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We examine many SOð10Þ models for their viability or otherwise in explaining all the fermion masses

and mixing angles. This study is carried out for both supersymmetric and nonsupersymmetric models and

with minimal (10þ 126) and nonminimal (10þ 126þ 120) Higgs content. Extensive numerical fits to

fermion masses and mixing are carried out in each case, assuming dominance of type-II or type-I seesaw

mechanism. Required scale of the B-L breaking is identified in each case. In supersymmetric case, several

sets of data at the GUT scale with or without inclusion of finite supersymmetric corrections are used. All

the cases studied provide quite good fits if the type-I seesaw mechanism dominates. This is not the case in

the minimal model based on several data sets and type-II seesaw mechanism. This can be traced to the

absence of the b-� unification at the GUT scale in these cases. In contrast, the type-II seesaw mechanism

works uniformly well in all the supersymmetric cases when 120 Higgs is also included. The minimal

nonsupersymmetric model with type-I seesaw dominance gives excellent fits. In the presence of a 45H and

an intermediate scale, the model can also account for the gauge coupling unification making it potentially

interesting model for the complete unification. Structure of the Yukawa coupling matrices obtained

numerically in this specific case is shown to follow from a very simple Uð1Þ symmetry and a Froggatt-

Nielsen singlet.
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I. INTRODUCTION

Grand unified theories (GUTs) which unify strong and
electroweak interactions also provide a constrained and
unified description of the fermion masses and mixing
angles. This is particularly true in the case of theories
based on the SOð10Þ group [1]. All the known fermions
plus the right-handed neutrino of a given generation are
unified into a single spinorial 16-dimensional representa-
tion of the group. As a consequence, in renormalizable
theories of this type, only three Yukawa coupling matrices
Y10, Y126, Y120 and relative strengths between them deter-

mine six physical mass matrices Mf with f ¼ u, d, l

denoting quarks and the charged leptons, f ¼ D corre-
sponding to the Dirac mass matrix for neutrinos, and
f ¼ L, R denoting the corresponding Majorana mass
matrices for the left-handed and right-handed neutrinos,

respectively. The labels 10, 126, 120 correspond to three
possible Higgs representations contained in the product

16� 16. The presence of all these Higgs fields is not
necessary and the more economical and allowed possibility

is to choose only two of them,, namely, 10 and 126.
The consistent SOð10Þ breaking needs additional
Higgs representations—210 or 210þ 54—in the case of
supersymmetric theories [2] and 45 in the case of the
nonsupersymmetric SOð10Þ model.

The minimal supersymmetric SOð10Þ model with Higgs

fields transforming as 10, 126þ 126, 210 has limited
numbers of free parameters and is explored in all its details

[3–7]. Detailed analysis of fermion spectrum is also pre-
sented in the case of the nonminimal supersymmetric
model containing an additional Higgs field in the 120
representation of SOð10Þ [8–15]. Similar analysis in the
case of nonsupersymmetric SOð10Þ model is not done
and the main purpose of the present paper is to provide
such an analysis, although we also give a comprehensive
discussion of various numerical fits in the supersymmetric
models.
The nonsupersymmetric GUTs do not have built-in ex-

planation of the gauge hierarchy problem but they do share
several nice features of the supersymmetric models and
avoid some of the problems associated with the latter. They
allow gauge coupling unification [16] and can also provide
a dark matter candidate in the form of axion. In fact, a
minimal nonsupersymmetric SOð10Þ model has been re-
vived in recent studies [16,17]. Earlier discussion of gauge
coupling unification in such models is given in [18]. The
minimal model is more economical then the corresponding
supersymmetric case as far the choice of Higgs represen-
tation is concerned and uses only three sets of Higgs fields,

namely 10H, 126H and 45H. This choice is argued to lead to
successful SOð10Þ model on two counts:
(A) Two or three steps breaking of SOð10Þ to the stan-

dard model (SM) is possible through the vacuum

expectation value (VEV) of 45H and 126H. An
intermediate scale �1011 GeV allows the gauge
coupling unification. This is shown through a
detailed analysis using two-loop renormalization
group equations [16]. The presence of intermediate
scales is also welcome from the point of view
of explaining neutrino masses. This is unlike the
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minimal supersymmetric model, where an inter-
mediate scale required for neutrino masses spoils
the gauge coupling unification.

(B) The minimal model is argued [17] to be complete to
the extent that the required pattern of the Higgs
vacuum expectation values for the gauge symmetry
breaking and gauge coupling unification can
emerge from the minimization of the one-loop cor-
rected Higgs potential.

The fermion masses in the minimal supersymmetric or
nonsupersymmetric models arise from the following terms

16 FðY1010H þ Y126126HÞ16F: (1)

The above terms represent a part of the superpotential in
the supersymmetric case. In the nonsupersymmetric ver-
sion, one would need additional Peccei-Quinnen-like sym-
metry and the above terms would then represent the most
general allowed fermion mass terms in the model. Two
important features of Eq. (1) are the following.

(1) If the contribution of Y10 to the masses of the
third generation dominates, then one gets the b-�
unification

Yb ¼ Y�: (2)

This can lead to large atmospheric mixing if neu-
trinos obtain their masses from the type-II seesaw
mechanism [3].

(2) Nonleading contribution to the second-generation

masses coming from 126H imply a relation

m� ¼ 3ms (3)

between the muon and the strange quark masses.

Both these relations are regarded as successful classical
predictions of GUTs like SOð10Þ [1] or SUð5Þ a la Georgi-
Jarlskog [19]. They are supposed to hold at the grand
unification scale MX. The available experimental informa-
tion does not quite agree with these generic predictions at
the quantitative level. Extrapolation of the quark masses at
the GUT scale in the nonsupersymmetric theories do not
show b-� unification. In supersymmetric theories, the
evolved values of the Yukawa couplings depend on tan�
and it is found that Eq. (2) holds only at some special
values of tan�. Moreover, the presence of supersymmetry
breaking around weak scale introduces additional finite
tan� and sparticle mass-dependent corrections which
need to be included in extrapolation. Equation (3) also
gets violated in a large parameter space at MX in these
theories. Several existing analyses of fermion masses in
supersymmetric models [4–6,9–11,15] are based on simple
and somewhat old extrapolation of fermion masses pre-
sented in [20], which does not include finite threshold
corrections. As far as the nonsupersymmetric theories are
concerned, there has not been any exhaustive confrontation
of the extrapolated values [21] of fermion masses and

mixing with the simple SOð10Þ based models. Motivated
by this, we address three main issues in this paper. (1) We
update the existing analysis of fermion spectrum in various
supersymmetric models using the recent extrapolation of
fermion masses and mixing at the GUT scale [22,23];
(2) We provide new fitting of the fermion spectrum in
various nonsupersymmetric models; and (3) We try to
understand the fitted structure of fermion mass matrices
in terms of simple patterns. This provides a hint into
possible flavor structure of fermion spectrum and possible
origin of large leptonic mixing angles.
We begin by giving an overview of the existing analy-

sis of fermion masses and mixing. Then we discuss
our fits in supersymmetric models. Here we consider
both the minimal and the nonminimal models. Similar
analysis is then carried out in Sec. IV in the nonsuper-
symmetric case using the input from [21]. The analysis in
these two sections demonstrates the viability or otherwise
of various SOð10Þ models from the point of obtaining
correct fermion spectrum. In addition, it leads to very
interesting structure for fermion mass matrices which
can be a starting point to uncover the underlying flavor
symmetries. We identify such structures in Sec. V and
present a summary of all the new results of our analysis
in Sec. VI.

II. OVERVIEW

Masses of fermions belonging to 16-dimensional
spinorial representation of SOð10Þ arise from the
renormalizable couplings with Higgs fields belonging to

16� 16 ¼ 10þ 126þ 120 representations

16 FðY1010H þ Y126126H þ Y120120HÞ16F (4)

in a self-explanatory notation. The above couplings
represent terms of the superpotential in the case of
supersymmetric models and Yukawa interactions in the
case of nonsupersymmetric models with Peccei-Quinn
(PQ) symmetry, see latter. ðY120Þ, Y10, Y126 are complex

(anti)symmetric matrices in generation space. The Higgs

fields 10H þ 126H þ 120H are forced to be complex in the
case of the supersymmetric theories. The 10H and 120H
representations of Higgs fields can be real in nonsuper-
symmetric models, but we shall take them to be complex
in this case also to allow for the PQ) symmetry.
Throughout this paper, we shall restrict ourselves to the
renormalizable models. There exists detailed analysis [24]
of fermion masses in nonrenormalizable models as well.

