplicity 3. The explicit
construction for N ¼ 5, reveals that the corresponding
block matrix has eigenvalues 0, �, ��, with multiplicities
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4, 3, 3,, respectively, where � is a positive number that
depends on the 5 parameters �abcd, a < b < c < d.

III. DIFFERENT IMPLEMENTATIONS IN 2HDM

We analyze in the following the different, but equivalent,
implementations of SOð4ÞC in the 2HDM potential. The
first two implementations, Secs. III A and III B, were al-
ready considered in the literature but we show in Sec. III C
that they can be generalized.

A. Twisted implementation

It can immediately be seen that the ‘‘twisted’’ imple-
mentation of the custodial symmetry in Ref. [23] is just the
canonical symmetry (4) imposed in a basis

�0
a ¼ ei�a�a; a ¼ 1; 2: (103)

It corresponds to a change of basis in Eq. (60) with

Uy
1 ¼ diagðei�aÞ; (104)

where we can choose
P

a�a ¼ 0 from Uð1ÞY invariance.
This implementation can be straightforwardly general-

ized to N-Higgs-doublets with general N � 2.
For the particular case of 2HDM, two apparently in-

equivalent implementations of the custodial group were
presented in Ref. [23]. The twisted version was shown to
allow for the degeneracy between the charged Higgs H�
and the CP-even scalar H0, MH0

¼ MH� . However, as

shown in Sec. II D, any implementation of the custodial
group is equivalent to the canonical one in some basis. In
the specific case of the twisted version of Ref. [23], the
required change of basis is the rephasing transformation of
(103). After the appropriate basis change, the canonicalCP
transformations automatically constitute a symmetry of the
Higgs potential. Let us call such automatic symmetry CP1.
Thus the twisted implementation corresponds to an impo-
sition of an additional CP2 symmetry, orthogonal to CP1
in the sense of Ref. [17], apart from the automatic CP1
symmetry. With respect to the CP1 symmetry, the
CP2-even scalar H0 is actually CP1-odd. Obviously, one
can choose one of the CP symmetries to be a true symme-
try of the theory by extending it to the Yukawa sector. Only
then is it possible to define (approximately) the scalar
degenerate to H� as CP-even, the CP symmetry being
the CP2 transformation. A similar comment has been al-
ready made in Ref. [24].

B. Type II implementation

For the specific case of the 2HDM, various apparently
different implementations of the custodial group can be
devised. An implementation called type II [22] follows
from the action of SUð2ÞL � SUð2ÞR upon

M12 � ð ~�2j�1Þ; (105)

instead of the action on �1, �2. This implementation was
first considered in Ref. [22] as distinct from the canonical
one, which was named type I. However, Refs. [24,25] show
that they are in fact equivalent to a canonical implementa-
tion in a different basis.
To complement such discussion, let us analyze the

equivalence between type II and canonical implementation
from a slightly different perspective.
The matrix M12 is a general complex 2� 2 matrix,

different from�a which obeys (3). In terms of independent
degrees of freedom (real fields), �1 and �2 together has 8
degrees of freedom, the same number as for M12. The
action of SUð2ÞL � SUð2ÞR on M12 in Eq. (105) is, how-
ever, reducible because of the property (5). The irreducible
pieces of M12 can be separated, respectively, as the even
and odd parts under the tilde operation (2):

MðþÞ
12 ¼ M12 þ ~M12ffiffiffi

2
p ; Mð�Þ

12 ¼ M12 � ~M12ffiffiffi
2

p : (106)

We can also think the tilde operation as a linear trans-
formation in the space of 	a (10) with two eigenvalues,
�1, that separates the irreducible representations of M12.
In other words, we can define doublets �0

1 and �0
2

associated, respectively, to

�0
1 � MðþÞ

12 ¼ a�e�; �0
2 � �iMð�Þ

12 ¼ b�e�: (107)

or, equivalently,

M12 ¼ 1ffiffiffi
2

p ða� þ ib�Þe�; (108)

where a� and b� are 4-vectors similar to �ðaÞ. The explicit
relation between the doublets �a in (105) and �0

a is
given by

�0
1 ¼

�1 þ�2ffiffiffi
2

p ; �0
2 ¼

�1 ��2ffiffiffi
2

p
i

: (109)

One can see, as expected, that the type II implementation
on (105) corresponds to the canonical implementation on
�0

a through �0
a constructed as Eq. (1). It should be re-

marked that the basis change in Eq. (109) connecting type
II implementation and canonical implementation is not
unique because any additional SOð2ÞH transformation on
�0

a still preserves the canonical implementation of SOð4ÞC.

C. Other implementations

We have shown in Sec. II D that all implementations of
the custodial group are equivalent to the canonical imple-
mentation in some basis. For the 2HDM potential we can
show another practical way of implementing custodial
symmetry, in clear analogy with type II implementation,
without resorting to basis change.
In this class of implementation we define

M101 � ð ~�0
1j�1Þ; (110)
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where

�0
1 ¼ c1�1 þ c2�2; jc1j2 þ jc2j2 ¼ 1: (111)

We can easily see ðc1; c2Þ ¼ ð1; 0Þ [in this case �2 will be
also necessary] and ðc1; c2Þ ¼ ð0; 1Þ correspond to the
canonical and type II implementations, respectively.

The action of SUð2ÞL � SUð2ÞR is given by

M101 ! ULM101U
y
R: (112)

By analyzing the infinitesimal transformation of SUð2ÞR
on �1 and �2, we can conclude that such implementation
is equivalent to the canonical implementation on ð�0

1; �
0
2Þ

given by

�0
1

�0
2

 !
¼

c1 c2

c2 � c�
1
c2
c�
2

0
@

1
A �1

�2

 !
: (113)

One can check the previous transformation matrix is uni-
tary and symmetric.

IV. CONSEQUENCES AND CONCLUSIONS

We have shown in Sec. II D that any implementation of
the custodial SOð4ÞC � SUð2ÞL � SUð2ÞR group in a
NHDM potential is equivalent to the canonical implemen-
tation in some basis if SUð2ÞL is the gauge factor, Uð1ÞY is
embedded in SUð2ÞR, and we require N copies of the
doublet representation of SUð2ÞR. On the other hand, we
have seen in Sec. II A that a potential invariant by SOð4ÞC
in the canonical implementation (CI) is automatically
CP-invariant in its canonical form (CCP). Therefore, any
NHDM potential invariant by a global SOð4ÞC symmetry is
also automatically CP-symmetric independently of the
implementation. Moreover, the basis for which SOð4ÞC
implementation is canonical is automatically aligned to
the basis where the CP transformation on the doublets is
canonical. If one requires the custodial symmetry SOð3ÞC
to remain after EWSB, spontaneous CP violation is
automatically excluded as well.

One can then take advantage of such result to use
explicit CP invariance as a necessary criterion to identify
global SOð4ÞC invariance in a NHDM potential, even if its
manifestation is not explicit. Several tools based on basis-
invariant conditions were already developed for identifying
CP invariance in a general NHDM potential [13,14,17].
One can also make use of the fact that a CP-invariant
NHDM potential can be always written in the so-called
real basis (or the canonical CP basis [17]) where all the
parameters of the potential written in terms of the gauge

invariants �y
a�b are real [14]. In other words, there is

always a basis where the CP symmetry manifests canoni-
cally (14).

To find such basis for a general CP-invariant NHDM
potential with N � 3 is a difficult technical and unsolved
problem [17]. For the 2HDM, the change of basis from a
general basis to the real basis can be explicitly given [17].