The 10H, 126H, 120H, respectively, contain 1, 1 and 2
uplike and an equal number of downlike Higgs doublets. It
is assumed that only one linear combination of each
remains light and acquires vacuum expectation value.
This results in the following fermionic mass matrices
[9–11]:
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Md¼HþFþ iG; Mu¼ rðHþsFþ ituGÞ;
Ml¼H�3Fþ itlG; MD¼ rðH�3sFþ itDGÞ;
ML¼ rLF; MR¼ r�1

R F:

(5)

where (G) H, F are complex (anti)symmetric matrices. r,
s, tl, tu, tD, rL, rR are dimensionless complex parameters
of which r, rL, rR can be chosen real without lose of
generality. The effective neutrino mass matrix for three
light neutrinos resulting after the seesaw mechanism can
be written as

M � ¼ rLF� rRMDF
�1MT

D � MII
� þMI

�: (6)

Equations (5) and (6) describe the most general mass
matrices in any renormalizable SOð10Þ models and con-
tain a large number of parameters to be of use. Therefore
various special cases are considered in the literature and
we summarize them below.

A. Minimal supersymmetric model

This model is characterized by the absence of 120H and
hence G in Eq. (5). H can be diagonalized with real and
positive eigenvalues by rotating the original 16-plets in the
generation space. Hence all the mass matrices are deter-
mined by 19 real parameters if only type-II or type-I see-
saw dominates. These parameters are determined using 18
observable quantities. In spite of the number of observables
being less than the parameters, not all observables can be
fitted with required precision due to nonlinear nature of
Eq. (5). Equations (5) (with G ¼ 0) are fitted to the ob-
served fermion parameters in various papers [4–6]. The
most general minimization is performed by Bertolini et al
[4], allowing for arbitrary combination of both the type-I
and -II seesaw contributions to neutrino masses. The input
values for quark and the charged lepton masses used in this
analysis are taken from [20] and correspond to tan� ¼ 10.
The best fits are obtained in a mixed scenario; type-I gives
slightly worse and type-II scenario is unable to reproduce
all the observables within 1�. If type-II seesaw dominates,
then one needs b-� unification at the GUT-scale in order to
reproduce large atmospheric mixing angle. In contrast, the
extrapolated values used in the analysis do not show com-
plete b-� unification. This results in a poor fit to the
atmospheric mixing angle at the minimum. Threshold
effects can play important role in achieving the b-� uni-
fication and improve the fit to fermion masses compared to
analysis in [6], as we shall see.

B. Nonminimal supersymmetric model

The other case extensively discussed in the literature
corresponds to adding a 120-plet of Higgs to the minimal
model. Fermion masses in models in this category have
been analyzed, either assuming type-I [9–11,14] or type-II
[8,9,12,13,15] seesaw dominance. In this case, the
most general model assuming type-II (type-I) dominance

has 29 (31) independent parameters after rotating to basis
with a real and diagonal H. One needs to make additional
assumptions in order to reduce the parameter space.
Considerable reduction in number of parameters is
achieved assuming parity symmetry [13] or equivalently
spontaneous CP violation [11]. This leads to Hermitian
Dirac mass matrices. In our notation, this corresponds to
taking all the parameters in Eq. (5) to be real (see [9,11] for
details). Such a model has only 17 parameters in case of the
type-II dominance, two less than in the case of the minimal
model without G but with arbitrary complex parameters.
Number of parameters can be further reduced by imposing
additional discrete symmetry; Z2 [10] or �-� [9] are con-
sidered in this context. In spite of the reduction in number
of parameters, the allowed fermionic structure is analyti-
cally argued [12,13] to help in reducing tension in obtain-
ing correctCP violating phase or fitting the first-generation
masses.
Numerical fits depend on whether type-II or type-I see-

saw mechanism is used. Comparison of various models in
the case of the type-II seesaw dominance is made in [15].
All the models in this category give a very good fit to data
with a significantly lower �2 than in the case of the
minimal model. The assumption of the type-I dominance
leads to better fits compared to the type-II case. Moreover,
unlike the type-II dominance, one does not need intermedi-
ate scale [9–11,14] for reproducing the correct neutrino
mass scale. This is a welcome feature from the point of
view of obtaining the gauge coupling unification. All these
works are based on the use of quark masses derived in [20]
at tan� ¼ 10. We shall reexamine the nonminimal model
with a different set of input which include the finite thresh-
old corrections.

C. Nonsupersymmetric SOð10Þ models

One common feature of all fits with type-II seesaw
dominated scenarios is the need for an intermediate scale
MI � 1012–1014 GeV. This spoils the gauge coupling uni-
fication in supersymmetric theories. In contrast, an inter-
mediate scale in nonsupersymmetric framework helps in
achieving the gauge coupling unification. But unlike the
supersymmetric case, the nonsupersymmetric models do
not show the b-� unification and thus type-II models in this
category do not immediately explain the large atmospheric
neutrino mixing angles. Viability of this scenario can be
checked through detailed numerical fits. Unlike the SUSY
case, there is no systematic and complete three-generation
analysis of fermion masses within nonsupersymmetric
models. Various issues involved are summarized in a recent
paper [25] which contains analytic discussion of the sim-
plified two-generation case.
The most economical possibility for fermion masses and

mixing in nonsupersymmetric model would be to choose a

real 10H or 120H and 126H multiplets of Higgs fields. The
latter is required for neutrino mass generation but, by itself,
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it cannot generate fermion mixing. Thus additional 10H or

120H field is also needed. It is argued [25] that a 126H and a
real 10H cannot fit even the two-generation case. Thus one
needs a complex 10H. Since both the real and the imagi-
nary parts of 10H can independently couple to fermions,
this would mean additional Yukawa couplings. This can be
avoided by assigning a PQ charge to 10H. Consider the
following general definition of the PQ symmetry:

16F ! ei�16F; 126H ! e�2i�126H

10H ! e�2i�10H; 120H ! e�2i�120H:
(7)

The most general Yukawa couplings allowed by this sym-
metry once again reduce to Eq. (5). Thus, formally, both
supersymmetric and nonsupersymmetric cases look alike.
But there is an important difference. The renormalization
group running of the Yukawa couplings is different in these
two cases. Moreover, the nonsupersymmetric case has in-
termediate scales. Thus input values and consequently the
resulting fits would be quite different in these two cases.

III. FERMION MASSES IN SUPERSYMMETRIC
THEORIES: NUMERICAL ANALYSIS

In this section, we present the numerical analysis of
fermion masses and mixing in different supersymmetric
cases. We use the data in Table I and define the following
�2 function

�2 ¼ X
i

�
Pi �Oi

�i

�
2
; (8)

where the sum i ¼ 1; . . . ; 14 runs over seven mass ratios
and four quark mixing parameters (given in Table I), ratio
of the solar to atmospheric mass squared differences and
the solar (�l12) plus the atmospheric (�l23) mixing angles

[26]. For the latter, we use the values given in [27]. These
data are fitted by numerically minimizing the function �2.
We assume �m2

atm to be positive, corresponding to the
normal neutrino mass hierarchy. We also impose the
3� upper bound on �13 while minimizing the �2. Pi

denotes the theoretical values of observables determined
by the input expression, Eq. (5), and Oi are the experimen-
tal values extrapolated to the GUT scale. �i denotes the
errors in Oi.

A. Minimal supersymmetric model

Our input values of the quark masses and mixing angles
at the GUT scale are based on the analysis in [22]. This
uses more precise values of the b and t quark masses and
the CKM parameters. More importantly, finite threshold
corrections induced by sparticles are included in this
analysis. Analysis in [22] proceeds in two steps. First, the
quark masses and mixing angles are determined by fitting
the available low energy data and evolving them to the
supersymmetry breaking scale MS. In the second step,
finite sparticle-induced corrections are included and then

TABLE I. The input values of various observables of quark sector and charged lepton masses obtained at GUT-scale MX for various
values of tan� and threshold corrections 	t;b;d assuming an effective SUSY scale MS ¼ 500 GeV (see [22] for details).

A B C D C1 C2

tan� 1.3 10 38 50 38 38

	b 0 0 0 0 �0:22 þ0:22

	d 0 0 0 0 �0:21 þ0:21

	t 0 0 0 0 0 �0:44

ytðMXÞ 6þ1
�5 0.48(2) 0.49(2) 0.51(3) 0.51(2) 0.51(2)

ybðMXÞ 0:0113þ0:0002
�0:01 0.051(2) 0.23(1) 0.37(2) 0.34(3) 0.34(3)

y�ðMXÞ 0.0114(3) 0.070(3) 0.32(2) 0.51(4) 0.34(2) 0.34(2)

Observables GUT-scale values with propagated uncertainty

(mu=mc) 0.0027(6) 0.0027(6) 0.0027(6) 0.0027(6) 0.0026(6) 0.0026(6)

(md=ms) 0.051(7) 0.051(7) 0.051(7) 0.051(7) 0.051(7) 0.051(7)

(me=m�) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2)

(mc=mt) 0:0009þ0:001
�0:00006 0.0025(2) 0.0024(2) 0.0023(2) 0.0023(2) 0.0023(2)

(ms=mb) 0.014(4) 0.019(2) 0.017(2) 0.016(2) 0.018(2) 0.010(2)

(m�=m�) 0.059(2) 0.059(2) 0.054(2) 0.050(2) 0.054(2) 0.054(2)

(mb=m�) 1:00þ0:04
�0:4 0.73(3) 0.73(3) 0.73(4) 1.00(4) 1.00(4)

sin�q12 0.227(1) 0.227(1) 0.227(1) 0.227(1) 0.227(1) 0.227(1)

sin�q23 0:0289þ0:0179
�0:00073 0.0400(14) 0.0386(14) 0.0371(13) 0.0376(19) 0.0237(18)

sin�q13 0:0026þ0:0022
�0:00045 0.0036(7) 0.0035(7) 0.0033(7) 0.0034(7) 0.0021(5)


CKM½�� 56:31� 10:24 56:31� 10:24 56:31� 10:22 56:31� 10:22 56:31� 10:27 56:31� 10:25
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evolution is performed up to the GUT-scale MX. These
corrections are expressed in terms of phenomenological
parameters 	d;b;u;t defined below. We reproduce their table

of values so obtained as Table I for convenience of the
reader.

Column (A)–(D) show the evolved values of quark
mass ratios and mixing angles in the absence of threshold
corrections for various values of tan�. One clearly sees
the absence of the b-� unification at the GUT scale
except for the low value of tan�. This changes with
the inclusion of threshold corrections. These corrections
are parameterized by 	d;u;b;t, which are defined in the

following manner. The down quark mass matrix is deter-
mine by the term QYdd

cHd in the minimal supersym-
metric standard model. The corresponding term
QY0

dd
cH�

u involving the second doublet H�
u is not allowed

in the superpotential by SUSY but it can be radiatively

generated after the SUSY breaking. Since tan� � hH0
ui

hH0
d
i ,

such terms give significant corrections to the tree-level
values for large tan� and should be included in evolving
fermion masses and mixing from low-energy scale to the
MX. The corrected down quark matrix is parameterized
in [22,28] by

Udy
L ð1þ �d þ Vy

CKM�uVCKMÞYd
diagU

d
R

where Ud
L;R and VCKM are the (diagonal) down quark

mass and the CKM matrix before the radiative correc-
tions. The loops involving down squark-gaugino generate
the second term and the loop with up squark-chargino
generate the second term. �d;u are diagonal in the ap-

proximation of taking diagonal squark masses in the
basis with diagonal quarks. Assuming equality of the
first two-generation squark masses, the diagonal elements
�d ¼ ð	d; 	d; 	bÞ correct the down quark masses and
�u ¼ ð	u; 	u; 	tÞ correct the CKM matrix in addition.
The SUSY threshold corrections are included through
these parameters and their best fit values corresponding
to three classical GUT predictions, namely, Eq. (2) and
(3) and the relation md

3me
¼ 1 are determined. Last

two columns correspond to different values of 	’s
determined this way. Comparison of column C with
C1, C2, shows that threshold corrections change
significantly the b quark mass as well as �q23, �q13.
The neutrino masses and mixing that we use are the
updated low-scale values [27], but the effects of the
evolution to MGUT on the ratio of the solar to atmos-
pheric mass scale and on the mixing angles are known
to be small for the normal hierarchical spectrum that we
obtain here.

We now discuss detailed fits to fermion masses and
mixing based on the input values in Table I. We assume
that either the type-I or the type-II seesaw term in the
neutrino mass matrix dominates and carry out analysis

separately in each of these two cases. We can rewrite
Eq. (5) as follows.

Mu¼ rm�

�
3þs

4
~Mdþ1�s

4
~Ml

�
;

MD¼ rm�

�
3ð1�sÞ

4
~Mdþ1þ3s

4
~Ml

�
;

ML¼ rLm�

4
ð ~Md� ~MlÞ;

MR¼ r�1
R m�

4
ð ~Md� ~MlÞ:

(9)

We have chosen the basis with a diagonal Ml and intro-
duced ~Md;l ¼ 1

m�
Md;l. Thus

~M l ¼ Diag:ðme=m�;m�=m�; 1Þ:

Hence all the quantities in the bracket in the above equa-
tion depend on the known ratios of charged lepton masses.
~Md is a complex symmetric matrix with 12 real parame-
ters. Since we are fitting the ratios of different mass eigen-
values and mixing angles, the parameter r remains free and
it can be fixed by mt. rL (rR) in the case of type-II (type-I)
seesaw dominance is determined from the atmospheric
mass scale. We have a total of 14 real parameters (12 in
~Md and complex s), which are fitted over 14 observables.
Four unknown observables in lepton sector (�l13 and three

CP violating phases) get determined at the minimum.
Results of numerical analysis carried out separately for
the type-II and the type-I dominated seesaw mechanisms
are shown in Table II and III, respectively. Let us comment
on the results.
(i) The best fit in the type-II case is obtained at

low tan� ¼ 1:3. This case has b-� unification and
threshold corrections are not very significant. On
the other hand, cases B, C, D with relatively
large tan� but without inclusion of threshold
correction give quite a bad fit. There is a clear
correlation between the overall fit and the
presence or absence of the b-� unification in
type-II models. Cases corresponding to the absence
of the b-� unification cannot reproduce the atmos-
pheric mixing angle and results in relatively poor
fits. Inclusion of threshold corrections improves
the fit but still md

ms
and the atmospheric mixing

angle cannot be reproduced within 1�. The fit for
tan� ¼ 10 obtained here with inputs from [22,27]
is poor compared to the corresponding fit presented
in [6] which uses input from [20]. Compared
to data in [20], the results from [22] display larger
deviation from the b-� unification and also errors
in more recent input that we use for sin2�l23
are smaller. Both these features combine to give
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TABLE II. Best fit solutions for fermion masses and mixing obtained assuming the type-II seesaw dominance in the minimal SUSY
SOð10Þ model. Pulls of various observables and predictions obtained at the minimum are shown for six different data sets.

A B C D C1 C2

Observables Pulls obtained for best fit solution

(mu=mc) �0:00668428 0.0276825 0.0259467 0.120767 �0:0212532 0.0356043

(mc=mt) 0.56521 0.157569 0.0201093 0.0730136 0.130288 0.320944

(md=ms) �1:21642 �0:891034 �0:27664 �1:36265 �1:04724 �1:57673
(ms=mb) 0.112798 0.440678 0.163272 0.752408 0.884723 0.789053

(me=m�) 0.0590249 �0:00627804 0.3944 0.0396087 0.0297987 0.0555931

(m�=m�) 0.182548 0.103214 0.821485 0.0192305 0.26316 0.121145

(mb=m�) 0.87282 2.20829 2.79368 2.34331 0.26656 0.407798�
�m2

sol

�m2
atm

�
0.256292 0.116314 �0:14908 0.230056 0.0188227 �0:0140039

sin�q12 0.0730813 0.0702755 0.0399788 0.105989 0.0779176 0.127757

sin�q23 �0:0311676 �0:172792 �0:471738 �0:0960437 �0:757038 �0:945821
sin�q13 1.33502 �0:0354198 0.494732 0.606606 0.890741 1.17758

sin2�l12 0.00836789 �0:106439 �0:599727 �0:27881 �0:63356 �0:510182
sin2�l23 �1:53367 �4:97038 �4:95673 �4:70944 �2:56294 �1:84412

CKM [�] �0:345931 �0:163765 �0:600814 �0:214459 �0:650554 �0:75885

�2
min 6:9367 30:70 34:52 30:68 10:804 9:3559

Observables Corresponding Predictions at GUT scale

sin2�l13 0.0226508 0.0190847 0.0206716 0.0196974 0.0239619 0.0209208


MNS [�] 19.9399 18.9784 19.5619 11.92 358.789 1.78569

�1 [�] 337.171 346.627 344.795 350.595 12.4786 349.711

�2 [�] 147.364 151.912 146.886 161.702 194.023 168.156

rLm�½GeV� 8:37� 10�10 6:0� 10�10 6:49� 10�10 6:94� 10�10 7:15� 10�10 9:1� 10�10

TABLE III. Best fit solutions for fermion masses and mixing obtained assuming the type-I seesaw dominance in the minimal SUSY
SOð10Þ model. Pulls of various observables and predictions obtained at the minimum are shown for six different data sets.