For the 3HDM, necessary and sufficient criteria for CP
invariance can be devised but the systematic method to find
the real basis is lacking [17]. In both cases, once we write
the CP-invariant potential in its real form, then identifying
if the potential is SOð4ÞC-symmetric is a straightforward
task because any real basis is also a basis where the action
of the SOð4ÞC symmetry is canonical. Thus, it suffices to
check if the potential is entirely written in terms of

Reð�y
a�bÞ in its linear and quadratic combinations, just

as in Eq. (97). Such a criterion is invariant by the residual
SOð3ÞH reparametrization freedom that remains.
For the specific case of the 2HDM, basis-invariant con-

ditions to test SOð4ÞC can be written [25]. If we follow the
methods of Ref. [17], we can consider the parameters

fM ¼ ðMiÞ;�0 ¼ ð�0iÞ; ~� ¼ ð�ijÞg as two vectors and

one rank-2 tensor of SOð3ÞH, respectively. These parame-
ters were defined in Eq. (86). CP transformations then act
through ordinary reflection in three dimensions along a
direction kCP called CP-reflection direction, which might
not be unique. CP invariance then is equivalent to the
existence of kCP such that

kCP 	M ¼ 0; kCP 	�0 ¼ 0;

kCP is an eigenvector of ~�: (114)

In addition, the potential is SOð4ÞC-invariant if, and only if,
kCP is an eigenvector of ~� associated to the eigenvalue 0:

(115)

Obviously det ~� should be null [25]. The possible direc-
tions for kCP were given in Ref. [17] but when M, �0 are
not null and nonparallel vectors, kCP ¼ M��0 is cer-
tainly one CP-reflection direction.
For 3HDMs, a systematic procedure to find the real

basis was not completed but we can still write the neces-
sary and sufficient conditions to have SOð4ÞC symmetry. If
the potential is CP-symmetric, there should be a three-
dimensional CP-odd subspace t0q of the adjoint space, the

eight-dimensional euclidean space where r ¼ ðriÞ lives,
such that [17]

M ? t0q; �0 ? t0q;

t0q is an invariant subspace of ~�:
(116)

In the real basis, t0q is spanned by f�2; �5; �7g. The potential
is additionally SOð4ÞC-invariant if, and only if,

t 0q is contained in the nullspace of ~�: (117)

For N � 4, a real basis may not coincide with a basis of
CI of SOð4ÞC. More specifically, CCP invariance (real
basis) requires the parameters fM�;���g to obey some

but not all of the restrictions for SOð4ÞC invariance in the
CI. The restrictions for CCP invariance coincide with
Eqs. (93)–(95), but SOð4ÞC invariance additionally
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requires that Bq�q in Eq. (95) should be compatible with

the structure in Eq. (100).
For example, for N ¼ 4, a CP-invariant potential can be

brought to the real basis where we can identify the block
matrix Bq�q in ð���Þ. If the potential is also

SOð4ÞC-invariant, the structure of Bq�q should be of the

form in Eq. (102) (CI) or SOð4ÞH equivalent. The group
SOð4ÞH appears as the real subgroup of the reparametriza-
tion group SUð4ÞH, which preserves the representations of
SOð4ÞC and in fact it is the only compatible reparametriza-
tion group. Now, an element g of the group SOð4ÞH acts on
B6�6 as

B6�6 ! D6ðgÞB6�6D
6TðgÞ; g 2 SOð4ÞH;

where D6 is the six-dimensional adjoint representation of
g. Certainly, from Eq. (102), SOð4ÞC invariance requires
B6�6 to have only two eigenvalues �� with multiplicity 3
each. The problem is that such condition is not sufficient to
guarantee that there is a matrix D6ðgÞ that transform B6�6

into the form (102) because a SOð6Þ orthogonal matrix is
necessary in general. Therefore, additional conditions are
necessary.

In the same way, we can extract the necessary condition
for N ¼ 5: Bq�q in the real basis should have eigenvalues

0, �, �� with multiplicities 4, 3, 3, respectively.
Analogous necessary conditions for general N � 4 could
be found by studying the terms in (100).