A B C D C1 C2

Observables Pulls obtained for best fit solution

(mu=mc) 0.0486938 �0:180782 0.0653101 0.0053847 0.0467579 �0:0119661
(mc=mt) 1.22599 0.130589 0.246294 0.146932 0.297256 0.273346

(md=ms) �0:229546 �0:730641 0.223201 �0:748148 �2:2904 �0:689684
(ms=mb) �0:932536 �0:886438 �0:977249 �1:05766 0.735548 0.000467775

(me=m�) 0.0340323 0.442759 0.103692 �0:476364 0.0649144 �0:0648856
(m�=m�) 0.310305 �0:526529 0.881934 0.938701 0.705648 0.0178824

(mb=m�) �0:486477 �0:194215 0.0172182 �0:34079 0.789868 �0:734937�
�m2

sol

�m2
atm

�
0.122267 �0:10063 �0:00563647 �0:120429 �0:180164 0.158557

sin�q12 0.0432634 0.227948 0.0186715 0.084149 0.130301 0.0922391

sin�q23 �0:281221 �0:0401177 �0:167224 0.0649082 �0:273222 �1:17651
sin�q13 1.37864 �0:275689 0.926186 0.559003 1.48675 0.248759

sin2�l12 �0:0528379 �0:0598219 �0:38133 �0:172148 �0:746107 0.0694831

sin2�l23 �1:22555 �1:27077 �1:43475 0.0548963 �1:99485 �0:946001

CKM [�] �0:291137 0.397159 �0:350422 �0:755859 �0:956628 �0:3197

�2
min 6:3479 3:7962 5:0715 3:8665 14:789 3:4746

Observables Corresponding Predictions at GUT scale

sin2�l13 0.0223307 0.0194886 0.0218753 0.0186789 0.0253152 0.0205366


MNS [�] 2.41793 4.52493 6.08769 335.07 357.142 14.7651

�1 [�] 347.106 8.42838 7.64991 28.0261 14.5679 1.13126

�2 [�] 163.759 191.241 188.713 218.586 196.273 177.828

rR
�
m2

t

m�

�
½GeV� 1:77� 10�10 2:63� 10�10 2:50� 10�10 4:02� 10�10 7:3� 10�11 2:82� 10�10

ANJAN S. JOSHIPURA AND KETAN M. PATEL PHYSICAL REVIEW D 83, 095002 (2011)

095002-6



larger pulls for the ratio mb

m�
and sin2�l23 and result in

poor fit.
(ii) In contrast to the type-II case, the fits obtained in

type-I case are uniformly better. Here one does not
expect correlation between the atmospheric mixing
angle and b-� unification. Thus the cases B, C, D
with large tan� also give quite good fits. Even in
these cases (except D), the main contribution to �2

comes from the pull in the atmospheric mixing
angle. Threshold corrections are significant for large
tan� and specific cases C1, C2 achieve b-� unifica-
tion but the overall fit worsens compared to B, C, D.
Unlike in the type-II case, the �2 value obtained
here for tan� ¼ 10 is comparable to the corre-
sponding value in [6].

(iii) We have fixed the overall scale of neutrino mass
rLðrRÞ in the case of type-II (type-I) seesaw
by using the atmospheric scale as normalization.
The resulting values are displayed in Table II and
III. rLðrRÞ arise from the VEV of the components

of 126H transforming as ð3; 1;�2Þ (ð1; 3;�2Þ)
under the SUð2ÞL � SUð2ÞR �Uð1ÞB-L. In particu-
lar, hð1; 3;�2Þi126H sets the scale of the B-L

breaking and is directly determined from the fits
to fermion masses in the type-I scenario. From
Eq. (9),

hð1; 3;�2Þi126H 	 r�1
R vsm cos�; (10)

where sm gives the mixing of the light Hd in the

doublet part of 126H and v 	 174 GeV. rR is
roughly independent of the input data set and for
the value rR 	 2:6� 10�10m�=m

2
t GeV, Eq. (10)

gives

hð1; 3;�2Þi126H 	 3:7� 1015sm cos� GeV:

Thus the B-L breaking scale in the type-I seesaw
can be close to the GUT scale for sm cos��Oð1Þ.
It would, however, be significantly lower for
large values of tan� and would conflict with
the constraints from the gauge coupling unification.
The determination of the B-L breaking scale
in the type-II dominated scenario is dependent
on the details of the superpotential. Earlier [5,6]
analysis in the minimal model has shown that
this scale cannot easily be lifted to the GUT scale
and poses a problem with the gauge coupling
unification in the minimal scenario both for
the type-I and type-II seesaw dominance [6].
Thus one does need to go beyond the minimal
model and models with 120H are possible
examples.

B. Numerical analysis: Extended model
with 10þ 126þ 120 Higgs

We now consider the nonminimal case obtained
from Eq. (5) by choosing all parameters in H, F, G as
well as r, s, tu, tl, tD, rl, rR real. As before, the parameters r
and rRðrLÞ determine the mt and overall scale of neutrino
masses in type-I (type-II) seesaw dominated scenarios.
Our choice of 14 observables is the same as in the
previous subsection. But they are now determined
from the more general expression with nonzero G.
H can be made diagonal without loss of generality. The
mass matricesMu,Md,Ml,MD,MR andML are expressed
in terms of 16 real parameters (3 in H, 6 in F, 3 in G, s, tl,
tu, and tD), which determine 14 observables Pi defined
before.
Results of numerical analysis carried out separately for

the type-II and type-I dominated seesaw mechanisms are
shown in Tables IV and V respectively. The following
remarks are in order in connection with the results pre-
sented in these tables. As discovered in earlier numerical
analysis [9,15], the introduction of the 120H leads to
remarkable improvement in numerical fits in the type-II
case. This mainly arises because the near maximality �l23 is
not directly connected to the the b-� unification. Thus the
cases B, C, D, which do not have the b-� unification also
lead to very good fits in contrast to the minimal case. The
fits in cases (A, C1, C2), which have b-� unification are
even better and all the observables are fitted almost exactly
in these cases. These include the low tan� inputs and cases
with large tan� and threshold corrections. As the results of
Table V show, the fits obtained assuming the type-I seesaw
dominance are uniformly better compared to the corre-
sponding type-II results and show significantly improve-
ment over the minimal model with type-I dominance,
Table III.
One important difference compared to the minimal case

is the overall B-L scale determined from the neutrino
masses. Unlike the minimal case, the values of r�1

R in
Table V are strongly dependent on the input data set and
in some cases are quite large, although each data set
appears to give very good fit to fermion masses. For
example, one obtains in case (A) from Eq. (10) and
Table V,

hð1; 3;�2Þi126H 	 1:5� 1020sm cos� GeV:

Thus, reproducing neutrino masses in this case would
require fine tuning sm � 10�4 if the B-L breaking scale
is to be close to MGUT. In contrast, in case C2 with
tan� ¼ 38, Table V gives

hð1; 3;�2Þi126H 	 1:8� 1017sm GeV;

which is close to the GUT scale.
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TABLE V. Best fit solutions for fermion masses and mixing obtained assuming the type-I seesaw dominance in the nonminimal
SUSY SOð10Þ model. Pulls of various observables and predictions obtained at the minimum are shown for six different data sets.

A B C D C1 C2

Observables Pulls obtained for best fit solution

(mu=mc) �0:0151499 0.0262493 �0:0019449 �0:00461056 0.00542513 �0:0000775584
(mc=mt) �0:000384519 0.000812518 0.000258262 0.00461629 �0:00304033 0.0049013

(md=ms) �0:0778857 �0:0653974 �0:0053692 0.0272334 0.00701785 0.00147573

(ms=mb) �0:052311 0.0706689 0.0726379 0.0830354 0.0120634 0.0296307

(me=m�) 0.00127584 0.00152407 0.00164957 0.0268034 �0:00722174 �0:000349497
(m�=m�) �0:0553488 �0:0188764 �0:0212797 �0:0282999 �0:00866254 �0:00875371
(mb=m�) �0:0103881 0.0214596 0.0260868 0.0498589 0.00493891 0.00967378�
�m2

sol

�m2
atm

�
0.0324886 0.00926157 0.00312614 �0:00630473 �0:00302065 0.000653399

sin�q12 0.0159112 �0:0140628 �0:000195379 0.00791696 �0:0171517 �0:000184021
sin�q23 0.0375281 �0:00674466 �0:00216987 0.00501282 0.0100126 0.00590551

sin�q13 0.0309917 0.0571306 0.175888 0.0213394 �0:131639 �0:00184989
sin2�l12 0.00539037 �0:0176765 0.00577816 �0:013618 0.0092152 0.000404734

sin2�l23 0.0332756 0.0143127 0.0125096 0.0200216 0.00356131 0.00026684


CKM [�] �0:0585649 �0:00882152 �0:0406312 �0:0292954 �0:0291351 �0:0310722

�2
min 0:0204 0:0150 0:0392 0:0137 0:0191 0:0011

Observables Corresponding Predictions at GUT-scale

sin2�l13 0.0122064 0.0168745 0.0146633 0.0359278 0.0246489 0.030277


MNS [�] 87.6747 22.8731 330.351 282.035 272.186 84.0238

�1 [�] 5.82048 167.229 192.077 286.062 352.828 329.804

�2 [�] 339.846 331.88 34.5585 336.358 17.6585 325.182

rR
�
m2

t

m�

�
[GeV] 6:56� 10�15 1:22� 10�12 1:34� 10�12 3:03� 10�15 5:0� 10�14 1:40� 10�13

TABLE IV. Best fit solutions for fermion masses and mixing obtained assuming the type-II seesaw dominance in the nonminimal
SUSY SOð10Þ model. Pulls of various observables and predictions obtained at the minimum are shown for six different data sets.