As for the general problem of constructing the most
general NHDM potential invariant by the global SOð4ÞC
symmetry, we managed to solve it in its simplest form: we
can write the most general custodial-invariant potential
before EWSB. The details of EWSB and the parameter
range to achieve the desired symmetry-breaking pattern
SOð4ÞC ! SOð3ÞC will be left for further work. For the
Z2-symmetric 2HDM, the parameter range is known since
Refs. [2,27].

In any case, we confirmed that the phenomenologically
interesting symmetry-breaking pattern is SOð4ÞC !
SOð3ÞC. In this case, the custodial symmetry SOð3ÞC �
SUð3ÞLþR remains as an approximate symmetry at the
electroweak scale and protects the � parameter of acquir-
ing large radiative corrections quadratic in the masses of
the scalars.

The other viable SOð4ÞC ! SOð2ÞC symmetry-breaking
pattern does not have the custodial symmetry and its
viability in realistic models can not be treated at tree level
because the CP-violating but neutral vacua are degenerate
with the charge-breaking vacua. Only if radiative correc-
tions are taken into account can we check which models
have one neutral vacuum lying deeper than the charge-
breaking vacua. This fact was not sufficiently emphasized
in previous works [24,25,27].

Because the symmetry-breaking SOð4ÞC ! SOð2ÞC is
possible and spontaneously CP-violating and charge-
breaking vacua might be degenerate, we can conclude

that the imposition of the custodial group SOð4ÞC before
EWSB and the requirement of SOð3ÞC custodial symmetry
are separate conditions in NHDMs (with N > 1). The
imposition of the global SOð4ÞC symmetry certainly im-
plies explicit CP invariance in the NHDM potential but the
possibility of having spontaneous CP violation is still
present with the possibility of the pattern SOð4ÞC !
SOð2ÞC.
An interesting question that arises through the study of

the global SOð4ÞC in NHDMs is the role played by global
symmetries in the potential. For the 2HDM, with Z2 sym-
metry, different global symmetries ranging from the usual
GSM to SOð8Þ were studied in Ref. [27]. In general, for a
global symmetry larger than SOð4ÞC, (pseudo) Goldstone
bosons appear [28]. For example, the global symmetry
group GSM � SUð2ÞH is broken down to Uð1Þ �Uð1Þem,
generating three would-be Goldstone bosons and two true
Goldstone bosons associated with the breaking of SUð2ÞH.
These true Goldstone bosons are neutral. Reference [27]
also explored the possibilities of having SOð4Þ, SOð4Þ �
SOð4Þ and SOð8Þ as global symmetries. The case of the
SOð4Þ group is the usual custodial symmetry extended to
2HDM. The case of SOð4Þ � SOð4Þ is the unlocked case
where the custodial symmetry acts independently for both
doublets. In these cases the global symmetry is not an
independent factor but contains the gauge symmetries of
the SM. A detailed study of possible approximate symme-
tries in NHDMs is performed in Ref. [34].
The maximal continuous global symmetry in 2HDMs is

SOð8Þ contained inOð8Þ. In this case, there is no additional
continuous symmetry definable and the reparametrization
group SUð2ÞH is also contained in SOð8Þ. Electroweak
symmetry breaking proceeds through only one breaking
pattern of the global symmetry: SOð8Þ into SOð7Þ, where
seven Goldstone bosons emerge, among them some will be
absorbed by the Higgs mechanism while the remaining
will be pseudo-Goldstone bosons. The gauge interactions
respects only GSM. Then, the breaking pattern of the gauge
group GSM is not defined at the tree level of the potential
because one nontrivial SOð8Þ orbit contains both VEVs
that are neutral and charge breaking with respect to GSM.
Radiative corrections of the gauge interactions should be
incorporated to decide which model preserves Uð1Þem and
to calculate the radiative masses of the pseudo-Goldstone
bosons. The fate of the CP symmetry may depend on the
radiative corrections of the gauge sector as well as of the
Yukawa sector that violates CP.
Therefore the consideration of SOð4ÞC as a global sym-