A B C Ds C1 C2

Observables Pulls obtained for best fit solution

(mu=mc) 0.00196316 0.019005 �0:026015 �0:00109589 �0:00812155 0.0000225717

(mc=mt) 0.000750815 �0:114469 0.0964863 0.296526 �0:0278823 �0:00413523
(md=ms) 0.0547314 0.618531 0.0606721 �1:14305 0.0271889 0.00312586

(ms=mb) 0.0565403 0.473347 �1:30774 0.675173 0.0105556 0.0361755

(me=m�) 0.0114456 �0:0155357 0.0482971 �0:00371258 0.00167012 0.000128709

(m�=m�) �0:00279654 �0:66999 0.111235 �0:0605957 0.00155096 �0:00249006
(mb=m�) �0:171035 �0:301056 �0:381508 1.57926 0.0514536 �0:048487�
�m2

sol

�m2
atm

�
0.00833338 �0:297416 0.191515 0.2129 0.00050834 �0:00412658

sin�q12 �0:0106839 �0:0145213 �0:0420229 0.0809603 �0:00715584 0.0000538731

sin�q23 �0:00295777 �0:058218 0.301593 0.341191 0.0120366 �0:000633901
sin�q13 �0:00466345 �0:661544 0.381317 �0:632744 �0:137308 0.00650479

sin2�l12 0.0106277 �0:194399 0.333404 0.399294 0.00217496 �0:0043514
sin2�l23 �0:0198083 1.08433 �0:472589 �0:885401 0.0314484 0.00752103


CKM [�] �0:00915099 0.168633 �0:520071 0.246618 �0:0314877 �0:0382519

�2
min 0:0364 2:9315 2:7639 5:921 0:0254 0:0038

Observables Corresponding Predictions at GUT-scale

sin2�l13 0.0215726 0.0312498 0.03568 0.0214329 0.0289663 0.0069694


MNS [�] 34.3864 5.21955 89.5 315.898 355.507 75.6953

�1 [�] 6.26083 76.0772 289.921 80.1968 60.3609 240.526

�2 [�] 161.011 253.288 76.0613 283.63 220.306 34.4702

rLm� [GeV] 1:27� 10�9 9:57� 10�10 6:82� 10�10 1:56� 10�9 2:36� 10�9 3:68� 10�9
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IV. FERMION MASSES IN
NON-SUPERSYMMETRIC MODELS:

NUMERICAL ANALYSIS

We now turn to the discussion of various nonsupersym-
metric models. We shall consider three different cases.

(1) The minimal scenario containing the Higgs repre-

sentations 45H þ 10H þ 126H.

(2) Alternative model with 45H þ 120H þ 126H pro-
posed and analyzed in case of two generations in.

(3) The nonminimal scenario with 45H þ 10H þ
126H þ 120H with Hermitian structure.

The case (2) is found to be unable to fit all the fermion
masses and mixing angles. The minimal case works quite
well in this regards and there is no real motivation to go to
the nonminimal case as far as the fermion masses are
concerned. We have included this for completeness and
find that this case works even better than the minimal case.

The SOð10Þ breaking [17] and the gauge coupling uni-
fication [16] with intermediate scale has been reanalyzed
recently following earlier works [18,29]. The minimal case
is argued to be adequate in achieving both the gauge
coupling unification and breaking of SOð10Þ to the SM
through an intermediate scale. The exact value of the
required intermediate scale depend on the chain of
the SOð10Þ breaking and various cases are given in [16].
The 45H field contains components transforming as
(15,1,1) and (1,1,3) under the Pati-Salam group SUð4Þ�
SUð2ÞL�SUð2ÞR. They allow SOð10Þ breaking to
SUð3ÞC�SUð2ÞL�SUð2ÞR�Uð1ÞB-L, SUð4Þ�SUð2ÞL�
Uð1ÞR or to SUð5Þ �Uð1Þ groups. At the tree level, only
SUð5Þ intermediate stage is shown to lead to consistent
spectra without tachyons [29] but this chain does not
preserve the gauge coupling unification. As discussed in
[17] turning on one-loop corrections also allows the other
two breaking chains, which preserve gauge coupling uni-
fication. The final breaking to SM can be achieved by the

(1,1,3) component of 126H which also leads to neutrino

masses. The 10H and 126H contain, respectively, bidoub-
lets (1,2,2) and (15,2,2). They need to mix in order to
finally generate the standard model doublet(s) simulta-

neously containing the 10H and 126H components. This
can be achieved by fine tuning. For example, the mixing
between bidoublets is achieved through the following term

V � �ij�kl�ijklm�m; (11)

which couples 45H (�) to 126H (�) and 10H (�). This
mixes two bidoublets when component of 45H transform-
ing as singlet under the SUð3Þc � SUð2ÞL � SUð2ÞR �
Uð1ÞB-L acquires a VEV. Then, through fine tuning, one

can keep one of the two bidoublets in 10H and 126H at the
intermediate scale. Subsequent breaking to SM is achieved

through the (1,1,3) component of 126H. Equation (11)
provides, in this way, the required mixing between dou-

blets in 126H and 10H.

A. Numerical analysis: Model with only
10þ 126 Higgs fields

A nonsupersymmetric SOð10Þ model with 10 and 126
Higgs fields together with Uð1ÞPQ symmetry has the same

Yukawa interactions as the minimal SUSY SOð10Þ, Eq. (5)
with G ¼ 0. Minimization is performed based on the input
values of the charged fermion masses obtained by running
quark and lepton masses up to the GUT scale with mH ¼
140 GeV [21]. We use the updated low-energy values of
quark mixing angles, CP phase and neutrino parameters,
since the effect of RG is known to be negligible for
hierarchical neutrino spectrum. We reproduce all the input
values in Table VI for convenience. As before, we takeMd

andMl as independent and express the remaining matrices
in terms of them and r, s as in Eq. (9). Since the masses of
the charged leptons are known precisely, we go to the basis
with a diagonal Ml and use them as fixed input. Thus we
have 15 real parameters (12 in Md, complex s and real r),
which determine the remaining 13 observables shown in

TABLE VI. Input values for quark and leptonic masses and mixing angles in the nonsuper-
symmetric standard model extrapolated at MGUT ¼ 2� 1016 GeV.

GUT-scale values with propagated uncertainty

md ðMeVÞ 1:14þ0:51
�0:48 �m2

sol ðeV2Þ ð7:59� 0:20Þ � 10�5

ms ðMeVÞ 22þ7
�6 �m2

atm ðeV2Þ ð2:51� 0:12Þ � 10�3

mb ðGeVÞ 1:00� 0:04 sin�q12 0:2246� 0:0011

mu ðMeVÞ 0:48þ0:20
�0:17 sin�q23 0:0420� 0:0013

mc ðGeVÞ 0:235þ0:035
�0:034 sin�q13 0:0035� 0:0003

mt ðGeVÞ 74:0þ4:0
�3:7 sin2�l12 0:3208� 0:0164

me ðMeVÞ 0:469652046� 0:000000041 sin2�l23 0:4529þ0:0924
�0:0484

m� ðMeVÞ 99:1466226� 0:0000089 sin2�l13 <0:049ð3�Þ
m� ðGeVÞ 1:68558� 0:00019 
CKM 69:63� � 3:3�
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Table VI. The �2 function is defined in terms of these
parameters.