metry in NHDMs has two advantages: (i) it can preserve
the approximate custodial symmetry SOð3ÞC and (ii) it
avoids the presence of pseudo-Goldstone bosons and de-
generate symmetry-breaking patterns at tree level. If we
insist on considering only the global SOð4ÞC symmetry in
NHDMs, the immediate question towards generalization is
if we can use different representations na other than the
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doublet representation for SUð2ÞR. The canonical imple-
mentation uses na ¼ 2 for all �a. We immediately con-
clude that the association Y=2 ¼ T3R is not possible for any
other representation na > 2, since we have only two hyper-
charges, one for�a and the opposite for�

�
a, common to all

the doublets. For example, to have na ¼ 3, we need a state
with zero hypercharge and to have na ¼ 4, we need two
different hypercharges in modulus. Related to that, one can
obviously embed the electroweak gauge group into a larger
group that is broken at high energies to a model containing
two or more Higgs doublets with a global accidental sym-
metry inherited from the high-scale symmetry [35].

Within the setting of Sec. II D, different but equivalent
implementations of SOð4ÞC were considered for the 2HDM
in the literature. We reviewed them in Sec. III and showed a
generalization in Sec. III C. We explicitly showed the basis
change necessary to obtain the canonical implementation.

Another interesting general feature of the NHDMs im-
plementing the global SOð4ÞC symmetry is the role played
by the residual SOðNÞH reparametrization freedom. For
N ¼ 2, it is just the freedom to rotate the plane perpen-
dicular to kCP. For N ¼ 3, it is the SOð3ÞH freedom to
reparametrize t0q and its orthogonal complement. Such

reparametrization freedom can still be used to study gen-
eral SOð4ÞC invariant potentials. Another possible role for
SOðNÞH is the possibility to promote the whole group or
some subgroup G0

H to symmetries of the potential inde-
pendently of the SOð4ÞC symmetry. The global symmetry
in this case would-be SOð4ÞC �G0

H. Obviously, the sym-

metry G0
H could be broken by EWSB.

It is important to emphasize that the whole horizontal
group SUðNÞH in NHDM no longer commutes with the
SOð4ÞC symmetry and some invariants that are
SUðNÞH-invariant may not be SOð4ÞC-invariant. That is
the case of the invariant hr20 � r2i in 2HDM [18,21] that

characterizes neutral vacuum if its null. Since it is not an
SOð4ÞC invariant, its consideration alone can not distin-
guish among some symmetry-breaking patterns of the
gauge group for the pattern SOð4ÞC ! SOð2ÞC. A
SOð4ÞC-invariant measure for SOð4ÞC ! SOð3ÞC was
shown in Eq. (51).

Another context where basis transformations are impor-
tant is the connection with the Yukawa sector. Although all
the implementations of SOð4ÞC symmetry are equivalent
within the Higgs potential, some properties of the whole
theory (Lagrangian), including symmetries, might depend
on how the symmetry is implemented in one sector relative
to the other. Since the global SOð4ÞC is explicitly broken by
the gauge interactions and Yukawa interactions, the break-
ing effects depend on the implementation of the symmetry
in the potential relative to the other breaking sectors
[25,30].

Understanding how the breaking of some global symme-
tries occurs is also important in other contexts such as flavor
physics. For example, Ref. [36] compares the possibility of

flavor changing neutral currents (FCNC) in multi-Higgs
models under the perspective of the two most popular
suppression mechanisms, namely, natural flavor conserva-
tion and minimal flavor violation [37]. It is also possible to
constrain 2HDM models from the requirement of mass
hierarchy and supression of FCNC [38].
In summary, we have shown that all implementations of

the SOð4ÞC global symmetry in NHDMs are equivalent
within some general conditions such as the presence of N
equal representations of SUð2ÞR. Such results have enabled
us to study a general SOð4ÞC-invariant potential in its
canonical implementation where the CP symmetry is
manifest. We have shown that for N ¼ 2; 3, the difference
between SOð4ÞC-invariant and CP-invariant potentials is
minimal and the knowledge of the CP symmetry immedi-
ately gives information about SOð4ÞC-invariance or viola-
tion in the potential. We have explicitly reviewed some
implementations for the 2HDM and showed a general
implementation.
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APPENDIX A: CUSTODIAL
SYMMETRY: SM AND NOTATION

The Higgs potential in SM possesses a global accidental
SOð4ÞC � SUð2ÞL � SUð2ÞR=Z2 symmetry due to the
presence of one isolated doublet representation. Such sym-
metry group contains the electroweak gauge group
GSM � SUð2ÞL �Uð1ÞY as a subgroup, which is the true
symmetry of the Higgs Lagrangian, including the gauge
interactions.
The electroweak symmetry GSM is then broken down to

Uð1Þem by the Higgs VEV h�0i. At the same time, the
EWSB mechanism breaks SOð4ÞC down to the subgroup
SOð3ÞC � SUð2ÞLþR containing Uð1Þem, which is the only
nontrivial symmetry-breaking pattern possible. In the ab-
sence of Uð1ÞY interactions (gY ! 0 limit), the three
would-be Goldstone bosons absorbed by the Higgs mecha-
nism form a triplet under SOð3ÞC. Such symmetry protects
the � parameter from large radiative corrections quadratic
in the Higgs mass and it is called custodial symmetry [2,3].
Instead of distinguishing the various symmetries above

by names, we denote them by their group structure and use
the isomorphic groups interchangeably, often considering
their local structure only. The groups in question are

SUð2ÞL�Uð1ÞY � SUð2ÞL�SUð2ÞR=Z2�SOð4ÞC
#EWSB #EWSB

Uð1Þem � SUð2ÞLþR�SOð3ÞC:
(A1)

CUSTODIAL SOð4Þ SYMMETRYAND CP VIOLATION . . . PHYSICAL REVIEW D 83, 095005 (2011)

095005-15



The subgroup/group relation in the first line of Eq. (A1)
also considers Uð1ÞY � SUð2ÞR.

APPENDIX B: GENERATORS OF SOð4ÞC
The transformation matrix B in (12) is given by

B ¼

0 i 1 0

1 0 0 �i

�1 0 0 �i

0 �i 1 0

0
BBBBB@

1
CCCCCA: (B1)

This relation can be read from Eq. (6).
If we define the generators of SUð2ÞLþR and SUð2ÞL�R

acting on 	a as

Lj � TLj þ TRj ¼ 12 �
�j

2
þ �j

2
� 12

Kj � TLj � TRj ¼ 12 �
�j

2
� �j

2
� 12; (B2)

the generators acting on �ðaÞ are

L0
j ¼ B�1LjB K0

j ¼ B�1KjB: (B3)

Or explicitly,

L0
1 ¼

0 0 0 0

0 0 0 0

0 0 0 �i

0 0 i 0

0
BBBBB@

1
CCCCCA K0

1 ¼

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA

L0
2 ¼

0 0 0 0

0 0 0 i

0 0 0 0

0 �i 0 0

0
BBBBB@

1
CCCCCA K0

2 ¼

0 0 �i 0

0 0 0 0

i 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA

L0
3 ¼

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA K0

3 ¼

0 0 0 �i

0 0 0 0

0 0 0 0

i 0 0 0

0
BBBBB@

1
CCCCCA:

(B4)

We can immediately notice that fLjg are the generators

of SOð3ÞC and fKjg are the generators of the cosets

SOð4ÞC=SOð3ÞC.
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