Results of numerical analysis carried out separately for
type-I and type-II dominated seesaw mechanisms are
shown in Table VII. Parameters obtained for the best fit
solutions are shown in the Appendix. It is evident that the
type-II mechanism fails completely in reproducing the
spectrum. Once again, this is linked to the complete ab-
sence of the b-� unification in nonsupersymmetric theo-
ries. Neither the atmospheric mixing nor the b quark mass
can be reproduced correctly in this fit. In contrast, the type-
I seesaw works quite well. In fact, the quality of fit in this
case is much better than the minimal supersymmetric
model with type-I seesaw, Table III.

As before, the rR gets determined from the atmospheric
neutrino mass scale. Assuming that only one standard
model survives at the electroweak scale one has

hð1; 3;�2Þi126H 	 r�1
R smv:

rR in Table VII gives

hð1; 3;�2Þi126H 	 3� 1015sm GeV: (12)

Unlike the supersymmetric model, one would like to have
this scale at an intermediate value 1011 GeV [16] in order

to achieve the gauge coupling unification. This will require
substantial fine tuning. The exact value of the required
intermediate scale for the gauge coupling unification
would depend on threshold effects not included in the
analysis in [16]. This would need a detailed study of
the scalar potential minimization and the scalar sector
of the theory.
The leptonic parameters �13 and three CP violating

phases �1;2 and 
MNS get fixed at the minimum and are

shown in Table VII. The firm predictions on these observ-
ables in the scheme can be obtained by checking the
variation of �2 with the values of various observables.
Following [9,11], we pin down a specific value p0 of an
observable P by adding a term

�2
P ¼

�
P� p0

0:01p0

�
2

to �2 and then minimizing

�̂ 2 � �2 þ �2
P:

If P happens to be one of the observables used in defining
�2, then its contribution is removed from there. Artificially
introduced small error fixes the value p0 for P at the
minimum of the �̂2. We then look at the variation of

TABLE VII. Best fit solutions for fermion masses and mixing obtained assuming the type-I
and type-II seesaw dominance in the minimal non-SUSY SOð10Þ model. Various observables
and their pulls at the minimum are shown. All the masses shown are in GeVunits. The bold faced
quantities are predictions of the respective solutions.

Type-I Type-II

Observables Fitted value pull Fitted value pull

md 0.000810163 �0:687161 0.00101285 �0:264898
ms 0.0208099 �0:198354 0.0225915 0.0844982

mb 0.999667 �0:00831657 1.08201 2.05031

mu 0.000495023 0.0751133 0.000507336 0.13668

mc 0.237348 0.0670883 0.237096 0.0598882

mt 73.9427 �0:0154941 74.3006 0.075144

me 0.000469652 
 
 
 0.000469652 
 
 

m� 0.0991466 
 
 
 0.0991466 
 
 

m� 1.68558 
 
 
 1.68558 
 
 
�
�m2

sol

�m2
atm

�
0.030526 0.127968 0.0297114 �0:235285

sin�q12 0.224651 0.0464044 0.224499 �0:0916848
sin�q23 0.0420499 0.0392946 0.0421308 0.103004

sin�q13 0.00349369 �0:0974312 0.00353053 0.0389979

sin2�l12 0.323245 0.148134 0.3108 �0:610792
sin2�l23 0.435096 �0:369178 0.113306 �7:02461
sin2�l13 0:0244287 
 
 
 0:0176863 
 
 


CKM [�] 69.5262 �0:0314447 69.2051 �0:128759

MNS [�] 318:465 
 
 
 14:5386 
 
 

�1 [�] 21:5053 
 
 
 345:645 
 
 

�2 [�] 215:128 
 
 
 141:905 
 
 

rRðLÞ 5:62� 10�14 
 
 
 2:09� 10�10 
 
 

�2 0:710777 54:1197
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�� 2
min � ð�̂2 � �2

PÞjmin (13)

with p0. The results of such analysis carried out
for the observables sin2�l23 and sin2�l13 are displayed in

Figs. 1 and 2, respectively. sin2�l23 can assume values in

large range and the 90% confidence level bound
corresponding to ��2 ¼ 4:61 covers its entire 3� range
0.33–0.64. In contrast, a clear prediction emerges
for the angle sin2�l13 which preferentially lies in the range

0.015–0.03.

B. Numerical analysis: Model with only 120þ 126
Higgs fields

We now consider an alternative model obtained by
replacing 10H with 120H in the minimal model discussed
before. This model is argued to be quite attractive and
predictive when restricted to the second and the third
generations [25]. It is thus interesting to see if the model
works in more realistic case with three generations, which
require explanation of several new parameters.

The fermion mass relations in this model are given by
Eq. (5) with H ¼ 0. F can be made real diagonal without

loss of generality. Ml is not diagonal and the charged
lepton masses are included in the �2 function (8), unlike
the previous case of the minimal model where they were
set as input. Since the errors in the charged lepton masses
are extremely small, the numerical optimization algorithm
we use is unable to converge to the solution in finite time.
Thus we set 10% error in charged lepton masses and
minimize the �2 with respect to 16 (3 in F, 6 in G, real s
and complex tl, tu, tD) real parameters.
Results of numerical analysis carried out separately for

type-I and type-II dominated seesaw scenarios are shown
in Table VIII. The detailed fits are quite different in two
cases, showing that a simple proportionality of the type-II
and type-I contribution observed in the two-generation
study [25] does not hold in general. The model fails badly
in reproducing the fermion mass spectrum in either case.
Analytic study of the two generations lead in the model to a
relation m� 	 3mb. This is born out in the detailed nu-
merical study with three generations as well. But this
relation becomes one of the causes of the failure of the
model, as is clearly seen in the Table VIII. Likewise,
the numerical fits lead to nearly vanishing solar scale at
the minimum in the type-II case. This becomes an added
cause of very poor fits. It appears from the results that the

renormalizable model with 45þ 120þ 126 Higgs fields is
not a good candidate to obtain even fermion mass spectrum
in spite of its attractiveness at the two-generation level
[25].

C. Numerical analysis: Model with 10þ 126þ 120
Higgs fields

As before, we consider the case with Hermitian (Dirac)
mass matrices. The mass relations are the same as in
Eq. (5), with all parameters real. We have chosen the basis
with a diagonal H. Ml is not diagonal in this basis and we

parameterize it as Ml ¼ UlDlU
y
l , with Ul being a general

unitary matrix expressed in terms of three angles and six
phases and Dl is a diagonal matrix for the charged lepton
masses. One can rewrite Ml in Eq. (5) as

3F� itlG ¼ H �UlDlU
y
l

Since F and G are real, the real and imaginary parts of the
right-hand side separately determine F and tlG in terms of
the charged lepton masses and parameters of H and Ul,
which are put back in Eq. (5). The remaining fermion mass
matrices can be expressed in terms of 17 (3 in H, 9 in Ul,
real r, s, tl, tu, tD) real parameters in the case of type-I
seesaw dominance which determine 16 observables Pi

shown in Table VI. One parameter tD becomes irrelevant
for the type-II seesaw case. We do the numerical analysis
for this case and results are shown in Table IX.
Parameters obtained for the best fit solutions in type-I

case are shown in Appendix A 2. Unlike the supersymmet-
ric case, the presence of 120H does not help in improving
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TABLE IX. Best fit solutions for fermion masses and mixing obtained assuming the type-I and
type-II seesaw dominance in the nonsupersymmetric SOð10Þmodel with 10þ 126þ 120 Higgs.
Various observables and their pulls at the minimum are shown. All the masses shown are in GeV
units. The bold faced quantities are predictions of the respective solutions.

Type-I Type-II

Observables Fitted value pull Fitted value pull

md 0.00113968 �0:000676838 0.00108711 �0:110189
ms 0.0219909 �0:00150966 0.0142689 �1:28852
mb 1. 0.0000376219 1.19665 4.9162

mu 0.000480133 0.000666686 0.000486627 0.0331338

mc 0.235007 0.000211758 0.240819 0.166268

mt 73.9997 �0:0000888053 77.4295 0.857367

me 0.000469652 0 0.000469652 0

m� 0.0991466 0 0.0991466 0.220249

m� 1.68558 0 1.68558 0.000124065�
�m2

sol

�m2
atm

�
0.0302402 0.000545016 0.0260106 �1:88556

sin�q12 0.224601 0.00105776 0.224567 �0:0304356
sin�q23 0.0420001 0.0000431604 0.0431393 0.897068

sin�q13 0.00351992 �0:000308192 0.00338234 �0:509862
sin2�l12 0.320821 0.000292661 0.278093 �2:6052
sin2�l23 0.453034 0.000947066 0.343286 �2:26804
sin2�l13 0:0306736 � 0:00538748 �

CKM [�] 69.6278 �0:000660788 72.7155 0.935014


MNS [�] 355:719 46:8148
�1 [�] 60:079 60:6202
�2 [�] 214:691 250:978
rRðLÞ 1:56� 10�15 3:43� 10�10

�2 �10�6 44:0801

TABLE VIII. Best fit solutions for fermion masses and mixing obtained assuming the type-I
and type-II seesaw dominance in non-SUSY SOð10Þ model with 120þ 126 Higgs. All the
masses shown are in GeV units. Various observables and their pulls at the minimum are shown.

Type-I Type-II

Observables Fitted value pull Fitted value pull

md 0.000186192 �1:9871 0.000223284 �1:90982
ms 0.00267758 �3:2204 0.00296063 �3:17323
mb 0.844022 �3:89946 0.836471 �4:08822
mu 0.00048096 0.00480131 0.000483412 0.0170595

mc 0.23454 �0:0135291 0.237869 0.0819818

mt 74.053 0.0132566 73.891 �0:0294532
me 0.000467656 �0:0424983 0.000475465 0.123771

m� 0.0964545 �0:271534 0.101839 0.271587

m� 2.61149 5.49314 2.60147 5.43367�
�m2

sol

�m2
atm

�
0.0303749 0.0605819 8:59� 10�7 �13:4841

sin�q12 0.224581 �0:0172464 0.224591 �0:00790894
sin�q23 0.0419722 �0:0218756 0.0420623 0.0490417

sin�q13 0.00354561 0.0948516 0.00353062 0.0393252

sin2�l12 0.321216 0.0243762 0.320612 �0:0124452
sin2�l23 0.450311 �0:0544896 0.0375094 �8:59228

CKM 69.5526 �0:0234639 69.5794 �0:0153481

�2 59:7934 315:705
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the fits in the type-II seesaw dominated case. But the fits
obtained for the type-I scenario are considerably better
compared to the corresponding supersymmetric as well

as the minimal nonsupersymmetric case. Pulls in all ob-
servables are practically zero in this case.
The predictions of the model for the observables sin2�l23

and sin2�l13 are displayed in Figs. 3 and 4 respectively.

Once again a clear prediction sin2�13 * 0:015 emerges in
this case.

V. NUMERICAL ANALYSIS AND UNDERLYING
FLAVOR STRUCTURE

Numerical analysis presented in the previous section has
demonstrated viability of various SOð10Þ models in ex-
plaining the fermion masses and mixing. In the process, it
has also provided us with specific structure of fermion
mass matrices which can be used to obtain some insight
into the underlying flavor structure. We discuss one spe-
cific case,, namely, the minimal nonsupersymmetric model
from this point of view.
At the SOð10Þ level, Yukawa couplings H, F, G

determine the flavor structure of various mass matrices.
Thus any underlying flavor symmetry, if it exists,
should BE reflected in the structure of these matrices.
Specific structures for the Yukawa coupling matrices
have been used to predict relations between the (hier-
archical) quark masses and (small) quark mixing (see for
example [22,30,31]). In a large class of such models, the
observed masses and mixing patterns among quarks are
reproduced when elements of the quark mass matrices
are expressed as powers of one or two expansion parame-
ters. Following this, we try to look for a similar parame-
terization for the underlying matrices F, H in case of the
minimal nonsupersymmetric model. We choose the
Cabibbo angle � ¼ 0:2246 as a convenient parameter.
Elements of F and H in this case are then found to
have the following hierarchical structure in the basis
with a diagonal Ml:

H ¼ 1:088e0:435i GeV

0:513e1:659i�4 0:361e�1:257i�3 0:685e0:843i�2

0:361e�1:257i�3 0:119e1:143i�2 0:490e�2:123i�

0:685e0:843i�2 0:490e�2:123i� 1

0
BB@

1
CCA;

F ¼ 0:278e2:561i GeV

0:802e�0:226i�4 0:470e2:90i�3 0:892e�1:283i�2

0:470e2:90i�3 2:359e0:515i�2 0:639e2:034i�

0:892e�1:283i�2 0:639e2:034i� 1

0
BB@

1
CCA

(14)

33 element turns out to be largest both for F and

H and we have normalized other elements by its value

in writing the above structure. Most coefficients in

powers of � are roughly Oð1Þ except for the 22

elements.
The above structure determined numerically here is

suggestive of an underlying Uð1Þ symmetry used [32] in
the Froggatt-Nielsen approach. Indeed, a simple Uð1Þ can

explain the occurrence of various powers of � in Eq. (14).
Consider a Uð1Þ symmetry with the Uð1Þ charges 2, 1, 0
assigned, respectively, to three generations of 16F-plet.

Both 10H and 126H are assumed neutral under this sym-
metry. In this case, the 33 elements of F, H arise from the

renormalizable couplings 163F163F�H ð� ¼ 10; 126Þ.
The 23 and 32 elements follow from the couplings
162F163F�H



M . Likewise, the two, three, and four powers
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of 
, respectively, generate Oð�2; �3; �4Þ terms in

Eq. (14), where � ¼ h
i
M , M is some underlying scale

above the Uð1Þ breaking scale h
i and 
 is assumed to

carry the Uð1Þ charge �1. The quark mass matrices
resulting from the above F, H also follow this simple
pattern as in Eq. (14):

Md ¼ 0:9708e0:6809i GeV
0:800e1:481i�4 0:539e�1:503i�3 1:024e0:597i�2

0:539e�1:503i�3 0:699e2:204i�2 0:733e�2:370i�
1:024e0:597i�2 0:733e�2:370i� 1

0
B@

1
CA;

Mu ¼ 72:639e0:523i GeV
0:609e1:585i�4 0:419e�1:359i�3 0:796e0:741i�2

0:419e�1:359i�3 0:281e1:981i�2 0:570e�2:225i�
0:796e0:741i�2 0:570e�2:225i� 1

0
B@

1
CA:

This structure is already proposed and studied in [31] as a possible explanation of quark and neutrino mixing and masses.
Here it follows from a detailed analysis of this specific SOð10Þ model. As shown in [31], such a form can reproduce the
observed mixing and mass patterns for quarks. The expansion parameter chosen in [31] is somewhat larger, � ¼ 0:26. The
Dirac neutrino mass matrix on the other hand is given by

MD ¼ 86:240e0:210i GeV
0:253e1:795i�4 0:201e�0:959i�3 0:382e1:140i�2

0:201e�0:959i�3 0:567e�0:222i�2 0:273e�1:825i�
0:382e1:140i�2 0:273e�1:825i� 1

0
B@

1
CA: (15)

The coefficients in front of various elements are anomalously small and thus MD does not really share the same
symmetry as the underlying Yukawa matrices. TheMD andMR � F conspire to produce a neutrino mass matrix which has
an interesting form

M� ¼ 0:087e�0:898irRr
2 GeV

1:339e2:543i�3 0:878126e�0:662i�2 1:753e1:529i�
0:878e�0:662i�2 0:800e�2:646i 1:062e�1:458i

1:753e1:529i� 1:062e�1:458i 1

0
B@

1
CA: (16)

Since we are working in a basis with a diagonal Ml, the
above matrix determines physical neutrino mixing and
allows us to understand the leptonic mixing structure ana-
lytically. First, the 23 block has all elements ofOð1Þ, which
results in the large atmospheric angle and hierarchy in
neutrino masses. Second, the 11 and 12 elements are zero
to leading order in �. In the approximation of neglecting
higher powers of �, theM� has two-zero texture (classified
as A1 in [33]). The presence of the zeros leads to a firm
prediction of the third mixing angle [33]

sin 2�l13 	
�
�m2

sol

�m2
atm

�
sin2�l12cos

2�l12
cos2�l12tan

2�l23
: (17)

This analytic relation is in very good agreement with the
numerical values. Evaluation of the right-hand side using
the best fit values of parameters in Table VII leads to
sin2�l13 	 0:0245 in agreement with the numerical predic-

tion. Even away from the minimum �2, one would get
sin2�l13 around 0.02 as long as two-zero structure, onhence

Eq. (17) holds approximately. This is borne out quite well
in Fig. 2.

The simple Uð1Þ symmetry used to explain the structure
of F, H may appear to have two shortcomings. First, the
specific structures are found in a basis with a diagonal Ml

Second, the coefficients of powers of � in F, H are not
strictly Oð1Þ, notably in the 22 elements. In general, the
definition of symmetry and resulting texture of Yukawa
matrices are basis dependent. Basis with a diagonalMl are
very special basis and it would be more desirable to find a
basis in which Ml also has a structure similar to the F, H,
Md, Mu. One can indeed find a class of unitary rotations
which bring the diagonalMl to the form as in Eq. (14) and
at the same time retain the forms of F, H, albeit with a
different set of coefficients. The Uð1Þ symmetry leads to
the following general form of the Yukawa matrices:

ðF;HÞ ¼ aF;H33

aF;H11 �4 aF;H12 �3 aF;H13 �2

aF;H12 �3 aF;H22 �2 aF;H23 �
aF;H13 �2 aF;H23 � 1

0
B@

1
CA: (18)

F, H as given above can be diagonalized with high accu-
racy by rotation RF;H, consisting of three successive rota-

tions in 2–3, 1–3 and 1–2 plane with the mixing angles [31]
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sin�F;H23 	 aF;H23 �; sin�F;H13 	 aF;H13 �2;

tan2�F;H12 	 2�
aF;H12 � aF;H23 aF;H13

aF;H22 � ðaF;H23 Þ2 þOð�2Þ :
(19)

The eigenvalues of F, H are Oð1; �2; �4Þ. The eigenval-
ues of Ml are roughly of similar order—though the coef-
ficient for the electron mass is somewhat small. Thus Ml

can be put to the form as in (14) by rotating the diagonalMl

with a rotation matrix Vl with angles as in Eq. (19), but
with a different set of coefficients alij. It is easy to see that

when F, H are expressed in new basis their forms do not
change to leading order in � but now coefficients in front of

powers of � are different say, a0F;Hij . They depend on aF;Hij

and alij. Thus symmetry in question may manifest itself in a

more general basis than the specific diagonal basis pro-

vided a0F;Hij are also Oð1Þ.
Let us consider a simple example. Rotate F, H and

diagonal Ml with a common rotation Vl defined as

Vl ¼
1 0 0
0 1� 1=2�2 �ei�

0 ��e�i� 1� 1=2�2

0
@

1
A:

� can be chosen such that the coefficient of various powers
of � in elements of F0 ¼ VT

l FVl and H0 ¼ VlHVl are near

to 1. The best fit value of � turns out to be � ¼ 1:055 and
for this one gets

jF0j¼0:278GeV

0:802�4 0:772�3 0:892�2

0:772�3 1:12�2 1:638�

0:892�2 1:638� 1

0
BB@

1
CCA

jH0j¼1:088GeV

0:513�4 0:593�3 0:685�2

0:593�3 0:939�2 0:876�

0:685�2 0:876� 1

0
BB@

1
CCA:

(20)

Unlike in Eq. (14), all the coefficients of various elements
in the above equation are now Oð1Þ. Ml is nondiagonal in
this basis and is given by

jMlj ¼ 1:685 GeV
0:109�4 0 0

0 1:06�2 1:006�
0 1:006� 1

0
B@

1
CA: (21)

We note that the Yukawa coupling matrices in cases
other than the minimal also display hierarchical structure,
see results in Appendix A 2. Thus, these cases can also be
understood in terms of some simple pattern as in the
minimal case discussed here explicitly.

VI. SUMMARY

SOð10Þ models have been used to obtain a unified de-
scription of fermion masses and mixing angles. We have
undertaken in this paper an exhaustive analysis of many
different SOð10Þ models. Using several different data sets
as input, we have numerically determined viability of these

models in reproducing the fermion spectrum. In the case of
the supersymmetric models, we used data corresponding to
different values of tan�, with or without appreciable finite
threshold correction. Comparison of different sets clearly
brings out an important feature. In the minimal model with
type-II seesaw dominance, the b-� unification appears to be
a key ingredient. The cases without such unification cannot
explain the entire fermion spectrum. In particular, the
case of very low tan� showing this unification works
much better than the previously studied data set with
tan� ¼ 10. This connection is not required if neutrinos
obtain their masses from the type-I seesaw mechanism. In
this case, one can obtain very good fits in the minimal
model almost for every data set used (see Table III).
Moreover, the B-L breaking scale inferred from neutrino
masses also lies closer to the GUT scale compared to the
type-II seesaw mechanism. The situation becomes better
when a 120-plet of Higgs field is added to the model. Here
one can get excellent fits to fermion masses in both the
type-I and type-II seesaw mechanisms.
We also carried out a detailed analysis of the fermion

masses in nonsupersymmetric models. The minimal non-

supersymmetric model with 45H þ 10H þ 126H is quite
economical and is argued recently [16,17] to be a viable
candidate for the gauge coupling unification. As shown
here, it also provides a very good description of fermion
masses as well. Intermediate scale �1011 GeV is required
in this model in order to obtain the unification of gauge
coupling [16]. The scale preferred from the fits to fermion
masses presented here is somewhat larger. This scale can
be reduced if the admixture of the light doublet in the

doublet component of 126H is very small [see Eq. (12)].
Viability of these, as well as simultaneous analysis of the
constraint from the gauge coupling unification, will depend
on the detailed analysis of the scalar sector of the theory.
The Yukawa coupling matrices obtained numerically in
this case display interesting structure which can be under-
stood from a very simple symmetry imposed at a high
scale. These features coupled with its economy makes
the minimal nonsupersymmetric model an attractive
choice to unify basic gauge and Yukawa interactions.
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APPENDIX

We list here the fermion mass matrices using the best fit
values of the parameters given in Table VII and IX corre-
sponding to the type-I seesaw mechanism in the case of
minimal (nonminimal) nonsupersymmetric SOð10Þmodel.
All the mass matrices are expressed in GeV units.
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1. Best fit parameter values: The minimal nonsusy SOð10Þ model, type-I seesaw mechanism (Table VII).

Parameters obtained for best fit solution.

r ¼ 69:1739; s ¼ 0:362941� 0:0463175i Ml ¼
0:000469652 0 0

0 0:0991466 0

0 0 1:68558

0
BB@

1
CCA

Md ¼
�0:00110182þ 0:00164125i 0:0040374� 0:00434507i 0:0145011þ 0:0480084i

0:0040374� 0:00434507i �0:0331074þ 0:00870484i �0:0187112� 0:158707i

0:0145011þ 0:0480084i �0:0187112� 0:158707i 0:754282þ 0:611126i

0
BB@

1
CCA

(A1)

Results:

Mu ¼
�0:0575896þ 0:0967087i 0:231322� 0:25593i 0:881792þ 2:78041i

0:231322� 0:25593i �0:826159þ 0:612181i �1:21531� 9:21493i

0:881792þ 2:78041i �1:21531� 9:21493i 62:9262þ 36:2872i

0
BB@

1
CCA

M� ¼ rRr
2

�0:0000981928þ 0:00131563i 0:0000421662� 0:003853i 0:0276444þ 0:0202258i

0:0000421662� 0:003853i �0:0640659þ 0:0272358i �0:0653091� 0:0653272i

0:0276444þ 0:0202258i �0:0653091� 0:0653272i 0:054234� 0:0680089i

0
BB@

1
CCA

2. Best fit parameter values: The nonminimal non-SUSY SOð10Þ model, type-I seesaw mechanism (Table IX)

Parameters obtained for best fit solution.

r ¼ �52:4173; s ¼ 1:61949; tl ¼ 3:1751; tu ¼ 0:0413014; tD ¼ �11:7339:

H ¼
0:00158452 0 0

0 0:0407501 0

0 0 �0:330398

0
BB@

1
CCA F ¼

�0:00116221 �0:000145513 0:0130876

�0:000145513 �0:0224155 �0:00121344

0:0130876 �0:00121344 �0:667509

0
BB@

1
CCA

G ¼
0 �0:00670763 0:00612927

0:00670763 0 �0:0437162

�0:00612927 0:0437162 0

0
BB@

1
CCA (A2)

Results:

Md ¼
0:00042231 �0:000145513� 0:00670763i 0:0130876þ 0:00612927i

�0:000145513þ 0:00670763i 0:0183346 �0:00121344� 0:0437162i

0:0130876� 0:00612927i �0:00121344þ 0:0437162i �0:997907

0
BB@

1
CCA

Mu ¼
0:0156028 0:0123525þ 0:0145214i �1:11099� 0:0132693i

0:0123525� 0:0145214i �0:233181 0:103008þ 0:0946413i

�1:11099þ 0:0132693i 0:103008� 0:0946413i 73:9827

0
BB@

1
CCA

Ml ¼
0:00507117 0:00043654� 0:0212974i �0:0392628þ 0:019461i

0:00043654þ 0:0212974i 0:107997 0:00364033� 0:138803i

�0:0392628� 0:019461i 0:00364033þ 0:138803i 1:67213

0
BB@

1
CCA

M� ¼ rRr
2

0:243898þ 0:00702837i 0:0907917� 0:0237474i �1:65214� 0:184893i

0:0907917� 0:0237474i 4:6052� 0:0433382i �5:76376þ 0:720305i

�1:65214� 0:184893i �5:76376þ 0:720305i 5:33677þ 1:11414i

0
BB@

1
CCA

(A3)
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